

Economic Development and Human Capital in Uganda:

A case for investing more in Education

Main Messages

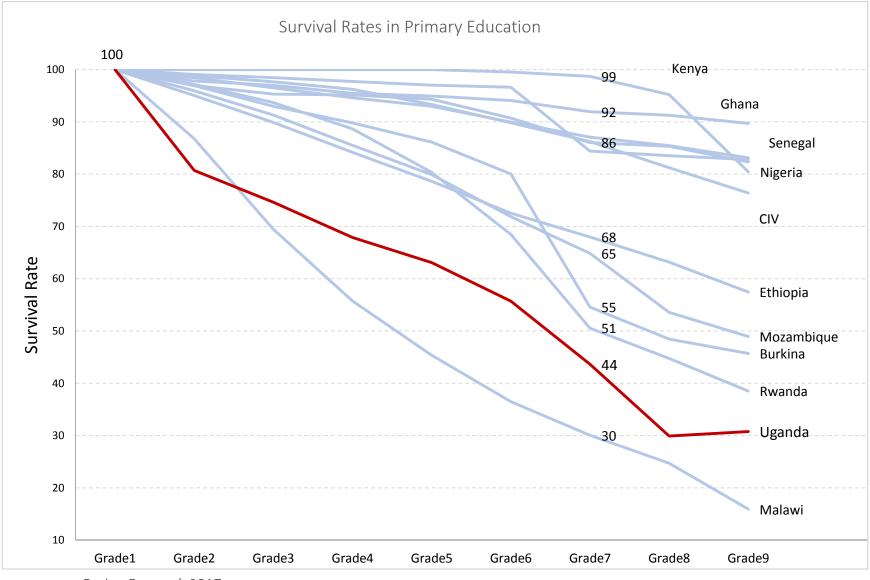
- 1. Chances for kids to attend school will decline by 2025
- 2. Learning outcomes are below expectations
- 3. A series of policies are proposed to reverse these trends
- 4. Significant increase in public funding is required

Human Capital Index: a key determinant of economic development, productivity and wealth

Education

A child born in Uganda today will be only 38 % as productive when she grows up as she could be if she enjoyed complete education and full health

Schooling

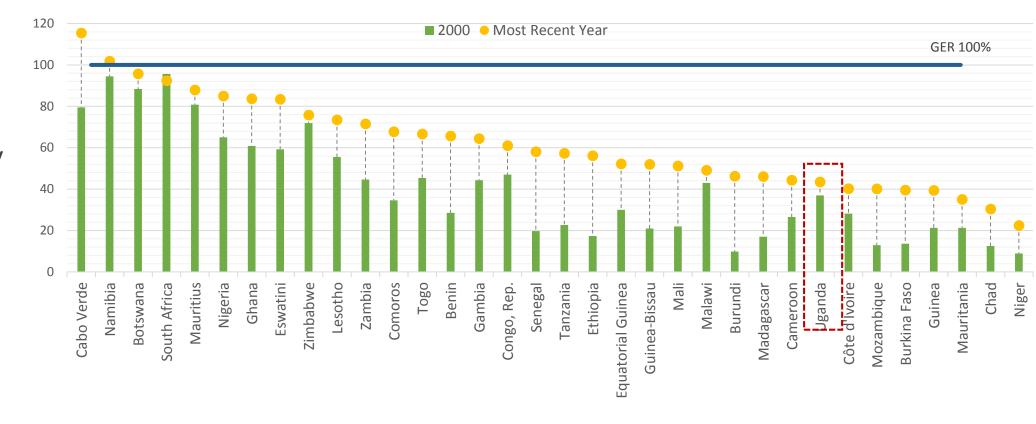

A child born today is expected to complete only 7 years of education by age 18, compared to a regional average of 8

