The Impact of Seasonal Food and Cash Loans on Smallholder Farmers in Zambia

Research Methods and Results

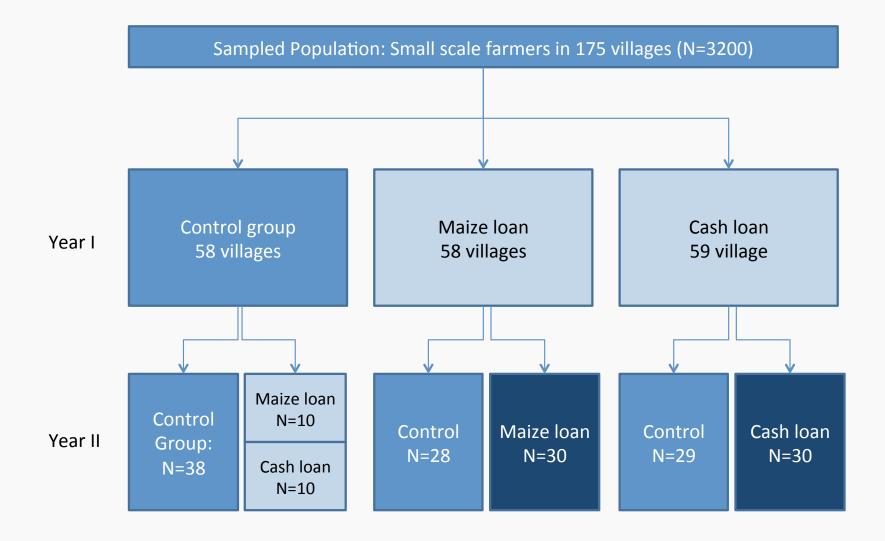
Kelsey Jack

Assistant Professor of Economics

Tufts University

Tuesday, 22 March 2016

UNZA School of Veterinary Science



Key Objectives

- Introductions
- Research design revisited
- Data collection
- Additional findings
- Discussion throughout!

Research design: Overview

Research design: Treatment arms

- Two treatment arms:
- 1. Cash loan
 - Receive: 200 Kwacha in January
 - Pay back: 260 Kwacha or 4 x 50 kg bags of maize in June/July

2. Food loan

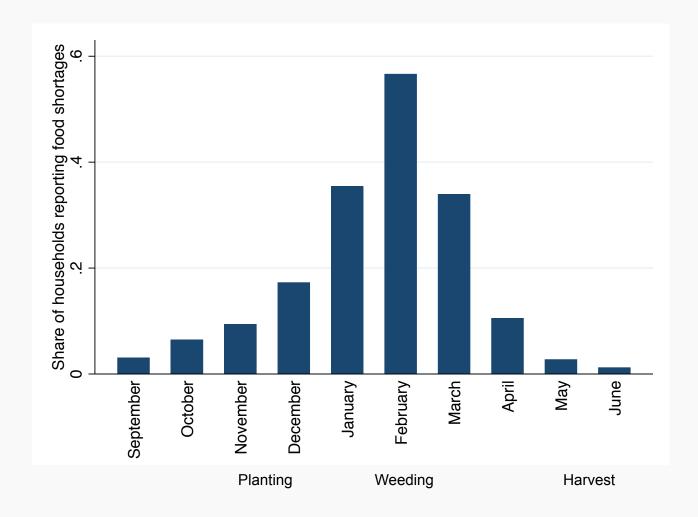
- Receive: 3 x 50 kg bags of maize in January
- Pay back: 260 Kwacha or 4 x 50 kg bags of maize in June/July

Research design: Designing comparable loan treatment arms

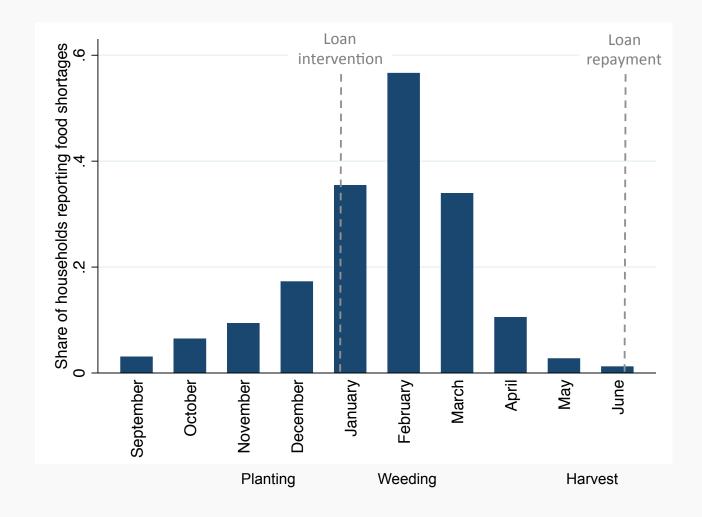
- How do these loans compare?
 - value in January: maize more valuable
 - value in June: repay maize cheaper
 - other considerations: transaction costs
- Choice experiments
 - suggest indifference between the two loan types at the value offered
- Income effect control: sub-sample of control villages received a 60 Kwacha gift

