Who's Getting Globalized? The Size and Nature of Intranational Trade Costs

David Atkin¹ Dave Donaldson²

 $^{1}\mathsf{Yale}$

²MIT

Who's Getting Globalized?

- Massive reductions in barriers to <u>international</u> trade (tariffs, shipping costs, logistics, etc) in past decades.
 - But if <u>intra</u>-national trade costs are large, the impact may be minimal for consumers in remote locations.
 - This may be especially true in developing countries (poor roads, barriers to entry, etc).

Who's Getting Globalized?

- Massive reductions in barriers to <u>international</u> trade (tariffs, shipping costs, logistics, etc) in past decades.
 - But if <u>intra</u>-national trade costs are large, the impact may be minimal for consumers in remote locations.
 - This may be especially true in developing countries (poor roads, barriers to entry, etc).
- Question: How large are <u>intra</u>-national trade costs in developing countries?
 - Lots of anecdotes but scarce evidence.

Who's Getting Globalized?

- Massive reductions in barriers to <u>international</u> trade (tariffs, shipping costs, logistics, etc) in past decades.
 - But if <u>intra</u>-national trade costs are large, the impact may be minimal for consumers in remote locations.
 - This may be especially true in developing countries (poor roads, barriers to entry, etc).
- Question: How large are <u>intra</u>-national trade costs in developing countries?
 - Lots of anecdotes but scarce evidence.
- Key idea here: differences in prices over space can reveal trade costs. But one has to be careful.

1. Spatial price gaps may reflect differences in product characteristics (eg quality):

- 1. Spatial price gaps may reflect differences in product characteristics (eg quality):
 - We use newly collected CPI micro-data on extremely narrowly defined brand name consumer products (akin to barcodes)

- 1. Spatial price gaps may reflect differences in product characteristics (eg quality):
 - We use newly collected CPI micro-data on extremely narrowly defined brand name consumer products (akin to barcodes)
- 2. Spatial price gaps are only rarely informative about the level (rather than the range) of trade costs:

- 1. Spatial price gaps may reflect differences in product characteristics (eg quality):
 - We use newly collected CPI micro-data on extremely narrowly defined brand name consumer products (akin to barcodes)
- 2. Spatial price gaps are only rarely informative about the level (rather than the range) of trade costs:
 - We obtain the source location for each product in our sample and only use source-destination pairs

- 1. Spatial price gaps may reflect differences in product characteristics (eg quality):
 - We use newly collected CPI micro-data on extremely narrowly defined brand name consumer products (akin to barcodes)
- 2. Spatial price gaps are only rarely informative about the level (rather than the range) of trade costs:
 - We obtain the source location for each product in our sample and only use source-destination pairs
- 3. Spatial price gaps may reflect both trade costs and differences in intermediaries' mark-ups across locations:

- 1. Spatial price gaps may reflect differences in product characteristics (eg quality):
 - We use newly collected CPI micro-data on extremely narrowly defined brand name consumer products (akin to barcodes)
- 2. Spatial price gaps are only rarely informative about the level (rather than the range) of trade costs:
 - We obtain the source location for each product in our sample and only use source-destination pairs
- 3. Spatial price gaps may reflect both trade costs and differences in intermediaries' mark-ups across locations:
 - We use sufficient statistic (price pass-through) to uncover the true marginal costs of distance

Spatial price gaps are only rarely informative about the level (rather than range) of trade costs:

all pairs price gaps

95% confidence intervals shown, Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5), All plots are semiparametric and include product-time fixed effects (Baltagi and Li, 2002).

Spatial price gaps are only rarely informative about the level (rather than range) of trade costs:

95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5). All plots are semiparametric and include product–time fixed effects (Baltagi and Li, 2002).

Spatial price gaps reflect both trade costs and spatial differences in intermediaries' mark-ups:

Implication: 2 Effects of Remoteness on Social Surplus

- 1. We find extremely high marginal costs of distance (**7-15X** larger than CAN-US trucking from Hummels 2001).
 - ⇒ Less social surplus from trade available to remote consumers/intermediaries

Implication: 2 Effects of Remoteness on Social Surplus

- 1. We find extremely high marginal costs of distance (**7-15X** larger than CAN-US trucking from Hummels 2001).
 - ⇒ Less social surplus from trade available to remote consumers/intermediaries
- 2. We also find that remote markets are less competitive.
 - Whatever social surplus from trade exists in remote locations sees smaller shares accruing to consumers (relative to intermediaries and deadweight loss)
 - Pass-through (again) provides a sufficient statistic for calculating these shares without need for (difficult) markup/elasticity of substitution estimation

Intermediary Profits over Consumer Surplus

Distance from source location to destination market (minutes, log scale) 95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5).

Outline of Talk

Introduction

Data

How large are intranational trade costs?

Implication: Who is capturing the gains from globalization?