Learning

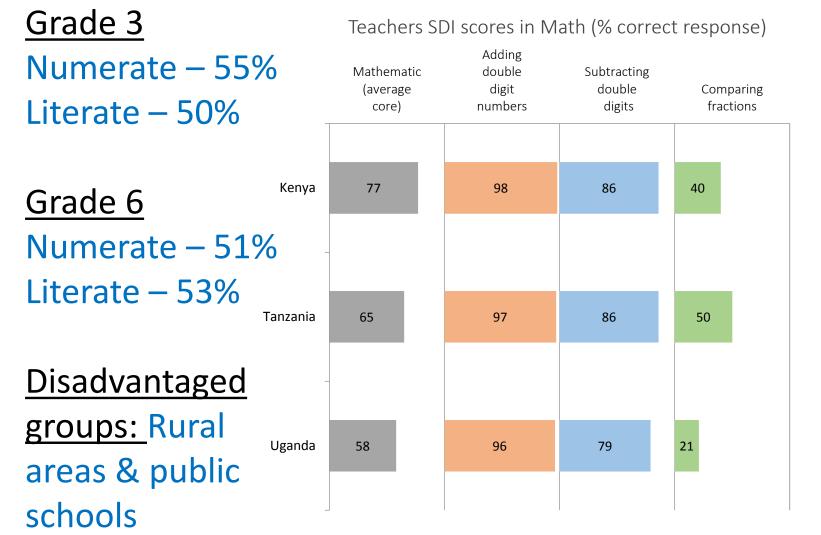
This is equivalent to only 4.5 years of learning, with 2.5 years 'lost' due to poor quality

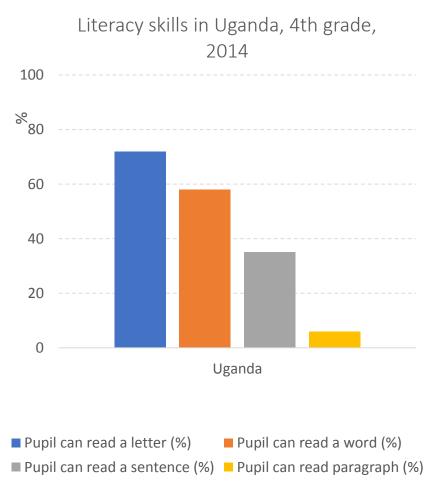
High drop outs throughout primary education

1.4 million students
drop out
from primary schools
every year



Facing Forward, 2017


Low enrolment in lower secondary education


Lower-Secondary Gross Enrollment Ratios of 34 Sub-Saharan African Countries

Lower secondary access is extremely low and has stagnated for two decades

Low quality of learning and teaching

Uganda needs to increase education budget

 Uganda's public education expenditure, as a share of total public expenditures, dropped from 15 to 10% during 2012-18

Uganda's spending is one of the lowest in the region –
 average is 16% and growing

Per capita spending is extremely low

Median Government Expenditure Per Pupil on Primary and Secondary Education, 2014

Constant 2013 US\$, purchasing power parity

Regions / Countries	Primary	Secondary	Multiple of Secondary to Primary
Sub-Saharan Africa (all countries)	208	412	1.98
Sub-Saharan Africa (countries with 6-year primary and 3-year lower secondary)	366	817	2.23
Uganda	104	318	3.06
South Africa	2240	2532	1.13

Policies and reforms required at PRIMARY LEVEL

Objective: full completion rates of primary education, while improving quality, by 2025.

