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Abstract: Climate change is making extreme weather events more frequent around 

the world. Urban residents in developing countries have become more vulnerable 

to health shocks due to poor sanitation and infrastructure. This paper is the first to 

empirically measure the relationship between weather and health shocks in the 

urban context of a developing country. Using unique high-frequency datasets of 

weekly cholera cases and accumulated precipitation for wards in Dar es Salaam, we 

find robust evidence that extreme rainfall has a significant positive impact on 

weekly cholera incidence. The effect is larger in wards that are more prone to 

flooding, have higher shares of informal housing and unpaved roads. We identify 

limited spatial spillovers. Time-dynamic effects suggest cumulated rainfall increases 

cholera occurrence immediately and with a lag of up to 5 weeks.  
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1 Introduction  

Climate change will have a significant impact on the lives of the poor in the years ahead as extreme 

weather events such as floods, heavy precipitation and droughts are expected to become more frequent 

(Harrington et al. 2016). Populations at different stages of development are affected differently by the 

same weather variations (Dasgupta, 2010; Burgess et al. 2017). As cities in developing countries continue 

to urbanize at an unprecedented pace, the question of how their urban dwellers are impacted by weather 

shocks is becoming increasingly relevant. On the one hand, urban residents may seem better prepared 

than their rural counterparts against weather extremes; their livelihoods are for instance less dependent on 

weather phenomena. Yet, rapid urbanization has often led to unplanned cities with poor infrastructure, 

limited public service provision, and with large segments of the population living in informal settlements.  

Empirical evidence is scant concerning the impact of weather shocks in developing country cities. 

This paper tries to make progress on this issue by looking at the effect of rainfall and flooding on cholera 

incidence in Dar es Salaam. Looking at health outcomes is important. Contagion is one “downside of 

density” (Glaeser & Sims 2015). Throughout history, cities with low-quality infrastructure and poor 

sanitation have been pockets of epidemics (for instance 19th century London or Paris, Kesztenbaum & 

Rosenthal 2016). Poor health and disease not only lower productivity in the short-term, they also hinder 

long-term economic growth (Well 2007).  

We examine this question in the context of a cholera outbreak in Dar es Salaam in 2015 and 2016, 

during which almost five thousand cases were recorded. Cholera is a water and food-borne disease and its 

transmission is closely linked to inadequate access to clean water and sanitation facilities. Weather shocks 

such as rainfall can affect health through two main channels. The first one is related to direct mechanisms 

operating via human physiology and disease. In this case, heavy rainfall and floods can increase exposure 

to vibrio cholera bacteria, which survives better in wet environments (Lipp et al. 2002, Osei et al. 2010). 

Droughts have also been linked to cholera outbreaks, as population use unfit water for their needs (Sasaki 

et al. 2008, Taylor et al. 2015). The second sets of mechanisms are indirect ones, through the effect 

weather shocks may have on real incomes. In the case considered here, there are many ways through 

which floods and rainfall can reduce accessibility to work. The resulting lower income may in turn lower 

the consumption of health-improving goods (i.e. safe drinking water, soap), increasing the exposure to 

the bacteria.  

Our empirical analysis uses finely disaggregated ward-level panel data containing weekly recorded 

cholera cases and weekly accumulated precipitation for all the municipalities in the city. We are therefore 

testing whether exogenous weekly rainfall variation at the ward-level affects cholera occurrence. Sorting 

between neighbourhoods is not an issue with the specifications chosen in the short timeframe considered. 

Further, we find no evidence of a relationship between diarrheal diseases and wealth. The use of high-

frequency data and the fine geographical detail thus allow us to estimate with precision our relationship of 

interest. We focus on reduced-form specifications; different spatial and time-lag models support our 

choice. Dar es Salaam is a city of more than 4 million people where close to 70% of its residents live in 

informal settlements. Access to improved sanitation is very low and only 37% of the city has regular 

refuse collection (World Bank 2017). We complement our data with ward-level infrastructure 
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characteristics (i.e. roads, footways, drains, water wells and housing informality) to understand the 

relationship between infrastructure quality, precipitation and cholera.  

We find robust evidence that weekly accumulated rainfall and flooding leads to higher ward-level 

cholera occurrence. On average, a 10 mm increase in weekly accumulated precipitation leads to an 

increase of between 1.5% to 3.5% of weekly recorded cholera cases, significant at 1% level. The effect is 

found to be much larger when considering a more flexible quartile specification. On average, a single 

additional week of rainfall falling above the 75th percentile of the total rainfall distribution (extreme 

rainfall), increases the number of effective cholera cases by up to 20.3% relative to a week with very light 

rain (<0.30 mm). Further, we find that the impact of heavy rainfall (>75th percentile) is close to 20 

percentage points higher in wards at greater risk of flooding (i.e. higher flood-prone area), all else equal. A 

dry week (0 mm rainfall) is also positively related to cholera incidence, but the coefficient is not 

statistically significant. These findings are consistent with the direct and indirect mechanisms put forward 

earlier. Particularly, the inundation of drains, water systems, and pit latrines greatly enhances the risk of 

exposure to contaminated water and food. These results are robust to alternative estimators and 

specifications, including an instrumental variable strategy and controlling for the spatial autocorrelation of 

standard-errors.  

Remarkably, we find little to no spatial spillovers from precipitation in neighbouring wards. Only 

when considering the relative elevation of contiguous wards there is a small significant effect from 

precipitation in downhill wards. That is, a 10 mm increase in weekly accumulated rainfall in downhill 

neighbouring wards increases cholera cases in the ward by 0.01% to 0.03%. This finding is consistent 

with water source contamination. In contrast, our results reveal moderate time-dynamic effects. Using a 

distributed lag model, we find significant positive effects of past rainfall on cholera incidence to up to five 

preceding weeks. Contemporaneous rainfall remains the largest determinant, with a stable size close to 

3% and statistical significance at or above 5% level. All lags decrease in size the farther in time.   

We explore the non-linear relationship of rainfall and cholera incidence with respect to various ward-

level infrastructure characteristics as well. We find the effect of weekly rainfall on cholera cases to be 

consistently higher for wards with larger shares of informal housing and a higher density of footways (i.e. 

informal roads). These results are consistent with the two possible mechanisms outlined earlier. 

Neighbourhoods with limited access to sanitation and low-quality infrastructure are likely to be more 

exposed to the cholera bacteria when surfaces are washed and drains are overflown by severe 

precipitation. Vulnerable populations in these wards are also more likely to suffer from negative income 

shocks during extreme weather events.  

Our findings relate to three different bodies of research. The first one is a large economics literature 

looking at weather shocks and economic events mostly in advanced economies (Munshi 2003; Miguel et 

al. 2004; Barrios et al. 2010; ), and including health outcomes of human populations (Deschenes & 

Greenstone 2007; Deschenes & Moretti 2009; Burgess et al. 2011; Deschenes 2011). Our paper follows 

their empirical methods (for a review see Dell et al. 2014). The second is the large literature in 

development economics and public health studying policy interventions, mechanism of transmission and 

health outcomes in developing countries (Banerjee et al. 2004; Miguel & Kremer 2004; Dunkle et al. 2010; 

Penrose et al. 2010; Devoto et al. 2012). Here, we contribute to that literature by focusing on urban areas 

and by studying general mechanisms beyond specific policy interventions. Our findings use robust 
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econometrics techniques to discern the relationship between disease, infrastructure and weather shocks. 

Finally, we particularly contribute to the nascent literature in urban economics studying the effects of 

weather phenomena on urban areas in developing country cities (Kocornik-Mina et al. 2015; Glaeser & 

Henderson 2017; Henderson et al. 2017). To the best of our knowledge, our paper is the first to 

empirically study the effect of weather shocks on disease transmission within a city of a developing 

country. Our findings have important policy implications as extreme weather events become more 

frequent in the next decades. Cities in developing countries need to address infrastructure gaps to contain 

the risk of recurrent epidemic outbreaks in vulnerable populations and neighbourhoods. Investing in 

resilient infrastructure, with the proper servicing of informal settlements or related measures such a 

regulating waste dumping may prove to be more beneficial in the long-term than the use of short-term 

palliative measures during outbreaks. Evidence on large-scale policy interventions in urban areas is still 

limited and more is needed to understand how to prevent contagion of treatable diseases in developing 

cities.  

This paper is organized as follows. The next section formalizes the relationship between health and 

weather shocks, specifically here cholera and rainfall in cities. Section 3 describes the context of Dar es 

Salaam, the cholera disease and the data. In section 4 we present our empirical strategy. Section 5 presents 

the estimates of the effect of rainfall and flooding on cholera incidence and different extensions and 

robustness checks. Section 6 concludes. 

2 Theoretical framework: Weather & Health  

In this section, we describe a simple theoretical framework to examine the various channels through 

which weather shocks (i.e. here, heavy precipitation) can affect cholera incidence in an urban setting. It 

relies on endogenous health models in a simplified fashion (for more details see Becker 2007; Deschenes 

2012; Burgess et al. 2017).  

Cholera is an acute diarrheal infection caused by ingestion of food or water contaminated with the 

bacterium vibrio cholera. It can affect both children and adults and can kill within hours if left untreated. 

The main reservoirs of the cholera bacterium are people and warm salt water bodies such as estuaries and 

coastal areas. Cholera transmission is closely linked to inadequate access to clean water and sanitation 

facilities (WHO 2017)3. Here we assume that weather shocks such as extreme rainfall, droughts and 

flooding can affect human health (i.e. cholera prevalence) both directly (through higher exposure to the 

bacteria, for instance), and indirectly (due to the negative income-shocks that may arise through the 

weather shock).  

Consider a city with a large number of agents indexed by i. Agents seek to maximize their lifetime 

utility 𝑢𝑖  depending on consumption 𝑐𝑖𝑡  and health status ℎ𝑖𝑡 . These two are complements. This city is 

partitioned into several neighbourhoods and each agent lives in a given neighbourhood (or ward) indexed 

by n. We assume that agents are exogenously allocated to neighbourhoods with different characteristics 

such as better infrastructure, and the latter are exogenously determined. It follows that agents have limited 

scope for affecting local infrastructure, as well as other public goods and services, and take these as given 

(mobility is limited in the short-term scenario considered here).  

                                                           
3 http://www.who.int/mediacentre/factsheets/fs107/en/, accessed on 28 June 2017. 
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Agent i’s health status, resident of neighbourhood n at time t, (ℎ𝑖𝑛𝑡 ), is thus determined by her 

consumption 𝑐𝑖𝑡 and random health shocks  𝑧𝑖𝑛𝑡 . We do not specify a precise relationship between health 

outcomes and consumption, but it is assumed that an individual can improve her health by increasing her 

consumption, particularly by purchasing health-improving goods. All told, the agent’s health status is thus 

given by: 

ℎ𝑖𝑛𝑡 = ℎ𝑖(𝑐𝑖𝑡 , 𝑧𝑖𝑛𝑡) (1) 

where ℎ𝑖 (∙)  is increasing in 𝑐𝑖𝑡 and decreasing in 𝑧𝑖𝑛𝑡  (adverse health shocks). The function ℎ𝑖  is 

unrestricted and can differ across heterogeneous individuals. The vector 𝑧𝑖𝑛𝑡  includes weather-shocks 𝑤𝑡  

such as flooding, droughts, and heavy rainfall or temperature extremes. We assume further that the effect 

of the weather shock is conditional on the quality of local neighbourhood infrastructures (𝑞𝑛 ) such as 

access to drinking water and waste water systems, or road and pavement material. The adverse health 

shock is thus a function of the weather shock that varies with local infrastructure,  𝑧𝑖𝑛𝑡  (𝑤𝑡 (𝑞𝑛)). 

