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Abstract

The textbook policy response to traffic externalities is congestion pricing. However, quanti-
fying the welfare consequences of pricing policies requires detailed knowledge of commuter pref-
erences and of the road technology. I study the peak-hour traffic congestion equilibrium using
rich travel behavior data and a field experiment grounded in theory. Using a newly developed
smartphone app, I collected a panel data set with precise GPS coordinates for over 100,000 com-
muter trips in Bangalore, India. To identify the key preference parameters in my model – the
value of time spent driving and schedule flexibility – I designed and implemented a randomized
experiment with two realistic congestion charge policies. The policies penalize peak-hour depar-
ture times and driving through a small charged area, respectively. Structural estimates based
on the experiment show that commuters exhibit moderate schedule flexibility and high value of
time. In a separate analysis of the road technology, I find a moderate and linear effect of traffic
volume on travel time. I combine the preference parameters and road technology using policy
simulations of the equilibrium optimal congestion charge, which reveal notable travel time bene-
fits, yet negligible welfare gains. Intuitively, the social value of the travel time saved by removing
commuters from the peak-hour is not significantly larger than the costs to those commuters of
traveling at different, inconvenient times.
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1 Introduction

Traffic congestion is a significant urban disamenity, especially in developing countries, where urban popula-

tion and private vehicle ownership are growing rapidly.1 Even holding fixed the number of vehicles in use,

peak-hour traffic jams may be particularly inefficient, as large numbers of commuters driving at the same

time cause longer travel times for everyone. Reflecting this concern, various urban traffic policies focus on

reducing peak-hour congestion, either through pricing or quantity restrictions.2

However, it is challenging to evaluate the welfare impact of such policies or, more generally, to quantify

the inefficiency in a decentralized unpriced equilibrium. These calculations depend critically on how drivers

value the time they spend driving, as well as on their flexibility of changing the timing of their trips.

Intuitively, the inefficiency may be small if commuters have sufficient schedule flexibility so as to eliminate

congestion peaks in the decentralized equilibrium to begin with. Alternatively, if everyone is very inflexible,

the distribution of departure times under the social optimum will look similar to the unpriced equilibrium.

Apart from these preference parameters, the road technology mediates the externalities that drivers impose

on each other. Engineering studies at the road or highway segment level, typically in developed countries,

regularly find a convex impact of vehicular volume on travel time (Small et al., 2007), which suggests large

social marginal costs when congestion is already high. However, we know little about this relationship at the

commuter-trip level and in large cities in developing countries, where the infrastructure, types of vehicles

driven, and driving styles differ considerably from the settings of existing studies.3

This paper analyzes the peak-hour traffic congestion equilibrium using a rich data set of travel behavior

and a theory-grounded field experiment on congestion charge policies. The backbone of the study is a fine-

grained panel data set of trips from a sample of around 2,000 car and motorcycle commuters from Bangalore,

India. I collected this data using a novel smartphone app that passively logs precise GPS location data,

which I helped design for this purpose. The data covers over 100,000 individual trips and almost one million

kilometers of travel inside the city.

I outline the key preference parameters of interest in this setting using a simple model of commuting trip

scheduling and route choice, building on classic models in transportation economics (Arnott et al., 1993;

Noland and Small, 1995). In the model, commuters choose between two route options and decide their trip

1Between 2005 and 2015, new private vehicle registrations have grown at 15% and 43% per year in India and China, compared
to 0% in the United States and Europe (OICA, 2016).

2The congestion charge policy in Stockholm and Singapore’s Electronic Road Pricing (ERP) policy have higher fees during
the morning and evening peak hours. Jakarta’s former “3-in-1” and the current “odd-even” policies are in effect during morning
and evening peak hours only. Similarly, Manila’s Unified Vehicular Volume Reduction Program (UVVRP) only applies during
peak hours in certain parts of the city.

3A notable exception is Akbar and Duranton (2017), who use a household travel survey in Bogotá together with Google
Maps data collected several years later. They find a small elasticity and hypothesize that drivers are more likely to use side
roads during peak hours.
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departure time, taking into account the expectation and uncertainty in travel times for different departure

times and for the two routes, their ideal arrival time (unobserved to the researcher), and their schedule

flexibility.4 The key parameters for welfare are the value of time spent driving, and the schedule costs of

arriving earlier or later than desired. Intuitively, these parameters respectively measure the benefits and the

costs of policies that aim to reduce peak-hour congestion by inducing commuters to travel before or after

the peak. In an ideal experiment, we would observe choices for various vectors of prices over departure times

and drive times. By contrast, observational data does not have sufficient independent variation in costs

over these two dimensions. For example, an earlier departure time typically affects both the probability of

arriving late and the mean driving time.

In order to identify the model parameters, I designed and implemented two realistic congestion charge

policies as part of a field experiment with 497 commuters. The two policies introduce exogenous price vari-

ation in departure times and driving times, which identifies the value of time and schedule cost parameters.

Under the “departure time” policy, trips are charged according to a pay-per-km rate that is higher during

peak-hour departures. Under the “area” policy, commuters face a flat fee for driving through a small area,

chosen such that there exists an alternate, untolled route with a longer driving time. Participants were

randomized into treatment and control groups for the “departure time” policy. For the “area” policy, the

timing of the treatment was randomized among participants. For both treatments, charges were calculated

automatically on a daily basis, using the smartphone app travel data, and subtracted from a prepaid virtual

account. In order to separate the effect of price incentives from that of information, daily SMS updates,

and experimenter demand effects, participants in a separate “information” sub-treatment received daily SMS

information notifications and flat weekly bank transfers.

Experimental results show that commuters have moderate flexibility to adjust trips away from typical

work hours in order to save money. Under “departure time” charges, commuters leave earlier in the morning

and later in the evening. These findings are consistent with working hours acting as constraints, at least

in the short run. During the morning interval, participants advance their trips by around 4-6 minutes on

average, an effect driven by a subset of commuters that responds more strongly. Responses in the low rate

sub-treatment are roughly half of those in the high rate sub-treatment, although imprecisely estimated, and I

do not find any impact of the information treatment, which suggests that commuters are responding to prices

rather than to other aspects of the intervention. Under “area” charges, participants cross the congestion area

around 20% less frequently, and switch to longer routes. Neither randomly doubling the congestion charge

nor shortening the detour affects this fraction. These findings are consistent with considerable preference

4The model abstracts from the extensive margin travel decision to focus on the within-day distribution of travel.
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heterogeneity, and the implied value of time for the marginal commuter is large relative to the average hourly

wage for this sample.

I next use the experimental price variation to structurally estimate a model of route and departure time

choice for the morning home to work commute. The model includes random utility shocks over routes

and departure times, leading to a nested logit specification, and it accounts for the non-linear structure

of incentives in the experiment. I construct individual-level choice sets using Google Maps driving time

data collected for each driver’s typical route and detour route, at all departure times, and I calibrate the

driving time uncertainty. I simulate the model to compute choice probabilities, and perform an additional

step to invert the individual-specific distribution of ideal arrival times from observed departure times in the

pre-experimental period. I estimate the model using two-step GMM and moments chosen to exploit the

variation induced by the congestion charge experiments. The estimated schedule cost of early arrival, at

around Rs. 320 per hour (approximately $5), is roughly a quarter of the value of time spent driving, at

Rs. 1,120 per hour. Late arrival schedule costs are large but imprecisely estimated. I also estimate the

probability that a participant responds to the experiment, by matching the distributions of individual effects

in the departure time and area treatments. Around half of participants respond to the experiment.5

The structural demand estimates show that commuters are moderately schedule flexible relative to how

much they value time spent driving. However, to understand the equilibrium welfare costs of congestion, we

need to combine these demand estimates with knowledge about the shape and size of the technological part

of the externality.

I document a moderate and linear impact of traffic volumes on travel times. I use all the GPS trips data

collected using the smartphone app to measure volumes, and Google Maps data on travel delay collected daily

to measure driving times.6 The average travel delay for trips starting at a certain time of the day is linearly

increasing in the average volume of departures at that time. In particular, I do not find any convexity for

high levels of traffic, unlike previous empirical estimates for highway road segments. Quantitatively, making

an average length trip during peak hours increases aggregate driving time for everyone else by approximately

15 minutes, which is roughly half of the private trip duration.7

Finally, I compute the optimal equilibrium congestion charge profile, which implements the social opti-

mum. I simulate the city-wide traffic equilibrium in an environment where agents have preferences drawn

from those estimated from the data, and aggregate travel volumes determine the travel delay profile through

5The experimental results show stark heterogeneity in individual responses, which is not well explained by models with
random coefficients. The binary “response probability” does a much better job at replicating this pattern.

6I validate the Google Maps driving time data using median driving times from the GPS data. The two measures co-vary
with a slope close to 1.

7I show that such calculations depend on a semi-elasticity and do not require knowledge of the total number of vehicles.
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the estimated road technology. This approach has the benefit of relying entirely on estimated parameters.

However, I ignore extensive margin responses, and results may differ if long-term responses to congestion

charges differ significantly, for example if in the long run firms can accommodate more flexible schedules.

I compute the social optimal allocation by finding a Nash equilibrium with congestion charges with the

following fixed point property: the charge for departure time h is equal to the marginal social cost of driving

at time h.

The social optimum has notable travel time savings relative to the decentralized unpriced equilibrium.

Travel is one minute faster from a base of 39 minutes, which is 7% of the travel time above free-flow speeds.

However, welfare gains are negligible. This is due to the fact that the social benefits of travel time savings

are almost fully offset by the scheduling costs incurred by drivers who now avoid the peak-hour. I conduct

counterfactual simulations with alternate policy parameters and road technologies and show that the linear

road technology is important for driving these findings.

This result implies that peak-hour congestion pricing and similar quantity-based restrictions are not

warranted in Bangalore for the sole purpose of flattening peak-hour congestion by re-allocating drivers

across departure times.

This project builds on and contributes to several literatures.

First, transportation economists have developed a rich theoretical literature that models traffic equilibria.

Vickrey (1969) and Henderson (1974) introduced the inefficiency due to trip scheduling and their ideas were

further formalized by Arnott et al. (1993) and Chu (1995).8 I build on these early models and adapt them

to make it easier to apply them to data on real travel behavior.

Second, the vast majority of transportation research uses survey methods (such as trip diaries) to measure

travel behavior. In this project, I collected precise travel behavior data based on detailed GPS traces from

around 2,000 participants using their own smartphones. This method circumvents misreporting and recall

bias issues that affect survey methods, and makes it easier to collect longitudinal data. Early studies that

collected GPS travel behavior data were typically limited to small samples and used special GPS devices

that participants carried with them during the study (see, for example, Papinski et al., 2009). Zhao et al.

(2015) use a smartphone app and a respondent-supervised machine learning trip classification algorithm to

measure travel behavior in Singapore. In this project, I designed and calibrated an entirely automatic trip

detection algorithm, which makes it easier to collect large quantities of travel behavior data.9

8Later on, this literature evolved towards more sophisticated models, for example the joint analysis of departure time and
network routing models (Yang and Meng, 1998), and studies of the distributional impacts of pricing (van den Berg and Verhoef,
2011; Hall, 2016).

9The app used in this study is also more battery efficient – an important requirement in this setting – due to not collecting
accelerometer data.

5



Third, most estimates of travel preferences in transportation research and planning are based on “stated

preferences,” whereby survey respondents make hypothetical choices between alternatives that involve trade-

offs (Ben-Akiva et al., 2016). Despite their flexibility, stated preferences may bias results if respondents do

not properly anticipate their own behavior, a problem the literature has attempted to minimize through

careful survey design. In this paper, I measure revealed preferences (real behavior) after experimentally

introducing congestion charges for some commuters.

There are relatively few studies that estimate commuter preferences using a revealed-preference approach.

Small et al. (2005) analyze real-world driver decisions to use a faster tolled lane to estimate the value of

time and of reliability, and Bento et al. (2017) estimate the value of urgency in a similar setting. Estimates

of scheduling preferences are even rarer (Small, 1982). A separate group of papers analyzes reduced form

impacts of road pricing experiments. Tillema et al. (2013) study a pilot offering rewards for avoiding peak-

hour driving. In a contemporaneous study, Martin and Thornton (2017) analyze a randomized experiment

that implemented several types of congestion charges in Melbourne, Australia. They report reduced-form

effects and implied elasticities, and document that peak-hour distance charges reduced peak-hour travel,

cordon charges reduced cordon entries, especially for commuters moderately close to public transit, while

commuting to work was not affected. In this paper, I bring these two strands of the literature together by

designing a randomized experiment in order to be able to recover the key commuter preference parameters

in the model, value of time and scheduling preferences.

Fourth, a growing empirical literature documents the impact of traffic policies on traffic volumes, travel

times and air pollution. Several papers analyze the aggregate impact of real-world congestion pricing policies,

in London (TfL, 2006; Prud’homme and Bocarejo, 2005; Raux, 2005), Milan (Gibson and Carnovale, 2015)

and Stockholm (Karlström and Franklin, 2009), while another strand studies non-price, vehicle quantity

restrictions (Davis, 2008; Kreindler, 2016; Hanna et al., 2017; Gu et al., 2017). These papers measure

impacts on aggregate outcomes, and either do not address the welfare implications of these policies, or, in a

few cases, perform basic welfare calculations treating travel at any time of the day as a single good. Here, I

combine estimated preferences with road technology estimates to run equilibrium policy simulations, which

allows me to assess policy welfare impacts.

Fifth, empirical studies of the relationship between traffic density, speed and flows mostly focus on small

road segments (Small et al., 2007). Geroliminis and Daganzo (2008) used data from fixed-loop detectors and

taxi GPS data over a large area in Yokohama, Japan, to document that speed decreases strongly with vehicle

density. We do not have similar estimates for cities in developing countries. Akbar and Duranton (2017)

use trip data from a household travel survey in Bogotá, Colombia and travel times collected from Google

Maps several years later, to estimate both the demand for travel and supply (or road technology). They find
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a small elasticity of travel time with respect to volume of travel, and I show that the results in Bangalore

and Bogotá are very similar. In this paper, I use a large GPS data set with precise information on traffic

volumes and driving times, as well as contemporaneous driving time data from Google Maps, and document

a linear, moderate relationship between volume and travel times, both within day and across days.

I organize the rest of the paper as follows. Section 2 describes traffic congestion and travel behavior in

Bangalore. Section 3 sets up a theoretical model of travel preferences and analyzes the experiment within the

model. Section 4 describes the data collection and study sample, and section 5 describes the experimental

design and reduced form results. Section 6 describes the structural estimation, section 7 quantifies the traffic

congestion technology, section 8 reports the policy counterfactual simulations and quantifies the inefficiency

in the decentralized equilibrium, and section 9 concludes.

2 Setting

Traffic Congestion and Travel Behavior in Bangalore, India

Similar to other large cities in developing countries, Bangalore’s fast-growing population and economy put

stress on its transportation network, which suffers from severe road traffic congestion. In Bangalore, com-

muters essentially depend on the road in order to reach their destinations. Nearly all motorized transport,

both private and public, travels on urban roads, so, to a first approximation, congestion affects all com-

muters.10

Traffic congestion in Bangalore is extreme, and shows significant and predictable within-day variation.

Figure 1 shows average predicted travel delay in minutes per kilometer, collected from the Google Maps API

on 28 routes in the study area.11 On average between 7 am and 10 pm on weekdays and across all routes,

it takes 3.41 minutes to advance one kilometer. Travel delay is the inverse of speed, so this is equivalent

to a speed of 10.9 miles per hour. This is extremely slow, but broadly in line with speeds in other heavily

congested large cities in developing countries, such as downtown Jakarta, Indonesia (Hanna, Kreindler and

Olken 2017) and Delhi (Kreindler, 2016). Bangalore is much slower compared to cities in the U.S. For

example, Anderson (2014) finds an average travel delay of 0.7 minutes per kilometer on urban highways in

Los Angeles.

Figure 1 also shows strong predictable within day variation in traffic congestion. Between 7 am and 9

am, travel delay increases by 0.75 minutes per kilometer, or 30%. In other words, a trip that would take

10The 2011 census reports that roads are used by 97% of all commuters – excluding those who do not travel, walk or use the
bicycle. The main modal split is 33% using motorcycles, 15% cars, and 44% bus. Ridership on the Bangalore metro was below
100,000 per day in 2016, accounting for no more than 4% of all commuters.

11Results from 178 routes across Bangalore show a very similar shape and slightly lower travel delay levels.
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an hour starting at 7 am would take 80 minutes starting at 9 am. Similarly large changes in average travel

delay occur around the evening peak. Here we are taking an average over many different routes that cover

all directions and that may have different temporal patterns. In smaller areas, the within-day variation in

expected travel time is likely larger. In addition, these results ignore travel time uncertainty, which increases

alongside expected travel time.

Assuming that commuters have some flexibility in their schedules, these results suggest that it may

be more efficient if some people traveled at earlier or later times, in order to avoid the peak hours. The

individual-level GPS data collected for this study using the smartphone app shows that commuters do indeed

vary their departure times significantly from day to day. Table 1 reports descriptive statistics about travel

behavior in the study sample. Panel C shows the within-person departure time variability in the morning

and evening. For the first trip in the morning, the standard deviation for the median person is 1.3 hours,

which implies a 95% confidence interval of five hours for the departure time! Even restricting to trips between

home and work, the median commuter’s departure time is covered by a 95% confidence interval of almost

two hours for the morning and three and a half hours in the evening.

