Commuting Technologies, City Structure and Urban Inequality: Evidence from Bogotá's TransMilenio

Nick Tsivanidis

University of Chicago Booth School of Business

IGC Cities January 28, 2016

This Paper

- Rapidly growing cities can become congested and characterised by inequality
- Does poor transport infrastructure cause poverty and increase inequality?
- In this paper, I study the impact of TransMilenio, a novel Bus Rapid Transit system in Bogotá, Colombia
- Questions:
 - 1. (Aggregate) Can we quantify the benefits of BRT relative to its cost?
 - 2. (Distributional) Can BRT raise the income and welfare of a city's poorest citizens and reduce inequality?
 - Reduce commuting times
 - Reduce spatial mismatch between low-skill workers and firms

TransMilenio

Bus Rapid Transit System (BRT) in Bogotá, Colombia

TransMilenio

Bus Rapid Transit System (BRT) in Bogotá, Colombia

- Opened in December 2000, announced just two years prior
- Most used BRT in the world currently 2.2mn trips/day
- 3 Phases: (i) 2000-2003, (ii) 2005-2006, (iii) 2012-2013
- System of feeder buses serve portals at end of routes at no additional cost
- But has become congested, with usage exceeding planned capacity

TransMilenio

Data

- I leverage a rich set of spatial data available before and after TM's construction, across >37,000 city blocks:
 - Land: Land and property value, commercial vs residential usage, floor area, building characteristics
 - Commuting Microdata: Origin, destination, demographics and trip characteristics
 - Residential Population: Population and demographics
 - Employment, Firm Level: Complete enumeration of firms, with industry and # workers
 - Employment, Worker Level: Income, employment and demographics microdata

• I build quantitative model of city structure with (i) multiple groups of workers and (ii) multiple modes of transit

- I build quantitative model of city structure with (i) multiple groups of workers and (ii) multiple modes of transit
- Spatial Mismatch: Commuting costs distort matching between workers and firms, but extent of distortion within groups depends on
 - Use of different commuting modes
 - Absolute vs comparative advantage

- I build quantitative model of city structure with (i) multiple groups of workers and (ii) multiple modes of transit
- Spatial Mismatch: Commuting costs distort matching between workers and firms, but extent of distortion within groups depends on
 - Use of different commuting modes
 - Absolute vs comparative advantage
- Two forces determine relationship between poverty and geography:
 - ▷ (Geography \Rightarrow Poverty) Spatial Mismatch
 - ▷ (Poverty \Rightarrow Geography) Residential Sorting

- I build quantitative model of city structure with (i) multiple groups of workers and (ii) multiple modes of transit
- Spatial Mismatch: Commuting costs distort matching between workers and firms, but extent of distortion within groups depends on
 - Use of different commuting modes
 - Absolute vs comparative advantage
- Two forces determine relationship between poverty and geography:
 - ▷ (Geography \Rightarrow Poverty) Spatial Mismatch
 - ▷ (Poverty \Rightarrow Geography) Residential Sorting
- Use natural experiment to let the data quantify the importance of both forces

Test the Theory

Exploiting the natural experiment provided by TransMilenio's construction

1. Document stylised facts on city structure

Test the Theory

Exploiting the natural experiment provided by TransMilenio's construction

- 1. Document stylised facts on city structure
- 2. Provide reduced form evidence on effect of TM on outcomes using
 - Staggered station openings for falsification
 - Historical maps of the city to predict route placement

Test the Theory

Exploiting the natural experiment provided by TransMilenio's construction

- $1. \ \mbox{Document stylised facts on city structure}$
- 2. Provide reduced form evidence on effect of TM on outcomes using
 - Staggered station openings for falsification
 - Historical maps of the city to predict route placement
- 3. Estimate structural model, and quantify
 - The benefits of TM relative to its cost
 - The gains across worker groups, and the role of spatial mismatch in affecting these gains
 - Counterfactual returns to new line construction

Preliminary Findings

- Commuting:
 - TM used mostly by low/middle-income individuals
 - Disproportionately reduced commuting times for long trips
- Other outcomes:
 - Land values have increased close to stations, especially in peripheral neighbourhoods
 - Land has reallocated to commercial use near stations
 - Wages grew approx. 7% more for blocks <500m from stations vs those >1km away, greater in peripheral neighbourhoods
- Falsification tests suggest effects are causal
- Results for employment, and quantifying total aggregate and distributional effects forthcoming

Conclusions

- BRT is an attractive alternative to subways for cities with little public transit infrastructure
- My findings so far suggest a sizeable impact on land and labor markets
- My quantitative results will provide estimates of the
 - 1. Cost efficiency of BRT
 - 2. Distributional effects of BRT
 - 3. Whether spatial mismatch matters in L/MIC cities
- Remaining Question: How did Bogotá's land use policy limit the gains from TransMilenio?