Consumption4 𝑐𝑖𝑡  is financed through labour income in period t, which depends on the agent’s 

productivity 𝑎𝑖𝑡 . Productivity is agent-specific but also depends on weather shocks  𝑤𝑡 : 

𝑎𝑖𝑡  =  𝑎𝑖(𝑤𝑡)    (2) 

Here the effect on productivity can stem from the weather shock’s impact on 𝑧𝑖𝑛𝑡, hampering the 

agent’s ability to work efficiently, or deter accessibility to jobs or other factors of production (i.e. 

machinery, location)5 . A given weather shock 𝑤𝑡  thus affects an agent’s health status through both 

consumption (via productivity) and health idiosyncratic shocks (via 𝑧𝑖𝑛𝑡 ). In other words, there are two 

fundamental mechanisms through which weather shocks (extreme precipitation for the purpose of our 

empirical analysis) can potentially harm an agent’s health status here.  

First, through direct health effects: random shocks  𝑧𝑖𝑛𝑡 , enter the agent’s health status directly as in 

equation (1). That is, holding constant the agent’s income, location and consumption decisions, we expect 

a negative weather shock to impact this agent’s health adversely (𝑤𝑡  impacts 𝑧𝑖𝑛𝑡  in the language of our 

model). In the case considered here, heavy rainfall and flooding can directly impact one’s health status 

through greater exposure to and contact with contaminated water and food. An extensive public health 

literature discusses the potential for cholera prevalence in wet environments and in cases of heavy 

precipitation and flooding (see for example, Osei et al. 2012). Further, the magnitude of the effect can be 

expected to depend on the relationship the weather phenomena and the disease pathogens have with local 

infrastructure characteristics. Cholera strives in stagnant water and poor hygiene conditions as explained 

earlier. 

The second, more indirect mechanism through which weather can affect health in this model is 

through the agents’ productivity in equation (2). This term depends on weather shocks that may affect the 

                                                           
4 We assume the consumption good is produced using an aggregate production function that requires capital and labour inputs; it 
exhibits decreasing return to scale. Goods can be bought and sold at the market price, which is exogenously determined. Agents 
are subject to budget constraints in each period which are a function of the labour income (in turn dependent on productivity 
and adverse weather shocks), as well as prices and quantities of goods consumed. We assume imperfect credit and savings 
markets which prevents agents from smoothing their consumption in time.  
5 We assume   𝑎𝑖𝑡  =  𝑎𝑖(𝑧𝑖𝑛𝑡(𝑤𝑡), 𝑄𝑛𝑡(𝑤𝑡))  , where 𝑄𝑛𝑡 refers to complements to work such as accessibility to jobs, machinery 
or location, that can be affected by weather shocks.  
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agent’s ability to work via  𝑧𝑖𝑛𝑡 . Flooding and heavy rainfall may also significantly affect work-places and 

accessibility in contexts where poor roads and infrastructure is widespread (see footnote 4). Reduced 

productivity can translate in lower earnings and reduced consumption of healthier quality goods such as 

clean water and fresh food. The dependency of productivity and hence, labour income, on this type of 

shocks is extremely likely in low-income countries where informal jobs dominate employment. It is 

estimated that close to 80% of jobs in the services sector are informal in Tanzania (UNDP 2015). Note 

that this assumes imperfect credit and savings markets preventing agents from smoothing their 

consumption when hit by economic hardship. Given the Tanzanian context, this assumption does not 

seem unrealistic.      

The main implication of this exercise is to expect an increase in cholera cases due to a weather shock 

such as extreme precipitation and flooding. The increase should be larger in neighbourhoods with poorer 

infrastructure. Conversely, the impact of heavy rainfall should be mitigated in areas with a supply of 

higher-quality local public goods. Linking this section with our empirical analysis, we expect to see non-

linear effects of rainfall on cholera occurrence.  

Finally, one additional implication of this simple formalization concerns policy interventions. In the 

face of potential weather shocks, any agent i would seek to minimize the damage that the negative shock 

has on their utility,  𝑢𝑖(𝑐𝑖𝑡, ℎ𝑖𝑡)  by consuming health-improving goods or potentially by reallocating 

resources between periods. This latter option here is limited due to credit and savings constraints. These 

potential shock-minimizing strategies have strong implications for policy. In the theoretical framework 

considered here, governments can reduce the adverse effect of weather on health outcomes by directly 

increasing the quality of infrastructure that is related to the pathogens’ transmission (i.e. pavement, 

sanitation, water drainage, sewage), and thus directly limit the potential effect of an adverse health 

shock,  𝑧𝑖𝑡𝑛. But they can also intervene by supporting the agent’s shock minimization strategies through 

subsidized health goods or direct transfers.  

3 Background & Data 

This section provides further details on cholera-specific characteristics as well as Dar es Salaam’s 

context. It also describes the data in detail and provides basic summary statistics.  

3.1 Cholera 

Cholera is an acute diarrhoeal infection of fecal-oral transmission. It is caused by the ingestion of 

food or water contaminated with the bacterium vibrio cholera. It takes between twelve hours and five 

days for a person to show symptoms after ingesting contaminated food or water. It can affect both 

children and adults and can kill within hours if left untreated; there is a 50% death rate if untreated, but all 

deaths are avoidable otherwise. Main treatments include antibiotics and Oral Rehydration Salts (ORS). 

Roughly 1.3 to 4.0 million cases are recorded worldwide every year, and the disease is endemic to many 

parts of sub-Saharan Africa and South Asia (WHO 2017).  

There are multiple pathways for cholera transmission (Clasen et al. 2007). The disease is closely 

linked to inadequate access to clean water and sanitation facilities. Risk factors are also considered to be 

high population density and crowding, all of which are often common in urban slum areas (Penrose et al. 
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2010). Cholera incidence has been found to be highest in highly urbanized areas (Osei & Duker 2008; Sur 

et al. 2005). The main reservoirs of the cholera bacterium are people and warm salty water bodies such as 

estuaries and coastal areas. Global warming and rising sea levels are believed to create a favourable 

environment for cholera bacterium growth (WHO 2017). Heavy rainfall and flooding have all been 

associated with a higher likelihood of cholera outbreak. Surface runoff from point sources (pit-latrines, 

waste dump site, water wastes) may cause increased contamination of water sources, while stagnation and 

slow flowing of waterways may lead to increased exposure to cholera vibrios (Osei et al. 2010).  

3.2 Dar es Salaam 

Dar es Salaam is one of the largest cities in eastern Africa. It is located in the east of Tanzania by the 

Indian Ocean. Its urban population grew at 6.5% yearly between 2002 and 2012 (Wenban-Smith 2014), 

and today the city counts with more than 4.4 million people. Since 2016, it is divided in five municipal 

districts: Ilala, Temeke, Kinondoni, Kigamboni and Ubungo6. These municipalities are further divided up 

into 90 wards.  

The rapid pace of urbanization has led to the city suffering from large infrastructure deficits. Close to 

70% of Dar es Salaam’s residents live in informal settlements without adequate access to clean water, 

proper drainage system and waste collection (UN-HABITAT 2010; Natty 2013). Only 13% of the city’s 

residents have adequate sewage systems and 37% of the solid waste is properly collected. The World 

Bank (2015) estimates that only 50% of residents have access to improved sanitation. The most common 

form of improved sanitation is improved pit-latrines (other forms are rare). About two-thirds of 

households in the city share their toilet facilities. Access to piped water is also very limited, with only 17% 

of city-centre dwellers having piped-water.  

Dar es Salaam’s geography and coastal location makes it vulnerable to climatic hazards, particularly 

floods, sea level rise and coastal erosion (Kebede and Nicholls 2010). There are two rainy seasons every 

year, the short (October to December) and long (March to May) seasons, and average annual precipitation 

is above 1,000 mm. The combination of high informality and climatic vulnerability makes flood risk one 

of the main challenges for sustainability, exposing infrastructure and residents to safety and health 

hazards from vector-borne diseases such as malaria and cholera (World Bank 2017).  

Cholera has been endemic in Tanzania since the 1970s and Dar es Salaam has historically been the 

most affected region7. During the 2015-2016 outbreak there were over 24,000 cases recorded nationally, 

with more than one fifth in Dar es Salaam (Figure A1 in appendix)8. Previous outbreaks occurring 

between 2002 and 2006 reported over 30,000 cases nationally, with nearly 18,000 in the capital city (WHO 

2008). Given the city’s poor sanitary conditions, high population density, lack of access to safe drinking 

water, and limited drainage, continuous heavy rainfall makes stagnant and unsanitary water a widespread 

health risk for common water borne diseases. The lack of storm water drains, frequently blocked by 

                                                           
6 In the analysis, we only use 3 municipal districts as these were the ones that existed at the time cholera cases were recorded 
during the last outbreak. Ubungo and Kigamboni were created in 2016 from dividing Kinondoni and Ilala further so this does 
not impact our findings in any way.  
7 The largest cholera epidemic in Tanzania to date took place in 1997 where 40,000 cases were reported. The epidemic is said to 
have started in Dar es Salaam. Dar es Salaam has had the most cholera cases since 2002 of all regions of the country (Penrose et 
al. 2010). 
8 All tables and figures indexed by A# are in Appendix I. 
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unregulated waste dumping, means that heavy rainfall quickly leads to flooding and contaminates water 

wells (Pan-African START 2011).  

3.3 Data 

To examine the relationship between weather variation and cholera incidence outlined in our 

theoretical framework, we collect data from several sources and put together a comprehensive ward-level 

panel dataset for each week between the first week of March 2015 and the first week of September 2016. 

The choice of the timeframe is data constrained – that is, we use the first week for which precipitation 

data is available and the last week for which cholera cases were recorded to avoid measurement error 

from unrecorded cases. We cover all the 90 wards of the city9. The use of high-frequency data and the 

fine geographical detail allow us to estimate with precision our relationship of interest. The basic panel 

thus consists of weekly cholera cases registered according to the ward of residence. We combine this data 

with weekly accumulated precipitation and weekly air-temperature in these wards. Further, we add data on 

ward-level infrastructure, geographical characteristics (i.e., elevation, flood-prone surface) and population 

(census). We outline below the different data sources. Main summary statistics are in Tables 1 and 2. 

3.2.1 Cholera cases 

The key data in this analysis are the new ward-level cholera cases collected from the Regional Medical 

Office and Municipal Health Officers for all the wards of Dar es Salaam and covering the entire 2015-

2016 outbreak. The data was registered daily for each individual presenting symptoms of severe diarrhoea 

in a medical facility. It includes basic socio-demographic characteristics (age, sex) of the individual, the 

ward and sub-ward of residence, as well as the date of the first symptom and registration at the hospital. 

Cases were tested for the vibrio cholera bacteria, and the dataset also includes lab results. We exclude all 

cases tested negative and focus on effective cholera cases only10. No positive case is reported earlier than 

mid-August 2015 (epidemic week zero). The outbreak officially lasted from August 2015 until May 2016. 

We aggregate the daily cases by week to account for the fact that the incubation period is between 12 

hours to 5 days.  

Measurement error is a potential problem. The biggest threat concerns the possibility that not all 

cholera cases are reported in the non-outbreak period. It is also possible that not all registered cases 

during the peak of the epidemic are effective cholera cases (see footnote 8). There are mitigating factors 

against both these risks. First, cholera is one of the few diseases that require reporting to the World 

Health Organization (WHO) by the International Health Regulations as it can quickly spread if left 

untreated and result in explosive outbreaks. This implies careful monitoring of the disease as well as 

frequent laboratory testing. Further, we focus our analysis during an outbreak where monitoring is more 

likely to be enforced. Finally, our baseline estimates are weighted by the population of the ward, to 

account for the difference in precision concerning cholera measurement from larger and smaller 

                                                           
9 Since mid-2016 there are 5 municipalities in Dar es Salaam as two municipalities were further sub-divided. We use the original 
administrative units at the time of the outbreak in our regression analysis for simplicity and coherence with the recorded cholera 
dataset. This should not affect any of the results.  
10 We include both positive and untested cases. Most untested cases are at the peak of the outbreak when all patients presenting 
symptoms are treated as cholera patients. Measurement error is possible but should be limited as tests are frequently carried, 
particularly at the beginning and end of the outbreak period.  
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populated wards. While bias from measurement error in our dependent variable is still possible, it should 

not be large. 