However, the daily variation in how commuters travel does not automatically mean that commuters have

flexible schedules and that they would respond strongly to policies that give incentives for off-peak travel. It

is possible that desired travel times change from day to day (based on changes in work or other constraints),

yet commuters may be inflexible around those times on any particular day. Similarly, the existence of large,

predictable travel time differentials between different times of the day is not by itself enough to understand

the externality imposed by an additional commuter on the road at a given time. Overall, the facts discussed

in this section suggest that peak-hour inefficiency is a possibility, yet they are not enough to quantify the

welfare impact of policies that aim to reduce peak-hour traffic. In order to study these issues formally, I

next introduce and analyze a model of within-day travel behavior and traffic congestion.

3 Theoretical Framework

The profile of traffic congestion within a day cannot be summarized effectively by a single aggregate statistic.

Instead, commuters choose when to travel taking into consideration congestion at each time of the day, among

other factors. Moreover, a commuter’s impact on driving times experienced by others will also depend on

their departure time. This is a departure from classic models, where externalities operate through a single

aggregate measure (Beckmann et al., 1956; Diamond, 1973).

The model introduced here and elaborated in section 6 puts a specific structure on the demand substi-

tution pattern between travel at different times of the day. I also use the model to explain why the key
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parameters cannot be identified from observational data alone, and to show that two specific congestion

charge policies help solve this problem.

The model is based on the classic formulation of preferences over scheduling and time spent driving from

(Arnott et al., 1993), modified to include travel time uncertainty and ideal arrival time variation. It abstracts

from the extensive margin decision to travel. I first set up the model for a single route, then introduce the

route choice problem briefly in section 3.2 and formally in section 6.

3.1 Model Setup

An atomistic commuter decides when to travel from a stable origin (home) to a stable destination (work),

taking into account traffic conditions at different departure times. Define u(hD, T ) the utility from de-

parture time hD and travel time T , and assume it is quasi-linear in money. This general formulation can

include preferences to depart and arrive at specific times, the distaste for time spent traveling, and vari-

ations in travel times based on departure time. The commuter maximizes expected utility, namely solves

maxhD
ETu(hD, T (hD)), where travel time T (hD) is stochastic and realized only after departure.

I assume utility takes the following form:

u(hD, T ) = −αT +−βE |hD + T − h∗
A|− − βL |hD + T − h∗

A|+

The commuter cares about travel time and the arrival time hA = hD + T . Travel time cost is linear,

and α measures the value of time. The second and third terms measure scheduling preferences over arrival

time (Arnott et al., 1993). The commuter has an ideal arrival time h∗
A, and constant per-unit of time costs

of arriving early (βE) and of arriving late (βL). Here, |x|− and |x|+ respectively denote the negative and

positive parts of x (both defined as non-negative numbers). I assume that the ideal arrival time is known in

advance but it can change from day to day.

The key parameters of interest in this model are α, βE , and βL. The first measures the benefits of any

policy that improves expected travel times. The other two parameters capture the costs of a policy that

attempts to push commuters away from the peak-hour, namely the costs of traveling at inconvenient times.

Under these assumptions, the commuter’s problem becomes

max
hD

−ET
[
αT (hD) + βE |hD + T (hD)− h∗

A|− + βL |hD + T (hD)− h∗
A|+

]
(1)

While the commuter preferences over arrival times have a kink at the ideal arrival time, the uncertainty

in travel time smoothes out the utility. The first order condition can be re-written as the following identity:

π(h∗
D) = α · dETT/dhD + βL

βE + βL
(2)

9



Here π(hD) = Pr (hD + T (hD) < h∗
A) is the probability of arriving early when departing at hD, which

depends on the distribution of travel time shock T (hD) − ETT (hD). At the optimum departure time, the

probability to arrive early depends on the following factors. If the slope of expected travel time with respect

to departure time is positive, the commuter has an incentive to leave earlier to take advantage of faster travel,

and this effect is increasing in the value of time, α. This is captured in the first term in the numerator. The

commuter also chooses departure time to balance the costs of arriving early and arriving late. The more

costly it is to arrive late, the earlier the optimal departure time will be. This effect is captured by the βL

βE+βL

term.

3.2 Identifying preferences using congestion charges

The key parameters α (value of time spent driving) and βE and βL (schedule costs of arriving early and late)

are not typically identified from observational data. There are two problems. First, a change in departure

time leads to a change in the distribution of arrival times, and it may also lead to a change in expected travel

time. This makes it difficult to disentangle the relative importance of schedule costs from the value of time,

as shown in expression (2). For example, assuming we know h∗
A, if we observe someone leave early, we do not

know if they do so in order to take advantage of faster travel times (assuming dETT/dhD > 0) or because the

cost of arriving late is very high. The second problem is that it is difficult to learn anything from day to day

variation in departure times. If we allow the ideal arrival time h∗
At to vary by day (t) – for example because

the commuter needs to arrive earlier or later to work on some days – then the individual optimal departure

time will for the most part track h∗
At. To see this, assume the travel time distribution is independent of

departure time, then this relationship is exactly linear. In other words, in this model, day-to-day changes in

observed departure time are not informative about the underlying parameters α, βE , βL.

I now introduce two congestion charge policies that create price variation that will help identify the

required parameters. This procedure has the added benefit of providing monetized estimates of α, βE and

βL. The first policy imposes a marginal cost of departure time, m = p · hD. Intuitively, this creates an

independent incentive to change departure time and leave earlier. The first order condition with pricing

changes to

π(h∗
D) = α · dETT/dhD + βL + p

βE + βL

By observing the commuter’s departure time behavior for various values of p, and given knowledge of the

shape of the function π, we are able to identify the denominator and numerator in (2). However, βL and βE

are not identified separately without knowing α, how the commuter values time spent commuting, except in

the case when dETT/dhD = 0, that is when expected travel time does not depend on departure time.
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Now consider a different congestion charge scheme to help identify the marginal value of time α. First,

consider an extension of the model where the commuter also chooses one of two routes j ∈ {0, 1}. The route

j = 0 is the shorter, direct route from home to work, while the j = 1 (detour) route takes more time. Travel

time on route j at departure time hD is denoted by Tj (hD), and satisfies ET1 (hD) > ET0 (hD) for all hD.

Under the second congestion charge policy, the commuter has a choice between using the short route j = 0

and paying a flat fee m, or taking the detour route j = 1 for free. The fee m that makes the commuter

indifferent between the two options is informative about the value of time α, although βE and βL also play

a role by determining the optimal departure time for each route.

Taken together, the two congestion charge schemes jointly identify the value of time and schedule flexi-

bility parameters, assuming we know the distributions of travel time and shape of idiosyncratic shocks. The

field experiment is designed based on these insights.

3.3 Closing the model: road technology, equilibrium, and social optimum

To close the model, we need to specify how the distribution of travel time at each departure time depends on

the volume of traffic at that and other departure times. I consider a simple relationship between the rate of

departures at a given time h, and the expected travel time starting at that time. Assume ET (h) = F (Q (h)),

where Q is quantity or volume of traffic departing at time h, and F (·) is a function that describes the road

technology. (In section 7 I will show that a linear F provides a very good fit to the data.12) I further

assume that the travel time distribution at a given departure time is fully determined by the expected travel

time. (In the empirical application, I show that a log-normal distribution with standard deviation following

a quadratic function in the mean offers a good fit to the data.)

A Bayesian Nash equilibrium of this model is described by a pair of travel decisions (hDi)i for all com-

muters i in the population, and a travel profile (T (h))h such that commuters respond optimally to traffic

conditions, and the travel profile is determined by the aggregate pattern of departures. It is also possible

to compute a Nash equilibrium in the presence of departure time monetary charges τ (h). Simulations in

section 8 identify a unique and stable equilibrium. Intuitively, commuters have well-defined desired arrival

times, and congestion makes traveling at a given time strategic substitutes.

The social optimum can be implemented as a Nash equilibrium with “Pigou” charges, where the charge

τ (h) at departure time h is exactly the marginal social cost of a commuter traveling at h. We can compute

12The bottleneck model is a classic alternative with useful theoretical characteristics (Arnott et al., 1993). In that model,
traffic is modeled as a bottleneck with fixed flow capacity. If vehicles arrive at the bottleneck at a rate below capacity, they
pass through without delay. As soon as the incoming flow exceeds capacity, a queue forms. The queue is cleared in a first-come-
first-served order, at the bottleneck capacity rate per unit of time. The wait time (and queue length) depends on the entire
distribution of departure times in the past. Unfortunately, this type of model does not fit the data in this setting.
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the marginal social cost of a commuter i traveling at a given departure time h by computing the two equilibria

when i leaves at h and when i does not travel at all, and comparing the (utilitarian) welfare for the other

commuters.

Having estimated the demand parameters and equipped with a model of road technology, it is possible

to compute the equilibrium, evaluate welfare under counterfactual congestion charge policies, compute the

externalities imposed in the unpriced equilibrium, and compute the optimal charges.

4 Data Sources and Study Sample

The data backbone of the project is a data set of trips with precise GPS coordinates, collected using a

newly developed smartphone app. This data was used both for measuring detailed travel behavior and for

implementing the congestion charge policies in the experiment. This section describes how the app was

designed, how the data was collected, and how it was automatically cleaned and classified. I also briefly

describe several other data sources. The section ends with a description of the study participant recruitment

procedure.

4.1 GPS trip-level data from smartphone app

GPS traces. Travel behavior data was collected using a smartphone app that works in the background

of any GPS-enabled Android smartphone and passively collects phone location data, without requiring any

user input. To conserve battery power, updates were collected at variable time intervals, between every 30

seconds while traveling and every 6 min when in stationary mode.13 The phone location is identified by

the phone operating system using GPS information, as well as cell phone network and WiFi information.

(Henceforth, I will refer to this data simply as GPS data.) The app uploads data to a server at regular

intervals using the phone’s data connection. The app has a simple interface that shows a map with the

user’s current location, and users can receive notifications in the phone notification panel.

Measuring travel behavior using a smartphone-based app has several major advantages over previous

data collection techniques. Most often, surveys collect self-reported behavior, which is affected by recall

bias, rounding of departure times and trip duration, and tends to underestimate within-person temporal and

route variation Zhao et al. (2015). The study app solved these issues by collecting the relevant information

completely automatically, without any user input at the beginning or end of a trip, and without requiring

participants to later review and validate their trips. Using a smartphone as sensing device also improves

13The app, called “Bangalore Traffic Research,” was available from Play Store during the study period,. I worked together
with GridLocate Ltd, a GPS tracking solutions company, to adapt one of their products to the specific needs of this project.
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over previous studies that required participants to carry a separate GPS device.14

Trip Data Processing. The raw GPS data for each user-day was automatically cleaned and classified

into trips and locations. I designed and implemented a sequence of algorithms that eliminates outliers and

imprecise GPS data points, and segments each day into a sequence of trips and locations, as well as segments

corresponding to missing data. Consecutive trips with short stops (at most 15 minutes) between them are

linked together into chains, which is the unit of analysis. There is no direct way to distinguish the travel

mode, including walking or public transport. However, short walking trips are automatically excluded from

the sample of trips. The algorithm tags trips outside Bangalore, defined as more than 18km away from the

city center. This algorithm was used during the experiment to compute congestion charges for participants

in the treatment groups.

Missing GPS data was caused by technical as well as human factors. The app does not record location

data if the phone or the location services are switched off, if app permissions are revoked, or if the phone is

unable to determine its own location. The last situation may arise, for example, when the phone’s 3G internet

connection is switched off, because an active connection helps achieve a faster first GPS location. I classify

data into three quality categories based on the total duration without location data, and the total distance

traveled without precise route information: good quality data, insufficient data, and no data. During the

experiment, around 75% of days are good quality, which is the category used for analysis.

Common Destinations and Regular Commuters. Travel behavior and preferences may differ on

regular and non-regular trips. In order to be able to control for this important regularity in travel behavior,

I identify common, recurring destinations at the commuter level (such as a workplace or school) using a

clustering algorithm to group locations into groups, followed by manual review of the location groups most

frequently visited.15 The home location is easy to identify as the most common location group. I then

classify one or at most two location groups as “work” destinations. Next, I compute the fraction of distance

traveled between home and work, as well as the fraction of days present at work. Using these two variables, I

classify participants into regular and variable commuters. Around 75% of study participants have a regular

destination, and the median regular commuter visits work on 91% of weekdays (Table 1 Panel B).

Google Maps data. I collected two types of Google Maps data on travel times that include informa-

tion on traffic congestion. The first data set collected “live” or real-time travel time on 178 routes across

Bangalore, including 28 routes in the study area of South Bangalore, every 20 minutes throughout the day,

14In a phone survey performed after the experiment ended, only 2.5% of respondents said they left their phone at home
“sometimes, for usual destinations.”

15For grouping locations, I used the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm
implemented in the sklearn package in python. I then define the top two groups as home and work candidates, respectively,
and classify all trips based on whether they connect one or both of these locations.
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for 207 days in 2017. This data will be used to calibrate the distribution of travel times, holding route and

departure time fixed, and in order to measure the road technology impact of traffic volume on speeds. The

second data set is individual-level data on typical travel times between their home and work locations, at

all departure times during the day. This data will be used to understand the choice set faced by individual

commuters.

4.2 Study sample and survey data

Study participants were recruited in a random sample of gas stations in South Bangalore.16 Surveyors

approached private vehicle drivers (commuters) who were using a car, motorcycle or scooter, excluding taxis

and professional drivers, and invited them to participate in a study about understanding traffic congestion

in Bangalore. Respondents first answered a short eligibility filter,17 and if eligible the surveyor explained

in broad terms the study purpose, mentioning monetary rewards for participation and the possibility to

receive monetary incentives tied to changes in travel behavior. Respondents were invited to install the study

smartphone app and answer a very short survey on the spot. All respondents received a study kit including

a branded study flyer and consent form.18 The recruitment survey collected basic contact data, demographic

variables (age category, gender, self-reported income, occupation) as well as information on the vehicle (car,

motorcycle or scooter, brand and model, odometer reading).19

In the weeks after recruitment, we collected travel data from the participant smartphone app.20

5 Congestion Charge Policies Experimental Design

I designed and implemented two congestion charge policies that capture the main dimensions of traffic

congestion: time and location. The first policy, called “departure time” congestion charges, imposed a pay-

16Gas stations are ideal locations to meet commuters who regularly use their private vehicle. (During piloting our team
attempted household visits, which suffered from a very low probability of finding respondents at home.) In gas stations,
surveyors worked Monday–Saturday in one of two shifts, 8 am – 1 pm or 3 pm – 8 pm.

17A respondent was eligible if they reported being the owner or regular user of the private vehicle used on that day, traveling
with it or another private vehicle at least 20 Km in total per day, at least three days per week, owning a smartphone and not
planing to leave Bangalore for more than two weeks over the following two months. Smartphone usage is very high: 76% of
participants eligible based on other conditions owned a GPS Android smartphone (an additional 12% owned an iphone and
were not included).

18Out of 16,912 persons approached, 43% refused to be interviewed. A further 28% were ineligible. Out of eligible respondents,
27% or 2,300 accepted to install the app. This is calculated assuming the same fraction of ineligibles between those who answered
the initial filter and those who refused.

19A few variables were collected for all respondents, including refusals: age category, vehicle type, brand and model. I also
scraped vehicle prices from an online marketplace, and merged this data with the recruitment survey data for all respondents
who were approached.

20The study team monitored quality and contacted respondents in case data quality problems arose. Participants were also
offered an incentive worth Rs. 300 in phone recharge for providing one week of quality data.
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per-kilometer congestion rate that was higher during morning and evening peak hours. Peak hours are a

natural target for traffic policies, and congestion charge policies in Stockholm and Singapore have the same

feature of higher fees for peak-hour travel. The second policy, called “area” congestion charges, imposed a

flat fee for crossing or driving through a specific circular area. This is modeled after flat fee cordon pricing

policies (such as those in London and Milan), with an additional special focus on detour route decisions.21 In

addition to emulating common congestion pricing policies, the two policies were designed such that commuter

responses to these charges identify the key parameters of the travel demand model described in section 3.

The experimental sample was selected based on app data quality and a second eligibility check.22 Par-

ticipants were invited to meet with a surveyor to discuss the second part of the study (the experimental

phase). Overall, 497 or 22% of all app participants were enrolled in the experiment on a rolling basis.

After the meeting was scheduled and before it took place, participants were randomized into treatments;

all participants (including the control group) met in person with a surveyor at a location convenient for

the respondent. During the meeting, surveyors explained the treatment and (if applicable) how congestion

charges function. Participants were told that the purpose of the study is to understand how commuters in

Bangalore would react to the presence of charges, and the surveyors emphasized that there are no correct or

incorrect behaviors in response to congestion charges.

During the experiment, charges were deducted from a pre-paid virtual account that was set up for each

participant. The outstanding balance at the end of each week during the experiment was transferred to

the participant’s bank account. In addition to any charges due to their travel behavior, participants were

charged a flat fee for no or severely incomplete GPS data, and in case they did not make any trips on a

given weekday.23 A maximum daily total charge and minimum account balance of Rs. 250 also applied.

Account opening balances were chosen independently for each participant, based on a model that predicted

expected charges given baseline travel behavior and a hypothesis of responsiveness to treatment. (The target

final account balance was randomized to either Rs. 500 or Rs. 1,000 per week.) Charges were calculated

automatically and participants received daily account balance updates through SMS and app notifications.

In addition, weekly phone calls reminded participants about their treatment group details. Participants also

received support materials such as a laminated rate card with information about congestion charges (see

Appendix Figure A3). To establish trust, participants received a welcome bank transfer soon after the first

meeting, and/or an external smartphone battery (power bank) as a gift during the meeting. A study call

21The diameters of the congestion areas in London and Milan are 6.5 and 3.5 kilometers, respectively, whereas in this
experiment they range between 0.5 and 2 kilometers. Study participants never have a stable destination inside the congestion
area, and always have a detour route that takes at most 14 minutes more than their usual route.