1. Expand pre-primary education and early childhood education programs (enrollment of 50%)

2. Consistently implement existing automatic promotion policy with accompanying quality-enhancement measures

3. Improve transition to lower secondary

Policies and reforms required at LOWER SECONDARY LEVEL

Objective: Increasing the lower secondary education enrollment rate by 2025, while reducing geographical and gender equity

4. Building schools in a cost-efficient manner: high-end model is neither required nor sustainable

5. Rolling out a new curriculum for lower secondary education

6. Implement robust school safety measures, including preventing early marriage and pregnancies

7. Adopt transparent policies toward financing from households and for the non-state sector

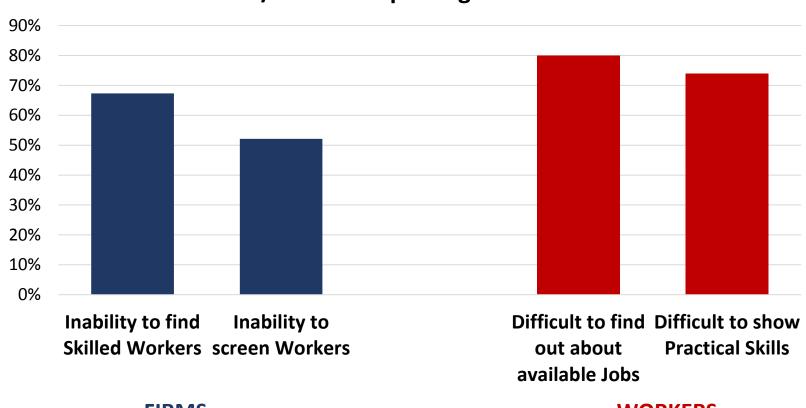
Thank you!


"Skills Mismatch in the Labour Market: How can Educational Institutions help to equip the Labour Force with Skills and raise Labour Productivity?"

Anna Vitali (UCL)

Economic Growth Forum

Lack of supply and limited information on skills are key constraints



FIRMS

Even when skilled, workers find it difficult to match with firms

% firms/workers reporting as a constraint

FIRMS WORKERS

Three ways to teach workers skills

- 1. Formal Education
- 2. Vocational Training (VT)
- 3. Firm Training (FT)

- Target individuals transitioning into the labor market
- Provide sector-specific skills

And three ways to improve worker-firm matching

1. Vocational Training

Provides skills that are certifiable to new potential employers

2. Firm Training

Allows learning about worker / firm quality during subsdized training period

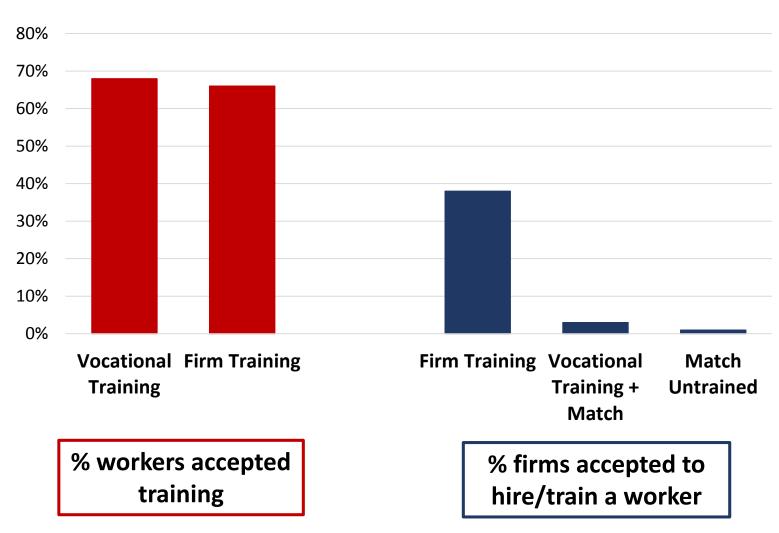
3. Job Search Assistance (JSA)

