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Introduction The Spatial Dimension of Climate Change

The spatial dimension of damages from climate change can be
associated with two main factors:

1 Natural mechanisms which produce a spatially non-uniform
distribution of the surface temperature across the globe.

Heat transport that balances incoming and outgoing
radiation.
Differences among the local heat absorbing capacity - the
local albedo - which is relatively higher in ice covered
regions

2 Economic related forces which determine the damages
that a regional (local) economy is expected to suffer from
a given increase of the local temperature.

Production characteristics (e.g. agriculture vs services), or
Local natural characteristics (e.g. proximity to the sea and
elevation from sea level).
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Introduction The Spatial Dimension of Climate Change

IAMs with a carbon cycle and no spatial dimension are
“zero-dimensional”models and do not include spatial
effects due to heat transportation across space.

Existing literature (e.g. the RICE model) provides a spatial
distribution of damages where the relatively higher
damages from climate change are concentrated in the
zones around the equator. Spatial distribution due to
economic forces.

Energy balance climate models (EBCMs) are “one- or
two-dimensional”models which incorporate heat transport
across latitudes or across latitudes and longitudes (e.g.
Budyko 1969; Sellers 1969,1976; North 1975 a,b; North et
al. 1981; Kim and North 1992; Wu and North 2007).

Alternative spatial models: Pattern scaling, emulation
theory. More detailed spatial patterns but may not be as
useful for incorporating economic forces and nonlinear
feedbacks.
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Introduction The Spatial Dimension of Climate Change

One-dimensional EBCMs predict a concave temperature
distribution across latitudes with the maximum
temperature at the equator.

North, Cahalan and Coakley (1981)
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Introduction Contribution and Objectives of our Research

The main contribution of our paper is to couple spatial climate
models with economic models, and use these models to achieve
three objectives:
First Objective: To show the role of heat transport across
latitudes in the prediction of the spatial distribution and the
corresponding temporal evolution of temperature and damages.

In pursuing this objective we endogenously derive
temperature and damage distributions.

To our knowledge, this is the first time that the spatial
distribution of surface temperature and damages, and their
temporal evolutions, are determined endogenously in the
conceptual framework of a coupled EBCM - economic
growth model.
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Introduction Contribution and Objectives of our Research

Second Objective: To provide insights regarding the optimal
spatial and temporal profile of policy instruments (carbon
taxes), when thermal transport across latitudes is taken into
account.

Regarding the spatial profile of fossil fuel taxes, our results
suggest higher tax rates for wealthier geographical zones
due to the practical inability of implementing without cost
the international transfers needed to implement a
competitive equilibrium associated with the Pareto
optimum, or when Negishi welfare weights are not used.

One-dimensional model provides a basis for exploring the
impact of heat transport on the spatial differentiation of
fossil fuel taxes between poor and wealthy regions.
Our results provide new insights into a result (non-uniform
optimal mitigation) that was first noted by Chichilnisky
and Heal (1994) by characterizing the spatial distribution
of fossil fuel taxes and linking the degree of spatial
differentiation of optimal fossil fuel taxes to the heat
transport.
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Introduction Contribution and Objectives of our Research

Second Objective (Continued):

Regarding the temporal profile of optimal mitigation,
among economists dealing with climate change on the
mitigation side, the debate has basically settled on whether
to increase mitigation efforts that is, carbon taxes,
gradually (e.g. Nordhaus 2007, 2010, 2011), or whether to
mitigate rapidly (e.g. Stern 2006, Weitzman 2009 a,b).

In this paper we locate suffi cient conditions for profit taxes
on fossil fuel firms to be decreasing over time and for unit
taxes on fossil fuels to grow over time more slowly than
the rate of return on capital (also in Golosov et al. 2011).
We also locate suffi cient conditions for the tax schedule to
be increasing according to the gradualist approach.

A. Xepapadeas (AUEB) Optimal Climate Policies LSE, 13 December, 2012 8 / 58



Optimal
Climate
Policies

A.
Xepapadeas

Introduction

Energy
Balance
Climate
Models

A Basic
EBCM

A Simplified
Climate Model

An Economic
EBCM

Competitive
Equilibrium

Optimal
Carbon Taxes

The Impact of
Thermal
Transportation

Concluding
Remarks

Introduction Contribution and Objectives of our Research

Third Objective: The third objective is to introduce spatial
EBCMs with heat transport and endogenous albedo into
economics as a potentially useful alternative to simple carbon
cycle models in studying the economics of climate change.