Overall, close to 5 thousand cases of cholera were reported positive in Dar es Salaam in the period 

analysed (4964 of total 5698 tested), with the bulk taking place during the first 10 weeks of the outbreak 

(Figures 1 & 2). On average, during the period covered there were 0.72 effective cases weekly per ward. 

The number is larger during the first 10 weeks of the epidemic (3.16) as well as the first 20 weeks of the 

epidemic (2.54) (Table 2). Cholera cases were more pronounced in Kinondoni and Ilala, reporting totals 

of 2428 and 1796, respectively. Temeke was the least affected (Figure A2). Most cases took place within 

15 km from the Dar es Salaam CBD (Figure 3); only 2 of the 90 wards reported zero positive cases 

throughout the period.   

3.2.2 Weather & Geography  

Rainfall - The weather datasets in this paper are from NASA. The daily precipitation measures by 

ward are derived from the Integrated Multi-satellite Retrievals (IMERG) for Global Precipitation Mission 

(GPM), where rainfall is comprehensively measured at the highest accuracy and finest spatial resolution to 

date (Huffman, 2016). We use the near-real-time total daily rainfall defined as precipitation accumulated 

in the past 24 hours by 23:59pm (Coordinated Universal Time) of each day. We calculate weekly 

accumulated precipitation from the daily data. In terms of the spatial resolution, rainfall is measured at 

squared pixels of 0.1 ◦ × 0.1 ◦ (roughly 120km2). 

As ward boundaries are irregularly shaped, we compute ward-level daily rainfall accumulation by 

weighting recorded rainfall with the ward overlay with satellite pixels. We first union these two layers to 

create polygons at the ward-pixel level. These ward-pixel polygons all have consistent rainfall 

measurement, and their respective area is computed. We then sum up the ward-pixel rainfall measures for 

each ward by weighting by their ward area share. This gives us the area-weighted weekly rainfall 

accumulation at the ward level (Figure A3). The choice of focusing on rainfall accumulation stems from 

the fact that precipitation is ‘readily stored’ in the soil, tanks or water wells. It is stagnant water that might 

breed cholera and thus, measuring average rainfall instead would fail to take this important dimension 

into account.  

Because satellite data are subject to error (Dell et al. 2014), we also use an additional and 

independent gridded data set to address potential measurement issues and obtain instrumental variables 

(IV) estimates. We use precipitation obtained from IMERG’s predecessor technology, the Tropical 

Rainfall Measuring Mission (TRMM) (Goddard Earth Sciences Data and Information Services Center 

2016). Despite the fact that TRMM is less accurate (Shari et al. 2016; Chen and Li. 2016; Wang et al. 

2017) and its resolution coarser, it has been widely used since 1997. Its algorithm intercalibrates all 

existing satellite microwave precipitation measures, microwave-calibrated infrared satellite estimates, and 

precipitation gauge analyses. The near-real-time data is chosen over the production data as it is 

recommended for flood and crop forecasting (NASA Precipitation Measurement Missions 2016). The 

instrumental variables approach is motivated by the fact that both satellite measures assign weather 

variables to grid points and contain measurement error in their ‘true’ representation of rainfall. In that 

case, the IV estimates can correct for measurement error bias under the assumption that errors in both 

variables are uncorrelated (Burgess et al. 2017).  
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Temperature - The daily temperature data also comes from NASA. We obtained near-surface air 

temperature (i.e., temperature at the height of most human activities) from the FLDAS Noah Land 

Surface Model (McNally 2016). The spatial resolution of this dataset is also 0.1 ◦ × 0.1 ◦, so ward-level 

daily temperature is computed similarly to rainfall above. Average weekly temperature is later computed at 

the weekly level. 

Elevation – The elevation calculation is based on the Japan Aerospace Exploration Agency (JAXA) 

global digital surface model. The measurement is at 30-meter spatial resolution, based on the most precise 

global-scale elevation data at this time acquired by the Advanced Land Observing Satellite. Mean ward-

level elevation is computed across all grids that fall inside each ward. 

Flood-prone surface – To estimate the surface of a ward that is prone to flooding, we use data collected 

by the NGO Dar Ramani Huria (RH) in OpenStreetMap (OSM) format. Using community-based 

mapping RH is able to create highly accurate maps of infrastructure and flood-prone areas in Dar es 

Salaam. We complement their detailed mapping of drainage, waterways and wetlands with GeoFabrik’s 

OSM data for missing wards. The data is less accurate but allows us to have a larger coverage. We then 

use InaSAFE11 to model build-areas prone to inundation and calculate the total share of the ward area 

that is flood-prone. We compare our estimates to the more precise-ones of RH for available wards. The 

pairwise correlation is 0.81.  

Basic summary statistics of weather and geographical variables are displayed in Table (2). The average 

weekly rainfall in Dar es Salaam according to the meteorological agency amounts to 20.6 mm. This is 

consistent with our weekly accumulation from both TRMM and GPM’s measures. On average, in the 

period covered there were 20.1 mm of accumulated rainfall weekly, with a median of 2.9 mm. The rainiest 

month is usually April, which is seconded by our dataset. There is little spatial variation of temperature 

across the city’s’ wards, the average recorded weekly is 26.7º C with a standard deviation of 0.37º C. On 

average 10% of the area of a ward is prone to flooding, but there are significant disparities across wards 

(the standard deviation being 16%).  

3.2.3 Infrastructure & Population  

Infrastructure - Infrastructure data at the ward-level is also obtained from data collected by RH’s in 

OSM format, and complemented with GeoFabrik’s for missing wards. We focus on the following 

characteristics which are likely to be correlated with cholera incidence: drains, roads, footways (i.e. 

unpaved roads) and water wells. For the first four variables, we use their density, calculated as the number 

of km per square km. Aside from roads where we can distinguish between roads and footways, we have 

no specific measure of quality of the infrastructure. A general assumption is to think that a higher density 

of roads and drains reflect higher-quality infrastructure, while a higher density of footways reflects lower-

quality. The distinction in practice is hard to make, particularly for drains. Anecdotal evidence suggests 

drains often get clogged by unregulated waste dumping due to heavy rainfall and quickly contaminate 

                                                           
11 InaSAFE is a free software that produces realistic natural hazard impact scenarios. It was developed by the government of 
Indonesia, the Australian government and the World Bank. For more details see http://inasafe.org/ (last accessed on July 21st 
2017). 



10 
 

surfaces. We are thus agnostic concerning the expected signs of these coefficients. We have unfortunately 

no data on sewerages12.  

We obtained a dataset of formal and informal plots from the municipalities’ database of surveyed 

plots, and are then able to estimate the share of the ward’s area that houses informal settlements. Not all 

municipalities have mapped their informal plots fully13 which explains the smaller sample when using this 

data. For the wards for which we have information, 34% of the total areas are on average informal. The 

large number reflects the fact that 70% of the population of Dar es Salaam lives in informal settlements.  

Population- We make use of the population data from the Census 2012 to weight our regressions by 

ward population size. The interest in this is twofold. First, cholera incidence in wards with large 

populations is likely to be more precise, so weighting corrects for heteroskedasticity associated with these 

differences in precision (Burgess et al. 2017). Second, rather than on the average ward, the results reveal 

the impact on the average person, which is more meaningful here. We also use this data to calculate ward-

level population density. The average ward of Dar es Salaam was populated with 48.5 thousands people in 

2012; population density was 11.53 per square km (Table 1).  

4 Empirical Strategy 

In this section we describe the econometric methods we use to estimate the effect of precipitation on 

cholera incidence. As the relationship between rainfall and new cholera cases is expected to be non-linear, 

we adopt both parametric and flexible non-parametric specifications. We begin by presenting 

specifications measuring the contemporaneous effect of precipitation. We then consider models allowing 

for the effect of rainfall to be associated with local public goods provision and other ward characteristics. 

We also assess the importance of the spatial spillovers of precipitation. Lastly, the last sub-section details 

a more general dynamic model including various precipitation time lags. 

4.1 Contemporaneous Effects 

 To quantify the contemporaneous effect of rainfall on cholera incidence in any given ward and week, 

we begin by estimating a baseline panel log-linear model relating the logarithm of cholera cases14 to 

weekly rainfall accumulation for this ward: 

Cwmt = α. Rwt + γ. Twt + µw + δt + θm. t + εwmt  (3) 

where Cwmt  is the outcome variable (log of cholera incidence) in ward w in week t. The key 

explanatory variable of interest is Rwt , measuring weekly accumulated rainfall. We also control for ward 

daily temperatures measured as weekly averages (Twt) as temperature variation is likely to be correlated 

with rainfall variation. Since our focus is on precipitation and spatial variation in temperature in Dar es 

Salaam is limited, we model a linear temperature effect. The specification in equation (3) also includes a 

full set of ward fixed effects, µw  , absorbing unobserved time-fixed ward idiosyncratic characteristics. 

                                                           
12 Basic sanitation data in Table 1 is obtained from the 10% sample of the Census 2012. Unfortunately, these are only used in the 
descriptive section because of the lack of consistency in the sample. 
13 Only the Municipality of Kinondoni has. 
14 Since no cholera cases are recorded in several wards and weeks in our sample, we add one to the number of new cholera cases 

and take the logarithm of that expression. In mathematical terms: Cwmt = ln(1 + Cwmt). 
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Permanent differences in access to healthcare for instance will therefore not confound the estimates. 

Their inclusion also addresses the potential issue of sorting across neighbourhoods. We also include week 

fixed effects, δt, to control for time-varying influences common across wards. The equation also includes 

municipality linear time trends to account for time-varying factors that differ across administrative 

boundaries and affect health. We also estimate equation (3) with municipality-week fixed effects to 

flexibly control for unobserved municipality-wide time shocks. We use only three municipalities in the 

analysis as these were the administrative divisions existing at the time of data collection. Further, the main 

three hospitals are located in these municipalities. As shown later, our estimations across these 

specifications are consistent and robust. εwmt  is an error term clustered at the ward level. Finally, we 

weight our regressions by ward population as explained earlier. Unweighted regressions are in Appendix I 

(section II.1). Results are unchanged. 

To take into account non-linear relationships more rigorously, we also estimate contemporaneous 

rainfall effects using the following flexible model: 

Cwmt = ∑ βk. 1{Rwt in quartile k} +4
k=1  ϕ. Twt + µw + δt + θm. t + ηwmt  (4) 

where the independent variables we are mainly interested in capturing are the distribution of weekly 

rainfall in Dar es Salaam. The regressors 1{Rwt  in quartile k} calculate whether the total amount of 

rainfall Rwt  in week t and ward w was in the first, second, third, or fourth quartile of the rainfall 

distribution of our study period. We estimate a separate coefficient on each of these quartile variables and 

treat the second quartile as the omitted reference category. The other regressors are as defined in equation 

(3). This approach has two benefits. The first one is to allow for more flexibility in the response function. 

The second one, more relevant here, is that it also allows us to specifically distinguish the effect of intense 

and light rain. The upper quartile (>75th percentile) is generally used as a proxy for flooding (Chen et al. 

2017).  

The parameters in equations (3) and (4) are thus identified from ward-specific deviations in rainfall 

from the ward average remaining after controlling for week fixed effects and municipality linear trends. 

Given the relatively short time period of analysis we argue that this variation is as good as exogenous and 

uncorrelated with other unobserved determinants of cholera incidence. 

Equations (3) and (4) make several important assumptions about the effect of rainfall on cholera. 