Reduces cost of searching for potential workers / job vacancies

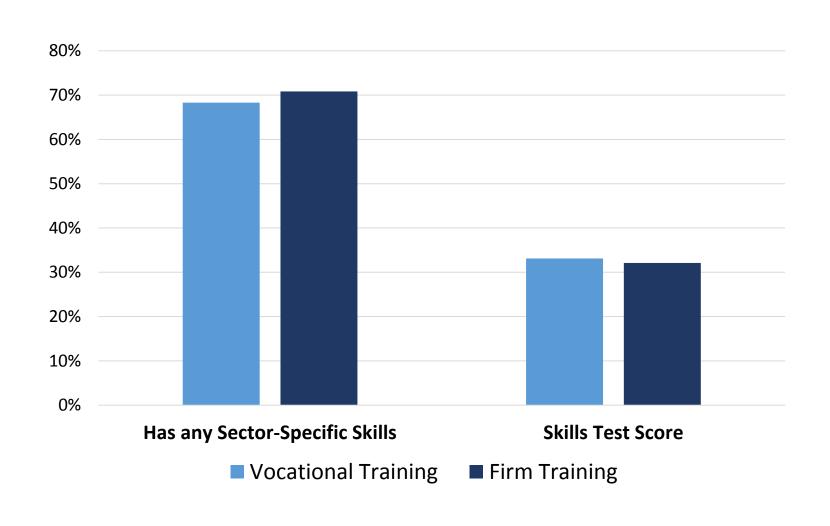
Our Experiment

 Vocational Training: 6 months sector-specific training in accredited vocational training institutes

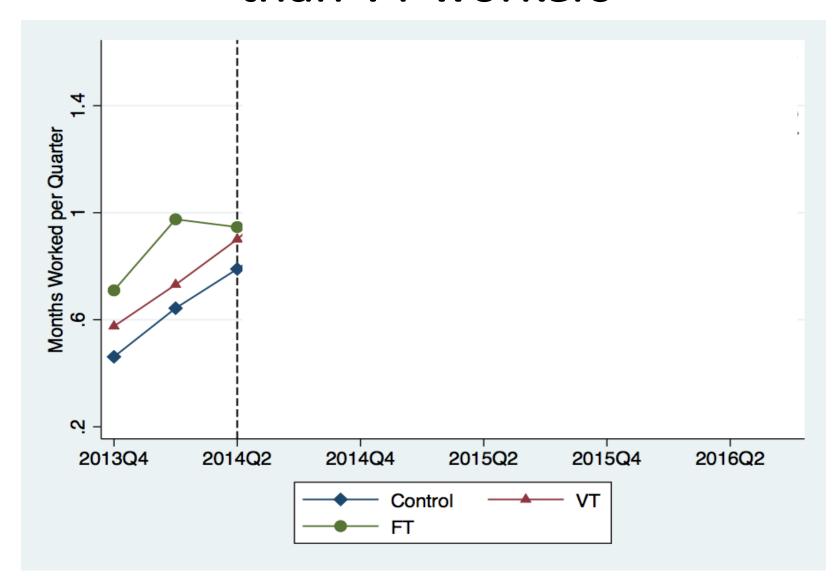
• Firm Training: offer of 6 months wage subsidy to SMEs to hire and train one worker on-the-job