Latitude dependent climate models can address damage
reservoirs. Damage reservoirs are sources of climate
damages which will eventually cease to exist when the
source of the damages is depleted, for example Ice lines
and permafrost
By deriving the spatiotemporal profile for carbon taxes, we
show how the spatial EBCMs can contribute to the current
debate regarding:

1 how much to mitigate now,
2 whether mitigation policies should be spatially
homogeneous or not, and

3 how to derive geographically specific information regarding
damages and policy measures.
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Energy Balance Climate Models Characteristics

Characteristics

1 Explicit incorporation of the spatial dimension into the
climate model in the form of heat transport across
latitudes.

one (latitude only) or , two (latitude and longitude)
dimensional models.

2 The presence of an endogenous ice line where latitudes
north (south) of the ice line are solid ice and latitudes
south (north) of the ice line are ice free.

3 The underlying spatially dependent temperature function.
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Energy Balance Climate Models Potential Output from EBCMs

The use of a spatial EBCM allows us to:

Estimate a spatial temperature distribution.

Estimate spatial effects of temperature changes by
deriving a damage function that depends not on the mean
global temperature but on local temperature (i.e. the
distribution of temperature across latitudes).

Introduce the concept “damage reservoirs” like ice-lines
and permafrost as feedback mechanisms generating in
general damages in locations different from the location of
the damage reservoir.
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A Basic EBCM

I (x , t): infrared radiation to space in W/m2 at latitude x at
time t, T (x , t) : surface (sea level) temperature in ◦C

I (x , t) = A+ BT (x , t), empirical approximation

A
[
(W/m2)

]
, B

[
W/(m2)(◦C)

]
, empirical coeffi cients

Cc
∂T (x , t)

∂t
= QS (x , t) α (x , xs (t))− [I (x , t)− h (x , t)] +

D
∂

∂x

[(
1− x2

) ∂I (x .t)
∂x

]
x : the sine of the latitude x = 0 denotes the Equator, x = ±1
the N-S Pole; Q is the solar constant S(x) is the mean annual
meridional distribution of solar radiation; α(x , xs (t)) is the
absorption coeffi cient which is one minus the albedo of the
earth-atmosphere system (co-albedo), with xs (t) being the
latitude of the ice line at time t; D is a thermal transport
coeffi cient Wm−2oC−1; and Cc is heat capacity per unit area.
Outgoing radiation is reduced by the human input h (x , t) .
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A Basic EBCM Heat Transport and Spatial Aspects of the EBCM

The heat transport is modelled by the term:
D ∂

∂x

[
(1− x2) ∂I (x ,t)

∂x

]
The ice line is determined dynamically by the condition:

T > −T̃ oC no ice line present at latitude x
T < −T̃ oC ice present at latitude x

−T̃ is empirically determined (e.g.-10oC)

Specifications for the co-albedo function:

α(x , xs ) =
{

α0 = 0.38 |x | > xs
α1 = 0.68 |x | < xs

α (x ,T (x , t)) = c0 + c1 tanh (T (x , t) + 10)

a (x) = 0.681− 0.202P2 (x)
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A Basic EBCM The Human Input

Human input: h (x , t) = ξ
(
1+ ln M (t)M0

)
where M0

denotes the preindustrial and M (t) the time t stock of
carbon dioxide in the atmosphere, ξ is a
temperature-forcing parameter (◦C perW per m2)
The stock of the atmospheric carbon dioxide:

Ṁ (t) =
∫ x=1

x=−1
βq (x , t) dx −mM (t) , M (0) = M0

Emissions are proportional to the amount of fossil fuels
used.
The total stock of fossil fuel available is fixed, or∫ x=1

x=−1
q (x , t) dx = q (t) ,

∫ ∞

0
q (t) = R0,

where q (t) is total fossil fuels used across all latitudes at
time t, and R0 is the total available amount of fossil fuels
on the planet.
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A Basic EBCM A Basic Energy Balance Climate Model: Summary I

Cc
∂T (x , t)

∂t
= QS (x , t) α (x , xs (t))− [I (x , t)− h (x , t)] +

D
∂

∂x

[(
1− x2

) ∂I (x .t)
∂x

]
I (x , t) = A+ BT (x , t)

h (t) = ξ ln
(
1+

M (t)
M0

)
Ṁ (t) =

∫ x=1

x=−1
βq (x , t) dx −mM (t) , M (0) = M0∫ x=1

x=−1
q (x , t) dx = q (t) ,

∫ ∞

0
q (t) = R0
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A Basic EBCM Energy Balance Climate Models and Approximations

Approximating the temperature PDE

Cc
∂T (x , t)

∂t
= QS(x)α(x , xs )− [(A+ BT (x , t))− h(t)] +

D
∂

∂x

[
(1− x2)∂T (x , t)

∂x

]
Approximation
A satisfactory approximation of the solution can be obtained by
the so-called two-mode solution where n = {0, 2} , Pn(x)
Legendre polynomials.