22Commuters with less than 5km of travel per day, and those who actually lived or spent considerable amount of time outside
Bangalore, were dropped.

23The “no trip” fee was designed to dissuade incentive gaming by leaving one’s smartphone at home for the entire day.
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center was available if study participants had questions or complaints.

Experimenter demand effects are an important concern in this setting. Commuters in Bangalore generally

care deeply about traffic congestion, and study participants may be motivated to avoid congested times or

areas by a sense of civic duty. While these responses may in principle be real, it is also possible that they are

specific to this (short-term) experiment, where their participation was voluntary and compensated. I took

several steps to guard the experimental results against this possibility. First, during the meeting surveyors

were trained to present the options in a neutral light, and to emphasize at least twice that the study does

not have a preference over whether participants change or do not change their behavior. Importantly, the

experimental design includes a departure time “information” treatment, where participants received flat

payments as well as SMS and app notifications that concerned how they can change departure times to

avoid traffic. Finally, both types of congestion charges had sub-treatments with price variation, in principle

allowing the estimate price responsiveness controlling for overall responsiveness.24

Participants were added to the experiment on a rolling basis, and the allocation to treatments was pre-

randomized for each stratum. There were eight strata in the experiment, all combinations of participants

eligible or ineligible for the area charge, car or non-car (motorcycle or scooter) users, and participants with

high or low daily travel distance in the baseline period. The strata, sub-treatments for each of the departure

time and area treatments, and timing, is described in Appendix Tables A11 and A12. All departure time

and area sub-treatments were cross-randomized within each stratum, and the sub-treatments in each main

treatment were stratified in time, across blocks of 8 consecutive slots.

5.1 Congestion Charges

Departure Time Pay-per-Km Congestion Charge

Participants in this treatment were charged for each trip based on a per-km rate and the length of their trip.

The rate was positive during a 3-hour interval during the morning and a 3-hour interval during the evening.

Each charged interval had the same structure: a one hour increasing “shoulder” ramp when the rate grew

linearly from zero to the peak rate, one hour of peak rate, and a one hour decreasing “shoulder” ramp when

the rate fell linearly to 0. Appendix Figure A3 shows an example rate card (given to study participants)

that illustrates the charges for the morning interval.25

24In addition, as argued in section 3, we are mainly interested in relative preferences over time spent driving and schedule
costs, and these measures are more robust to experimenter effects than the absolute values, as there is no obvious reason for
these effects to disproportionally affect one treatment over the other.

25The start time of the charged interval differed by at most ±30 minutes between commuters, and was designed to maximize
the overlap between the shoulder periods and typical departure times for that commuter based on baseline data. This procedure
was implemented for all commuters before randomizing them between the treatment groups.
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Four sub-treatments were designed to separate the impact of prices from other features of the intervention.

The sub-treatments were: control, information, low rate, and high rate (see Appendix Table A11). Partic-

ipants in the control group were monitored for 5 weeks, received regular updates about their data quality,

and received a flat Rs. 300 payment per week for participation. I included an information group in order to

measure the bundle of experimenter demand, information and reminder provision, and other non-price fea-

tures. Participants in the information group received daily messages about the trips they had completed the

previous day, together with advice about quicker travel times outside the morning and evening peak hours.

They also participated for 5 weeks. The low and high rate groups had a maximum (peak) congestion rate

of Rs. 12/Km and Rs. 24/Km, respectively. These participants received this treatment for three consecutive

weeks out of four in total, either the first three or the last three. (During the remaining week, they received

the information group treatment.) Before the start of the congestion charge phase, participants underwent

a three-day trial phase where they received congestion charge messages to understand how charging works.

In total, low rate and high rate participants also were in the experiment for approximately 5 weeks.

Area Congestion Charge

Participants in this treatment were charged for driving through a congestion area that was chosen individually

for each participant. The area was a disc with radius 250m, 500m or 1000m positioned along a route used

frequently by the participant during the pre- period. The area induced an alternate non-intersecting detour

route, which was between 3 and 14 minutes longer than the original route. If no area charge with this

property was found, the participant was ineligible for the area congestion charge. (Roughly half of the

experiment participants were are eligible.) The charge was in effect between 7 am and 9 pm, and applied

at most once for the morning interval (7 am – 2 pm) and at most once for the evening interval (2 pm – 9

pm). The area congestion charge was implemented for one week (five weekdays). The area location, radius,

boundaries, and induced detour were emphasized by the surveyor during the meeting before the experiment,

and this information was repeated in each daily reminder SMS sent to study participants.26

The area treatment did not include a pure control group, due to the smaller size of participant pool.

However, participants were randomized between being treated early (in the first week after the meeting) or

late (in the last or forth week of the study), which is the basis for the experimental comparison.

The area sub-treatments were designed to identify the effect of price and detour time variation on choices.

On two randomly chosen days, the congestion charge was 50% higher. The following sub-treatments were

cross-randomized (see Appendix Table A11). Low rate participants were charged a baseline charge of Rs. 80

26The area location did not specifically target congested areas. Surveyor were instructed to not convey this idea to the
participant during the in-person meeting, and if they were asked to reply that the area was selected by an algorithm.
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(and Rs. 120 on the two days per week when the charge was higher), while High Rate participants were

charged Rs. 160 (and Rs. 240 respectively). Long detour participants had an area location and radius that

induced a predicted detour between 7 and 14 minutes above the usual route, if such an area existed. Short

detour participants had an area that induced a predicted detour between 3 and 7 minutes above the usual

route, if such an area existed.

5.2 Reduced-Form Responses to Congestion Charges

Reduced-Form Specification

The congestion charges described above may affect the number as well as the temporal and spatial distribution

of trips. In order to capture unconditional effects, I first aggregate outcomes at the day level and run the

following difference-in-difference specification:

yit = δIT Ii + δLTLi + δHTHi + γIT Ii × Postt + γLTLi × Postt + γHTHi × Postt + µt + αi + εit, (3)

where yit is an outcome of interest for commuter i on day t, such as the number of trips that day, Postt

is a dummy for the period of the experiment, T Ii , TLi and THi are dummies for the information, low rate and

high rate departure time sub-treatments, and αi is a commuter fixed effect, µt is a study cycle fixed effect

whose categories are the period before the experiment, and each week in the experiment. The coefficients

of interest, γI , γL and γH , respectively measure the impact of information, low congestion rates and high

rates relative to control, during the experiment relative to the period before.

The sample is all non-holiday weekdays when the respondent does not travel outside Bangalore. During

the experiment, I include the three weeks when charges are in effect; in the control and information groups

I also keep three weeks to make the timing in each sub-treatment comparable. Where necessary for the

construction of the yit variable, the sample is restricted to days with “good quality” GPS data, as defined

above. Standard errors are clustered at the commuter level. For trip level outcomes, I use the same

specification with outcome yjit corresponding to trip j of commuter i on day t.

For the Area treatment, there is no pure control group. Instead, the empirical strategy is based on

comparing commuters randomly assigned to be treated early or late. Specifically, in the first week I compare

commuters treated early (treated group) to those treated late (control group). In the fourth week, these

roles are reversed. The period before the experiment and the second and third week during the experiment

are included to gain precision when estimating individual fixed effects. Specifically, define Treatedit =

(1− TLatei )× 1(t ∈ W1) + TLatei × 1(t ∈ W4) where TLatei is an indicator for being treated late, and Ws is
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an indicator for week s. I run the following specification:

yit = γA · Treatedit + µt + αi + εit (4)

The coefficient of interest is γA, which measures how the outcome yit differs as a result of being exposed

to area congestion charges, relative to similar commuters who are not treated that week.

Experimental Integrity Checks

Table A2 reports the experimental balance check. The different treatment groups are similar along demo-

graphic and pre- period travel behavior variables. All coefficients are small, and join significance tests cannot

reject the null of no effect.

Given that smartphone app data was used to implement the congestion charges, it is especially important

to ensure that treated participants did not differentially tamper with their smartphones by switching the

phone or the GPS sensor off during certain trips or on certain days. During the experiment, participants

provided good quality GPS data on approximately 75% of weekdays. Appendix Table A1 shows that the

departure time and area sub-treatments did not have any detectable differential impact on GPS data quality.

This suggests that missing GPS data was mostly due to technical and human factors unrelated to gaming

incentives.27

The Impact of Departure Time Pay-per-Km Charges

Commuters may respond to charges by canceling trips with departure times during the charged period, as

well as by rescheduling these trips to departure times with lower charges. Figure 2 shows the causal impact

of congestion charges on the distribution of trip departure times, for the morning and evening charges. It

plots a locally linear difference-in-difference by departure bin. To construct Figure 2, for each commuter,

day and departure time relative to the midpoint of the congestion charge for the commuter,28 I compute the

number of trips that start around that time, using an Epanechnikov kernel. Then, for each departure time

I run a regression similar to (3) except that I compare the low rate and high rate charge groups (identified

by TLHi ) to the control and information groups combined. Figure 2 plots the coefficients on TLHi ×Postt as

well as pointwise 95% confidence intervals.

Commuters substitute away from departure times with high charges towards departure times with lower

charges. In the morning (panel A) there is strong substitution within the early ramp interval, when the

27The experiment was generally successful in terms of retaining study participants: around 5% of participants dropped out
right after the meeting, and this figure rose to 10% on the last day of the study. Drop outs are 2 percentage point more frequent
in the treatment group, yet this difference is not statistically significant (p-value 0.20).

28Recall that the congestion charge has the same shape for everyone, but its location varies by commuter, including for those
in the information and control groups.
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charge is linearly increasing. In this interval, there is a marginal incentive to advance one’s departure time.

The results suggest that study participants understood this feature and decided to leave earlier and take

advantage of lower charges. There is suggestive evidence of an increase in the number of trips starting right

after the end of the charged period; note that the exact position of this increase does not map cleanly to the

predicted response given incentives, in the way that the early AM change does.

The results for the evening period are broadly mirrored, namely commuters substitute towards later

departure times on the decreasing ramp of the congestion charge profile. However, the results are slightly

weaker and less precise. In sum, Figure 2 shows that commuters responded to charges by advancing their

departure times in the morning when this leads to lower charges, and delaying their departure times in the

evening.

Table 2 shows results on daily outcomes. Panel A of Table 2 shows impacts on trip shadow rates. This

outcome is computed in the same way for every trip in the data given its departure time and the commuter’s

own congestion charge rate profile (which is defined for everyone irrespective of treatment group) and using

a normalized peak rate of 100. The rates are then summed over all trips in the day. This outcome is a

summary statistic for whether the commuter changed their travel behavior to avoid charges, and includes

intensive and extensive margin responses. The results show that the High Rate sub-treatment leads to a

decrease of around 14 from a base of 97 in the control group. The Low Rate treatment also appears to

lead to a decrease in rates, of roughly half the size of that of the High Rate group, yet these results are not

significant. The information group does not seem to have any effect on charges. In panel B, the outcome is

the total number of trips in the first column, and the total number of trips during the morning and evening

in the other columns. The point estimates are negative, small, and far from statistical significance.

Running the same specification at the trip level leads to similar results. Daily charges are mechanically

related to the number of trips per day that occur in the charged interval. Even in the absence of a treatment

effect on the number of trips, chance variation in the number of trips per day between treatment groups

reduces the precision of the estimates in panel A. Table 3 explores the impact of charges at the trip level

instead of daily level. Panel A covers the entire sample of commuters and trips, panel B covers only regular

commuters and trips between home and work or vice-versa, and panel C covers all trips belonging to the

approximately 25% variable commuters. In addition to full day results in column (1) and results in the

morning and evening in columns (2) and (4), the table also reports results restricted to the early morning

interval (all departure times before the midpoint of the peak of the rate profile) in column (3), and restricted

to the late evening interval in column (5).

Trips in the High Rate have on average lower rates by around 13 − 15% relative to the control group

(panel A), with a larger and precisely estimated effect in the morning. The coefficients for the Low Rate
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treatment are also negative, of roughly half the size, yet not statistically significant. The effects are more

precisely estimated for regular commuters in panel B. In particular, the coefficients for early morning and

late evening are negative and larger than for the entire day period, as suggested in Figure 2. In panel C

there is no evidence that congestion charges changed the distribution of trip departure times for variable

commuters. In the entire table, no discernible pattern emerges for the information group, suggesting that

information alone did not shift travel behavior.

In Appendix Figure A1 panel A, I investigate the heterogeneity in individual responses to the departure

time treatments. Pooling together the Low Rate and High Rate (as in Figure 2), the figure shows that

treatment group respondents have a bi-modal distribution in the within-person change in shadow trip rates.

This suggests that a certain group of commuters decided to change their behavior to take advantage of lower

charges, while others did not make any changes.

The Impact of Area Charges

Following the discussion of the model in section 3, we are interested in the impact of Area charges on the

choice probability of alternate routes that avoid the congestion area. Tables 4 and 5 report the results at

the day and trip level, respectively.

Panel A of Table 4 reports the impact on total shadow charges due to crossings of the congestion area.

These are calculated for every trip in the sample, and the charge for a crossing is normalized to 100. The

results show a large, precisely estimated decrease in the probability to cross the congestion area. The decrease

is around 23% of the control mean, significant at the 1% level. The impact is similar in the morning and

evening intervals, and roughly similar for participants treated in the first or the last week (columns 4-6).

Panel B shows the impact of being treated on the number of trips in the day. Being treated results in

around 6− 10% more trips per day, with the effect concentrated in the morning and for participants treated

in the last week. The increase in number of trips seems related to a small increase in data quality in the

treatment group (both effects are concentrated in the 4th week). Note that a larger number of trips will tend

to mechanically increase the coefficient on shadow rates, so the treatment impact may in reality be slightly

more negative than the result in column (1).

Table 5 investigates whether the area charge induced commuters to take a longer detour, and the choice

probability of alternate routes that avoid the congestion area. The table shows results at the trip level and

restricts the sample to regular commuters and trips from home to work or vice-versa.29 Panel A reports

the impact on whether the trip intersects the congestion area, and shows a large reduction of 23 percentage

2993% of Area treatment participants are regular commuters.
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points on a base of 83%, or equivalently a 29% reduction in area crossings. The effect is very precisely

estimated, and of similar magnitude in the morning and evening intervals.

Panel B uses trip duration as outcome variable and reports the experimental effect of being treated on

trip duration. The point estimates are positive on average, yet small and not significant. This result is likely

due to lack of power to detect a reduced-form effect on trip duration. Indeed, multiplying the treatment

effect in panel A by the average difference in duration (4 minutes) we find an average increase of 1.45 minutes

for Treated respondent. The point estimates are most often smaller, but we cannot reject this value either.

One concern would be that study participants identified alternate routes that avoided the congestion

area that are quicker than what I estimated using Google Maps. To explore this hypothesis, Appendix Table

A5 shows the non-experimental correlation between trip duration and whether a trip is charged, including

commuter-level, directed route fixed effects. Charged trips are significantly shorter, by about 5 minutes.

Moreover, this effect is significantly larger for respondents in the Long Detour Area sub-treatment (column

2), and the extra duration for avoiding trips closely tracks the Google Maps predicted detour of the quickest

non-intersecting alternative (column 3). These results show that the Google Maps data accurately predicts

the extra time detour incurred in real trips that avoid the congestion area.

Randomly varying the crossing charge and the detour length does not affect the response to the area

treatment. Indeed, Table 6 shows that neither doubling the congestion charge (randomized across partici-

pants), nor having a 50% higher charge on a random day (randomized within participant), has any significant

effect on shadow charges (columns 2 and 3). The last column shows that participants randomly assigned to

a short detour ranging between 3 and 7 minutes (as opposed to the long detour, between 7 and 14 minutes)

do not reduce their shadow charges more. These results are consistent with high levels of heterogeneity in

the population, whereby some participants are easy to sway to change their routes (low values of time), while

the others are much more difficult to convince (high values of time).

Individual level response heterogeneity is consistent with this story (Appendix Figure A1 panel B). For

each area participant, I count the fraction of days crossing the congestion area, separately when treated

and when in the control group. The distribution in the control group is concentrated near 1, as most

commuters select the shortest route in the absence of charges (solid, gray bars). In the presence of charges,

the distribution becomes bi-modal, with around 20 per cent of the population in the lowest bin, implying

that some participants stopped crossing the congestion area at all (outline, red bars).

On the other hand, results on observable sources of heterogeneity are somewhat imprecise (Appendix

Table A6). Regular commuters and self-employed commuters appear to respond more to the departure

time treatment (columns 1 and 2, panel A), although these differences are not quite statistically significant.

Surprisingly, commuters with more expensive vehicles seem to respond more to the departure time treatment,
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and there is also evidence that they reduce their number of trips (column 4, panels A and B). There is also

suggestive evidence that older respondents respond more to both treatments (column 5). There is no evidence

that stated preferences predict responses in the experiment (columns 6 and 7).

In summary, departure time pay-per-km charges caused commuters to change their departure times

towards departure times with lower charges, especially towards earlier departures in the morning and later

departures in the evening. This means that commuters have some flexibility to move trips away from typical

work hours in order to save money. These results are driven by a subset of commuters who responds more

strongly. Responses in the low rate sub-treatment are roughly half of those in the high rate sub-treatment,

although imprecisely estimated, and I do not find any impact of the information and nudges treatment.

Area congestion charges lead to a precisely estimated shift to routes that avoid the congestion area.