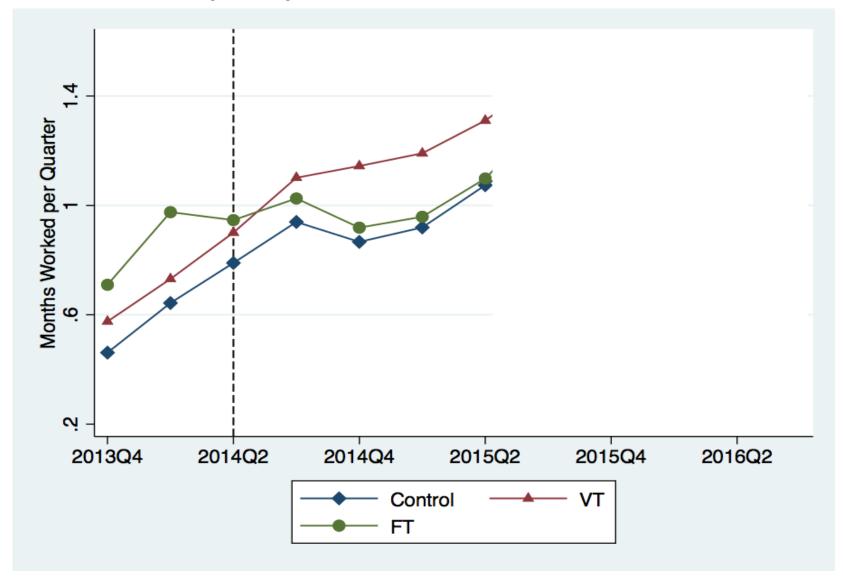

- Matching: Firms presented with a list of workers
 - Willing to work and vocationally trained (Vocational training + Match)
 - Willing to work but untrained (Match Untrained)

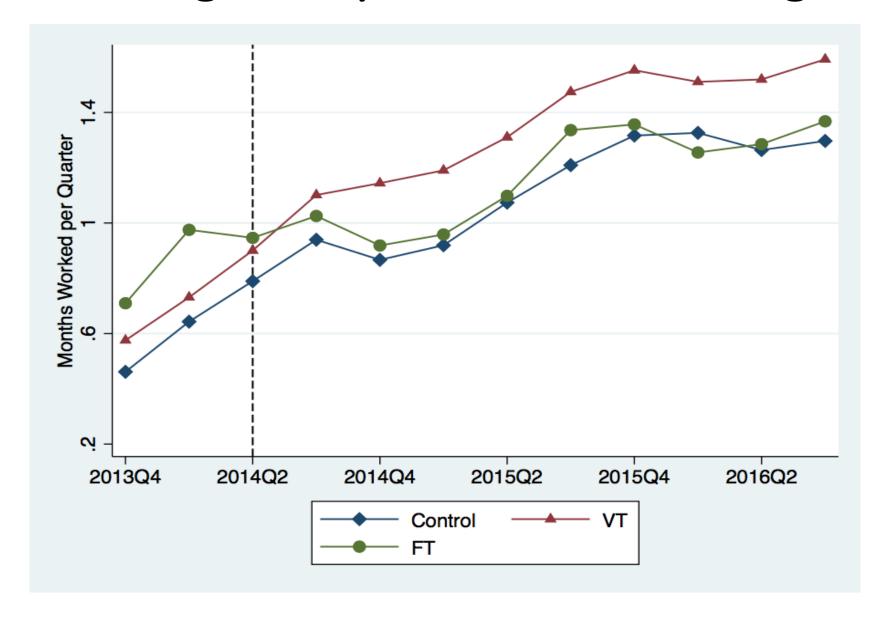
Workers are very interested in learning skills