Concluding Remarks

Outline of Talk

Introduction

Data

How large are intranational trade costs?

Implication: Who is capturing the gains from globalization?

Concluding Remarks

New Data: 2 Requirements

- 1. Retail price of identical products at many locations in space, observed at high frequency for a long duration.
- 2. **Source location** (factory location or port of entry) of each of these goods (in each country, for each time period).

Dataset 1: CPI micro-data from set of developing countries

- Sample for today:
 - Ethiopia (2001-2010): 15 products, 103 towns
 - Nigeria (2001-2010): 17 products, 36 towns
 - Products are those for which an exact product (with brand name) is identified.
- Ongoing data collection/cleaning for:
 - Philippines (2000-2010)
 - India (1985-2010)
- Additional hope for:
 - Zambia, Bangladesh, Rwanda, Senegal, Pakistan, Indonesia, Mozambique, Uganda, Ghana, Guinea-Bissau, Mexico and [Your Country Here?].

Dataset 2: Source Locations

- Conducted telephone surveys with the firms that produce (or distribute) each product.
 - e.g. Titus Sardines (125g Tin), Rothmans Cigarettes (20 Pack), Harar Beer (330cc), Zahra Detergent (50g).
- For domestically-produced goods, ask producers: where is product made each year.
- For imported goods, ask distributors and retailers: what is country of origin and port of entry.
 - Corroborate port with trade statistics.

Map of Ethiopian Sample Locations

Map of Nigerian Sample Locations

Empirical Proxy for Distance

- Distance metric x_{odt} is the log total travel time between locations calculated using Google maps.
 - Assumes that traders are taking optimal routes so as to minimize travel time.

Minutes/Mile		
Ethiopia	Nigeria	
1.2	1.2	
1.4	1.4	
1.9	2.4	
	Ethiopia 1.2 1.4	

Results robust to using road or great circle distance.

Outline of Talk

Introduction

Data

How large are intranational trade costs?

Implication: Who is capturing the gains from globalization?

Concluding Remarks

How large are intranational trade costs? 3 Steps

1. Importance of knowing the source location.

- 1. Estimates of 'pass-through' (denoted by ρ) for each location and product.
- 2. Use estimates of ρ to correct for varying mark-ups over space.

Step 1: Importance of Knowing the Source Location

- We compare:
 - **'trading pairs'**: origin-destination (o, d) pairs for which goods are definitely being traded; with perfect competition theory says: $P_{dt}^k P_{ot}^k = \tau(\mathbf{X}_{odt}^k)$
 - to 'all pairs': any pair of locations (i,j) which may or may not be trading; with perfect competition theory says: $P^k - P^k - \tau(\mathbf{Y}^k) - \tau(\mathbf{Y}^k) \le \tau(\mathbf{Y}^k)$

$$P_{it}^k - P_{jt}^k = \tau(\mathbf{X}_{oit}^k) - \tau(\mathbf{X}_{ojt}^k) \leq \tau(\mathbf{X}_{ijt}^k)$$

Step 1: Importance of Knowing the Source Location

95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5). All plots are semiparametric and include product-time fixed effects (Baltagi and Li, 2002).

- What is 'pass-through'?
 - Extent to which price charged by an intermediary changes when his marginal costs change.

Why is pass-through useful here?

- If $\rho = 1$, then prices are changing one-for-one with marginal costs.
 - This implies that mark-ups are not changing with marginal costs.
 - That is, the way price gaps vary over distance measures how marginal costs vary over distance.
- If ρ < 1, then prices are changing less than one-for-one with marginal costs.
 - This implies that mark-ups are falling as marginal costs rise.
 - That is, the way price gaps vary over distance <u>understates</u> how marginal costs vary over distance.

- How do we estimate pass-through?
 - We estimate how price shocks at the source location affect (ie 'pass through into') prices at destination locations.
 - We do this separately for each destination location and for each product using price variation over time.

- NB: We do not estimate (nor need to estimate) the level of the mark-up.
 - Doing so would require estimate of (residual) demand elasticity.
 - Paradoxically, this is arguably harder to estimate than pass-through (which depends on the second-order properties of residual demand).

Distance from source location to destination market (minutes, log scale) 95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5).

- Once we know pass-through for each location and product, it is straightforward to 'correct' spatial price gaps for varying mark-ups over space.
 - Insight is that an increase in source prices and an increase in distance-related costs are passed on in the same manner.
 - NB: if $\rho = 1$ then this correction does nothing.

- Once we know pass-through for each location and product, it is straightforward to 'correct' spatial price gaps for varying mark-ups over space.
 - Insight is that an increase in source prices and an increase in distance-related costs are passed on in the same manner.
 - NB: if $\rho = 1$ then this correction does nothing.
- We also control for the possibility that the level of competition is lower in more remote locations
 - That is, the way price gaps vary over distance <u>overstates</u> how marginal costs vary over distance.