Research design: Additional subtreatments

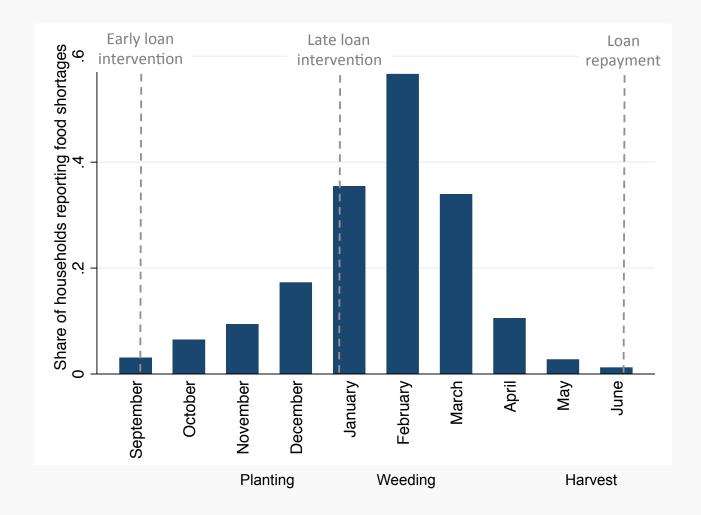
Additional "cross cutting" treatments in year 2 only


1. Early announcement

Half of the treated villages in year 2 were informed about the loan in September; other half had year 1 timing (January)


2. Cash-only repayment

Half of the treated villages in year 2 were required to repay in cash (informed of this before take up)


Research design: Timing

Research design: Timing, Year 1

Research design: Timing, Year 2

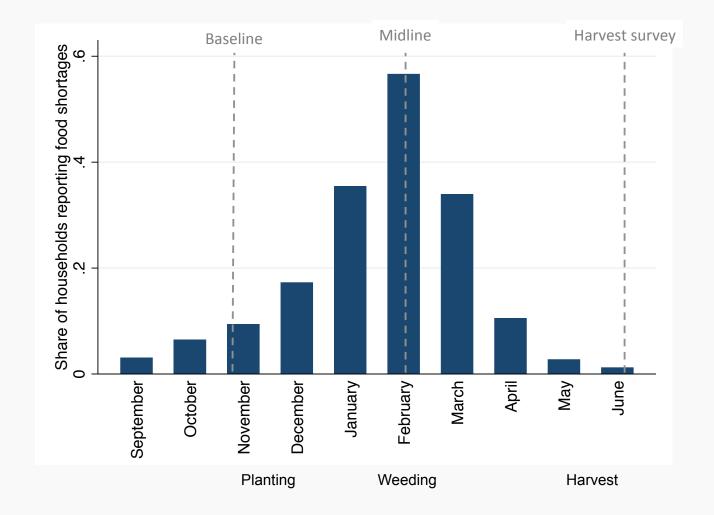
Randomization: why and how

- Impact evaluation is difficult!
 - Farmers who join a program are different from those who do not
 - Conditions change over time
- Random assignment ensures that treatment and control group are – but for the intervention – statistically the same
 - With a large enough sample, compare outcomes and learn the *causal impact* of the programme

Randomization check

- Compare farmer and village characteristics by treatment
 - Randomization implies that observable characteristics are balanced
 - Assume unobservable characteristics are also balanced

Randomization implementation


Year 1: Randomly assigned villages to control, cash and maize loans, checking for balance on variables measured at baseline

Year 2: Re-assign main treatments, rotating between treatment and control, balancing again on baseline variables + year 1 treatments and year 1 harvest output