T̂ (x , t) = ∑
n even

Tn(t)Pn(x)
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A Basic EBCM The Two-Mode Solution

T̂ (x , t) = T0(t) + T2(t)P2(x)

Cc
dT0(t)
dt

= −A− BT0(t) +
1
2

∫ 1

−1
QS(x)α(x , xs )dx + ξ ln

(
1+

M (t)
M0

)
Cc
dT2(t)
dt

= (−B + 6D)T2(t) +
5
2

∫ 1

−1
QS(x)α(x , xs )P2(x)dx

T0 (0) = T00,T2 (0) = T20,P2(x) =
(3x2 − 1)

2
S(x) = 1+ S2P2(x) , S2 = −0.482
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A Basic EBCM Use of global mean temperature and potential bias

Proposition

Assume that
∫ 1
−1 QS(x)α(x , xs )P2(x)dx = Φ (t) ≤ UB < ∞,

and that D → ∞. Then the solution T2 (t) of the two-mode
solution vanishes.

Thus for a given transport D < ∞, the relative
contribution of T2 (t) to the solution T̂ (t) can be
regarded as a measure of whether the heat transport is
important in the solution of the problem. This result
suggests that the use of the global mean temperature
alone in IAMs may introduce a bias.
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A Simplified Climate Model Two-Mode Approach

a (x) = a0 − a1P2 (x); S(x) = 0.5 [1− s0P2 (x)] ,
The two-mode approximating ODEs become

Cc
dT0
dt

= −A− BT0(t) +
1
2
〈QS(x)α(x),P0 (x)〉+ ξ ln

(
1+

M (t)
M0

)
Cc
dT2
dt

= −(B + 6D)T2(t) +
5
2B
〈QS(x)α(x),P2(x)〉

Set dT0dt =
dT2
dt = 0. Then

T (x , t;D) = C0+C1 ln
M (t)
M0

− C2
(B + 6D)

P2 (x) ,C0,C1,C2 > 0
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A Simplified Climate Model The Temperature Field

Table 1: Parametrization*

Parameter Value Parameter Value
a0 0.681 Q 340 W/m2

a1 0.202 M0 596 GtC
s0 0.477 M (2011) 831 GtC
A 221.6 W/m2 ξ 5.35 ◦C (W/m2)
B 1.24 g 1.178%
D 0.3 m 0.83%

(*)Values for the dimensionless α0, a1, s0 have been obtained by North et
al. (1981). Values for A,B,and D

[
W/(m2)(◦C )

]
have been

obtained by calibration so as to reproduce current global temperature. Cc
has been absorbed into the empirical coeffi cients. g = 1.178% is the

average annual growth of total CO2 emissions corresponding to the IPCC

scenario A1F1 (http://www.ipcc-data.org/sres/ddc_sres_emissions.html)
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A Simplified Climate Model The Temperature Field

Current temperature: Equator 27◦C, N-S Poles -9.5◦C
Predicted temperature change t = 100: +3.2◦C

Temperature function

D → ∞ mean temperature around 14.8◦C for 2011 and 14.4◦C
for the period 1951-1980. NASA’s estimate of the mean
temperature for the base period 1951-1980 is 14◦C.
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A Simplified Climate Model The Temperature Field

The impact of thermal transport
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A Simplified Climate Model A Latitude Dependent Damage Function

Ω (x , t;D) = exp(−γtT̂ (x , t;D))

γ = 0.0000252

Calibration based on Nordhaus and Boyer(1999,pp.4-44)

The damage function
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A Simplified Climate Model A Latitude Dependent Damage Function

The impact of heat transport on damages
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A Simplified Climate Model Climate Response Functions

dT0 (t) =

(
dT0
dM

)
dM (t) , dT2 (t) =

(
dT2
dM

)
dM (t)

dT (t, x) = dT0 (t) + P2 (x) dT2 (t) =[
dT0
dM

+
dT2
dM

P2 (x)
]
dM (t)

The impact on damages will then be determined as:

dΩ (T (x , t)) = Ω′T [dT0 (t) + P2 (x) dT2 (t)] =

Ω′T

[
dT0
dM

+
dT2
dM

P2 (x)
]
dM (t)
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An Economic EBCM Potential World GDP

Y (t, x) = A(x , t)Ω(T (x , t))F (K (x , t), L(x , t), q(x , t))