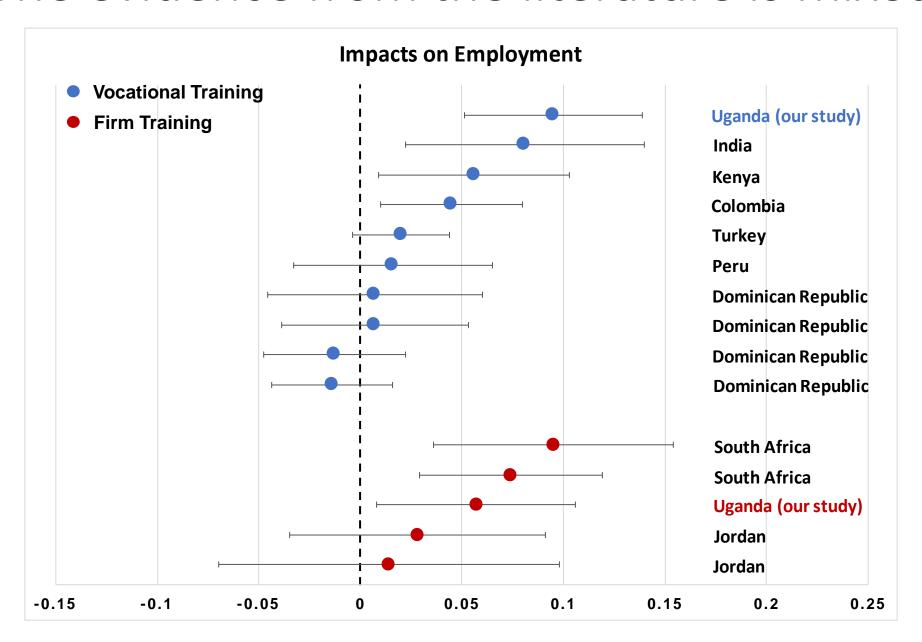
% workers accepted training


But firms are only willing to train workers if subsidized


VT and FT are both effective at increasing workers' skills


FT workers find employment more quickly than VT workers

Over time FT converges to the control group, while employment rates for VT increase


And diverge away from the control group

Overall, VT is more effective than FT at tackling youth unemployment

- VT and FT workers acquire a similar level of skills
 - Once employed, both types of workers are equally productive
- Key difference between treatments is certifiability of skills
 - When unemployed, VT workers are more likely than FT workers to find a job
- Extremely important for policy purposes to track outcomes over the long-run

The evidence from the literature is mixed

VT: What did we learn?

Addressing Worker Take-up and Drop-out

- Our study: staggered payment structure to VTIs to ensure completion
- Our study: lower take-up among women childcare provision?
- o India: monthly deposit only repaid to trainees unpon completion

Matching Demand for Skills

- o Our study: targeted sectors that jointly employ 23% of Ugandan youth
- Kenya: sectors in which growth was expected according to the national development plan
- <u>Kenya</u>: private employers involved in defining competences and developing training plans
- Kenya, Colombia, Dominican Republic, Peru, Bangladesh: combination of classroom and on-the-job training

Ensuring Certifiability of Skills

- Our study: accredited VTIs, reputation of high-quality
- <u>Turkey</u>: larger impacts for private vs.public providers

FT: What did we learn?

Addressing Firm Take-up

- Argetina, South Africa: no take-up due to labor regulations associated with new hires
- Our study, Jordan, Sri Lanka: take-up 24-50%, mostly among less productive firms – credit constraints key limiting factor

Monitoring Training Provision

- Our study: close monitoring through attendance registry and random spotchecks
- Our study: explicit contractual agreement establishing payback of entire subsidy if worker not trained

Ensuring Certifiability of Skills

- Our study, Jordan, Sri Lanka: workers leave firms after the end of the subsidy; no long-term effect on employment as skills not certifiable
- Uganda, South Africa: high returns of certifying workers' skills / work experience through formal certificates and reference letters

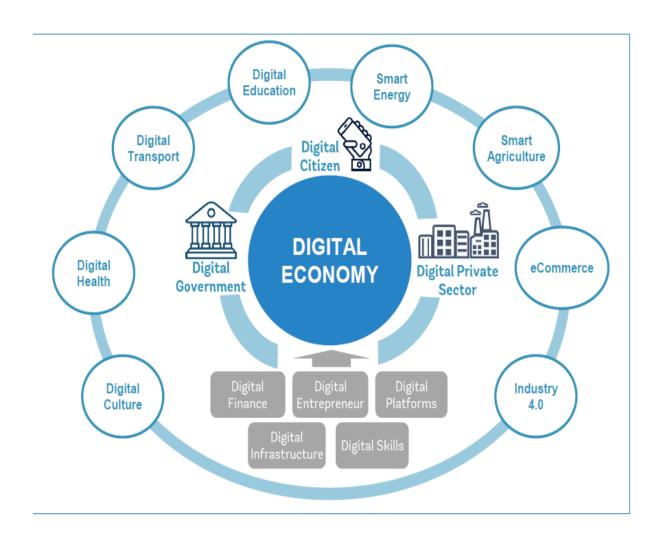
Policy Recommendations

1. Incentivize worker and firm take-up

2. Provide skills that are in demand

3. Monitor skills provision

4. Ensure skills certifiability


Human Capital Requirements in a Digital Economy

Outline

- Description of the Digital Economy
- Skills needed
- Opportunities to acquire those skills
- Level of preparedness
- What is required

Digital Economy – the future is digital.