First, they assume that the impact depends on weekly accumulation alone. It ignores the possibility of 

within week variation in rainfall having an effect on health. In addition, equation (4) assumes that the 

impact of rainfall is constant within a given quartile. While this might be restrictive, we estimate separate 

quartile coefficients to improve on equation (3) and its parametric assumptions. Third, by estimating 

contemporaneous effects, we assume that past weekly rainfall does not affect health outcomes. We also 

ignore the possibility of neighbouring wards’ rainfall influencing a given ward’s cholera outcomes. We 

relax some of these assumptions in what follows.  

A final concern is spatial dependence. In this case, within-cluster correlations in the specification of 

the error covariance matrix (i.e., standard-errors clustered at the ward level) may not be enough (Barrios 

et al. 2012). To account for this issue we also compute equations (3) and (4) using Conley (1999) spatial 
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standard-errors15. The implicit assumption is that spatial dependence is linearly decreasing in the distance 

from the wards centroids up to a cutoff distance, for which we chose 50 km based on Dar es Salaam’s 

extent. This technique ensures that uncertainty in 𝛼 and β is adjusted to account for heteroscedasticity, 

ward-specific serial correlation, and cross-sectional spatial correlation. The size of our main point 

estimates are generally unchanged as is statistical significance. We consider these results as robustness 

checks in Appendix I section II.2. 

We are interested in reduced-forms here. However, we are conscious that the true (unknown) 

relationship may include some time dependency in the dependent variable. That is, past cholera may 

determine contemporaneous cholera. To test the validity of our fixed-effects model, we compute a 

dependent-lagged model instead in Table A15 in Appendix I. While we find the effect of lagged cholera 

cases significant, and positive up to 5 weeks, the size of the coefficient for contemporaneous precipitation 

always remain stable and statistically significant. 

4.2 Non-linear Effects and Spatial Spillovers 

Ward characteristics, such as population density or the number of water wells, may affect the impact 

of rainfall on health as outlined in our theoretical framework. To account for this possibility, we estimate 

variations of equation (3) that include interactions between rainfall and ward features. While local public 

goods are not exogenously allocated to wards, there are several reasons to believe this is not a problem 

here. First, the use of ward fixed effects should deal with neighbourhood sorting. Further, the lack of 

proper infrastructure is widespread in Dar es Salaam and public health evidence suggests households 

from all income-levels may be affected by cholera. Using the 2015-16 Tanzania Demographic and Health 

Survey and Malaria Indicator Survey (DHS) we test the relationship between income, wealth, and 

incidence of diarrhoeal diseases in the city (Appendix II). We find no evidence in favour of a wealth bias 

regarding the risk of contracting a diarrheal disease. 

We also measure whether contemporaneous precipitation in neighbouring wards affect cholera cases 

in a given ward. We focus on first contiguity wards and consider total neighbouring accumulated rainfall 

to begin with. We then distinguish between rainfall recorded in uphill and downhill neighbouring wards. 

We calculate the average elevation of each unit and classify as uphill the neighbouring wards with a 

relatively higher elevation. Downhill neighbouring wards have a lower or equal average elevation. 

Formally the model we estimate is as follows: 

Cwt = ρ1. Rwt + ρ2. URwt + ρ3. DRwt + π. Twt + µw + δt + ςwt (5) 

where URwt  and DRwt  measure weekly accumulated rainfall in uphill and downhill neighbours, 

respectively. The other regressors are defined as in equations (3) and (4).  

4.3 Dynamic effects  

The empirical approaches discussed so far do not address the possibility of a dynamic relationship 

between precipitation and new cholera cases. Rainfall in one week might result in increased cholera 

incidence in the following weeks due its incubation period and the manner in which the disease spreads. 

                                                           
15 We use the Stata code developed by Fetzer (2010) and Hsiang (2010). 
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This delayed response would imply that the contemporaneous estimates from equation (3) underestimate 

the true impact of rainfall. We investigate this possibility by including a distributed lag structure in our 

models:     

Cwt = ∑ λj. Rwt−j +
J
j=0  ρ. Twt + µw + δt + ζwt  (6) 

This model allows the effect of rainfall up to J weeks in the past to affect cholera incidence in a given 

week. In equation (6), the total dynamic effect of rainfall on cholera cases is obtained by summing the 

coefficients on the contemporaneous and lagged rainfall variables. Different lag structures potentially 

generate different estimates of the dynamic causal effect. As a consequence we experiment with several 

time lags and use up to 5 lagged weekly accumulated precipitation in our regressions.  

5 Main Results 

This section presents our empirical results on the relationship between precipitation and cholera 

incidence. We begin with discussing baseline contemporaneous estimates of both rainfall and flooding. 

We then assess the importance of non-linear effects, spatial spillovers and measure dynamic effects last. 

5.1 Baseline Effects 

Our baseline results concern the effect of rainfall and precipitation on weekly-ward cholera 

occurrence. Tables 3-6 report baseline estimates of population-weighted regressions. Unweighted 

regressions are in Appendix I section II.1 (Tables A.1-A4), while the same regressions with Conley HAC 

standard-errors are in section II.2 (Tables A.7-A9). Conclusions remain unchanged irrespective of the 

specification.  

Table 3 reports estimates based on equation (3). The first column shows coefficients obtained with 

ward and week fixed effects only. Precipitation is found to have a positive and statistically significant 

effect on cholera. The point estimate suggests that a 10 mm increase in weekly accumulated rainfall causes 

a 2% increase in recorded cholera cases in a given ward. Including municipality linear trends does not 

affect the results much (column 2). Municipality-week fixed effects are controlled for instead in column 3. 

While the impact of precipitation remains statistically significant at the 1% level, its magnitude increases; 

that is, there are 3.4% additional cholera cases per ward every 10 mm increases in rainfall. Overall, these 

reduced form estimates consistently show a positive impact of precipitation on cholera incidence.  

All subsequent tables are organized in the same fashion, with municipality trends added in column 2 

and municipality-week fixed effects added in column 3. To test the sensitivity of our results to 

measurement error in the recorded rainfall data, we instrument our main precipitation variable with 

rainfall recorded by the TRMM satellite as explained in section 3.2.2. The potential sources of 

measurement error in these two datasets are likely to be unrelated, and therefore uncorrelated. Results are 

displayed in Table 4. The two satellite-based precipitation variables are strongly correlated, and first stage 

F statistics range between 24 and 37 across specifications (see fourth row). Our two-stages least squares 

coefficient estimates remain positive but become larger as attenuation bias theory would predict. 

Including municipality-week fixed effects results in a loss of statistical significance (column 3). The first 

stage F-statistic is also lower however, inflating standard errors to some degree. On the whole, our 
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findings are supported by the IV results. There is a strong positive relationship between cholera 

occurrence in a given ward and precipitation. In the interest of proceeding conservatively we continue to 

stress the OLS results hereafter, but Table 4 suggests that the true impact of precipitation on cholera may 

be even larger. 

Table 5 explores the impact of rainfall using the more flexible quartile specification detailed in 

equation (4). The second rainfall quartile (light rain or precipitation between 0 to 2.9 mm weekly) is used 

as omitted category. Notably, the non-parametric relationship between weekly accumulated rainfall and 

cholera occurrence show particularly large effects at the upper-end of the rainfall distribution. Indeed, the 

estimated coefficients in the three columns consistently indicate that extreme precipitation has a strong 

impact on cholera incidence. For instance, a single additional week with recorded rainfall falling in the 

fourth quartile (>75th percentile, between 26.9 mm and 408.6 mm weekly), relative to a week with light 

rain, increases the number of new cholera cases by 20.3% (column 2). The first quartile coefficients, 

measuring loosely speaking the effect of a dry week relative to little rainfall, are positive but not 

statistically significant. These results are key findings in our paper. Clearly, extreme rainfall has a higher 

incidence on ward-level cholera occurrence than light rain, suggesting not all ranges of precipitation are 

necessarily related to cholera occurrence. Moreover, upper-quartile rain has been consistently used in the 

literature as a proxy for flooding (Chen et al. 2017), and implies water stagnation may be a likely 

mechanism.   

To explore further the role of extreme precipitation, Table 6 puts the emphasis on flooding and 

attempts to measure its impact in various ways. We begin with assessing whether the impact of rainfall is 

non-linear and depends on the extent to which a ward is prone to flooding. We use our measure of the 

share of the ward that is subject to flooding and interact it with weekly accumulated rainfall. Our results 

presented in panel A show a positive interaction term as theory would predict. The interaction is non-

statistically significant however. The coefficient of the uninteracted precipitation measure remains in the 

same order of magnitude as the coefficients of Table 3. In panel B we measure the effect of the fourth 

quartile precipitation relative to the rest of the precipitation distribution. Here flooded is a dummy 

variable for weekly accumulated rainfall falling on the upper-quartile of the overall rainfall distribution. 

Our estimates are positive, significant at the 1% level, and stable across alternative specifications. In panel 

C we interact the flooded dummy with our flood-prone area share defined as above. The interaction term 

is now positive and significant at 5% level, implying that the impact of heavy rainfall is much higher in 

wards at greater risk of flooding all else equal.  

Overall, the results of this section support the theoretical mechanisms described in section 2 and the 

channels put forward in the public health literature. There are various reasons why heavy rainfall and 

flooding could lead to an increase in cholera, as mentioned earlier. Not only the bacterium survives longer 

in wet humid surfaces, but the risk of increased contamination is higher. The inundation of drains, water 

systems, and pit latrines, greatly enhances the probability of exposure to contaminated water and food. 

Further, behavioural changes during periods of weather shocks may also increase the probability of 

contagion (WHO). Finally, indirect mechanisms through income-shocks due to the inundation of job 

locations or inaccessibility to the work-place may further contribute to the adoption of risky behaviour.  

5.2 Non-Linear Effects: A Story of Infrastructure Quality? 
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We now explore further the relationship between rainfall and cholera incidence and assess potential 

non-linearities related to ward-level characteristics. As explained above, the size of the weather shock in a 

given ward is likely to depend on the quality of the infrastructure such as the availability of well-

functioning drains, paved roads and improved sanitation. This section concentrates on the correlation 

that rainfall and several indicators of ward infrastructure and ‘neighbourhood quality’ has with cholera 

incidence. Our choice of ward characteristics is in part dictated by data availability. We focus on 

population density, road density, as well as the density of drains and footways, and the number of water 

wells. We also include the percentage of the ward’s area that hosts informal and formal housing.   

As mentioned earlier, we are constrained when it comes to measuring the quality of infrastructure and 

focus on quantity when no distinction is possible. Because of this, while we expect higher population 

density to increase the measured effect of rainfall on cholera through a heightened risk of contagion, we 

are agnostic with respect to the influence of road and water infrastructure measures. On the one hand, 

greater physical supply of water wells and drains could be negatively associated with cholera by efficiently 

evacuating used-water and rain. On the other hand, it could magnify the impact of heavy precipitation on 

cholera when the quality is low, for instance if because of unregulated dumping, drains and evacuation 

canals are clogged in times of heavy rain.  

Table 7 reports baseline estimates of population-weighted regressions. Estimates of unweighted 

regressions are in Table A5, and results with Conley HAC standard-errors are in Tables A10, both in 

Appendix I. The size of the coefficients is stable across our different specifications, although the sizes are 

generally larger when accounting for the spatial-autocorrelation of errors. Further, contemporaneous 

precipitation remains consistently positive and statistically significant at between 1 to 5% levels.  

The first seven columns of the tables separately estimate each interaction term, while in the last three 

columns we estimate all interactions jointly. Since we lose a large number of observations when we 

include certain interactions, we report results using three alternative samples. Overall, almost all 

characteristics considered individually are positive and significant at various levels of significance. Yet, 

only population and footway densities, as well as housing informality are consistently so across the 

different specifications. The mechanisms here are intuitive. For instance, in highly populated wards, close 

proximity between individuals can increase the probability of disease transmission. Similarly, footways are 

unpaved roads. Contaminated water might stagnate easier in muddy surfaces. At the same time, footways 

could just reflect informality. Indeed, informality displays the larger size, with on average weekly 

accumulated rainfall increasing cholera incidence by 1.7% to 4.5% more in wards with higher shares of 

informal housing.  