≡ e(a+nαL)tΨ(x ,T (x , t))K (x , t)αK q(x , t)αq

Ftotal (K (t), q(t), {T (x , t)}x=1x=−1 ; x , t)

“Potential world GDP at date t”. The maximum output that
the whole world can produce, given total world capital K (t)
available and total world fossil fuel q(t) used, for a given
distribution of temperature T (x , t)

C (t) + K̇ (t) + δK (t) = Ftotal (K (t), q(t), {T (x , t)}x=1x=−1 ; x , t),

j (t) =
∫ x=1

x=−1
j (x , t) dx , j = C ,K , q

Ftotal (K (t), q(t),T ; t) =
[
e(a+αLn)tK (t)αK q(t)αq

]
J(t;D)

J (x , t;D) =
Ψ(x ,T (x , t))1/αL[∫

x ′ Ψ(x
′,T (x ′, t)1/aLdx ′

]aK+aq
J
(
{T (x , t)}x=1x=−1

)
= J(t;D) ≡

∫
x
J (x , t;D) dxA. Xepapadeas (AUEB) Optimal Climate Policies LSE, 13 December, 2012 27 / 58
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An Economic EBCM Potential World GDP

The Cobb-Douglas specification allows the “separation”of
the climate damage effects on production across latitudes,
as the “index” J(t;D), which depends on thermal
diffusion coeffi cient D, that multiplies a production
function that is independent of x .

Thus population growth and technical change affect the
“macrogrowth component” e(a+αLn)tK (t)αK q(t)αq , while
changes in the size of D have a direct effect on the
“climate component”.

The combination of the macrogrowth and the climate
component determine the potential world input.
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An Economic EBCM Welfare Maximization in an EBCM

The Problem of the Social Planner

max
∫ ∞

0
e−ρt

∫
X

υ (x) L(x , t)
[
U
(
C (x , t)
L(x , t)

)
−ΩC (T (x , t))

]
dxdt

subject to:

Climate dynamics

Resource constraint for the economy

Total consumption and total fossil fuel constraints

States: v = (K (t) ,R (t) ,M (t) ,T (t, x))
Controls: u = (C (t) ,C (x , t) , q (t) , q(x , t)) ,
x ∈ X = [−1, 1]
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An Economic EBCM Global Welfare Maximization: The Social Planner’s Hamiltonian

H =
∫
X

υ (x) L(x , t)
[
U
(
C (x , t)
L(x , t)

)
−ΩC (T (x , t))

]
dx +

λK (t) [Ftotal (K (t), q(t),T ; t)− C (t)− δK (t)]

−µR (t) q (t) + λM (t)
[∫
X

βq (x , t) dx −mM (t)
]

+λT (t, x)
[
1
Cc
[QS(x)α(x ,T (x , t))− (A+ BT (x , t))

+ξ ln
(
1+

M (t)
M0

)
+D

∂

∂x

[
(1− x2)∂T (x , t)

∂x

]]
+µC (t)

[
C (t)−

∫
X
C (x , t) dx

]
+

µq (t)
[
q(t)−

∫
X
q(x , t)dx

]
.
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An Economic EBCM Maximum Principle - Controls

C (t) ,C (x , t) : λK (t) = µC (t) = υ (x)U
′
(
C (x , t)
L(x , t)

)
or F ′total ,q =

µR (t)− λM (t) β

λK (t)
,

For equal weights, per capital consumption should be equated
across locations.

A. Xepapadeas (AUEB) Optimal Climate Policies LSE, 13 December, 2012 31 / 58



Optimal
Climate
Policies

A.
Xepapadeas

Introduction

Energy
Balance
Climate
Models

A Basic
EBCM

A Simplified
Climate Model

An Economic
EBCM

Competitive
Equilibrium

Optimal
Carbon Taxes

The Impact of
Thermal
Transportation

Concluding
Remarks

An Economic EBCM Maximum Principle - Costates

λ̇K (t) =
[
ρ+ δ− F ′total ,K (K (t), q(t),T ; t)

]
λK (t)

µ̇R (t) = ρµR (t)

λ̇M (t) = (ρ+m) λM (t)−
ξ

Cc
(
1+ M (t)

M0

) ∫
X

λT (t, x) dx

λ̇T (t, x) = (ρ+ 1) λT (t, x) + υ (x) L (t, x)Ω′c ,T (T (t, x))
−λK (t) F

′
total ,T (K (t), q(t),T ; t)−

QS(x)
λT (t, x)
Cc

∂α(x ,T (x , t))
∂T

− D
Cc

∂

∂x

[
(1− x2)∂λT (x , t)

∂x

]
.
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An Economic EBCM Socially Optimal Paths

A solution of the welfare maximization problem, provided
it exists and satisfies the desirable stability properties, will
determine the optimal temporal and latitudinal paths for
the states, the controls and the costates.