Participants intersect the congestion area around 20% fewer times when “area” charges are in effect. Doubling

the congestion charge or shortening the implied detour experimentally do not affect this fraction. (Routes

that do not intersect the congestion area are on average 5 minutes longer.) Consequently, the naive implied

value of time for the marginal participant lies between Rs. 1,152 and Rs. 2,304 per hour, both of which are

large. These findings are consistent with considerable preference heterogeneity.

However, in order to better quantify these results – especially in terms of interpreting and comparing

the responses to the two treatments – I will next estimate a structural model where agents choose departure

times and routes.

6 Structural Travel Demand Estimation

I now estimate the key parameters in a model of travel demand over routes and departure times, using ex-

perimental variation from the congestion charge treatments. This procedure will provide monetary measures

of individual preferences over schedule inflexibility and mean driving time.

I first augment the model set up in section 3 with route choice, commuter heterogeneity and random

utility shocks, and derive the choice probabilities. I then describe the Google Maps data used to construct

individual-level choice sets, discuss the experimental moments, and finally I present discuss the results and

robustness exercises.

Nested Logit Model over Routes and Departure Times

To make the model of the morning home to work commute introduced in section 3 easier to fit to real data,

I add route choice, commuter heterogeneity and random utility shocks. On day t, a commuter i chooses a

route type j ∈ {0, 1}, where j = 0 represents any route from home to work that intersects the congestion

23



area, and departure time hD, chosen from a discrete grid of departure times HD. Utility is given by:

Uit (hD, j, h∗
Ait) =− αETi (j, hD)− βE E |hD + Ti (j, hD)− h∗

Ait|− − βL E |hD + Ti (j, hD)− h∗
Ait|+

−mDT
it (hD)−mA

it (j) + εit (j, hD) , (5)

where h∗
Ait is the ideal arrival time on day t, Ti (j, hD) is the (random) driving time on route j, mDT

it (hD)

represents the departure time congestion charge that may apply to the current trip, mA
it (j) is the area

congestion charge for route j, and εit (j, hD) is a random utility shock for route j and departure time hD on

day t.30 Both h∗
Ait and εit (j, hD) are drawn i.i.d. each day. Expectations are with respect to the random

driving time Ti. The key preference parameters of interest are α, βE and βL, respectively the value of

mean travel time, and the schedule costs of arriving early and late. Commuter heterogeneity is captured by

different distributions of ideal arrival times h∗
Ait and different driving time profiles Ti.

In order to allow different patterns of substitution between departure times and between routes, I assume

that the random utility shocks εit (j, hD) follow an extreme value distribution with correlation within each

route. This leads to a nested logit structure over routes and departure times. The two route choices constitute

the upper nest, while the choice over departure times is the within-nest component.31,32

The distribution of the random utility shocks depends on two parameters, σ and µ, which will be esti-

mated from the data.33 The probability to choose a given departure time and route can be decomposed as

Pr (j, hD | h∗
Ait) = Pr (hD | j, h∗

Ait) Pr (j | h∗
Ait). Denote by Vit (hD, j, h∗

Ait) the constant part of utility in

(5) (without the utility shock εit (j, hD)), then the departure time choice conditional on route is

Pr (hD | j, h∗
Ait) =

exp
(

1
σi
Vit (hD, j, h∗

Ai)
)

∑
h exp

(
1
σi
Vit (h, j, h∗

Ai)
) (6)

Costs scale approximately linearly with route length, so I normalize the logit parameter for commuter

i by i’s route length, namely σi = KMi

KM
σ where KM is the sample average of KMi. This means that

all commuters have similar probabilities to choose non-optimal departure times, instead of commuters who

30When calculating departure time congestion charges, I ignore the trip distance dependence on route j. In the experiment,
the area and departure time treatments never apply at the same time; trip distance still matters, by making route j = 1
relatively less attractive when departure time charges are in effect. However, this effect is of secondary importance.

31The assumption of independent utility shocks at several minute intervals along the departure time grid may not seem
particularly attractive. However, the resulting choice probabilities have a familiar form. To see this, assume that utility is
quadratic – which always holds as an approximation around the optimum h∗D – then as the grid becomes finer the multinomial
logit model becomes equivalent to choosing the optimum h∗D plus a random noise term, with the standard deviation of the noise
term related to the inverse curvature of the utility function at the optimum.

32It is possible to set up more detailed models over departure times and routes. For example, transportation researchers have
developed route choice models that are considerably more sophisticated than the one used here (Ben-Akiva M., 2003). However,
this model serves the primary purpose of understanding the margin of route choice highlighted in the experiment, namely the
trade-off between taking a longer route and paying a higher congestion charge.

33The normalization used here is that utility is expressed in Rupees.
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travel far having more precise choices, as would be implied by a constant σi = σ.

The route choice probability is given by

Pr (j | h∗
Ait) =

exp
(

1
µVit (j)

)
exp

(
1
µVit (0)

)
+ exp

(
1
µVit (1)

) (7)

where Vit (j) = σi log
(∑

h exp
(

1
σi
Vit (h, j, h∗

Ait)
))

is the expected utility assuming i chooses route j,

called the “logsum” term for route j. The parameters σ and µ measure the importance of utility shocks for

departure time choice and route choice, respectively. Higher values correspond to more importance given

to utility shocks (less precise choices).34 Overall choice probabilities are obtained by integrating over the

(individual-specific) distribution of ideal arrival times h∗
Ait.

To capture the stark heterogeneity documented in the reduced form experimental results, I assume that

each participant responds to experimental congestion charges with some probability p, while with probability

1− p they behave as if there were no charges. This assumption has two possible interpretations: either this

behavior reflects real preferences, that is, a fraction 1−p of the population is infra-marginal to the incentives

offered in the experiment, or for other reasons these participants decided to ignore the experiment, in which

case we do not know their true preferences.35

To summarize, agents choose routes and departure times according to nested logit, and they ignore mon-

etary charges with some probability. The full vector of parameters to be estimated is θ = (α, βE , βL, σ, µ, p)

as well as the individual specific distributions of ideal arrival times h∗
Ait.

Data Sources and Model Simulation

In addition to behavior data collected using the smartphone as part of the experiment, fitting this model

requires knowledge of the counterfactual distribution of driving times. For average driving times ETi (0, hD)

and the short route length KMi, for each person I collected Google Maps predicted driving times on their

home to work route at all departure times throughout the day. To calibrate the distribution of driving times

conditional on route and departure time, I use live Google Maps data collected on a set of 178 routes across

Bangalore. Conditional on route and departure time, driving time is approximately log-linearly distributed

across the 146 weekdays in the data, with the standard deviation well explained by a quadratic in the average

driving time (Appendix Figures A5 and A6). Thus, for each commuter and departure time, I assume that

34Commuters not in the area treatment only choose departure time, according to multinomial logit (there is no route choice).
Their choice probabilities are given by Pr

(
hD | h∗Ait

)
∝ exp

(
1
σi
Vit
(
hD, h

∗
Ait

))
.

35A more traditional way to capture preference heterogeneity is by assuming random coefficients, that is that parameters α,
βE and βL vary at the individual level according to some distribution (such as log normal). In this setting, estimating models
with random coefficients fails to fully capture the heterogeneity documented in section 5.2 and Appendix Figure A1.
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driving time follows such a distribution given the measured Google Maps average driving time. I calibrate

driving times on the alternate route (j = 1) as an individual-specific constant multiple of driving times on

the shortest route (j = 1).36 I assume that the relevant variation in commuter beliefs is captured by the

Google Maps travel time. In particular, if commuters systematically over- or under-estimate travel time

differences, then the structural estimates from these procedure should be adjusted based on those beliefs.

The estimation sample covers the morning interval, covers all trips between home and work, and restricts

to 308 regular commuters with at least two observed trips between home and work in the morning interval

during the experiment.

To compute choice probabilities, I use formulas (6) and (7) given individual preference parameters α,

βE , βL, the nested logit parameters σ and µ, the ideal arrival time h∗
Ait, and the travel time distributions

for each route and departure time, denoted τi ≡ (Ti (j, hD))j,hD
. During estimation, I assume candidate

values for the first five preference parameters, while the travel times are taken from the Google Maps data

together with the log-normal distribution assumption. The remaining difficulty is that the distribution of

h∗
Ait is neither observed nor known a priori. To overcome this, I use the observed distribution of departure

times in the pre period (before the experiment) to obtain the distribution of ideal arrival times conditional

on other parameters. I then use this distribution for h∗
Ait to compute choice probabilities both before and

during the experiment.37 During the experiment, the terms mDT
it (hD) and mA

it (j) are either zero or the

congestion charges experienced by commuter i in that period, denoted by MDT
it and MA

it .

GMM Estimation and Moment Choice

To estimate the model parameters, I use the generalized method of moments (GMM).38 I use four sets

of moments: (1) difference in difference changes in departure time “market shares,” (2) the variance of

individual-level changes in shadow charges in the departure time treatment and control groups, (3) route

choice “market shares” when treated and not treated with area charges, and (4) the 3-bin histograms for

36For area treatment participants, before the experiment, I obtained from Google Maps the driving time for the quickest
route that does not intersect the congestion area, for a departure time of 9 am for all participants. I assume that the driving
times on the detour route (j = 1) are a constant multiple of the driving times on the main (intersecting) route, namely
Ti (1, hD) = λiTi (0, hD). The constant λi is chosen to match the alternate route travel time at 9 am for person i, as queried
before the experiment.

37Specifically, I first fit a normal distribution on departure times during the pre period. This is done before estimation,
and confidence intervals in Table 7 do not take into account that the departure time distributions are themselves estimated.
Then, for given parameter values, I find the distribution of ideal arrival times that, under optimal behavior, would give rise to
the normal fit on departure times. This inversion is computationally expensive to do precisely. Instead, I make the following
approximations: (1) for each ideal arrival time h∗Ait the optimal departure time is normally distributed around the utility
maximizing departure time, with the standard deviation given by the curvature of the utility around the optimum (see footnote
(31)), and (2) I assume that the standard deviation is constant for all h∗Ait which allows me to obtain the distribution of optimal
departure times by shrinking the distribution of departure times. I then invert the optimal departure time relationship to obtain
the distribution of ideal arrival times.

38Nested logit has a closed form likelihood function, recommending maximum likelihood on efficiency grounds. Nevertheless,
with GMM it is possible to choose moments such that parameters are essentially identified from experimental variation.
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individual sample frequency of choosing the short route when treated and not treated with area charges.

The first 61 moments match the difference in difference in departure time market shares, between the

departure time treatment and control groups, during the experiment relative to before. Formally, for each

5-minute departure time bin hk between −2.5 and 2.5 hours relative to the rate profile peak, and for each

participant i, I compute the probability that i leaves during hk, conditional on a trip being made. In

the model, for a day t, let PDTitk

(
θ, τi,m

DT
it

)
= Pr

(
hi
(
θ, τi,m

DT
it

)
∈ hk

)
where the random departure time

(relative to i’s peak) hi depends on preference parameters, the travel time profile τi and charges mDT
it . In

the data, define P̃DTik (pre) and P̃DTik (post) the fractions of trips starting in bin hk for individual i in pre-

and post- periods, respectively. Recall that MDT
it denotes the charges assigned to i in the experiment, and

for convenience make the dependence on θ and τi implicit. For k ∈ {1, . . . , 61}, the k-th moment is:

gki (θ) =
((
P̃DTik (post)− P̃DTik (pre)

)
· TLHi −

(
P̃DTik (post)− P̃DTik (pre)

)
·
(
1− TLHi

))
− p ·

((
PDTitk

(
MDT
it

)
− PDTitk (0)

)
· TLHi −

(
PDTitk

(
MDT
it

)
− PDTitk (0)

)
·
(
1− TLHi

))
where TLHi is an indicator for being in any of the departure time treatment groups (low or high rate),

t is a day during the experiment, and the heterogeneity parameter p enters by attenuating the model term.

Intuitively, for given p these moments help identify the schedule costs βE and βL, as well as the logit

parameter σ. The magnitude of responses on the early and late ramps of the congestion rate profile identify

the first two parameters, while the precision of these responses helps identify σ.

The departure time heterogeneity moments target the variance of the individual-level change in shadow

charges for trips in the early morning, between the pre and post periods. For these moments, it is important

to take sampling variation into account when simulating the model, so denote Npre
i and Npost

i the number

of days in the pre and post periods for i. Assume hit for t =
{

1, . . . , Npre
i +Npost

i

}
are independent random

variables, the first Npre
i distributed according to hi (θ, τi, 0), and the rest according to hi

(
θ, τi,M

DT
it

)
, in

both cases conditional on departure times in the two hours before the rate profile peak, namely hi ∈ [−2, 0].

Define ch (h) to the be the shadow charge of departure time h, and the random individual effect as

chDTi = 1
Npost
i

Npre
i

+Npost
i∑

t=Npre
i

+1

ch (hit)−
1

Npre
i

Npre
i∑
t=1

ch (hit)

Denote the individual effect in the data by c̃hDTi . The two departure time heterogeneity moments match
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the variance of chDTi in the treatment and control groups. The expressions for full response (p = 1) are:39

g62
i =

(
var

(
chDTi

)
− v̂ar

(
c̃h
DT

i

))
· TDTi

g63
i =

(
var

(
chDTi

)
− v̂ar

(
c̃h
DT

i

))
·
(
1− TDTi

)
The first moment helps identify the probability p that a study participant responds to the treatment.

Indeed, given other parameter values, p affects the variance of the individual effect, by splitting the sample

between participants who respond and those who do not respond. The second moment helps ensure that

the model is able to replicate the sampling variation in individual effects.

The next two moments match route choice market shares, namely the probability to intersect the con-

gestion area when treated and when not treated for commuters in the area congestion charge treatment.

Formally, define PAi
(
θ, τi,m

A
it

)
= Pr

(
j
(
θ, τi,m

A
it

)
= 0
)
the probability to take the short route (intersect the

congestion area), where the random route choice j depends on preference parameters, the travel time profile

τi and charges mA
it. In the data, define P̃Ai (treat) and P̃Ai (control) the fraction of days (mornings) when

the commuter intersects the congestion area, when treated and when not treated, respectively. Recall that

MA
it denotes the area charge assigned to i in the experiment, and for convenience make the dependence on

θ and τi implicit. The area moments are:

g64
i (θ) =

(
p · PAi

(
MA
it

)
− (1− p) · PAi (0)− P̃Ai (treat)

)
· TAi

g65
i (θ) =

(
PAi (0)− P̃Ai (control)

)
· TAi

where TAi is an indicator for being in the area treatment. Without area charges, a commuter will only

choose the detour route (j = 1) due to large utility shocks that offsets the driving time penalty. For a given

value of time α, this helps identify the outer nest logit parameter µ. With area charges, there is an additional

monetary benefit to choosing the detour, and for given p these moments together help identify α.

The area heterogeneity moments target the distribution of individual-level sample frequency of inter-

secting the area. Once again, it is important to take sampling variation into account, so define N treat
i

and N control
i the number of days when i is treated and not treated, respectively. Assume jit for t ={

1, ..., N control
i +N treat

i

}
are independent random variables, the first N control

i distributed according to

j (θ, τi, 0), and the rest according to j
(
θ, τi,M

A
i

)
. Define the (random) sample average of intersecting

39Note that chDTi is random for a given commuter i, and its distribution also differs between commuters. We are interested
in the overall variance, both between commuters and within commuter, as this is what we see in the data. Hence, I use the

following shorthand notation: var
(
chDTi

)
≡ E

(
chDTi − E 1

N

∑N

j=1 ch
DT
j

)2
and v̂ar

(
c̃h
DT
i

)
≡
(
c̃h
DT
i − 1

N

∑N

j=1 c̃h
DT
j

)2
.
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the area in control and treatment as

chA,controli = 1
N control
i

Ncontrol
i∑
t=1

jit and chA,treati = 1
N treat
i

Ncontrol
i +Ntreat

i∑
t=Ncontrol

i
+1

jit

In the data, denote the corresponding quantities by c̃hA,controli and c̃hA,treati , respectively. We are inter-

ested in the distribution of these variables. The four area heterogeneity moments match the probability that

these variables are the middle or top third of the unit interval (the moment for the bottom third is omitted

because it is colinear with the others), when treated and not treated. The expressions for full response

(p = 1) are:

g66
i =

(
Pr
(
chA,treati ∈ [1/3, 2/3)

)
− 1

(
c̃h
A,treat

i ∈ [1/3, 2/3)
))
· TAi

g67
i =

(
Pr
(
chA,treati ∈ [2/3, 1]

)
− 1

(
c̃h
A,treat

i ∈ [2/3, 1]
))
· TAi

g68
i =

(
Pr
(
chA,controli ∈ [1/3, 2/3)

)
− 1

(
c̃h
A,control

i ∈ [1/3, 2/3)
))
· TAi

g69
i =

(
Pr
(
chA,controli ∈ [2/3, 1]

)
− 1

(
c̃h
A,control

i ∈ [2/3, 1]
))
· TAi

Intuitively, the first set of moments will help identify the probability p that a study participant responds

to the treatment, by matching the empirical histogram in the treated group with an average between the

model treated and the model control histograms.

6.1 Structural Estimation Results

Table 7 shows the estimation results from two-step GMM, using 100 random parameter starting values to

ensure convergence to the global minimum of the objective function.