	Ethiopia (Trading Pairs)		Nigeria (Trading Pairs)	
	Price Gap	Adjusted Gap	Price Gap	Adjusted Gap
Log distance to source (minutes)	0.0289*** (0.00147)	0.0411*** (0.00246)	0.0343*** (0.00529)	0.0570*** (0.00862)
Time-Product FE	Yes	Yes	Yes	Yes
Time-Product× $\frac{1-\widehat{\rho_{od}^k}}{\widehat{\rho_{od}^k}}$ Destination× $\frac{1-\widehat{\rho_{od}^k}}{\widehat{\rho_{od}^k}}$	No	Yes	No	Yes
Destination $\times \frac{1-\rho_{od}^k}{\rho_{od}^k}$	No	Yes	No	Yes
Observations	100762	100762	23084	23084
R-squared	0.258	0.933	0.504	0.964

Notes: Standard errors clustered at the time-product level. * significant at 10 percent level, ** at 5 percent and *** at 1 percent.

- Additional cost to reach the most remote locations (20 hours away, 97-99th percentile) compared to the least remote locations (1 hour away, 2nd percentile):
 - 12 US cents (30% of mean P_o) in Ethiopia, 17 cents in Nigeria (14% of mean P_o).

- Rough comparison to international trade costs:
 - Hummels (2001) estimates elasticity of ad valorem freight costs with distance using customs records.
 - Use these estimates to calculate additional ad valorem cost to reach locations 3 log units further away:

Implied Δad -valorem transport cost for Δ Indistance of 3 units					
(by mode of transport for cargo of mean $kg/\$$)					
US Imports (Truck from CAN)	2.0 percent				
US Imports (Rail from CAN)	2.7 percent				
US Imports (Ocean)	4.9 percent				
US Imports (Air)	14.6 percent				

Compare to: 30 percent in Ethiopia, 14 percent in Nigeria.

Outline of Talk

Introduction

Data

How large are intranational trade costs?

Implication: Who is capturing the gains from globalization?

Concluding Remarks

Who is capturing the gains from globalization? Shares of surplus

- Thought experiment: suppose the port price of an import falls by 20% due to "globalization".
- Two effects of remoteness:
 - High marginal cost of distance
 remote locations see smaller increases in the quantity of surplus available to consumers/intermediaries.
 - Markups vary across space

 whatever surplus is generated, remote locations see different shares of this surplus accruing to consumers (compared to intermediaries and deadweight loss).

Who is capturing the gains from globalization? Shares of surplus

- How to measure the distribution of surplus?
- Turns out that (under conditions that we lay out in the paper) pass-through is all one needs to know.
- Pass-through can also be used to estimate measures of (relative) 'competitiveness' in each market.
 - Intuitively, all else equal, if pass-through is close to one then competitiveness must be high.

Who is capturing the gains from globalization? Competitiveness Index

95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5).

Who is capturing the gains from globalization? Distribution of Surplus

Distance from source location to destination market (minutes, log scale) 95% confidence intervals shown. Locally weighted polynomial (Epanechnikov kernel, bandwidth=0.5).

Who is capturing the gains from globalization?

	Ethiopia	Nigeria	Ethiopia	Nigeria
	Relative Competitiveness Index of Intermediaries (All Locations)		Intermedia Consumer (All Good-Lo	's Surplus
Log distance to capital (minutes)	-0.230** (0.106)	-0.707*** (0.169)		
Log distance to source (minutes)			0.284***	0.336***
Constant	3.459***	8.004***	0.161	-0.0103
	(0.621)	(1.012)	(0.359)	(0.73)
Observations	100	36	1418	489
R-squared	0.027	0.150	0.014	0.019

Notes: Robust standard errors in parentheses. * significant at 10 percent level, ** at 5 percent and *** at 1 percent.

- Ratio of intermediary/consumer surplus in the least remote locations (1 hour away) compared to the most remote locations (20 hours away):
 - Between 40%-64% higher in Ethiopia, 40%-74% in Nigeria.

Outline of Talk

Introduction

Data

How large are intranational trade costs?

Implication: Who is capturing the gains from globalization?

Concluding Remarks

Concluding Remarks

How large are <u>intra</u>-national trade costs in developing countries?

- The marginal costs of distance in our sample appear to be very high. (Approximately 7-15X larger than CAN-US trucking.)
- Appear to be under-estimated by standard spatial price gap methods
 - MC of distance approximately double when only use source-destination pairs
 - MC of distance approximately double again when spatial variation in mark-ups accounted for by using sufficient statistic (pass-through) approach

2 Implications for costs of remoteness:

- 1. Trade generates less social surplus for consumers/intermediaries in remote locations
- Additionally, consumers in remote locations capture a smaller share of whatever surplus is generated