The optimal time paths will be dependent on the thermal
diffusion coeffi cient D. Denoting optimality by a (∗) ,
these paths can be written as:

{K ∗ (t;D) ,K ∗ (t, x ;D) ,
M∗ (t;D) ,T ∗ (t, x ;D)x=1x=−1

}
{C ∗ (t;D) ,C ∗ (x , t;D) , q∗ (t;D) , q∗(x , t;D)}x=1x=−1

{λ∗K (t;D) ,λ∗R (t;D) ,λ∗M (t;D) ,λ∗T (t, x ;D)}
x=1
x=−1
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Competitive Equilibrium Description

We consider a global market economy in which each
latitude x can be considered as a country.

In each country the representative consumer maximizes
utility subject to a permanent income constraint by
considering as parametric damages due to climate change.

The representative consumption-good-producing firm
maximizes profits by considering as parametric fossil fuel
prices and taxes on fossil fuel use.

Fossil fuel firms maximize profits by considering as
parametric taxes on their profits.
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Competitive Equilibrium Consumers

max
{C (x ,t)}

{∫ ∞

0
e−ρt

[
L(x , t)U

(
C (x , t)
L(x , t)

)
− Ω̄C (T (x , t;D)

]
dt
}

s.t
∫ ∞

t=0
e−Γ(t)ps (t)C (x , t)dt =

K0(x) +
∫ ∞

t=0
e−Γ(t)ps (t) I (x , t)dt

λU ′
(
C (x , t))
L(x , t

)
= Λ(x)eρtpC (t)

pC (t) = e−Γ(t)ps (t) , Γ (t) =
∫ t

s=0
r(s)ds

Λ(x) the marginal utility of capitalized income at location x .
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Competitive Equilibrium Consumers

1st Welfare Theorem
Exact correspondence between the equilibrium problem and the
planner’s problem with optimality condition,

υ (x)U ′
(
C (x , t))
L(x , t

)
= λK (t;D) , (1)

is obtained by letting pC (t) = e−ρtλK (t;D) . The welfare
weights are the reciprocal of marginal utility, or the so-called
Negishi weights, υ (x) = 1/Λ(x).
2nd Welfare Theorem
A solution to the planner’s problem resulting for a specific
choice of welfare weights can be implemented as a competitive
equilibrium with transfers across locations. The choice of zero
transfers corresponds to the case of using the Negishi weights
as welfare weights.
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Competitive Equilibrium Consumption-Goods-Producing Firms

max pC (t) [A(x , t)Ω(T (x , t))F (K (x , t), L(x , t), q(x , t))−
(r(t) + δ)K (x , t)− w(x , t)L(x , t)
− (p(x , t) + τ (x , t)) q(x , t)− (p(x , t) + τ (x , t)) q(x , t)]

Optimality conditions:

A(x , t)Ω(T (x , t;D))F ′K (K (x , t), L(x , t), q(x , t)) =
r (t) + δ

A(x , t)Ω(T (x , t;D))F ′q(K (x , t), L(x , t), q(x , t)) =
p (x , t) + τ (x , t)

A(x , t)Ω(T (x , t;D))F ′L(K (x , t), L(x , t), q(x , t)) =
w(x , t).
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Competitive Equilibrium Fossil fuel firms

max
q(x ,t)

∫ ∞

t=0
e−Γ(t)pC (t) (p(x , t)q(t)(1− θ(t))]dt,

subject to
∫ ∞

t=0

∫
X
q(x , t)dxdt ≤ R0

FONC

p(t)(1− θ(t)) = µ0e
Γ(t) =[

AΩF ′q − τ (x , t)
]
(1− θ(t)).
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Competitive Equilibrium Equilibrium

In any decentralized problem, consumption goods firms at
latitude x will choose demands K (x , t) and q(x , t) to set

r(t) + δ = AΩF ′K , p(x , t) + τ (x , t) = AΩF ′q

Market clearing requires∫
X
B (x , t) dx = 0,

∫
X
K (x , t) dx = K (t) ,∫

X
q (x , t) dx = q (t)∫

X
C (x , t) dx = C (t) ,

∫
X
Y (x , t) dx = Y (t) .

Firms take temperature and taxes as parametric:

{C e (x , t;D, τ, θ, p) ,K e (x , t;T , τ, θ, p) , qe (x , t;T , τ, θ, p)}x=1x=−1
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Optimal Carbon Taxes

For a given set of welfare weights υ (x) , the social planner
solves the Pareto optimum problem, denoted as PO∗ (υ) .
The solution produces the optimal paths (∗).