Commuters value time spent driving at Rs. 1,122, and the estimated schedule cost of arriving earlier

than ideal is Rs. 320. Commuters are thus relatively schedule flexible to leave earlier in the morning. To

put these values in context, a commuter with these preferences would be indifferent between leaving one

hour earlier if the driving time from leaving early was 15 minutes lower (this back of the envelope example

ignores uncertainty). In particular, this means that commuters have some ability to “self-insure” against

congestion, in the sense that commuters will tend to change departure times in response to a localized

increase in congestion, which will reduce the welfare impact of the shock. It is important to note that the

estimated value of time is significantly larger than the average self-reported monthly income of Rs. 270 per

hour (Rs. 39,000 per month).40

40It is possible that this estimate of α also includes a fixed cost of switching routes. The field experiment was designed to
separate the fixed cost of route change and marginal costs of travel time, through the low and high rate sub-treatments in the
area treatment. Given that I do not find any reduced form effect of increasing the area congestion charge, I model the route
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The late arrival cost βL cannot be estimated precisely from the data. The underlying reason is that in

Figure 2 there is no reduced form impact on late departures. This tells us that βL is large; however, it is

not clear how large. For the estimation in Table 7, this parameter is fixed at βL = Rs. 4, 000. Appendix

Figure A8 (Panel A) shows that the GMM objective function is mostly flat above this value. In Appendix

Table A7, I show that using βL = Rs. 1, 000 or βL = Rs. 8, 000 instead has no detectable effect on the other

estimated parameters. This inflexibility of leaving later is consistent with work requirements acting as a firm

constraint.

Around half of all study participants responded to congestion charges (p̂ = 0.46). Intuitively, this value

maximizes the variance of individual responses, emphasizing the stark response heterogeneity in the data.

Both logit parameters are estimated to be approximately Rs. 37, indicating a small or moderate amount

of noise in choices. The fact that these terms are equal means that I cannot reject the multinomial logit

model over the entire decision space. The inner nest logit parameter σ, corresponding to departure time

choice, is estimated with significantly more noise than the outer nest parameter µ, which corresponds to

route choice. This is related to commuter heterogeneity in terms of ideal arrival time. In principle, both a

wide distribution of h∗
Ait and a large σ will imply a wide observed distribution of departure times. The logit

parameter is separately identified from the shape of the experimental response to departure time congestion

charges. As σ becomes smaller, the impact concentrates around the kinks of the congestion ramp. In practice,

and with the available data, I can only estimate σ somewhat imprecisely.

Appendix Figure A7 shows the model fit graphically by plotting the data and model prediction for the

moments used in estimation. The model generally fits the data well, and in particular it does a good job of

replicating the variance in individual effects for departure times and in route choices (panels B, C, and E).

I use two empirical methods to shed light on how model parameters are identified. The first is to show

numerically that the estimation procedure can recover the parameters using simulated data for various sets of

random parameter. Appendix Table A8 shows that estimated parameters track the true parameters closely.

The estimated slope between the underlying parameter and the GMM estimate is close to 1, and the R2 is

very high, in all cases except for the inner nest (departure time) logit parameter σ, for which the slope is

above 1 and statistically significantly different from zero, yet noisier.

The second exercise is to compute the sensitivity measure from Andrews et al. (2017). The (scaled)

sensitivity matrix Λ captures how estimated parameters depend on the different moments of the data.

Specifically, each entry Λγk measures the impact of a standard deviation increase in moment gk, 1 ≤ k ≤ 69,

on estimated parameter γ ∈ {α, βE , βL, σ, µ, p}. The results generally confirm the intuitions described earlier,

choice decision in this parsimonious way.
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while also emphasizing that parameters are jointly estimated, with contributions from several moments. As

expected, the early schedule cost βE depends most strongly on departure time moments in the early ramp

part of the departure time problem (departure times between −1.5 and −0.5 in Appendix Figure A8, Panel

B). However, the area moments also have important contributions (column 2 in Appendix Table A9). As

expected, the value of time driving α is most strongly identified by the area moments (column 1 in Appendix

Table A9). The probability to respond, p, is affected more strongly by the area moments than by the

departure time heterogeneity moments (column 5 in Appendix Table A9).

Overall, the structural model offers a good fit to how commuters responded to the congestion charge

experiments. The results indicate that commuters are fairly flexible to change their schedules by leaving

earlier locally around their ideal departure time, relative to how much they value time spent driving. However,

in order to quantify the externalities involved in peak-hour traffic congestion, and the welfare impacts of

congestion mitigating policies, it is also necessary to know how traffic responds to aggregate changes in

driving patterns.

7 The Road Traffic Congestion Technology

Each additional vehicle on the road leads to slower road speeds. I now quantify this external cost using all

the GPS trip data collected during the study, and real-time Google Maps driving time data collected during

the same period on a set of routes in Bangalore.41

The traditional approach to studying this relationship in transportation engineering has been to analyze

road or highway segments in developed countries. Empirical estimates vary considerably, in part due to

the variation in the specific roads considered.42 From an economic perspective, we are interested in full

trips, not only road segments or small areas. Indeed, commuters make decisions over trips, and trips cover

large areas and different types of roads. There are few empirical studies that measure travel time costs and

external costs at the trip level. Geroliminis and Daganzo (2008) use GPS taxi trip data from 140 taxis for

one month in Yokohama, Japan, and show that average trip speed declines strongly at times of the day when

many trips are taking place. Akbar and Duranton (2017) measure road traffic volume from around 20,000

motorized trips recorded in a household transportation survey in Bogotá, Colombia, and travel times from

41Driving also imposes other external costs, such as increases in pollution emissions, pollution exposure (which is related to
traffic speeds), and accidents. Here I am only considering the impact on higher (and less reliable) driving times.

42A commonly used functional form to describe travel time T as a function of incoming flow V is given by T = Tf ·(
1 + a · (V/Vk)b

)
, where Tf is time under free-flow, and Vk is the maximum road capacity. The parameter values for a and b

vary considerably. For example, the Bureau of Public Roads (BPR) and the updated BPR functions use a = 0.15, b = 4 and
a ∈ [0.05, 0.2], b = 10, respectively. See section 3.3.2 in Small et al. (2007) for a review of estimated and postulated functional
forms.
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real-time Google Maps data collected several years later. They establish a much smaller elasticity of travel

time with respect to the volume of traffic. Their results suggest that there are fundamental differences in

city-wide road technology in Bogotá relative to cities in richer countries. One potential concern with their

approach is attenuation bias due to survey survey recall bias, which can lead to mis-measurement in the

traffic volume measure. For example, survey respondents may omit trips or only report imprecise departure

and arrival times. In this paper, I use precise GPS data, contemporaneous real-time Google Maps data, and

a larger sample of trips than in the two previous papers. I show at the end of this section that the elasticity

in Bogotá estimated by Akbar and Duranton (2017) is very similar and slightly smaller than what I find in

Bangalore.

To measure the quantity of driving, I rely on 117,527 trips coded from GPS data from 1,747 app users,

covering 185 calendar dates and 44,034 user-days with travel information.43 (This sample includes the

experimental sample, as well as other study participants who used the smartphone app for shorter periods

of time and were not included in the experiment.)

For road speeds, I use two different data sources that give very similar results. My main data source

is Google Maps travel delay data collected on 28 routes in the study area over the same calendar period,

at 20 minute intervals.44 I also compute trip-level travel delay directly from the GPS data.45 The two

measures track each other exceptionally well at the level of departure time (column 3 in Table 8 and panel

A in Appendix Figure A9).

I use a simple empirical specification to measure the impact of traffic volumes on travel delay. (I discuss

possible threats to causal inference below.) In order to reduce measurement error in the dependent variable,

I summarize traffic volume and travel delay along two dimensions: trip departure time, and calendar date.

In the first case, the average departure rate at a given time of the day measures inflows into the urban road

network, so this approach is similar to classic transport engineering estimates, except that here I consider

results for a large urban area.46 The second approach considers the total travel on a given calendar date. In

43I restrict the sample to trips longer than 2 km. Shorter trips have higher travel delay, possibly because of higher likelihood
of walking trips. Results are almost identical including all trips.

44Travel delay is the inverse of driving speed, measuring the number of minutes necessary to cover 1 kilometer, on average.
To obtain it, for each route I divide driving time (in minutes) by the route path length (in kilometers).

45Trips in the GPS data may have considerably more noise, for example due to short stops along the way, or errors in trip
classification. I use medians to summarize this data in order to limit the influence of outliers. The sample is all weekday trips
shorter than 2km, without stops along the way. To avoid circuitous trips, I restrict to trips with diameter to total
length ratio above 0.6 (the 25th percentile). For each departure time, I compute the median delay of all trips starting
around that departure time (weighting each trip using an Epanechnikov kernel with bandwidth 20 minutes around
the reference departure time). In addition, Appendix Table A10 reports results from quantile (median) regressions.

46It is plausible that travel conditions depend on the history of inflows, not only on contemporaneous inflow. One way to
model this is to measure the number or density of vehicles on the road at any given time. This approach gives very similar
results, see panel B in Appendix Figure A9. Intuitively, the two variables are strongly correlated, because trips are short
relative to the scale of peak/off-peak fluctuation. In addition, models that includes lags will fit the data marginally better.
Indeed, in panel A of Figure 3 the travel delay at 9 am – following a large inflow – is slightly lower than predicted by the
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both cases, I normalize the dependent (volume) variable to mean 1, so the results are directly comparable.

I am not able to distinguish between the impact of motorcycles and cars, and cannot account for vehicle

occupancy.47 Results should be interpreted as the average effect along these dimensions.

Travel delay is well explained by a linear function of traffic volume, and results are similar using variation

within day and across calendar dates. Figure 3 shows the main results in graphical form. Panel A shows

results at the departure time level (collapsing over all weekdays in the data), and plots the results for all

departure times at 30 minute intervals, while panel B shows results by calendar date. Columns 1, 2 and 4

in Table 8 show the same results in regression format. For departure times, an increase in the number of

vehicles equal to 10% of the mean is associated with an increase of 0.106 minutes per kilometer higher travel

times (column 1). The relationship is close to linear, and I can reject at the 95% level an exponent of 1.18

(column 2). The relationship is similar and slightly shallower across calendar dates at 0.097 minutes per

kilometer (column 2). The difference may partly reflect attenuation bias due to measurement error in traffic

volumes along calendar dates.

These results imply that every additional (average length) trip departing increases the aggregate driving

time of everyone else on average by approximately 4.2 minutes for a 7 am departure time, and by approxi-

mately 17 minutes for trips departing at the morning peak (9 am) or evening peak (7 pm). (For reference,

the average trip duration is 33 minutes.) To derive this result, note that the impact on aggregate driving

time is equal to the traffic volume, times the marginal impact on travel delay, and times the average trip

length, namely Q̃ (h) ∂T (h)
∂Q̃(h) ·KM . The first two terms form a semi-elasticity, so this social cost calculation

does not depend on the scaling of traffic volume Q̃. In other words, for a representative sample the in-sample

calculation is consistent for the population calculation. The empirical results show that ∂T (h)
∂Q̃(h) = 1.06min/km

(for any h), and the average trip length is 8.0 kilometers, which gives an effect of 8.5 · Q̃ (h) minutes, where

Q̃ (h) is the relative traffic volume at h. Figure 3 shows that Q̃ (7 am) ≈ 0.5 and Q̃ (9 am) ≈ Q̃ (7pm) ≈ 2,

which gives the figures cited above.

One potential concern is whether the data used here is representative for Bangalore. It is reassuring that

the results from two completely different data sets on speeds (GPS data and Google Maps data) give similar

results: column 3 in Table 8 shows that the slope between the two variables is very close to one. The other

concern is whether the traffic quantity measure is not representative in a way that is correlated with the

pattern of congestion. In principle, it is possible that the survey team recruited disproportionately more (or

fewer) respondents during peak hours, which may bias the results. However, the link between recruitment

linear relationship, yet delay continues to rise after 9 am despite slightly decreasing inflows. Here, I use the more parsimonious
functional relationship.

47The share of trips made by car is roughly constant throughout the day, at around a third.
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time and average departure time is very weak. Indeed, the R squared of a regression of trip departure time

in the morning on morning recruiting time is below 4%, and below 2% for the evening.48

Interpreting these results as the causal impact of driving on external driving time costs raises several

potential concerns. One issue arises if different types of drivers systematically travel at different times, for

example if inherently slower drivers are more likely to travel during peak hours. A related concern is if peak-

hour and off-peak trips differ in some dimension correlated with speed, such as trip length. In principle, these

issues could even affect the Google Maps travel delay estimates, if Google’s algorithms do not correct for

such biases. To address these concerns, in Appendix Table A10 I run trip-level quantile (median) regressions

of trip delay on the traffic volume at the trip departure time, where I control for trip length and commuter

fixed effects. The results are broadly similar and somewhat smaller than those in Table 8. More generally,

any factor correlated with the within-day or across-date distribution of traffic volume, which also directly

impacts driving times, is a potential omitted variable. For example, anticipated weather and road network

shocks (e.g. construction, closures) may bias the estimates downwards. These factors are unlikely to be a

major concern in this setting. First, weather during the study period was very stable, and there were no

major road network shocks. Secondly, the within-day results are less likely to be significantly biased by

this type of factors, because weather and road network shocks tend to last longer. Higher pedestrians flows

during peak hours may bias our results upwards, if pedestrians interact with and slow down incoming traffic.

Anecdotally, drivers in Bangalore tend to not slow down considerably when pedestrians cross the road.

The results in Bangalore are very similar to those reported by Akbar and Duranton (2017) in Bogotá.

Appendix Figure A9 panel D compares the log-log curves in the two cities. The curve for Bogotá is slightly

lower and the maximum elasticities in Bangalore and Bogotá are 0.33 and 0.25, respectively. The curve in

Bogotá also becomes flat for high values of traffic volume. There may be two reasons for this. First, note

that the local linear fit in Bangalore also has a slightly lower slope for high volumes; this may be due to

the linear contemporaneous road technology specification, which omits traffic volume lags. In particular,

traffic volume rises quickly in the morning, and speed grows slightly slower (only to continue to grow even

past the peak in traffic volume); this tends to attenuate the relationship between traffic volume and travel

times. Another potential reason for the more pronounced flat region in Akbar and Duranton (2017) is that

survey respondents are likely to give typical departure times that underestimate the variability in departure

times, which tends to overestimate peak-hour volumes. Indeed, Zhao et al. (2015) document exactly this

phenomenon by comparing survey data with precise GPS travel data collected with a smartphone app on

the same sample in Singapore.

48Panel C in Appendix Figure A9 shows graphically that the recruit time and trip departure time distributions are very
different.
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Previous engineering studies on road segments show that travel time responds strongly and convexly to

traffic inflows. Intuitively, one would expect this relationship to be even stronger in a high congested city,

such as Bangalore. In fact, I provided evidence for a shallower and linear relationship. The slope is several

times shallower than the slope identified based on taxi trips in Geroliminis and Daganzo (2008). There

are several potential reasons why the road technology may be different in Bangalore. The high ratio of

motorcycles may render traffic more fluid; however, using the GPS data I find that motorcycles are faster

only during the night, and have a similar speed as cars during the day. Another hypothesis is that drivers

switch to side streets during peak hours, thus avoiding traffic build-ups on main thoroughfares (Akbar and

Duranton, 2017). Further, the driving style in cities like Bangalore, where anecdotally vehicles are driven

close to each other, may attenuate traffic jams. (However, in principle this type of driving could also make

jams worse.) Another structural difference is the smaller number of automatic traffic signals compared to

cities like Yokohama, Japan, and potentially higher reliance on traffic police agents, which may also affect

the bottleneck properties at certain key junctures. I consider average travel times over several months, which

are likely the relevant measure to measure the expected externality. This is similar to Akbar and Duranton

(2017) and unlike Geroliminis and Daganzo (2008), who use instantaneous relationships.49

In this section, I provided new evidence that despite high levels of traffic congestion in Bangalore, the

shape of the road technology externality is moderate and linear throughout the distribution of traffic volume.

Equipped with this estimate, we are now in a position to quantify the inefficiency involved in the peak-hour

traffic equilibrium.

8 Policy Simulations

In this section I quantify welfare and the inefficiency in the no-toll equilibrium, and explore how these

numbers depend on preferences and on the road technology.

Commuters make departure time decisions based on their own travel time and schedule costs, and have

some flexibility to adjust departure times to avoid congestion, as shown in the experimental results. However,

their decisions also affect the other traffic participants by increasing delays at the times when they travel,

an effect mediated through the road technology that was quantified in the previous section. Moreover, other

commuters adjust to the increase in congestion, and this has either positive or negative first order impacts

on welfare, as the envelope theorem does not hold for welfare at an inefficient equilibrium. For example, for

the same level of congestion, traveling after the peak-hour may have a higher externality because it induces

49In principle, it is possible that the instantaneous relationship is convex, and the peak-hour is realized at slightly different
times on different days, which would smooth out the relationship. However, the relationship in Figure 3 looks similar when
using a single day of data (not shown).
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other commuters to switch to earlier (more congested) travel times.

I now study these interactions and their welfare consequences using a simulation model of the city-

wide road traffic equilibrium. I use the model to solve for decentralized Nash equilibria without or with

departure time charges, I then compute the marginal social cost of departing at a certain time around a

given Nash equilibrium, and I finally solve for the social optimum and compare the improvement relative to

the decentralized equilibrium using various benchmarks. In any equilibrium with charges, I assume that tax

revenue is transferred back to commuters lump-sum.

The model parameters are derived entirely from demand and road technology estimates presented in

previous sections. At the same time, there are several important limitations of this approach. I continue to

abstract from the extensive margin decision of whether to travel using a private vehicle. Thus, the analysis

here pertains specifically to the within-day inefficiency due to commuters wanting to travel at similar times.