  Once we introduce all interaction terms together in columns (8) to (10) significance and signs are 

considerably changed suggesting individual interactions may be suffering from omitted variable bias. 

Nonetheless, some important patterns remain. First, the only consistently positive and statistically 

significant coefficient (at 5% level) across the various specifications is the non-linear informal housing 

correlation. While, the sample size is much smaller, results suggest living on informal housing increases 

cholera incidence due to weekly accumulated rainfall by between 2.3% and 5.7%.  This finding is far from 

surprising. Informal settlements are usually located in flood-prone areas. They suffer from poor quality 

infrastructure and deprived water and sanitation conditions. Penrose et al. (2010) find similar patterns 

when investigating a previous cholera episode in Dar es Salaam. Two other infrastructure interactions 
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display stable sizes and signs. The non-linear water wells correlation is negative but almost never 

statistically significant. Most relevant, wards with a higher density of footways have again a higher 

likelihood of accumulated rainfall affecting weekly cholera incidence. The size is small (between 0.2% to 

2%), but it is always statistically significant when accounting for the spatial autocorrelation of errors.  

These results support the theoretical mechanisms outlined earlier. First, informal housing and 

unpaved roads increase the effect of the weather shock. They are thus likely to affect individuals directly 

and indirectly through health and productivity shocks. Our results so far, despite being imperfectly 

measured, suggest the quality of infrastructure is highly correlated with the detrimental effect accumulated 

rainfall and flooding have on cholera prevalence.  

5.3 Spatial Spillovers: Neighbours Contagion. 

Next, we focus on spatial precipitation spillovers as in equation (5). Precipitation recorded in adjacent 

wards might exacerbate pressure on water infrastructures. They might also contaminate common water 

sources, particularly if wards are at different levels of elevation. In this case, uphill rainfall may also wash 

down contaminated waste or soil material, harming wards below. Table 8 contains our baseline results, 

while Tables A6 and A13 in Appendix I contain the usual alternative specifications.  

We first estimate the average effect of weekly accumulated rain in neighbouring wards on the cholera 

incidence of a given ward. We do not find evidence of an effect here. The estimated coefficients are 

almost no different from zero and insignificant across econometric specifications. In Table A11 of 

Appendix I we further look at the effect of one and two-weeks lags of neighbouring rainfall. None of 

these spatial lagged variables seem to matter.  

We then differentiate between rainfall accumulation in uphill and downhill neighbouring wards. 

Results here are more nuanced. We register a small but significant effect from accumulated weekly 

precipitation in adjacent downhill wards. That is, a 10 mm increase in weekly accumulated rainfall in 

downhill neighbouring wards increases cholera cases in the ward by 0.01% to 0.03%. This finding is 

consistent with water source contamination from relatively lower wards. The size is negligible suggesting 

almost no spatial spillovers from rainfall in contiguous areas. Further, precipitation in one’s own ward is 

almost always significant at 1% level, retaining the size of baseline estimates. Again allowing for time lags 

yields no significant effect (Table A12).  

Failing to detect any spatial spillovers of precipitation in contiguous wards is unexpected. It suggests 

only local contamination prevails. This is consistent with findings in Ambrus et al. (2015) on the 1854 

cholera epidemic in London’s Soho neighbourhood. Their identification strategy and results suggest 

cholera is contained within a very specific area. Implications concerning channels of transmission are 

many but go beyond the scope of this paper.  

5.4 Time Dynamic Effects. 

So far, we have not taken into account the possibility of a dynamic relationship between rainfall and 

cholera incidence. If cholera responds to precipitation with a delay, that is, if precipitation in previous 

weeks or days also impacts cholera in the current week, the estimates of Table 3 could underestimate the 

true effect. While cholera symptoms can manifest 12 hours after an individual being in contact with the 
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bacteria, they can also take up to 5 days. These might not coincide with our weekly definition. Further, 

rainfall is easily stored and stagnation from previous weeks may contribute heavily to contagion.   

To test for dynamic effects we estimate distributed lag models (equation 6) and allow rainfall to affect 

health up to five weeks later. The sixth lag of rain (not shown) is not statistically significant. We also 

report the contemporaneous coefficient and the sum of the six week period. Table 9 displays our point 

estimates.  We gradually introduce additional rainfall lags in our model, which includes municipality-week 

fixed effects.  

First, this exercise allows us to confirm that including time-lags does not change our conclusions. The 

contemporaneous rainfall effect on cholera remains in the same order of magnitude as in Table 3, close to 

3% and statistically significant at 1% level. Second, the results in the table clearly show that past rainfall 

up to five preceding weeks impact cholera incidence in the current week. All lags decrease in size the 

farther in time, suggesting the contemporaneous effect matters most. The total effect of precipitation is 

obtained by summing the coefficients on the contemporaneous and lagged precipitation variables. The 

total cumulated impact amounts to 0.12 points (last row). That is, six-week cumulated rainfall increases 

current cholera incidence in a ward by up to 12%.  The key message of this table is that weekly cumulated 

rainfall promotes cholera occurrence immediately and with a lag of up to 5 weeks.  

We repeat the exercise with our more flexible non-parametric specification in Table 10 (quartiles). 

The table is as Table 9 except that we only include lags up to two weeks later. The third lags (not shown) 

are not statistically significant. Again, the predominant effect is that of extreme rainfall or flooding 

captured in the upper-quartile, and up to two prior weeks. As before, all lags decrease in size the farther in 

time, suggesting the contemporaneous effect matters most. Further, we confirm that the inclusion of the 

lags does not affect our conclusions as the size and statistical significance are unchanged for 

contemporaneous coefficients. The total cumulative effect of each quartile is also computed in the last 

row. The total cumulated impact amounts to 0.37 points for the upper-quartile. It is interesting to 

highlight that the size of the two-week lag of the first quartile (no rain) remains positive but increases in 

size. It is even statistically significant at 10% level for one specification. This supports theories according 

to which dryness also matters for cholera incidence by increasing the risk of drinking unsafe water. The 

time lag is consistent with this type of behavioural changes.  

6 Conclusion 

Rapid urbanization in developing countries has often led to unplanned cities, particularly in sub-

Saharan Africa, with large shares of the urban population living in informal settlements, with poor 

transport infrastructure and limited access to water and sanitation. Under these conditions, developing 

countries’ city dwellers have become more vulnerable to disease transmission and epidemics. Global 

warming is expected to exacerbate these health-related risks. The World Bank (2016) estimates that 

climate change may push up to 77 million more urban residents into poverty by 2030. As extreme 

weather events become more frequent, understanding the relationship between disease transmission, 

infrastructure quality and weather shocks in urban areas is important. We make significant advances on 

this issue.  
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The key contribution of this paper has been to show that heavy rainfall has a strong positive effect on 

weekly cholera incidence within wards. We assemble a panel dataset defined at the ward level containing 

weekly information on cholera incidence, precipitation, and infrastructure quality from various sources. 

On average, we find that a 10 mm increase in weekly accumulated precipitation leads to an increase of up 

to 3.5% of weekly recorded cholera cases. Extreme rainfall has a larger impact: a single additional week of 

rainfall falling above the 75th percentile of the total rainfall distribution increases the number of effective 

cholera cases by up to 20.3% relative to a week with very light rain. The impact is even higher in wards at 

greater risk of flooding.  

Results in the paper also emphasize the key role of local infrastructure. We find the effect of weekly 

rainfall on cholera cases to be consistently higher in wards with larger shares of informal housing and a 

higher density of footways (i.e. informal roads). These results are in line with the mechanisms outlined. 

Neighbourhoods with low-quality infrastructure are likely to be more exposed to the cholera bacteria 

when surfaces are washed and drains are overflown by severe precipitation. Vulnerable populations in 

these wards are also more likely to suffer from negative income shocks during extreme weather events.  

Findings here have important policy implications. Cities in developing countries need to address 

infrastructure gaps to contain the risk of recurrent epidemic outbreaks in fragile environments. Policies 

that improve the quality of local infrastructures and housing conditions should mitigate the negative 

impact of rainfall on health. Given the transmission channels of cholera, the proper servicing of informal 

areas, including sewerages connections and the pavement of informal roads, as well as the regulation of 

waste-dumping, may prove to be more beneficial in the long-term than the use of short-term palliative 

measures during outbreaks. Interventions improving access to drinking water as well as access to 

sanitation should also greatly reduce cholera risk. In the theoretical framework considered, governments 

can also reduce the adverse effect of weather on health outcomes by supporting households in periods of 

health-shocks through subsidized health goods or direct transfers. These policies also need to be taken 

into account given the large room for increasing social safety nets in urban areas. Evidence on large-scale 

policy interventions in urban areas are limited and more is needed to understand priority-investments that 

increase resilience and prevent contagion of treatable diseases in developing cities if these are to become 

engines of growth (Glaeser 2011). 
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1. Figures

Figure 1. Distribution of cholera effective cholera cases (epidemic weeks)

Figure 2. Distribution of effective cholera cases, by age (epidemic weeks)
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Figure 3. Spatial distribution of cholera indicidence, total outbreak
(cases per 10,000 inhabitants)
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2. Tables

Table 1: Summary Statistics: Ward characteristics

Mean Std. Dev. Min. Max. N

Area (km2) 18.12 31.15 0.414 209.55 90

Pop (c2012) 48,495 26,064 6,411 106,946 90

HH size (c2012) 4.00 0.21 3.60 4.40 90

Density (km2) 11.53 11.12 0.05 46.74 90

Improved sanitation 0.08 0.10 0.00 0.48 90

Electricity 0.06 0.08 0.00 0.37 90

Drinking water 0.07 0.08 0.00 0.42 90

Hospital per 10tho. 0.19 0.43 0.00 2.97 90

Density of roads* 4.00 3.84 0.00 18 88

Density of footways* 8.83 15.76 0.01 75.99 63

Density of waterways* 5.00 5.61 0.00 24.81 78

Density of drains* 3.28 2.66 0.02 11.04 45

# water wells 1.25 2.99 0.00 21 76

% area informal 34 28 0.00 88 23

Notes: c2012 referes to data from census 2012, all of the infrastructure density
measures (*) are measured in km per square km

Table 2: Summary Statistics: Weather and Cholera

Mean Std. Dev. Min. Max. N

Weather:

% flooded area 10.00 16.00 0.00 73.00 90

Average temperature (C) 26.73 0.37 25.43 27.17 90

Total rainfall (10mm) 162.36 18.15 134.27 216.42 90

Average weekly temperature (C) 26.73 1.57 22.92 29.99 6930

Weekly rainfall accumulation (10mm), GPM 2.11 4.05 0.00 40.86 6930

Weekly rainfall accumulation (10mm), TRMM 2.67 5.53 0.00 44.62 6930

Cholera:

Total cases 2015-2016 63.32 94.01 0.00 588 90

Total weekly cases per ward (excl. neg) 0.72 3.84 0.00 192 6930

Total weekly cases female 0.36 1.85 0.00 90 6930

Total weekly cases below 5 yrs 0.08 0.49 0.00 14 6930

Total weekly cases tested neg 0.11 0.56 0.00 20 6930

Total effective cases epiweek10 3.16 9.40 0.00 192 890

Total effective cases epiweek20 2.54 7.25 0.00 192 1780

Total effective cases epiweek30 1.77 6.03 0.00 192 2670

Notes: Temperature are degrees celsius; all measures of rainfall are accumulated rainfall (units:
10mm), cholera cases are total numbers. 88 of 90 wards where affected throughout the outbreak.
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Table 3: Impact of Weekly Precipitation on Cholera Incidence

Cholera cases (log)

(1) (2) (3)