Implementation by competitive markets implies that each
actor in the economy, i.e. consumers and firms, is faced
with a tax on fossil fuels equal to the social marginal cost
τ∗(x , t) of using fossil fuels at each x , t.

This tax will induce the consumers and firms to produce a
competitive equilibrium equal to the optimal quantities,
provided that the firms’problems are concave and the
consumers’problems are concave.
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Optimal Carbon Taxes A Spatially Uniform Optimal Carbon Tax

Implementation of PO∗ (υ) requires that social and private
marginal products for K and q be equated. The regulator can
obtain a spatially uniform tax by:

1 Carrying out without cost the necessary adjustments to
intertemporal endowment flows across locations so that
Λ(x) = Λ(x ′) = Λ̄ = 1/ῡ for all x , x ′. Per capita
consumption will be equated across latitudes

τ∗ (t;D) =
µ∗R (t;D)− βλ∗M (t;D)

ῡU ′ (C ∗ῡ (t) /L (t))
− p (t) . (2)

2 Using Negishi weights to implement a competitive
equilibrium with zero transfers so that
υ (x)U ′

(
C ∗(x ,t)
L(x ,t)

)
= 1,

3 Making appropriate transfers so that υ̂ (x)U ′
(
C ∗υ̂ (x ,t)
L(x ,t)

)
is

the same across locations for any arbitrary set of welfare
weights υ̂ (x).
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Optimal Carbon Taxes A Spatially Differentiated Optimal Carbon Tax

We use two-mode dynamics and the co-albedo function
independent of the temperature field or α (x ,T (x , t)) = α (x) .

T̂ (x , t) = T0 (t) + T2 (t,D)P2 (x)

Cc Ṫ0 = −A− BT0 −
A
B
+
∫ x=1

x=−1
QS (x) α (x) dx +

ξ ln
(
1+

M (t)
M0

)
Cc Ṫ0 = Z0 − BT0 + Z1 ln

(
1+

M (t)
M0

)
,

Z0 = −A+
∫ 1

−1
QS (x) α (x) dx , Z1 = ξ.
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Optimal Carbon Taxes A Spatially Differentiated Optimal Carbon Tax

Optimal carbon taxes in closed economies
All locations are closed economies which have their own isolated
capital markets, fossil fuel reserves and fossil fuel markets.

Proposition

The optimal full social price of fossil fuels for each closed
economy across latitudes is:

p∗ (x , t) = p (x , t) + τ∗ (x , t) =
µ∗R (x , t;D)− βλ∗M (t;D)

λ∗K (x , t;D)
=

µ∗R (x , t;D)− βλ∗M (t;D)

υ (x)U ′
(
C ∗(x ,t)
L(x ,t)

) .

If the planner makes no international transfers and uses Negishi
weights so that υ (x)U ′

(
C ∗(x ,t)
L(x ,t)

)
= 1 for all x , then

p∗ (x , t;D) = µ∗R (x , t;D)− βλ∗M (t;D).
Assume µ∗R (x , 0;D) = µ∗R (x

′, 0;D) for all x , then
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Optimal Carbon Taxes A Spatially Differentiated Optimal Carbon Tax

p∗ (x , t)
p∗ (x ′, t)

=
υ (x ′)U ′

(
C ∗(x ′,t)
L(x ′,t)

)
υ (x)U ′

(
C ∗(x ,t)
L(x ,t)

) .
If υ (x ′)U ′

(
C ∗(x ′,t)
L(x ′,t)

)
6= υ (x)U ′

(
C ∗(x ,t)
L(x ,t)

)
for all x ′ 6= x , then

the optimal full social price of fossil fuels is different across
locations.

Proposition

When welfare weights across latitudes are equal and
independent of x , a latitude located at the equator x = 0 will
pay a lower social price for fossil fuels relative to a latitude
located at latitude x 6= 0, if U ′

(
C ∗(x ,t)
L(x ,t)

)
< U ′

(
C ∗(0,t)
L(0,t)

)
.
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Optimal Carbon Taxes A Spatially Differentiated Optimal Carbon Tax

Since latitudes around the equator are expected to be poorer,
with relatively lower per capita consumption which implies
C ∗(x ,t)
L(x ,t) >

C ∗(0,t)
L(0,t) , these latitudes will pay a lower social price for

fossil fuels relative to a richer latitude located away from the
equator. For example with logarithmic utility and equal welfare
weights,

p∗ (x , t)
p∗ (0, t)