I also do not take into account longer term preferences and adjustments, which may be different from the

short-term responses measured in the experiment. As in the road technology estimation, I do not distinguish

between the externalities generated by motorcycles and cars, although in practice the latter is likely to be

higher. Finally, this analysis ignores other traffic, including trips that are not between home and work, bus

passengers (who would also benefit from reductions in travel times), taxis, bus and truck traffic (which may

respond differently to similar congestion charges and may affect traffic differently). I also do not measure

in these calculation other important social costs of congestion, such as pollution generation and pollution

exposure.

The simulation environment is populated with N agents. Each agent has a single route and chooses a

morning departure time according to multinomial logit probabilities, using σ̂ as estimated previously. Each

simulation agent is a copy of a real study participant, with the same route length and preferences as estimated

in section 6, with a fixed ideal arrival time randomly drawn from the distribution estimated for that agent.

In practice, I replicate each real commuter and draw 120 ideal arrival times for each copy, for a total of

N = 36, 960 simulation agents.

I use an asynchronous logit best-response dynamic to compute Nash equilibria. Given (fixed) congestion

charges that depend on the departure time, and an initial travel time profile, each period a 1% random sample

of agents re-compute their choice probabilities,50 and then the travel time is updated given the aggregate

volume at each departure time (integrated choice probability over all simulation agents). The simulation

stops when every agent is close to best-responding, namely when the `2-norm of changes in choice probability,

averaged over the entire population, is below a certain threshold. This procedure leads to fast convergence to

50Travel time uncertainty is parametrized based on the mean travel time, as was done for structural estimation. Travel time
is log-normal distributed, and travel delay standard deviation is quadratic in the mean. See Appendix Figure A6.
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equilibrium; indeed, the choice probability norm roughly halves after half of the population updates (every

50 periods), and it takes around 7 revisions per capita to reach equilibrium. Moreover, this dynamic has a

natural interpretation in terms of commuters revising their actions periodically. In practice, the simulation

finds a unique equilibrium independently of starting conditions, which is consistent with travel at various

times being strategic substitutes due to congestion.

The marginal social cost imposed by a commuter leaving at a certain departure time hD should be

calculated allowing other commuters to adjust.51 Indeed, other commuters may change their departure

times in response to the increase in congestion, which will decrease their costs and may have either positive

or negative spillovers.52 This effect is quantitatively meaningful; for example, the partial equilibrium social

welfare cost of an additional departure at 9:40 am, starting from the Nash equilibrium, is Rs. −408.6,

compared to Rs. −352.0 after recomputing the equilibrium with the fixed departure at 9:40 am. Moreover,

for the same level of congestion, the marginal social cost depends on the slope of congestion around that

point. Figure 4 shows in blue (right axis) that the marginal social cost is higher after the peak. This happens

because displaced commuters tend to leave earlier (because βE < βL) and when the additional commuter

departs after the peak, this switching leads to even more congestion at earlier times.

The social optimum is a Nash equilibrium with departure time Pigou charges.53 It has the following fixed

point property: charges at departure time hD equal the marginal social cost of an additional commuter at

hD. To find this fixed point, I use a lazy adjustment dynamic for charges. The starting point is the Nash

equilibrium, and for each iteration I compute the marginal social cost and update charges at each departure

time with a 1/3 weight on the new marginal social cost and 2/3 on the current charge. This procedure

converges in around 15 iterations with precision Rs. 0.1 for welfare.

The social optimum leads to small but notable improvements in travel times. Figure 4 shows the travel

delay under the decentralized unpriced equilibrium and under the social optimum. The social optimum has

a lower peak, and more commuters departing early, between 5:30 am and 7:45 am. However, the distance

between the two travel delay profiles is not very large; at the peak, travel delay improves by 0.14 minutes

per kilometer, which translates to 0.9 and 2.3 minutes faster travel time for the commuters at the 25th and

75th percentile of route distance. One reason for this moderate difference is that moving some people away

from the peak does not have an outsized effect on congestion under the linear road technology. The social

51Arnott et al. (1993) make the same point in their model with identical agents, where the stark implication is that MSC
does not depend on departure time (as in equilibrium all agents are indifferent). The more general point also applies in this
setting, where agents differ.

52Computing the marginal social cost thus requires computing a new Nash equilibrium for each departure time.
53I assume that the social planner knows individual preferences but does not observe the exact realization of the random

utility shocks. In this case, where also all commuters have the same externality conditional on departure time, the planner can
implement the social optimum with departure time congestion charges.
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marginal cost function is also drawn. For the same level of congestion, social marginal cost is higher after

the peak, and yet there is almost no aggregate difference between the Nash and social optimum on that side

of the graph. This happens because the cost of departing later βL is very high.

Table 9 quantifies the effects on travel time and on welfare. The social optimum leads to a reduction

of 1.04 minutes in expected travel time, from a base under Nash of 38.7 minutes.54 This represents a 2.7%

improvement relative to the Nash equilibrium, or a 6.8% improvement when considering only travel time

above free-flow. (Free-flow is defined as a speed of 2.14 minutes per kilometer, which is the intercept in Table

8.)

The improvement in welfare under the social optimum are an order of magnitude smaller. In other words,

the travel time benefits are nearly offset by schedule costs incurred by commuters who are induced to travel

at privately inconvenient times. Welfare is Rs. 4.5 per commuter per morning higher under the optimum (7

US cents), from a total trip cost of around Rs. 773, which represents a roughly half percentage improvement.

Relative to free-flow, the improvement is only 1.3%. Moreover, to achieve the social optimum, commuters

pay on average Rs. 267.3 in charges, or 35% of their average private cost. For this exercise, I assumed that

charges are a costless transfer, whereas in reality policy enforcement and attention costs may be important.

It is likely that real-world, more forceful policies that attempt to cap peak-hour congestion may lower welfare.

This framework can be used to quantify these effects.

The road technology plays a key role for these results. Indeed, the welfare gain would be higher and would

depend more on preferences if travel time was convex in traffic volume. Figure 5 shows this by plotting the

improvement of going from the unpriced equilibrium to the social optimum, for travel times (panel A) and

for welfare (panel B). The black and red lines denote the current (linear) and counterfactual (third power)

road technology, while preferences vary along the X axis. The welfare gains are an order of magnitude higher

with the power road technology, and range between 3.5% and 5.5%, relative to 0 − 0.5% with the linear

technology.

Overall, I have shown using policy simulations grounded in demand and road technology estimates

that the social inefficiency due to departure times is likely small. This result highlights the importance

of measuring and considering the (schedule) costs of a policy that attempts to clear up the congestion peak-

hour. An important reason for these findings is the size of the road externality, and especially its linearity,

which implies that even for high levels of congestion the travel time benefit of removing a commuter from the

peak is the same as for lower levels. By consequence, road traffic congestion does not warrant intervention

54Note that the average route length is not evenly distributed across departure time, with commuters who travel far slightly
more likely to depart early. Moreover, under the social optimum this effect is slightly stronger, which contributes to lower
average travel time than suggested by Figure 4 alone.
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through corrective taxation solely for the reason of departure time inefficiency.

9 Conclusion

Reducing traffic congestion has significant benefits in terms of the value that commuters put on the time

they spend driving; it can also lead to improved subjective well-being (Anderson et al., 2016). This makes it

tempting to only consider these benefits when thinking about traffic policies, and in particular about policies

designed to reduce peak-hour congestion. However, it is also important to take into account the costs of

disruption to commuter schedules.

In this paper, I collected new data on travel behavior and implemented a field experiment motivated by a

model of travel demand to study both sides of the peak-hour traffic equilibrium. Estimating a model of the

morning commute decision using experimental variation, I find that the cost of arriving earlier than ideally

desired is around 4 times smaller than the value of time spend driving. To put this in context, as a first

approximation this means that a commuter facing a one hour expected drive time would prefer to leave one

hour earlier, if this reduced the expected drive time to less than 45 minutes.

Surprisingly, given high levels of traffic congestion in Bangalore, I find a moderate road traffic externality,

and a linear effect of traffic volume of travel times, including for high values of traffic volume. This result is

robust to using different data sources and analyzing this relationship across days or within day and across

departure times. These estimates are smaller than a previous study in Yokohama, Japan (Geroliminis and

Daganzo, 2008), and they rule out hyper-congestion. Differences in driving style and the density of traffic

control measures (traffic lights) are possible explanations for the discrepancy between the two settings.

Putting demand and road technology estimates together, I calculate the equilibrium optimal congestion

charge for the morning peak-hour. I find that relative to the decentralized equilibrium without charges, the

social optimum allocation leads to notable travel time benefits of around 1.2 minutes per trip from a base

of 36.5 minutes (which is 30% of the improvement that can be achieved by spreading all commuters evenly

between 5 am and 12 pm). However, the welfare gains from optimal charging are small, as the travel time

benefits are almost fully offset by the schedule costs of making commuters travel at inconvenient times.

The elasticities of travel at different times may differ from those estimated here in the long-run and

in the presence of a city-wide policy. For example, firms may adjust by providing more flexible schedules,

allowing commuters to more easily change their travel timings. As in other large cities marred by high

congestion, some large companies in Bangalore are already implementing this type of flexible work-hours

policies (Merugu et al., 2009). Moreover, around 20% of the sample in this study are self-employed and may

already have higher autonomy in deciding their own schedules. Finally, it is worth noting that the welfare
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impacts of firm-level work-hours changes is ambiguous, due to complementarities between firms of having

similar work hours (Henderson, 1981).

The cost and road technology estimates in this paper are also useful for thinking about the extensive

margin of making trips with private vehicles, which was held constant throughout this analysis. Indeed, the

same methods can be used to compute the social marginal cost of adding a commuter at a certain departure

time,55 and thus calculating the optimal congestion charge. The results will depend on the elasticity of

making a trip with respect to generalized travel cost. Given the small share of metro travel in Bangalore,

this effect would likely mostly go through canceling non-essential trips, working from home, or switching to

bus travel.56 Moreover, the same framework can be used to include additional externalities, such as the air

pollution that drivers generate, and the impact that longer driving times have on exposure to air pollution,

which is high on urban roads.

This paper argues that the peak-hour traffic congestion equilibrium is close to efficiency from the point

of view of travel speed externalities. This does not imply that there are no welfare enhancing policies to ease

traffic congestion. Pricing the extensive margin may be a viable policy, either done directly or through taxes

on gasoline or private vehicle ownership. Road infrastructure investment – including investments to make

road network flows more efficient – may currently be at an inefficient level. Of course, developing viable

public transport options may also contribute to lower congestion and more convenient travel. However, the

results in this paper do put into focus the welfare costs that well-intended traffic control policies may have

on commuters affected by such charges or restrictions.

55The marginal social cost will not be exactly the same, because some commuters who are at the margin may cancel their
trip in response to an increase in congestion.

56There are two reasons why this margin was not studied experimentally here. The first is a measurement issue, as commuters
would have strong incentives to leave their smartphones at home given monetary incentives to reduce the number of trips. It
is possible to solve this problem by installing a GPS device in the private vehicle – as Singapore plans to implement its next
generation Electronic Road Pricing policy, and as in the experiment studied in Martin and Thornton (2017). The second
reasons is that extensive margin changes will plausibly take longer, as commuters need to find alternate travel arrangements
or substitutes for canceling unessential trips. Indeed, Martin and Thornton (2017) do not find any reduced-form impact of
distance-based congestion charges on trip extensive margin, even after two months.
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Figures

Figure 1: Average Predicted Travel Delay in the Study Region in Bangalore
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Notes: This graphs plots the average predicted travel delay on 28 major routes across the study area of South
Bangalore, by day of the week. Travel delay is defined as the number of minutes to cover one kilometer, i.e. the
inverse of speed. (A travel delay of 2 minutes per kilometer corresponds to 18.6 miles per hour.) The travel time and
route length data is obtained from the Google Maps API. For each route, weekday and departure time (at 20 minute
frequency) I queried the typical travel time under normal conditions, as predicted by Google.
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Figure 2: Impact of Departure Time Charges on the Distribution of Departure Times
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Notes: These graphs plot the impact of departure time charges on the distribution of departure times, in the morning
and evening. To construct this figure, for each commuter, day and departure time relative to the commuter’s mid-
point of the congestion charge rate profile, I compute the number of trips that start approximately at that time,
using an Epanechnikov kernel with bandwidth 20 or 30 minutes for AM and PM, respectively. Then, for each relative
departure time I run a difference-in-difference regression that identifies the impact of being in any of the charged
sub-treatments (either High Rate or Low Rate) relative to being in the control or information sub-treatments. Each
figure plots the charged sub-treatment times Post interaction coefficients, as well as pointwise 95% confidence intervals
clustered at the individual level. The dimension of the Y axis is the number of trips at a given departure time, divided
by 100. The sample is all non-holiday weekdays with good quality GPS data, excluding days outside Bangalore. In
the post period, only the first or the last three weeks are included.
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Figure 3: Road Technology: Travel Delay Linear in Traffic Volume
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Notes: These graphs show that travel delay is approximately linear in the volume of traffic.

Data. The volume measures are based on GPS data covering 117,527 trips from 1,747 app users across 185 days
(including weekends). In panel A, all weekday trip departure times are aggregated at the departure time minute
level, then smoothed using a local linear regression with Epanechnikov kernel with 10 minutes bandwidth, and
finally normalized to have mean 1. In panel B, for each date I compute the number of trips per capita (using
the number of app users that day), and again normalize this variable to have mean 1. The travel delay measures
use Google Maps data collected over 28 routes in South Bangalore, every 20 minutes daily for 185 weekdays.
In panel A, I compute the average delay over all weekdays and routes for each departure time, interpolating at
the minute level. In panel B, I compute the average delay over all routes and departure times, for each day in the data.

The OLS slopes for the two panels are 1.06 (0.06) and 0.97 (0.04), respectively. Table 8 reports the regression version
of these relationships.
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Figure 4: Unpriced Nash Equilibrium and Social Optimum (Policy Simulation)
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Notes: This graph shows the profile of travel delay under the simulated Nash equilibrium for morning departures
(black, dashed line, left axis) and under the social optimum (red, solid line, left axis). The social optimum is a Nash
equilibrium implemented with (equilibrium-consistent) social marginal charges in Rupees (blue, long dashed line,
right axis). Under the Nash equilibrium, departure time choice probabilities are given by multinomial logit based
on the travel time profile, and the profile itself is determined based on the road technology formula and aggregate
traffic volume at each departure time. It is the end point of an asynchronous logit “best-response” dynamic whereby
1% of the population updates their choices each period (and travel delay updates in response). To compute the
marginal social cost of adding a commuter at departure time hD, I compute the new Nash equilibrium with that
(fixed) addition and compute the change in total expected utility. The social optimum is a Nash equilibrium with the
following fixed point property: departure time charges are exactly the marginal social cost of adding a commuter at
that departure time. I compute the social optimum by updating departure time charges towards the marginal social
costs until convergence.
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Figure 5: Policy Simulations with other Preference and Road Technology Parameters
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Notes: This graph plots the improvement in average travel times and welfare of going from the no-toll equilibrium
to the social optimum (as a percentage of the value in the no-toll equilibrium), for various assumptions on preference
parameters and road technology. The black solid line corresponds to the linear road technology from Table 8 (Delay =
λ0 + λ1V olume where V olume is relative volume), while the red dashed line corresponds to road technology given
by a thrid power (Delay = λ0 + λ1V olume

3). The X axis reports the approximate ratio of early schedule cost (βE)
to value of time spent driving (α); at the center I report results using the estimated value of β̂E/α̂ = 0.28 ≈ 1/4; the
other estimates vary this by a factor of 1/4, 1/2, 2 and 4. For each point, I compute the Nash (to toll) equilibrium
and the social optimum for that road technology and preference parameters as described in Table 4, and plot the
percentage imporvement in the social optimum relative to the Nash.
.

47



Tables

Table 1: Descriptive Statistics about Travel Behavior

Panel A. Trip Characteristics
Median Mean Std. Dev. 10 Perc. 90 Perc. Obs.