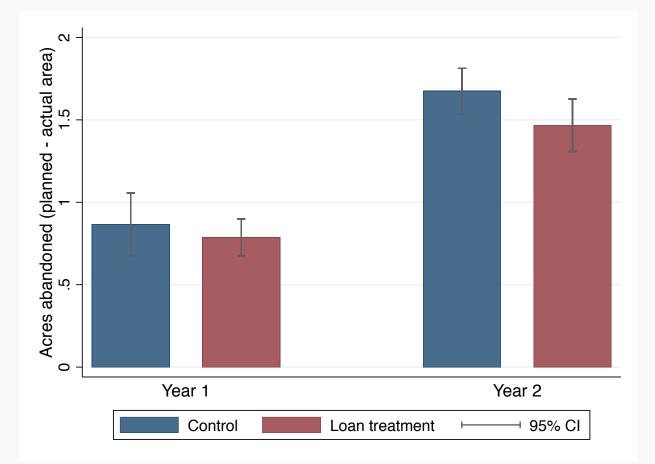
Sub-treatments: Cross-randomize sub-treatments, balancing on baseline variables + main treatments in both years

Do all of this via computer code (Stata do-file), using baseline data as an input

Data collection: Timing, Year 1

Data collection: Survey rounds

- Baseline survey (N=3141): Pre-planting survey (Oct-Nov) of all eligible households
- Harvest survey (N=3031): Harvest season (July-Aug 2014) survey of all eligible households
- Endline survey (N=3005): Harvest season (July-Aug 2015) survey of all eligible households
- **Midline survey** (N=1193): Hungry season (Feb-Mar) survey of a random 1/3 sample of households
- Labor survey Rotating sample (Mar 2014-Aug 2015); ~14 households/day
- **Employer survey** Rotating sample (Mar 2014-Aug 2015); ~10 employers/week


Data collection: Survey sampling

- Main surveys: Baseline, Harvest and Endline surveys censused all households
- Midline survey and Labor survey round 3 randomly sampled 7 households from all villages during lean season
- Other labor survey rounds also randomly sampled 7 households per village but with incomplete coverage

Data collection: Survey procedures

- Data collection via smartphone
 - Program survey into handheld device
 - Allows for
 - Real time data checking
 - Prepopulation of fields based on earlier survey rounds (e.g. household roster)
 - Population of later fields based responses earlier in same survey
 - Data collection to detect cheating (timestamps, GPS coordinates)

Results: Additional findings

Output effect driven partly by farmers cultivating less area than planned

An effect that is decreased by the loan treatment

Results: Additional findings

Daily wage:	Individual	Village median
Any loan treatment	1.990* (1.098)	2.102* (1.150)
By treatment		
Cash	1.920	2.557*
	(1.493)	(1.538)
Maize	2.063	1.628
	(1.282)	(1.341)
Cash loan = maize loan (p-val)	0.200	0.098
Baseline mean	15.621	

Wages increase in treatment villages by around K2 or 12.8%

Results: Additional findings

Sub-treatments:

- Early notification:
 - No significant impact on main outcomes
 - Possibly because it was implemented only in year 2
- Cash-only repayment
 - Similar uptake and repayment rates
 - <u>Much</u> more cost-effective

Measurement: Self-reporting bias

- Main outcome measures are collected by survey → selfreported
 - Concern: If treatment households are more inclined to give favorable responses, then result might just be self-reporting bias, not real results
 - Investigating the concern:
 - 1. Collect data on a "social desirability index" and compare across treatment and control groups
 - 2. Collect objective agricultural output data and test whether it is better correlated with self-reported outcomes in treatment vs control groups

Measurement: Self-reporting bias

	A. Social desirability bias	
	Labor survey	Endline
Any loan treatment	-0.041	0.041
	(0.143)	(0.099)
Control group mean	21.639	20.578

B. Self-reported maize yields

	Year 1	Year 2
Objective measure	0.775**	0.053***
	(0.384)	(0.009)
Any loan treatment	-31.009	19.513
	(123.080)	(60.638)
Loan treatment x Objective measure	0.150	-0.002
	(0.623)	(0.019)
Control group mean	563.367	600.645

Future research questions

- 1. What are the returns to capital at different points during the agricultural season?
 - Do farmers benefit more if they receive a loan at planting, during the hungry season or at harvest?
 - For relatively small loans, each point during the season has clear up-side
- 2. What other approaches might effectively smooth seasonal variability?
 - Would savings accounts or better storage be a cheaper and equally effective solution? What about crop diversification?