=
C ∗ (x , t) /L(x , t)
C ∗ (0, t) /L(0, t)

.
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Optimal Carbon Taxes A Spatially Differentiated Optimal Carbon Tax

Optimal carbon taxes with costly international transfers
The regulator can transfer endowments across locations.
Transfers across locations are however costly (Chichilnisky and
Heal 1994; Chichilnisky, Heal and Starrett 2000; Sandmo 2006;
Anthoff 2011).
Cost of transfers∫

X

[
C (x , t) + K̇ (x , t) + δK (x , t)

]
dx =∫

X
Y (t, x) dx−C0

2
Θ (t)

Θ (t) =
∫
X
[y (t, x)− C (t, x)]2 dx ,

y (t, x) = Y (t, x)− δK (t, x)− u (t, x)
K̇ (t, x) = u (t, x) ,

Y (t, x) = A(x , t)Ω(T̂ (x , t))F (K (x , t), L(x , t), q(x , t))

y (t, x) can be interpreted as private consumption available out
of the production of location x at time t.
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Optimal Carbon Taxes A Spatially Differentiated Optimal Carbon Tax

Proposition

Assume that the difference between private consumption
available out of local production and local private consumption
is approximately constant over time, or d [y (x ,t)−C (y ,t)]dt ' 0.
Then the optimal spatially non-uniform full social price for
fossil fuels is

p (x , t) + τ̂ (x , t) =
µ∗R (t;D)− βλ∗M (t;D)

λ∗K (t;D) [1− C0 [y ∗ (x , t)− C ∗ (x , t)]]

p∗ (x , t)
p∗ (0, t)

=
[1− C0 [y ∗ (0, t)− C ∗ (0, t)]]
[1− C0 [y ∗ (x , t)− C ∗ (x , t)]]

.
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Optimal Carbon Taxes A Spatially Differentiated Optimal Carbon Tax

Proposition

If [y ∗ (x , t)− C ∗ (x , t)] > [y ∗ (0, t)− C ∗ (0, t)] , then
p∗ (x , t) > p∗ (0, t) .

Since locations around the equator are poor relative to
higher latitude locations, it is expected that
[y ∗ (x , t)− C ∗ (x , t)] > [y ∗ (0, t)− C ∗ (0, t)] , for x � 0.

Poor locations should pay a smaller social price for fossil
fuel relative to rich locations, which is similar to the result
obtained above.

If p (x , t) is approximately equal across locations, the
proposition implies that poor locations around the equator
should pay a lower carbon tax.
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Optimal Carbon Taxes A Spatially Differentiated Optimal Carbon Tax

Spatially uniform taxes emerge as an optimal solution only
when:
1 transfers across locations equalize per capita consumption
or marginal social valuations,

2 Negishi welfare weights are used and distribution across
latitudes does not change.

Negishi weights - being the inverse of marginal utility -
assign relatively larger welfare weights to locations with
higher per capita consumption.
The RICE model adopts Negishi weights and produces
spatially uniform carbon taxes with invariant regional
distribution.
Our results suggest that the spatial structure of the
optimal carbon tax is sensitive to welfare weights.
When intertemporal distribution is treated as fixed or it is
costly to change it, and welfare weights are not Negishi
weights, poor locations could, under plausible
assumptions, pay lower carbon taxes.
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Optimal Carbon Taxes The Temporal Profile of Optimal Taxes

Assume optimal spatially uniform taxes. Hotelling’s rule:

d [p(t)(1− θ∗(t))] /dt
p(t)(1− θ∗(t))

= r (t) = AΩF ′K − δ

(ṗ(t)− τ̇∗(t))
(p(t)− τ∗(t))

= r(t) for θ∗(t) = 0

The policy ramp under the gradualist approach suggests that
τ̇∗(t) > 0, θ̇

∗
(t) > 0.

To have a declining tax schedule through time:

r(t)− ṗ(t)
p(t)

> 0,
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Optimal Carbon Taxes The Temporal Profile of Optimal Taxes

Lemma

ζ (t) ≡
∫
x λ∗T (t, x ;D)dx < 0, λ∗M (t;D) < 0.

Thus ζ (t) is the global shadow cost of temperature at
time t across all latitudes.
λ∗M (t;D) < 0 means that an increase in atmospheric
accumulation of CO2 at any time t will reduce welfare.

Proposition

If m < δ, then the optimal profit tax decreases through time,
or θ̇

∗
(t) < 0. Furthermore, the optimal unit tax on fossil fuels

grows at a rate less than the rate of interest, or τ̇∗(t)
τ∗(t) < r

∗ (t) .