Total Number of Trips 51,164
Number of Trips per Day 2.85 3.15 [1.16] 1.90 4.85 497
Median trip duration (minutes) 24.50 27.38 [12.77] 15.05 42.60 497
Median trip length (Km.) 5.91 7.17 [4.66] 2.90 13.36 497

Panel B. Commute Destination Variability
Regular Commuter 0.76 497
Frac. trips Home-Work, Work-Home 0.38 0.39 [0.21] 0.13 0.67 378
Frac. of trips Work-Work 0.03 0.06 [0.08] 0.00 0.15 378
Frac. of days present at Work 0.91 0.86 [0.16] 0.61 1.00 378

Panel C. Departure Time Variability
(Standard Deviation of the Departure Time in hours)
First Trip (AM) 1.27 1.24 [0.50] 0.52 1.85 496
Last Trip (PM) 1.72 1.71 [0.50] 1.06 2.34 497
First Home to Work Trip (AM) 0.48 0.62 [0.52] 0.15 1.28 332
Last Work to Home Trip (PM) 0.80 0.94 [0.62] 0.28 1.78 321

Notes: This table reports summary travel behavior statistics for the experimental sample of 497 commuters and
51,164 trips. For panel B, I classify each commuter as “regular” or “variable” based on a hybrid automatic and
manual algorithm to identify common destinations (home or nighttime and work or daytime). In panel C, I compute
the within-commuter variation in departure times for different classes of trips.
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Table 2: Impact of Departure Time Charges on Daily Outcomes

(1) (2) (3)
Time of Day AM & PM AM PM
Commuter FE X X X

Panel A. Total Shadow Rates Today
High Rate × Post -13.9** -7.8** -6.1*

(6.1) (3.8) (3.4)
Low Rate × Post -7.4 -2.8 -4.6

(6.3) (3.7) (3.8)
Information × Post -0.3 -0.2 -0.0

(5.4) (3.3) (3.3)
Post 1.1 -0.9 2.1

(4.9) (2.9) (3.1)
Observations 15,610 15,610 15,610
Control Mean 96.5 48.3 48.2

Panel B. Number of Trips Today
High Rate × Post -0.11 -0.04 -0.06

(0.14) (0.07) (0.07)
Low Rate × Post -0.06 -0.00 -0.07

(0.14) (0.07) (0.07)
Information × Post 0.08 0.05 0.03

(0.13) (0.06) (0.07)
Post 0.04 -0.01 0.06

(0.11) (0.06) (0.06)
Observations 15,610 15,610 15,610
Control Mean 3.05 1.16 1.30

Notes: This table reports difference-in-difference impacts of the departure time sub-treatments on daily total shadow
(per-Km) rates and total number of trips. In panel A, the outcome is the sum over all trips that day of the trip
shadow rate. The shadow rate for a given trip is between 0 and 100 and is computed based on the trip departure time,
the respondent’s rate profile, and a peak rate of 100 for all respondents. (See Appendix Figure A3 for an example of
rate profile.) In panel B, the outcome is the number of trips that day. The sample is all non-holiday weekdays with
good quality GPS data, excluding days outside Bangalore. In the post period, only the first or the last three weeks
are included. Column (2) and (3) restrict to the morning interval (7am-1pm) and to the evening interval (4-10pm),
respectively. All specifications include respondent and study cycle fixed effects, and Post is an indicator for days
during the experiment. The mean of the outcome variable in the control group during the experiment is reported
for each specification. Standard errors in parentheses are clustered at the respondent level. ∗p ≤ 0.10, ∗∗p ≤ 0.05,
∗∗∗p ≤ 0.01
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Table 3: Impact of Departure Time Charges on Trip Shadow Rate

(1) (2) (3) (4) (5)
Time of Day AM & PM AM AM pre peak PM PM post peak
Commuter FE X X X X X

Panel A. Full Sample
High Rate × Post -3.99*** -6.23*** -5.60 -3.12* -5.40*

(1.34) (2.25) (3.50) (1.84) (2.80)
Low Rate × Post -1.85 -2.71 -3.59 -1.33 1.07

(1.41) (2.24) (3.49) (1.96) (3.20)
Information × Post -1.00 -2.32 -0.13 -0.41 0.40

(1.06) (1.81) (2.70) (1.63) (2.53)
Post -0.36 -0.81 -0.95 -0.35 -3.28

(1.09) (1.70) (2.38) (1.76) (2.45)
Observations 43,776 16,764 7,592 18,468 7,899
Control Mean 31.64 41.81 46.98 37.21 44.29

Panel B. Regular Commuters, Home-Work and Work-Home Trips
High Rate × Post -4.97* -7.48** -10.12** -1.54 -8.97

(2.68) (3.38) (4.50) (3.85) (6.15)
Low Rate × Post -4.02 -2.97 -9.12** -5.38 -9.67

(3.18) (3.98) (4.46) (4.90) (7.07)
Information × Post -0.25 0.85 -2.73 -1.15 -1.97

(2.06) (2.96) (3.32) (3.42) (4.60)
Post -2.07 -2.73 -0.94 -3.86 -4.79

(1.97) (2.73) (3.17) (3.40) (5.05)
Observations 11,895 5,789 3,782 4,862 2,113
Control Mean 37.08 44.59 44.91 38.16 42.28

Panel C. Variable Commuters, All Trips
High Rate × Post -1.99 -1.00 -4.41 -4.73 -2.10

(2.90) (5.05) (10.32) (4.26) (7.64)
Low Rate × Post 0.47 -4.28 -6.15 -0.19 11.16

(2.30) (5.35) (9.83) (4.68) (8.67)
Information × Post -1.37 -3.38 -1.07 -1.22 -0.99

(2.21) (4.10) (8.51) (3.41) (6.18)
Post -1.05 -1.27 -0.17 -1.33 -2.45

(2.22) (3.72) (8.07) (3.55) (5.81)
Observations 8,177 2,826 961 3,432 1,439
Control Mean 27.37 34.91 41.51 36.18 41.67

Notes: This table reports difference-in-difference impacts of the departure time sub-treatments on (per-Km) trip
shadow rates. The shadow rate for a given trip is between 0 and 100 and is computed based on the trip departure
time, the respondent’s rate profile, and a peak rate of 100 for all respondents. The sample of users and days, and
the specifications, are the same as in Table 2. In addition, columns (3) and (5) respectively restrict to trips before
the morning peak (between 7 am and the mid-point of the AM rate profile), and after the evening peak (between the
mid-point of the PM rate profile and 10 pm). Panel B restricts to regular commuters and direct trips between their
home and work locations, and panel C restricts to variable commuters. Standard errors in parentheses are clustered
at the respondent level . ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table 4: Impact of Area Charges on Daily Outcomes

(1) (2) (3) (4) (5) (6)
Time of Day AM & PM AM PM AM & PM AM PM
Commuter FE X X X X X X

Panel A. Total Shadow Charges Today

Treated -22.8*** -13.2*** -9.6***
(5.5) (3.4) (3.3)

Treated in Week 1 -26.2*** -16.3*** -9.9*
(8.3) (5.0) (5.3)

Treated in Week 4 -19.2* -9.9* -9.3*
(10.1) (6.0) (5.5)

Observations 8,878 8,878 8,878 8,878 8,878 8,878
Control Mean 107.7 54.4 53.3 107.7 54.4 53.3

Panel B. Number of Trips Today

Treated 0.17** 0.12** 0.06
(0.08) (0.05) (0.05)

Treated in Week 1 0.06 0.04 0.01
(0.13) (0.07) (0.09)

Treated in Week 4 0.30* 0.20** 0.10
(0.16) (0.08) (0.10)

Observations 8,878 8,878 8,878 8,878 8,878 8,878
Control Mean 2.50 1.13 1.37 2.50 1.13 1.37

Notes: This table reports difference-in-difference impacts of the Area treatment on daily total shadow charges and
total number of trips. In panel A, the outcome is the sum over all trips that day of the trip shadow charge. The
shadow charge of a trip is equal to 100 if the trip intersects the respondent’s congestion area, and 0 otherwise. In
panel B, the outcome is the number of trips that day. The sample is all non-holiday weekdays with good quality
GPS data, excluding days outside Bangalore. In the post period, all days except trial days are included. Column (2)
and (5) restrict to the morning interval (7am-2pm), and columns (3) and (6) to the evening interval (2-10pm). The
sample is restricted to the 243 participants in the Area treatment. The Treated dummy is equal to one in the week
when the individual is treated (first and fourth week of the experiment for “early area” and “late are” sub-treatment
commuters, respectively) and zero otherwise. All specifications include respondent and study cycle fixed effects. The
mean of the outcome variable in the control group in weeks one and four of the experiment is reported for each
specification. Standard errors in parentheses are clustered at the respondent level. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table 5: Impact of Area Charges on Trip Duration and Trip Shadow Charge

(1) (2) (3) (4) (5) (6)
Time of Day AM & PM AM PM AM & PM AM PM
Route FE X X X X X X

Panel A. Trip Shadow Charge

Treated -22.5*** -25.9*** -19.0***
(3.4) (3.8) (4.1)

Treated in Week 1 -23.6*** -26.1*** -21.5***
(4.9) (5.0) (6.3)

Treated in Week 4 -21.3*** -25.6*** -16.1**
(6.4) (7.4) (7.0)

Observations 7,455 4,108 3,347 7,455 4,108 3,347
Control Mean 83.4 85.1 81.3 83.4 85.1 81.3

Panel B. Trip Duration (minutes)

Treated 0.52 0.66 0.40
(0.72) (0.74) (1.29)

Treated in Week 1 -1.14 -0.53 -1.55
(0.97) (1.04) (1.74)

Treated in Week 4 2.49** 2.05 2.72
(1.09) (1.25) (1.80)

Observations 7,455 4,108 3,347 7,455 4,108 3,347
Control Mean 40.81 39.15 42.73 40.81 39.15 42.73

Notes: This table reports difference-in-difference impacts of the Area treatment on trip shadow charge (panel A)
and on trip duration (panel B). The shadow charge of a trip is equal to 100 if the trip intersects the respondent’s
congestion area, and 0 otherwise. The sample of users and days are the same as in Table 4, except that we restrict
to regular commuters and direct home to work or work to home trips. All specifications include route fixed effects.
Standard errors in parentheses are clustered at the respondent level . ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table 6: Impact of Area Charge Sub-Treatments on Daily Outcomes

(1) (2) (3) (4)
Commuter FE X X X X

Panel A. Total Shadow Charges Today

Treated -22.8*** -21.4*** -25.0*** -23.6**
(5.5) (7.4) (5.9) (11.1)

Treated × High Rate -3.0
(9.6)

Treated × High Rate Day 5.4
(5.4)

Treated × Short Detour 3.2
(12.0)

Observations 8,878 8,878 8,878 5,417
Control Mean 107.7 107.7 107.7 110.6

Panel B. Number of Trips Today

Treated 0.17** 0.09 0.24** 0.19
(0.08) (0.09) (0.10) (0.13)

Treated × High Rate 0.17
(0.14)

Treated × High Rate Day -0.16*
(0.10)

Treated × Short Detour -0.07
(0.16)

Observations 8,878 8,878 8,878 5,417
Control Mean 2.50 2.50 2.50 2.53

Notes: This table reports difference-in-difference impacts of Area sub-treatments on daily total shadow charges and
total number of trips. For outcome definitions and specifications see the notes for Table 4. The sample is the same as
in Column (1) in Table 4. In column (4) the sample consists of the 148 Area participants for whom candidate areas
included at least one with short detour (3-7 minutes) and at least one with long detour (7-14 minutes). (See section
4 for more details.) The specification in column (4) includes fixed effects for each day in the experiment. Standard
errors in parentheses are clustered at the respondent level. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table 7: Structural Parameter Estimates

(1) (2) (3) (4) (5) (6)
Value of time
α (Rs/hr)

Schedule cost early
βE (Rs/hr)

Logit inner σ
(dep. time.)

Logit outer µ
(route)

Probability
to respond p

Ratio
α/βE

1,121.9 319.4 36.5 36.9 0.46 3.51
(318.7) (134.5) (65.4) (9.3) (0.13) (1.11)

Notes: This table reports structural estimates of model parameters using two-step GMM with 69 moments. The first
set of moments match the difference in difference average number of trips in each of 61 departure time bins (between
−2.5 and +2.5 hours around the peak-hour, in 5 minute increments). Two moments match the variances of individual
changes in shadow charges for trips between the morning rate profile peak and two hours earlier, in treatment and
control. Two moments match the probability to intersect the congestion area with and without area charges. Four
moments match the fraction of commuters whose sample frequency to intersect the congestion area lies in the middle
third and top third of the unit interval, with and without area charges. Data on the distributions of travel times
at different departure times and routes was collected from Google Maps. Model simulation details are described in
Section 6. The two-step GMM is estimated with 100 random initial conditions. The cost of late arrival is held fixed at
βL = Rs. 4, 000 (Appendix Figure A8 shows that the objective function is mostly flat for βL ≥ Rs. 4, 000. Appendix
Table A7 shows that results are essentially unchanged by using βL = Rs. 1, 000 or βL = Rs. 8, 000). Standard errors
from 100 bootstrap runs are shown in parentheses.
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Table 8: Road Technology: Travel Delay Linear in Traffic Volume

(1) (2) (3) (4)
Dependent Variable: Google Maps Travel Delay (min/km)
Sample: Departure Time Dates

Traffic Volume 1.06*** 1.15*** 0.97***
(0.06) (0.12) (0.04)

Traffic Volume Exponent γ 0.89***
(0.15)

GPS Travel Delay (min/km) 1.00***
(0.04)

Constant 2.14*** 2.08*** -0.10 2.19***
(0.03) (0.06) (0.12) (0.04)

Observations 1,440 1,440 1,440 185
Traffic Volume Std.Dev. 0.69 0.69 0.16
R2 0.94 0.94 0.95 0.56

Notes: Table version of Figure 3 and Appendix Figure A9. This table shows that travel delay – measured either
using Google Maps or GPS data – is approximately linear in the volume of traffic.

Data. The volume measures are based on 117,527 trips from 1,747 app users across 185 days (including weekends).
Google Maps travel delay was collected over 28 routes in South Bangalore, every 20 minutes daily for 207 days
(including weekends).

Variables and Sample. In the first and second columns, all weekday trip departure times are aggregated at the
departure time minute level, then smoothed using a local linear regression with Epanechnikov kernel with 10 minutes
bandwidth, and finally normalized to have mean 1; I compute the average delay over all weekdays and routes for
each departure time, interpolating at the minute level. In the last column, for each date I compute the number
of trips per capita (using the number of app users that day), and again normalize this variable to have mean 1; I
compute the average delay over all routes and departure times, for each day in the data. GPS travel delay in column
3 is computed based on the GPS trips data. The sample is all weekday trips without any stops along the way, and
with a trip diameter to total length ratio above 0.6 (the 25th percentile). For each departure time that is a multiple
of 20 minutes, I compute the median delay of all trips starting around that departure time (weighting each trip
using an Epanechnikov kernel with bandwidth 20 minutes around the reference departure time), then interpolate
the result at the minute level.

Specifications. Columns 1, 3, and 4 report OLS regression with Google Maps Delay as outcome, with Newey-West
standard errors, with three-hour lag in columns (1) and (3), and 10 day lag in column (4). Column 2 reports results
from a nonlinear regression Delayh = λ0 + λ1V olume

γ
h with HAC standard errors with Newey-West kernel and

three-hour lag.∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table 9: Travel Times and Welfare in the Unpriced Nash Equilibrium and in the Social Optimum

(1) (2) (3) (4)

Nash Social
Optimum Improvement Improvement

(% of Nash)

Panel A. Benefits and Welfare
Travel Time (minutes) 38.7 37.7 -1.04 -2.69%
Welfare (Rupees) -773.4 -769.0 4.46 -0.58%

Panel B. Benefits and Welfare Relative to Free-flow
Travel Time (minutes) 15.4 14.4 -1.04 -6.77%
Welfare (Rupees) -337.8 -333.3 4.46 -1.32%

Notes: This table reports average travel times and welfare under the decentralized unpriced Nash equilibrium and
under the social optimum. In panel B travel times and welfare are computed relative to the "free-flow" benchmark,
where delay is constant at 2.14 minutes per kilometer regardless of traffic volume. (The average trip length is 10.9
Km.) Travel times are calculated taking individual route length into account, and welfare is the sum over all simulation
agents of expected utility, including travel time and scheduling costs, and assuming charges are transferred lump-sum
back to commuters. Columns 3 and 4 report the improvement from the unpriced Nash to the social optimum, in
levels and as a fraction of the baseline (Nash) value.
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A Appendix Figures

Figure A1: Treatment Heterogeneity for Departure Time and Area Treatments
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Panel (A) Individual-Level Change in Shadow Trip Rate, by Departure Time Treatment
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Panel (B) Frequency of Avoiding the Congestion Area, by Area Treatment Status

Notes. These figures show the distribution of individual changes in shadow charges in the departure time treatment
and control (panel A) and the distribution of individual frequency of intersecting the area when treated and not
treated in the area treatment (panel B). In panel A, the sample is all regular commuters and all trips between
the morning profile peak and 2 hours earlier. The graph plots the pre-post change in shadow trip rates for each
participant, separately for participants with charges (Low Rate and High Rate treatments) versus those without
charges (the control and information treatments). (The graph with shrunk distributions using empirical Bayes shows
a similar pattern.) The sample for panel B is all days with trips in the morning between home and work for regular
commuters (see Table 5 column 2). The graph shows the histogram of the fraction of days when a participant
intersects the congestion area, separately for treated and not treated participants. Both graphs suggest a stark form
of heterogeneity in how commuters respond to charges.
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Figure A3: Departure Time Congestion Charge (AM) Rate Profile Card Example
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Notes: This figure shows an example of Rate Profile card that study participants in the departure time charge
sub-treatments received. The cards for different participants differed in the value of the peak rate (Rs. 12/Km and
Rs. 24/Km in the Low Rate and High Rate sub-treatments, respectively), and in the starting time of the profile
(between 8 am and 9 am for the morning profile, and between 5 pm and 6 pm for the evening profile).
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Figure A4: Area Congestion Charge Example

Congestion Area

Detour Route

Usual Route

Notes: This figure shows an example of congestion area. Congestion areas were selected as follows. Given a regular
route between home and work for a participant (in green), several “candidate” areas were selected along the route,
with a radius of 250m, 500m or 1000m. For each candidate area, I found the quickest detour route that avoids the
congestion area, based on a custom algorithm using multiple queries to the Google Maps API. Candidate areas with
detours between 3 and 14 minutes longer were manually reviewed, and the final area was randomly selected from
within this group.
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Figure A5: Google Maps Travel Time is Approximately Log-Linear Distributed
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Notes: This figure shows the shape of the day-to-day variation of log normalized travel time. For each route and
departure time cell, I consider the distribution of travel times over 147 weekdays. Within each cell, I compute the
normalized residual by subtracting the mean and dividing by the standard deviation for that cell. The graph shows
the distribution of the log residuals for all cells, and a standard normal (solid blue line).