Precipitation 0.0198*** 0.0208*** 0.0344***

(0.0072) (0.0073) (0.0077)

N 6930 6930 6930

R2 0.4491 0.4502 0.5254

Ward FE Yes Yes Yes

Week FE Yes Yes

Municipal time trend Yes

Municipality × week FE Yes

Notes: Robust standard errors clustered at the ward level in
parenthesis. Precipitation is measured as the weekly accumu-
lated rainfall in a given ward (10mm units), cholera cases are
the log of effective (tested positive) weekly cholera cases in a
given ward. All regressions control for weekly ward air temper-
ature; they are weighted by the population of the ward (census
2012). The period coverered is from the first week of March
2015 to the first week of September 2016. *p ≤ 0.10 ** p≤0.05
*** p≤0.01

Table 4: Impact of Weekly Precipitation on Cholera Incidence (Instrumental Variable Estimates)

Cholera cases (log)

(1) (2) (3)

Precipitation 0.0689** 0.0779** 0.0451

(0.0341) (0.0356) (0.0476)

N 6930 6930 6930

First Stage F-test 36.812 35.354 24.202

Ward FE Yes Yes Yes

Week FE Yes Yes

Municipal time trend Yes

Municipality × week FE Yes

Notes: Robust standard errors in parenthesis. Precipitation is
measured as the weekly accumulated rainfall in a given ward
(10mm units), cholera cases are the log of effective (tested posi-
tive) weekly cholera cases in a given ward. All regressions control
for weekly ward air temperature. The period coverered is from
the first week of March 2015 to the first week of September 2016;
they are weighted by the population of the ward (census 2012).
Nasa GPM v3 precipitation measurement is instrumented with
NASA TRMM measurement. *p ≤ 0.10 ** p≤0.05 *** p≤0.01
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Table 5: Impact of Weekly Quartiles of Precipitation on Cholera Incidence

Cholera cases (log)

(1) (2) (3)

Quartile 1 0.0010 0.0040 0.0049

(0.0197) (0.0193) (0.0177)

Quartile 3 -0.0360 -0.0286 -0.0536*

(0.0324) (0.0329) (0.0317)

Quartile 4 0.1867*** 0.2032*** 0.1525**

(0.0594) (0.0610) (0.0611)

N 6930 6930 6930

R2 0.4510 0.4522 0.5254

Ward FE Yes Yes Yes

Week FE Yes Yes

Municipal time trend Yes

Municipality × week FE Yes

Notes: Robust standard errors clustered at the ward level in
parenthesis. Precipitation is measured as the weekly accumu-
lated rainfall in a given ward (10mm units), cholera cases are
the log of effective (tested positive) weekly cholera cases in a
given ward. All regressions control for weekly ward air temper-
ature; they are weighted by the population of the ward (census
2012). The period coverered is from the first week of March 2015
to the first week of September 2016. The quartiles of the rainfall
distribution are defined as follows: Q1 (0mm), Q2(0-0.29mm),
Q3(0.29-2.69mm), Q4(2.69-40.86mm). *p ≤ 0.10 ** p≤0.05 ***
p≤0.01
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Table 6: Impact of Flooding on Cholera Incidence

Cholera cases (log)

(1) (2) (3)

Panel A:

Precipitation 0.0192*** 0.0204*** 0.0340***

(0.0071) (0.0073) (0.0077)

Precipitation × % Flood-prone area 0.0091* 0.0076 0.0043

(0.0048) (0.0046) (0.0047)

Panel B:

Flooded (precipitation ≥75th p) 0.2189*** 0.2280*** 0.2029***

(0.0485) (0.0487) (0.0498)

Panel C:

Flooded (precipitation ≥75th p) 0.2007*** 0.2103*** 0.1970***

(0.0470) (0.0472) (0.0517)

Flooded × % Flood-prone area 0.2262** 0.2176** 0.2076**

(0.1019) (0.1007) (0.1028)

N 6930 6930 6930

Ward FE Yes Yes Yes

Week FE Yes Yes

Municipal time trend Yes

Municipality × week FE Yes

Notes: Robust standard errors clustered at the ward level in parenthesis. All
panels are independent regressions. Precipitation is measured as the weekly
accumulated rainfall in a given ward (10mm units), cholera cases are the log
of effective (tested positive) weekly cholera cases in a given ward. Flooded is
a dummy variable for weekly precipitation falling above the 75th percentile
of the total rainfall distribution. Flood-prone area is the total area of the
ward that is prone to flooding. All regressions control for weekly ward air
temperature;they are weighted by the population of the ward (census 2012).
The period coverered is from the first week of March 2015 to the first week of
September 2016. *p ≤ 0.10 ** p≤0.05 *** p≤0.01
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Table 8: Impact of Neighbours’ Weekly Precipitation on Cholera Incidence: Spatial Spillovers

Cholera cases (log)

(1) (2) (3) (4) (5) (6)

Precipitation 0.0183** 0.0192*** 0.0196*** 0.0204*** 0.0316*** 0.0320***

(0.0071) (0.0070) (0.0073) (0.0072) (0.0077) (0.0076)

Neighbours precipitation 0.0004 0.0004 0.0009

(0.0007) (0.0007) (0.0008)

Uphill neighbours precipitation -0.0007 -0.0007 0.0001

(0.0010) (0.0009) (0.0009)

Downhill neighbours precipitation 0.0011 0.0010 0.0013*

(0.0007) (0.0007) (0.0007)

N 6930 6930 6930 6930 6930 6930

R2 0.4491 0.4494 0.4502 0.4505 0.5255 0.5256

Ward FE Yes Yes Yes Yes Yes Yes

Week FE Yes Yes Yes Yes

Municipal time trend Yes Yes

Municipality × week FE Yes Yes

Notes: Robust standard errors clustered at the ward level in parenthesis. Precipitation is measured as the weekly
accumulated rainfall in a given ward (10mm units), cholera cases are the log of effective (tested positive) weekly
cholera cases in a given ward. All regressions control for weekly ward air temperature; they are weighted by the
population of the ward (census 2012). The period coverered is from the first week of March 2015 to the first
week of September 2016. Neighbours’ precipitation measures weekly accumulated rainfall in a neighbouring ward.
Uphill and downhill measures are for neighbouring wards at a higher or lower elevation than the given ward. *p
≤ 0.10 ** p≤0.05 *** p≤0.01
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Table 9: Dynamic Effects: Lags of Weekly Precipitation on Cholera Incidence

Cholera cases (log)

(1) (2) (3) (4) (5)

Precipitation 0.0337*** 0.0313*** 0.0300*** 0.0305*** 0.0298**

(0.0075) (0.0071) (0.0073) (0.0073) (0.0072)

Precipitation (w−1) 0.0249*** 0.0243*** 0.0214*** 0.0200** 0.0205**

(0.0086) (0.0085) (0.0081) (0.0082) (0.0083)

Precipitation (w−2) 0.0222*** 0.0215*** 0.0195*** 0.0185**

(0.0071) (0.0071) (0.0068) (0.0070)

Precipitation (w−3) 0.0256*** 0.0252*** 0.0240***

(0.0077) (0.0076) (0.0073)

Precipitation (w−4) 0.0182** 0.0180**

(0.0076) (0.0075)

Precipitation (w−5) 0.0113*

(0.0061)

Cumulative (6 weeks) 0.1221***

(0.0288)

N 6840 6750 6660 6570 6480

R2 0.5263 0.5267 0.5274 0.5275 0.5270

Ward FE Yes Yes Yes Yes Yes

Municipality × week FE Yes Yes Yes Yes Yes

Notes: Robust standard errors clustered at the ward level in parenthesis. Precipitation is
measured as the weekly accumulated rainfall in a given ward (10mm units), cholera cases are
the log of effective (tested positive) weekly cholera cases in a given ward. All regressions control
for weekly ward air temperature; they are weighted by the population of the ward (census 2012).
The period coverered is from the first week of March 2015 to the first week of September 2016.
Precipitation w−n are the lags of weekly precipitation up to n weeks. *p ≤ 0.10 ** p≤0.05 ***
p≤0.01
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Table 10: Dynamic Effects: Lags of Quartiles of Weekly Precipitation on Cholera Incidence

Cholera cases (log)

(1) (2) (3) (4) (5) (6)

Q1 0.0013 -0.0020 0.0039 0.0005 0.0061 0.0058

(0.0194) (0.0190) (0.0190) (0.0187) (0.0175) (0.0171)

Q3 -0.0335 -0.0372 -0.0262 -0.0301 -0.0519* -0.0551*

(0.0309) (0.0300) (0.0315) (0.0307) (0.0300) (0.0296)

Q4 0.1825*** 0.1753*** 0.1982*** 0.1908*** 0.1504** 0.1442**

(0.0559) (0.0538) (0.0578) (0.0556) (0.0574) (0.0554)

Q1w−1 -0.0034 -0.0066 0.0004 -0.0030 -0.0049 -0.0071

(0.0218) (0.0222) (0.0220) (0.0224) (0.0198) (0.0202)

Q3w−1 -0.0198 -0.0215 -0.0137 -0.0154 -0.0227 -0.0271

(0.0352) (0.0346) (0.0350) (0.0344) (0.0314) (0.0302)

Q4w−1 0.1212** 0.1139** 0.1355** 0.1277** 0.1368** 0.1256**

(0.0590) (0.0565) (0.0592) (0.0569) (0.0605) (0.0566)

Q1w−2 0.0312 0.0347* 0.0158

(0.0192) (0.0192) (0.0206)

Q3w−2 0.0320 0.0372 0.0495

(0.0356) (0.0357) (0.0352)

Q4w−2 0.0903* 0.1029* 0.1052*

(0.0543) (0.0549) (0.0568)

Q1 (Cumulative 3 weeks) 0.0145

(0.350)

Q3 (Cumulative 3 weeks) -0.0327

(-0.490)

Q4 (Cumulative 3 weeks) 0.3750***

(0.1348)

N 6930 6930 6930 6930 6930 6930

R2 0.4522 0.4526 0.4535 0.4540 0.5267 0.5271

Ward FE Yes Yes Yes Yes Yes Yes

Week FE Yes Yes Yes Yes

Municipal time trend Yes Yes

Municipality × week FE Yes Yes

Notes: Robust standard errors clustered at the ward level in parenthesis. Precipitation is measured
as the weekly accumulated rainfall in a given ward (10mm units), cholera cases are the log of effective
(tested positive) weekly cholera cases in a given ward. All regressions control for weekly ward air
temperature; they are weighted by the population of the ward (census 2012). The period coverered
is from the first week of March 2015 to the first week of September 2016. The quartiles are defined
as in Table 4. Quartilew−n are the lags of the quartiles of weekly precipitation up to n weeks. *p ≤
0.10 ** p≤0.05 *** p≤0.01
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I. Appendix Figures

Figure A1. Cholera cases during 2015-2016 outbreak, by region

Notes: Data obtained from the Red Cross. Total cases (vs. effective in analysis) up until April 2016.