Proposition

If m > δ and λ∗M (m− δ)−
(

ξ
BM (t)

) ∫
X λ∗T dx > 0 then

θ̇
∗
(t) > 0 and τ̇∗(t)

τ∗(t)=
ṗ∗(t)−r ∗(t)p∗(t)

τ∗(t) +r ∗(t) > r ∗(t).
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Thus, we have suffi cient conditions for rapid ramp-up of
profit taxes and for unit carbon to rise at a rate less than
the net of depreciation rate of return r ∗(t) on capital.

The gradualist tax schedule requires rapid decay of the
atmospheric carbon dioxide, and a relatively small global
shadow cost of temperature at time t across all latitudes.
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Simplifying assumptions: Assume no technical change,
constant population, no fossil fuel constraint at each latitude,
logarithmic utility function with no damages in utility due to
temperature increase, a constant returns to scale production
function at each location, and an exponential damage function
associated with output Ω(T̂ (x , t)) = exp

(
−γT̂ (x , t)

)
.

Let

A1 =
{
x : −1/

√
3 < x < 1/

√
3
}
, A2 =

{
x : x = ±1/

√
3
}

A3 =
{
x : 1/

√
3 < x ≤ 1 and − 1 ≤ x < −1/

√
3
}
.
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Proposition

Under the simplifying assumptions above, an increase in the
heat transport coeffi cient D will have the following effects on
the steady state Pareto optimal solution of the planner’s
problem in closed economies with nonnegative welfare weights:
(i) in A1 it will reduce temperature and damages, increase per
capita capital and consumption, and increase the social cost of
fossil fuels, (ii) in A2 it will have no effect, and (iii) in A3 it will
increase temperature and damages, reduce per capita capital,
consumption, and the social cost of fossil fuels.

Is there any bias from ignoring heat transport or equivalently
ignoring cross latitude externalities?
Not accounting for D implies that the Pareto optimal solution
will underestimate temperature and damages, overestimate per
capita capital and consumption and underestimate the social
price of fossil fuels at low latitudes in A1. The opposite applies
to high latitudes in A3.
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The use of fossil fuels in production generates emissions
which block outgoing solar radiation, thus increasing the
temperature. Heat moves across latitudes.

We derive latitude dependent temperature, damage and
climate response functions, as well as optimal fossil fuel
taxes, which are all determined endogenously through the
interaction of climate dynamics with optimizing
forward-looking economic agents.

We show the links between welfare weights and
international transfers across locations and the spatial
structure of optimal taxes.

When per capita consumption across latitudes can be
adjusted through costless transfers for any set of
nonnegative welfare weights, so that marginal valuations
across latitudes are equated, or transfers are zero and
Negishi welfare weights are used, then optimal carbon
taxes are spatially homogeneous.
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When marginal valuations across latitudes are not equated,
due to institutional/political constraints or the cost of
transfers, optimal carbon taxes are spatially differentiated.

If the international transfers are costly and the planner is
not constrained to using Negishi weights, then taxes on
fossil fuels could be lower in relatively poorer geographical
zones.

Comparative static analysis suggests that since heat
transport affects local damages and local economic
variables, ignoring it - by using mean global temperature
as the central state variable for climate - introduces a bias.
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If the decay of atmospheric CO2 is lower than the
depreciation of capital, then profit taxes on fossil fuel firms
will decline over time and unit taxes on fossil fuels will
grow at a rate less than the interest rate.

These results, which can be contrasted with the gradually
increasing policy ramps derived by IAM models like DICE
or RICE, indicate that mitigation policies should be
stronger now relative to the future.

Increasing policy ramps require rapid decay of the
atmospheric carbon dioxide, and a relatively small global
shadow cost of temperature increase.

A. Xepapadeas (AUEB) Optimal Climate Policies LSE, 13 December, 2012 57 / 58



Optimal
Climate
Policies

A.
Xepapadeas

Introduction

Energy
Balance
Climate
Models

A Basic
EBCM

A Simplified
Climate Model

An Economic
EBCM

Competitive
Equilibrium

Optimal
Carbon Taxes

The Impact of
Thermal
Transportation

Concluding
Remarks

Concluding Remarks Future Research

Augment our EBCM with a deep ocean component that
redistributes vertically the heat energy via uniform vertical
diffusion

Use the one-dimensional EBCM with feedback mechanisms
for the co-albedo to introduce latitude dependent damage
reservoirs like endogenous ice-lines and permafrost

Since reservoir damages are expected to arrive relatively
early and diminish in the distant future - because the
reservoir will be exhausted - the temporal profile of the
policy ramp could be declining, enforcing the result
obtained for profit taxes, or even U-shaped
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