Figure A6: Travel Time Standard Deviation is Approximately Quadratic in Travel Time Mean
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Notes: This figure shows the relationship between the mean and standard deviation of travel time. Each dot represents
a route and departure time cell, and the two axes measure the mean and standard deviation in that cell over over
147 weekdays. The local linear, linear and quadratic fits are respectively shown in red (long dash), green (dash) and
blue (solid). The local linear fit uses and Epanechnikov kernel with 0.5 minute per kilometer bandwidth, and 95%
confidence intervals, bootstrapped by route, are also shown (thin red dashed line). The estimated quadratic equation
is:

StdDevDelay = 0.24
(0.02)

− 0.05
(0.01)

·MeanDelay + 0.04
(0.002)

·MeanDelay2
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Figure A7: Structural Model Fit
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Notes: This figure shows the fit of the estimated structural model. Panel A shows the 61 moments that target the
difference in difference in number of trips by departure time bin. Panels B and C show the distributions of individual
effects in the departure time treatments (changes in shadow charges between pre- and post-). Panels D and E show
the distributions of individual effects in the area treatment (fraction of days intersecting the congestion area when
treated and not treated).

Figure A8: Structural Model Diagnostics
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Notes: Panel A shows that the objective function is mostly flat for values of the late schedule cost βL above Rs. 4, 000.
It is evaluated at the estimated parameters, using the optimal weighting matrix. Panel B plots the scaled sensitivity
measure from Andrews et al. (2017), quantifying the change in the estimated early schedule cost parameter βE given
by one standard deviation change in each of the 61 departure time moments (see Appendix Table A9 for the full
definition of the sensitivity measure).
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Figure A9: Road Technology Estimation Robustness Checks
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Notes: Panel A shows the relationship between travel delay measured using Google Maps and travel delay measured
using GPS trips from smartphone app users, at the level of departure time. The notes for Table 8 describe the samples
and variable construction. Each dot represents the average delay from Google Maps (X axis) over all weekdays in
the sample, and median delay from GPS data (Y axis) over all weekday trips in the sample. The OLS fit with slope
1.00 (0.04) is also shown.
Panel B replicates Figure 3 with traffic density instead of volume of departures on the X axis. Road density at a
certain time is defined as the number of ongoing trips.
Panel C plots the distribution of participant recruitment times (histogram in solid gray) and the distribution of trip
departure times (kernel density plot in solid blue line). Both Y axes start at zero.
Panel D compares log-log road technology estimates from this paper (gray dots, dashed blue line) with those from
Akbar and Duranton (2017) in Bogotá (red solid line). (Their estimate is computed from Figure 4 panel C.) Akbar
and Duranton (2017) use a transportation survey to measure traffic volume at different times of the day. Zhao et al.
(2015) document that in Singapore survey respondents report more concentrated departure times in the morning and
evening, compared to real departure times as measured with a GPS smartphone app; this leads to overestimating
peak-hour volumes. A similar effect may explain the slightly flatter region for high traffic volumes in Bogotá.
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B Appendix Tables

Table A1: GPS Data Quality at Daily Level (Attrition Check)

(1) (2) (3) (4)
Commuter FE X X X X

Panel A. Departure Time Treatment

High Rate × Post 0.01
(0.05)

Low Rate × Post -0.01
(0.05)

Information × Post -0.01
(0.04)

Post 0.09***
(0.04)

Observations 24,827
Control Mean 0.76

Panel B. Area Treatment and Sub-treatments

Treated 0.05** 0.04 0.05** 0.05
(0.02) (0.03) (0.02) (0.03)

Post 0.06* 0.06* 0.03 0.07**
(0.03) (0.03) (0.03) (0.04)

Treated × High Rate 0.01
(0.04)

Treated × High Rate Day -0.00
(0.02)

Treated × Short Detour -0.05
(0.05)

Observations 13,479 13,479 13,479 8,032
Control Mean 0.73 0.73 0.73 0.76

Notes. This table shows experimental impacts on the quality of the GPS data received from study participants. The
outcome is a dummy for good quality GPS data on a given day. The sample covers all non-holiday weekdays for
all experiment participants, excluding days outside Bangalore. In the post period, in panel A only the first or the
last three weeks are included, and in panel B only the first and the last week are included. Panel B restricts to
243 participants in the Area treatment, except in column (4) where the sample consists of the 148 Area participants
for whom candidate areas included at least one with short detour (3-7 minutes) and at least one with long detour
(7-14 minutes). (See section 4 for more details on the candidate area selection process.) All specifications include
respondent and study cycle fixed effects; column (4) includes fixed effects for each day in the experiment. The mean
of the outcome variable in the control group during the experiment is reported for each specification. Standard errors
in parentheses are clustered at the respondent level. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table A3: Impact of Departure Time Charges on Daily Shadow Charges

(1) (2) (3)
Time of Day AM & PM AM PM
Commuter FE X X X

Panel A. Total Shadow Charges Today

High Rate × Post -22.7** -16.5** -6.2
(11.1) (7.4) (6.3)

Low Rate × Post -11.7 -3.5 -8.2
(13.5) (8.5) (7.9)

Information × Post 9.5 2.9 6.6
(10.2) (6.7) (6.2)

Post 0.6 -1.2 1.9
(9.1) (5.6) (6.0)

Observations 15,610 15,610 15,610
Control Mean 151.0 81.7 69.3

Notes: This table replicates panel A in Table 2 using shadow charges instead of shadow rates. The shadow charge
for a trip is equal to the shadow rate multiplied by the trip length in kilometers. Shadow charges are expressed in
Rupees and are calculated based on a peak rate of Rs. 24/Km for for all respondents.
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Table A4: Impact of Departure Time Charges on Trip Shadow Charge

(1) (2) (3) (4) (5)
Time of Day AM & PM AM AM pre peak PM PM post peak
Commuter FE X X X X X

Panel A. Full Sample

High Rate × Post -6.00* -12.98** -19.60* -2.39 -10.55
(3.10) (5.44) (10.07) (4.53) (6.60)

Low Rate × Post -3.43 -4.86 -13.31 -4.68 -4.29
(3.93) (6.92) (11.39) (5.55) (8.55)

Information × Post 1.66 -2.55 -5.92 4.19 6.28
(2.67) (4.59) (7.07) (4.06) (6.40)

Observations 43,776 16,764 7,592 18,468 7,899
Control Mean 49.49 70.74 83.87 53.44 59.88

Panel B. Regular Commuters, Home-Work and Work-Home Trips

High Rate × Post -14.29* -27.00** -44.46** 2.67 -10.17
(8.07) (11.22) (17.39) (10.71) (13.40)

Low Rate × Post -10.56 -10.71 -30.68* -10.76 -34.80
(10.53) (12.66) (16.20) (16.79) (26.84)

Information × Post 1.34 -0.63 -7.17 8.43 3.16
(5.32) (7.30) (8.59) (9.82) (11.43)

Observations 11,895 5,789 3,782 4,862 2,113
Control Mean 68.87 83.39 85.20 70.19 76.48

Panel C. Variable Commuters, All Trips

High Rate × Post -7.98 -5.25 1.04 -16.16* -25.36*
(6.05) (11.06) (20.67) (8.58) (14.65)

Low Rate × Post 0.69 -5.54 10.28 -4.08 27.66
(8.22) (17.12) (27.75) (11.76) (19.59)

Information × Post -1.73 -3.96 -1.10 -3.13 -3.07
(5.92) (9.42) (19.31) (7.40) (11.17)

Observations 8,177 2,826 961 3,432 1,439
Control Mean 37.09 49.88 61.41 46.82 49.64

Notes: This table replicates Table 3 using shadow charges instead of shadow rates. The shadow charge for a trip is
equal to the shadow rate multiplied by the trip length in kilometers. Shadow charges are expressed in Rupees and
are calculated based on a peak rate of Rs. 24/Km for for all respondents.
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Table A5: Trip Duration for Trips that Intersect or Do Not Intersect the Congestion Area

(1) (2) (3)
Trip Duration (minutes)

Route FE X X X

Trip Charged -4.81*** -3.16** -0.28
(0.98) (1.34) (1.79)

Trip Charged × Long Detour -3.66*
(1.91)

Trip Charged × Predicted Detour -0.83***
(0.29)

Observations 7,455 7,455 7,455
Control Mean 38.51 38.51 38.51

Notes: This table compares the trip duration (in minutes) of trips that intersect and trips that do not intersect the
congestion area. The sample is home to work or work to home trips of area participants on non-holiday weekdays. Each
specification includes route fixed effects. “Trip Charged” is a dummy for whether the trip intersects the congestion
area. Column (2) includes the interaction with the “Long Detour” Area sub-treatment. Column (3) includes the
interaction with detour duration (in minutes) as predicted from Google Maps.
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Table A6: Treatment Heterogeneity

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Heterogeneity

Dummy Variable K
Regular

Destination
Self

Employed
Car

Driver
Small Log

Vehicle Value Older Small
Stated α

Small
Stated β

Short
Route

Seldom
Avoid Area

Panel A. Departure Time Treatment: Trip Rate
Charges×Post×(K = 0) -1.25 -2.74** -2.89** -5.81*** -1.06 -3.41** -5.04*** -2.85*

(2.17) (1.30) (1.35) (1.63) (1.90) (1.52) (1.92) (1.47)
Charges×Post×(K = 1) -4.11*** -7.01*** -4.69** -0.85 -4.70*** -4.26** -2.68 -3.95**

(1.37) (2.68) (2.26) (1.59) (1.47) (1.96) (1.66) (1.77)
Observations 43,776 43,170 43,776 43,776 43,776 40,783 39,639 43,776
Participants K = 0 119 407 350 280 175 252 218 249
Participants K = 1 378 82 147 217 322 205 228 248
Control Mean K = 0 29.71 32.34 32.16 32.57 30.90 32.25 32.43 30.73
Control Mean K = 1 33.34 32.73 33.06 32.24 33.32 33.11 32.68 34.59
P-value interaction 0.27 0.15 0.50 0.03 0.13 0.73 0.35 0.63

Panel B. Departure Time Treatment: Number of Trips Today
Charges×Post×(K = 0) -0.40* -0.10 -0.14 -0.36** -0.09 0.03 -0.15 -0.10

(0.24) (0.13) (0.15) (0.15) (0.20) (0.19) (0.15) (0.20)
Charges×Post×(K = 1) -0.09 -0.34 -0.20 0.11 -0.19 -0.20 -0.16 -0.28*

(0.14) (0.35) (0.19) (0.19) (0.15) (0.16) (0.18) (0.15)
Observations 15,610 15,367 15,610 15,610 15,610 14,416 14,073 15,610
Participants K = 0 119 407 350 280 175 252 218 249
Participants K = 1 378 82 147 217 322 205 228 248
Control Mean K = 0 2.98 2.78 3.01 2.84 2.87 2.93 2.79 3.20
Control Mean K = 1 2.94 3.70 2.82 3.10 3.00 3.02 3.11 2.68
P-value interaction 0.26 0.52 0.80 0.06 0.69 0.37 0.94 0.46

Panel C. Area Treatment: Trip Shadow Rate
Treated×(K = 0) -11.91*** -11.54*** -11.29*** -7.04** -12.92*** -9.65** -11.46*** -9.43***

(2.49) (2.56) (2.80) (3.56) (2.97) (4.04) (2.81) (2.74)
Treated×(K = 1) -7.94** -12.73*** -12.54*** -14.18*** -10.19*** -13.07*** -12.66*** -14.19***

(3.58) (3.95) (3.38) (2.66) (3.36) (2.73) (3.38) (3.26)
Observations 20,367 20,594 20,594 20,594 18,741 18,260 20,594 20,594
Participants K = 0 190 163 133 73 100 90 123 110
Participants K = 1 32 63 93 153 104 109 103 116
Control Mean K = 0 47.03 44.10 46.14 39.79 41.99 43.13 46.99 34.43
Control Mean K = 1 37.31 46.75 42.84 47.35 46.56 45.21 42.07 53.00
P-value interaction 0.36 0.80 0.78 0.11 0.54 0.48 0.79 0.27

Panel D. Area Treatment: Number of Trips Today
Treated×(K = 0) 0.21** 0.08 0.15 0.15 0.19 0.18 0.16 0.32**

(0.09) (0.10) (0.10) (0.15) (0.13) (0.12) (0.13) (0.13)
Treated×(K = 1) -0.07 0.40** 0.20 0.18* 0.14 0.19 0.21* -0.00

(0.24) (0.16) (0.14) (0.10) (0.12) (0.12) (0.11) (0.10)
Observations 8,745 8,878 8,878 8,878 8,056 7,874 8,878 8,878
Participants K = 0 204 174 141 79 108 95 132 121
Participants K = 1 35 69 102 164 110 118 111 122
Control Mean K = 0 2.28 2.55 2.44 2.43 2.51 2.32 2.80 2.38
Control Mean K = 1 3.80 2.37 2.58 2.53 2.45 2.58 2.17 2.61
P-value interaction 0.29 0.09 0.74 0.88 0.79 0.96 0.76 0.05

Notes: This table reports heterogeneous experimental response by observable characteristics. All heterogeneity variables K are dummy
variables. They are: whether the commuter has a stable destination in column 1, whether the commuter’s vehicle value is below median
in column 4, whether the commuter is at least 35 years old in column 5, whether the stated preference value of time (α) is below
median in column 6, whether the stated preference schedule cost (β) is below median in column 7, whether the daily average kilometers
travelled pre-experiment is below median in column 8, and whether the frequency of intersecting the congestion area pre-experiment is
below median in column 9.
Data. Vehicle values are scrapped from a global online marketplace and matched by vehicle type, brand and model. Stated preferences
are from a phone survey. Value of time is measured by asking for the fee that would make commuters indifferent between their usual
travel time plus the fee, or a longer travel time. The measure of schedule costs is computed asking by how much commuters would
advance (or delay) their departure time if each minute leaving earlier (or later) was less expensive. A commuter has "small stated β"
if the absolute change in departure time is above median. The stated preference values are residuals after controlling for morning or
evening and cheaper earlier or cheapear later effects.
Specification. Each regression includes commuter fixed effects, study period fixed effects interacted with each group. The last line in
each panel reports the p-value from the test of whether the two groups (K = 0 and K = 1) responded identically to the experiment.
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Table A7: Structural Estimation Robustness Checks

(1) (2) (3) (4) (5) (6)
Value of time
α (Rs/hr)

Schedule cost early
βE (Rs/hr)

Schedule cost late
βL (Rs/hr)

Logit inner σ
(dep. time.)

Logit outer µ
(route)

Probability
to respond p

1,187.2 345.2 1,000 27.3 37.3 0.47
1,092.3 322.9 8,000 31.9 36.8 0.47

Notes: This table replicates Table 7 using different assumptions for the late schedule cost. In Table 7 the late cost is
fixed at βL = Rs. 4, 000; here it is fixed at βL = Rs. 1, 000 and βL = Rs. 8, 000.

Table A8: Numerical Model Identification Check

(1) (2) (3) (4) (5)

α̂ β̂E σ̂ µ̂ p̂

Value of time α 1.12***
(0.04)

Penalty early βE 1.00***
(0.17)

Logit inner σ 1.41**
(0.55)

Logit outer µ 1.08***
(0.03)

Probability to respond p 1.05***
(0.03)

Observations 90 90 90 90 90
R2 0.92 0.43 0.06 0.92 0.90

Notes: This table shows numerically that the GMM estimation is able to recover model parameters. To construct
it, I drew 100 random sets of model parameters, and for each set I simulated the model to generate choice data
corresponding to those parameters, and estimated the structural model on the simulated data. Each column in
this table reports the results from a regression of the estimated parameter on the original parameter. Each random
parameter θ0 ∈ {α, βE , βL, σ, µ, p} was drawn independently from a uniform distribution U

(
0.3 · θ̂, 2 · θ̂

)
where θ̂

is the GMM parameter estimate from Table 7. The simulated data covered five times more commuters than the
real data. When running GMM, the random initial conditions did not depend on the original parameters, and the
late schedule cost was fixed at βL = Rs. 4, 000 as in Table 7. Ten observations where the estimated parameters had
extreme values were dropped; results are essentially unchanged with all 100 observations, except for column (3) where
the coefficient becomes 0.53 (0.78). Robust standard errors in parentheses. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01
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Table A10: Road Technology Trip Level Regressions

(1) (2) (3) (4)
Dependent Variable: Trip Delay (min/km)
Commuter FE X X

Traffic Volume at Trip Departure Time 0.87*** 0.84*** 0.70*** 0.70***
(0.04) (0.03) (0.04) (0.04)

Trip Length (km) -0.05*** -0.01**
(0.00) (0.00)

Constant 2.47*** 2.97*** 3.11*** 3.17***
(0.06) (0.05) (0.06) (0.06)

Observations 61,234 61,234 61,234 61,234

Notes: This table reports trip-level quantile (median) regressions of the trip delay, defined as trip duration in minutes
divided by trip length in kilometers, on the average traffic volume at the trip departure time and trip length. The
sample is all weekday trips more than 2km in length, without any stops along the way, and with a trip diameter to
total length ratio above 0.6 (the 25th percentile). Columns 3 and 4 first residualize the trip delay on commuter fixed
effects. Standard errors in parentheses are clustered at the commuter level. ∗p ≤ 0.10, ∗∗p ≤ 0.05, ∗∗∗p ≤ 0.01

Table A11: Experimental Design (strata, sub-treatments, timing)

Strata Congestion Charge Treatments Timing
Departure Time (DT)

Sub-treatments
Area

Sub-treatments(
Area eligible
Area ineligible

)
×(
Car

Motorcycle

)
×(

High Daily KM
Low Daily KM

)


High Rate
Low Rate
Information
Control


(
Low Rate
High Rate

)
×(

Long Detour
Short Detour

) (
DT First
DT Last

)
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