Figure A2. Distribution of effective cholera cases (epidemic week), by district municipality

Notes: Therea are currently 5 municipal districts in Dar es Salaam. Here we use the three that existed when
the cholera outbreak started and at the levels at which the data was collected.
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Figure A3. Ward-level weekly rainfall accumulation (area-weighted)
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II. Appendix Tables

II.1 Unweighed Main Regressions

Table A1: Impact of Weekly Precipitation on Cholera Incidence (unweighted)

Cholera cases (log)

(1) (2) (3)

Precipitation 0.0157** 0.0165*** 0.0231***

(0.0060) (0.0061) (0.0063)

N 6930 6930 6930

R2 0.4049 0.4057 0.4638

Ward FE Yes Yes Yes

Week FE Yes Yes

Municipal time trend Yes

Municipality × week FE Yes

Notes: Robust standard errors clustered at the ward level in
parenthesis. Precipitation is measured as the weekly accumu-
lated rainfall in a given ward (10mm units), cholera cases are
the log of effective (tested positive) weekly cholera cases in a
given ward. All regressions control for weekly ward air temper-
ature. The period coverered is from the first week of March 2015
to the first week of September 2016. *p ≤ 0.10 ** p≤0.05 ***
p≤0.01

Table A2: Impact of Weekly Precipitation on Cholera Incidence (IV Estimates, unweighted)

Cholera cases (log)

(1) (2) (3)

Precipitation 0.0431** 0.0477** 0.0394

(0.0188) (0.0194) (0.0266)

N 6930 6930 6930

First Stage F-test 40.822 40.21 27.985

Ward FE Yes Yes Yes

Week FE Yes Yes

Municipal time trend Yes

Municipality × week FE Yes

Notes: Robust standard errors in parenthesis. Precipitation is
measured as the weekly accumulated rainfall in a given ward
(10mm units), cholera cases are the log of effective (tested posi-
tive) weekly cholera cases in a given ward. All regressions control
for weekly ward air temperature. The period coverered is from
the first week of March 2015 to the first week of September 2016.
Nasa GPM v3 precipitation measurement is instrumented with
NASA TRMM measurement. *p ≤ 0.10 ** p≤0.05 *** p≤0.01
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Table A3: Impact of Weekly Quartiles of Precipitation on Cholera Incidence (unweighted)

Cholera cases (log)

(1) (2) (3)

Q1 -0.0089 -0.0058 -0.0030

(0.0160) (0.0157) (0.0155)

Q3 -0.0301 -0.0250 -0.0359

(0.0264) (0.0265) (0.0269)

Q4 0.1592*** 0.1706*** 0.1521***

(0.0521) (0.0528) (0.0565)

N 6930 6930 6930

R2 0.4065 0.4074 0.4645

Ward FE Yes Yes Yes

Week FE Yes Yes

Municipal time trend Yes

Municipality × week FE Yes

Notes: Robust standard errors clustered at the ward level in
parenthesis. Precipitation is measured as the weekly accumu-
lated rainfall in a given ward (10mm units), cholera cases are
the log of effective (tested positive) weekly cholera cases in a
given ward. All regressions control for weekly ward air temper-
ature. The period coverered is from the first week of March 2015
to the first week of September 2016. The quartiles of the rainfall
distribution are defined as follows: Q1 (0mm), Q2(0-0.29mm),
Q3(0.29-2.69mm), Q4(2.69-40.86mm)*p ≤ 0.10 ** p≤0.05 ***
p≤0.01
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Table A4: Impact of Flooding on Cholera Incidence (unweighted)

Cholera cases (log)

(1) (2) (3)

Panel A:

Precipitation 0.0154** 0.0162*** 0.0227***

(0.0060) (0.0061) (0.0062)

Precipitation × % Flood-prone area 0.0079 0.0066 0.0059

(0.0051) (0.0050) (0.0052)

Panel B:

Flooded (precipitation ≥75th p) 0.1865*** 0.1930*** 0.1856***

(0.0424) (0.0425) (0.0456)

Panel C:

Flooded (precipitation ≥75th p) 0.1688*** 0.1757*** 0.1658***

(0.0420) (0.0421) (0.0451)

Flooded × %Flood-prone area 0.2181*** 0.2113*** 0.2136**

(0.0795) (0.0786) (0.0879)

N 6930 6930 6930

Ward FE Yes Yes Yes

Week FE Yes Yes

Municipal time trend Yes

Municipality × week FE Yes

Notes: Robust standard errors clustered at the ward level in parenthesis. All
panels are independent regressions. Precipitation is measured as the weekly
accumulated rainfall in a given ward (10mm units), cholera cases are the log
of effective (tested positive) weekly cholera cases in a given ward. Flooded is
a dummy variable for weekly precipitation falling above the 75th percentile
of the total rainfall distribution. Flood-prone area is the total area of the
ward that is prone to flooding. All regressions control for weekly ward air
temperature. The period coverered is from the first week of March 2015 to the
first week of September 2016.*p ≤ 0.10 ** p≤0.05 *** p≤0.01
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Table A6: Impact of Neighbours’ Weekly Precipitation on Cholera Incidence: Spillovers (unweighted)

Cholera cases (log)

(1) (2) (3) (4) (5) (6)

Precipitation 0.0158** 0.0162*** 0.0166*** 0.0170*** 0.0226*** 0.0227***

(0.0061) (0.0061) (0.0062) (0.0062) (0.0063) (0.0062)

Neighbours’ precipitation -0.0000 -0.0001 0.0002

(0.0007) (0.0007) (0.0008)

Uphill neighbours’ precipitation -0.0011 -0.0011 -0.0007

(0.0008) (0.0008) (0.0009)

Downhill neighbours’ precipitation 0.0008 0.0007 0.0008

(0.0007) (0.0007) (0.0007)

N 6930 6930 6930 6930 6930 6930

R2 0.4049 0.4052 0.4057 0.4061 0.4638 0.4640

Ward FE Yes Yes Yes Yes Yes Yes

Week FE Yes Yes Yes Yes

Municipal time trend Yes Yes

Municipality × week FE Yes Yes

Notes: Robust standard errors clustered at the ward level in parenthesis. Precipitation is measured as the weekly
accumulated rainfall in a given ward (10mm units), cholera cases are the log of effective (tested positive) weekly
cholera cases in a given ward. All regressions control for weekly ward air temperature. The period coverered
is from the first week of March 2015 to the first week of September 2016. Neighbours’ precipitation measures
weekly accumulated rainfall in a neighbouring ward. Uphill and downhill measures are for neighbouring wards at
a higher or lower elevation than the given ward. *p ≤ 0.10 ** p≤0.05 *** p≤0.01
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II.2 Main Regressions, Spatial Auto-correlation of Standard Errors
(Conley HAC SE)

Table A7: Impact of Weekly Precipitation on Cholera Incidence (HAC SE)

Cholera cases (log)

(1) (2)

Precipitation 0.0157*** 0.0271***

(0.0051) (0.0098)

N 6930 6930

R2 0.0015 0.0088

Ward FE Yes Yes

Week FE Yes Yes

Municipality × week FE Yes

Notes: Conley HAC standard errors in parenthesis (Con-
ley 1999, 2008). Precipitation is measured as the weekly
accumulated rainfall in a given ward (10mm units),
cholera cases are the log of effective (tested positive)
weekly cholera cases in a given ward. All regressions con-
trol for weekly ward air temperature. The period cover-
ered is from the first week of March 2015 to the first week
of September 2016. *p ≤ 0.10 ** p≤0.05 *** p≤0.01

Table A8: Impact of Weekly Quartiles of Precipitation on Cholera Incidence (HAC SE)

Cholera cases (log)

(1) (2)

Q1 -0.0089 0.0254

(0.0327) (0.0276)

Q3 -0.0301 0.0013

(0.0211) (0.0194)

Q4 0.1592*** 0.2165***

(0.0508) (0.0662)

N 6930 6930

R2 0.0043 0.0098

Ward FE Yes Yes

Week FE Yes Yes

Municipality × week FE Yes

Notes: Conley HAC standard errors in parenthesis (Conley
1999, 2008). Precipitation is measured as the weekly ac-
cumulated rainfall in a given ward (10mm units), cholera
cases are the log of effective (tested positive) weekly cholera
cases in a given ward. All regressions control for weekly
ward air temperature. The period coverered is from the
first week of March 2015 to the first week of September
2016. The quartiles of the rainfall distribution are defined
as follows: Q1 (0mm), Q2(0-0.29mm), Q3(0.29-2.69mm),
Q4(2.69-40.86mm). *p ≤ 0.10 ** p≤0.05 *** p≤0.01
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Table A9: Impact of Flooding on Cholera Incidence (HAC SE)

Cholera cases (log)

(1) (2)

Panel A:

Precipitation 0.0154*** 0.0225***

(0.0051) (0.0073)

Precipitation × % Flood-prone area 0.0079 0.0486**

(0.0223) (0.0219)

Panel B:

Flooded (precipitation ≥75th p) 0.1865*** 0.2128***

(0.0455) (0.0665)

Panel C:

Flooded (precipitation ≥75th p) 0.1688*** 0.1511***

(0.0430) (0.0585)

Flooded × % Flood-prone area 0.2181 0.5879***

(0.2266) (0.1720)

N 6930 6930

Ward FE Yes Yes

Week FE Yes Yes

Municipality × week FE Yes

Notes: Conley HAC standard errors in parenthesis (Conley 1999, 2008).
All panels are independent regressions. Precipitation is measured as the
weekly accumulated rainfall in a given ward (10mm units), cholera cases
are the log of effective (tested positive) weekly cholera cases in a given
ward. Flooded is a dummy variable for weekly precipitation falling
above the 75th percentile of the total rainfall distribution. Flood-prone
area is the total area of the ward that is prone to flooding. All regres-
sions control for weekly ward air temperature. The period coverered is
from the first week of March 2015 to the first week of September 2016.
*p ≤ 0.10 ** p≤0.05 *** p≤0.01
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II.3 Extensions

Table A11: Impact of Neighbours’ Weekly Lagged Precipitation on Cholera Incidence (1)

Cholera cases (log)

(1) (2) (3) (4) (5) (6)

Precipitation 0.0285** 0.0288** 0.0292** 0.0293** 0.0346*** 0.0335***

(0.0115) (0.0113) (0.0117) (0.0115) (0.0111) (0.0110)

Neighbours precipitation -0.0046 -0.0049 -0.0044 -0.0045 -0.0007 0.0008

(0.0036) (0.0047) (0.0036) (0.0047) (0.0034) (0.0047)

Neighbours precipitation w−1 0.0005 0.0007 0.0005 0.0005 0.0002 -0.0007

(0.0003) (0.0013) (0.0003) (0.0013) (0.0003) (0.0013)

Neighbours precipitation w−2 -0.0001 -0.0001 0.0007

(0.0011) (0.0011) (0.0011)

N 6929 6924 6929 6924 6929 6924

R2 0.4493 0.4493 0.4504 0.4504 0.5255 0.5256

Ward FE Yes Yes Yes Yes Yes Yes

Week FE Yes Yes Yes Yes

Municipal time trend Yes Yes

Municipality × week FE Yes Yes

Notes: Robust standard errors clustered at the ward level in parenthesis. Precipitation is measured
as the weekly accumulated rainfall in a given ward (10mm units), cholera cases are the log of effective
(tested positive) weekly cholera cases in a given ward. All regressions control for weekly ward air
temperature; they are weighted by the population of the ward (census 2012). The period coverered
is from the first week of March 2015 to the first week of September 2016. Neighbours’ precipitation
measures weekly accumulated rainfall in a neighbouring ward. Neighbour’s Precipitationw−n are the
lags of weekly accumulated rainfall in neighbouring wards up to n weeks. *p ≤ 0.10 ** p≤0.05 ***
p≤0.01
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Table A12: Impact of Neighbours’ Weekly Lagged Precipitation by Elevation on Cholera Incidence (2)

Cholera cases (log)

(1) (2) (3) (4) (5) (6)

Precipitation 0.0218** 0.0214** 0.0233** 0.0230** 0.0355*** 0.0354***

(0.0097) (0.0105) (0.0100) (0.0108) (0.0098) (0.0105)

Uphill neighbours precipitation -0.0042 -0.0044 -0.0047 -0.0047 -0.0052 -0.0049

(0.0051) (0.0048) (0.0052) (0.0049) (0.0051) (0.0050)

Downhill neighbours precipitation -0.0032 -0.0033 -0.0036 -0.0037 -0.0047 -0.0045

(0.0052) (0.0051) (0.0053) (0.0051) (0.0051) (0.0051)

Uphill N’s precipitation w−1 0.0037 0.0042 0.0040 0.0044 0.0055 0.0046

(0.0055) (0.0069) (0.0055) (0.0069) (0.0053) (0.0070)

Downhill N’s precipitationw−1 0.0043 0.0062 0.0047 0.0063 0.0062 0.0070

(0.0054) (0.0073) (0.0054) (0.0072) (0.0052) (0.0073)

Uphill N’s precipitationw−2 -0.0004 -0.0002 0.0007

(0.0042) (0.0043) (0.0042)

Downhill N’s precipitationw−2 -0.0018 -0.0016 -0.0012

(0.0043) (0.0043) (0.0043)

N 6929 6924 6929 6924 6929 6924

R2 0.4494 0.4495 0.4505 0.4506 0.5257 0.5258

Ward FE Yes Yes Yes Yes Yes Yes

Week FE Yes Yes Yes Yes

Municipal time trend Yes Yes

Municipality × week FE Yes Yes

Notes: Robust standard errors clustered at the ward level in parenthesis. Precipitation is measured as the
weekly accumulated rainfall in a given ward (10mm units), cholera cases are the log of effective (tested
positive) weekly cholera cases in a given ward. All regressions control for weekly ward air temperature; they
are weighted by the population of the ward (census 2012). The period coverered is from the first week of
March 2015 to the first week of September 2016. Neighbours’ precipitation measures weekly accumulated
rainfall in a neighbouring ward. Uphill and downhill measures are for neighbouring wards at a higher or lower
elevation than the given ward. N’s Precipitation Uphill/Downhill w−n are the lags of weekly accumulated
rainfall in neighbouring wards up to n weeks according to their elevation with respect to the given ward.
*p ≤ 0.10 ** p≤0.05 *** p≤0.01
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Table A13: Impact of Neighbours’ Weekly Precipitation on Cholera Incidence: Spillovers
(HAC SE) (1)

Cholera cases (log)

(1) (2) (3) (4)

Precipitation 0.0158*** 0.0162*** 0.0196** 0.0196**

(0.0047) (0.0047) (0.0084) (0.0085)

Neighbours’ precipitation -0.0000 0.0028***

(0.0007) (0.0010)

Uphill neighbours’ precipitation -0.0011 0.0017**

(0.0009) (0.0009)

Downhill neighbours’ precipitation 0.0008 0.0035***

(0.0009) (0.0012)

N 6930 6930 6930 6930

R2 0.0015 0.0021 0.0108 0.0114

Ward FE Yes Yes Yes Yes

Week FE Yes Yes Yes Yes

Municipality × week FE Yes Yes

Notes:Conley HAC standard errors in parenthesis (Conley 1999, 2008). Precipitation
is measured as the weekly accumulated rainfall in a given ward (10mm units), cholera
cases are the log of effective (tested positive) weekly cholera cases in a given ward. All
regressions control for weekly ward air temperature. The period coverered is from the
first week of March 2015 to the first week of September 2016. Neighbours’ precipitation
measures weekly accumulated rainfall in a neighbouring ward. Uphill and downhill mea-
sures are for neighbouring wards at a higher or lower elevation than the given ward. *p
≤ 0.10 ** p≤0.05 *** p≤0.01
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Table A14: Impact of Neighbours’ Weekly Lagged Precipitation on Cholera Incidence: Spillovers
(HAC SE) (2)

Cholera cases (log)

(1) (2) (3) (4)

Precipitation 0.0189*** 0.0187*** 0.0247*** 0.0251***

(0.0051) (0.0060) (0.0087) (0.0091)

Uphill neighbours precipitation -0.0043 -0.0044 -0.0053 -0.0047

(0.0037) (0.0042) (0.0042) (0.0063)

Downhill neighbours precipitation -0.0032 -0.0033 -0.0046 -0.0040

(0.0032) (0.0051) (0.0056) (0.0078)

Uphill N’s precipitation w−1 0.0033 0.0033 0.0072* 0.0050

(0.0036) (0.0108) (0.0041) (0.0134)

Downhill N’s precipitationw−1 0.0041 0.0052 0.0082 0.0072

(0.0031) (0.0117) (0.0056) (0.0144)

Uphill N’s precipitation w−2 0.0000 0.0016

(0.0079) (0.0079)

Downhill N’s precipitationw−2 -0.0010 0.0004

(0.0076) (0.0074)

N 6929 6924 6929 6924

R2 0.0022 0.0023 0.0119 0.0119

Ward FE Yes Yes Yes Yes

Week FE Yes Yes Yes Yes

Municipality × week FE Yes Yes

Notes:Conley HAC standard errors in parenthesis (Conley 1999, 2008). Precipitation
is measured as the weekly accumulated rainfall in a given ward (10mm units), cholera
cases are the log of effective (tested positive) weekly cholera cases in a given ward. All
regressions control for weekly ward air temperature. The period coverered is from the
first week of March 2015 to the first week of September 2016. Neighbours’ precipita-
tion measures weekly accumulated rainfall in a neighbouring ward. Uphill and downhill
measures are for neighbouring wards at a higher or lower elevation than the given ward.
N’s Precipitation Uphill/Downhill w−n are the lags of weekly accumulated rainfall in
neighbouring wards up to n weeks according to their elevation with respect to the given
ward. *p ≤ 0.10 ** p≤0.05 *** p≤0.01
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Table A15: Lagged Dependent Variable Model

Cholera cases (log)

(1) (2) (3) (4) (5) (6)

Precipitation 0.0199*** 0.0155*** 0.0119** 0.0111** 0.0103** 0.0103**

(0.0054) (0.0051) (0.0051) (0.0051) (0.0051) (0.0051)

Cholera cases w−1 0.6111*** 0.4430*** 0.4037*** 0.3943*** 0.3913*** 0.3914***

(0.0457) (0.0336) (0.0348) (0.0360) (0.0368) (0.0371)

Cholera cases w−2 0.2747*** 0.2112*** 0.1975*** 0.1922*** 0.1923***

(0.0230) (0.0285) (0.0268) (0.0281) (0.0283)

Cholera cases w−3 0.1435*** 0.1172*** 0.1085*** 0.1087***

(0.0206) (0.0245) (0.0255) (0.0257)

Cholera cases w−4 0.0652*** 0.0476** 0.0479**

(0.0208) (0.0203) (0.0197)

Cholera cases w−5 0.0447** 0.0455**

(0.0214) (0.0217)

Cholera cases w−6 -0.0019

(0.0185)

N 6930 6930 6930 6930 6930 6930

R2 0.6837 0.7076 0.7136 0.7148 0.7153 0.7153

Ward FE

Municipality × week FE Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors clustered at the ward level in parenthesis. Precipitation is measured as the
weekly accumulated rainfall in a given ward (10mm units), cholera cases are the log of effective (tested
positive) weekly cholera cases in a given ward. All regressions control for weekly ward air temperature;
they are weighted by the population of the ward (census 2012). The period coverered is from the first week
of March 2015 to the first week of September 2016. Cholera casesw−n are lagged effective cholera cases up
week n. *p ≤ 0.10 ** p≤0.05 *** p≤0.01
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Tanzania 2015-16 DHS Data Analysis

This section presents the results of the analysis of the 2015-16 Tanzania Demographic and
Health Survey and Malaria Indicator Survey (DHS). Its objective is to shed light on the rela-
tionship, if any, between income, wealth, and incidence of diarrhoeal diseases in Dar-es-Salaam.
The 2015-16 DHS collected reliable information on several demographic and health indicators,
including infant and child mortality, nutritional status of mothers and children, and childhood
immunizations and diseases. It was implemented by several government agencies with financial
support from various bilateral and multilateral donors. It is representative at the national,
urban and rural area levels.

We restrict the sample to all the households living in the Dar-es-Salaam region. The DHS
only asked children under the age of five questions related to diarrhoea. This leaves us with a
sample of 367 children living in 97 distinct households. The DHS calculates for each household a
wealth index using a battery of socio-economic variables. The construction of this index goes as
follows. Respondent households are given scores based on the number and kinds of consumer
goods they own, such as a television or a fridge. Housing characteristics, such as access to
drinking water, toilet facilities, and flooring materials are also taken into account. These scores
are derived using principal component analysis. Each household is assigned a household wealth
score index. National wealth quintiles are then compiled by dividing the index distribution into
five equal categories, containing 20% of the population each. The primary objective of this
section is to examine the relationship between this wealth index and the incidence of diarrhoea
among children aged less than five years.

We conduct a simple regression analysis and estimate the linear probability model in Equa-
tion (1) below with least squares:

Dih = β0 + β1.Wih + β2.Xi + β3.Zh + εih (1)

where Dih indicates whether child i in household h has had diarrhoea in the last two weeks.
Wih is the household wealth index either measured as five quantile dummies or the continu-
ous index value. Xi is a vector of individual covariates and includes age and a female gender
dummy. Mother educational attainment is controlled for in vector Zh. εih is the error and βk
are the parameters to be estimated. Standard errors are clustered at the household level.

Table AII.1 presents summary statistics of the variables included in the regression analysis.
16.3% of the children in the sample report a diarrhoea episode in the two weeks prior to
interview. The average child is 1.8 years old. 48% of the sample is comprised of young girls.
Regression estimates of Equation 1 are shown in Table AII.2. The continuous wealth index
score is introduced in column 1. The wealth index quintile dummies are included in the second
column. Overall the table presents very weak evidence in favour of a wealth bias regarding
diarrheal risk. The continuous wealth index score has a negative but insignificant association
with the probability of a child getting diarrhoea. The point estimates of the second column
indicate that only children of the third quintiles are more likely to get sick than the poorest
children. All other quintile coefficients are insignificant at conventional levels of significance.
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Table AII.1: Descriptive Characteristics DHS Analysis

Mean Std. Dev. Min. Max. N

Diarrhoea in last two weeks 367 0.163 0.37 0 1

Urban wealth index (/1000) - continuous score 367 56.985 66.163 -211.621 186.827

Urban wealth index Q1 367 0.014 0.116 0 1

Urban wealth index Q2 367 0.153 0.36 0 1

Urban wealth index Q3 367 0.259 0.439 0 1

Urban wealth index Q4 367 0.297 0.458 0 1

Urban wealth index Q5 367 0.278 0.449 0 1

Age 367 1.845 1.357 0 4

Female 367 0.48 0.5 0 1

Mother education: no education 367 0.065 0.248 0 1

Mother education: incomplete primary 367 0.054 0.227 0 1

Mother education: complete primary 367 0.534 0.5 0 1

Mother education: incomplete secondary 367 0.057 0.233 0 1

Mother education: complete secondary 367 0.243 0.429 0 1

Mother education: higher education 367 0.046 0.21 0 1

Notes:DHS 2015-16 data for Dar es Salaam region. Under five years old children in the sample.
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Table AII.2: DHS Regression Analysis

Had Diarrhea =1

Dependent variable (1) (2)

Urban wealth index - continuous score -0.000295

-0.000328

Urban wealth index Q2 0.0657

-0.0546

Urban wealth index Q3 0.134**

-0.0647

Urban wealth index Q4 0.0694

-0.0656

Urban wealth index Q5 0.0363

-0.0694

Age -0.0501*** -0.0500***

-0.0122 -0.0124

Female 0.026 0.0259

-0.0383 -0.0378

Mother education: incomplete primary 0.138 0.0957

-0.085 -0.091

Mother education: complete primary 0.155*** 0.112***

-0.0415 -0.0391

Mother education: incomplete secondary 0.618*** 0.565***

-0.105 -0.105

Mother education: complete secondary 0.100* 0.0677

-0.0596 -0.0579

Mother education: higher education 0.13 0.0959

-0.0949 -0.0879

R-squared 0.142 0.15

Observations 367 367

Notes: Robust standard errors clustered at the household level in paren-
thesis. Linear probability model regressions. DHS 2015-16 data for Dar
es Salaam region. Under five years old children in the sample. *p ≤
0.10 ** p≤0.05 *** p≤0.01
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