Examples in Uganda

- Finance
- Agriculture
- E-government or eservices

Every African individual, business and government is Digitally Enabled* by 2030

DIGITAL INFRASTRUCTURE

Universal Internet network coverage

Affordable Internet for All at less than 2% of GNI per capita

DIGITAL SKILLS

All 15 year old students with basic 'digital skills' competencies

100,000 graduates in advanced digital skills programs annually

DIGITAL PLATFORMS

Doubling of Online Services Index rating for all Governments

All individuals are able to prove their identity digitally

At least 50% of the population regularly uses the Internet to access Government or Commercial services

DIGITAL FINANCIAL SERVICES

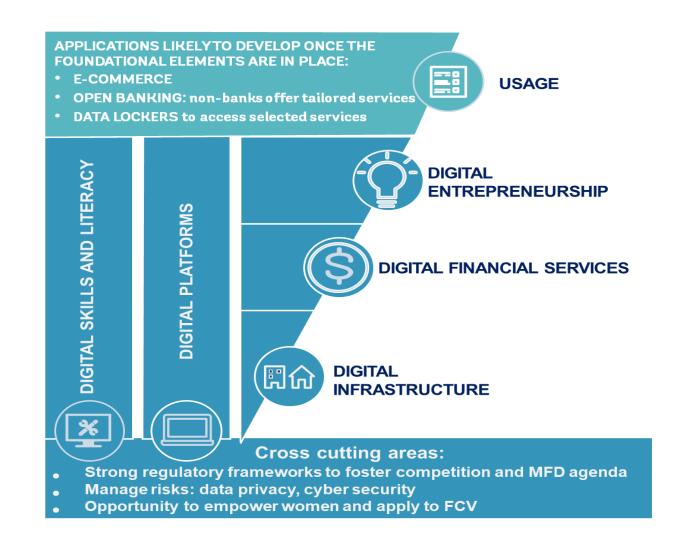
Universal Access to Digital Financial Services

Africa-wide payments infrastructure/platform in place

DIGITAL ENTREPRENEURSHIP

Tripling the number of new digitallyenabled businesses created annually

Financing for Venture Capital to reach .25% of GDP


^{*} Being "Digitally Enabled" implies having digitally-enabled access to services, markets, opportunities.

The WBG's Digital Adoption Index may be a relevant indicator for measuring this, complemented by the headline measures above for the 5 foundations

An Ecosystem Approach To Building the Digital Economy

For a successful and inclusive digital economy, African countries would require building key foundational elements of a digital economy.

These foundations are **synergistic** and require the use of public and private sector solutions.

What Skills Are Needed

Current Status: Human Capital Index:

a key determinant of economic development, productivity and wealth

Education

A child born in Uganda today will be only 38 % as productive when she grows up as she could be if she enjoyed complete education and full health

Schooling

A child born today is expected to complete only 7 years of education by age 18, compared to a regional average of 8

Learning

This is equivalent to only 4.5 years of learning, with 2.5 years 'lost' due to poor quality

Human Capital: Building Digital Skills of Tomorrow Can Fuel the Digital Economy

Employers across Africa note

skill gaps as a major constraint to their ability to compete in the global digital economy. A shortage of technical talent impedes productivity and innovation in African businesses.

Technological adoption and innovation depend on tech-savvy skills to help drive innovation.

Enrollment in education has increased in Africa, but basic numeracy and literacy indicators remain low.

Could HCI could be expanded to cover Digital Literacy/Skills?

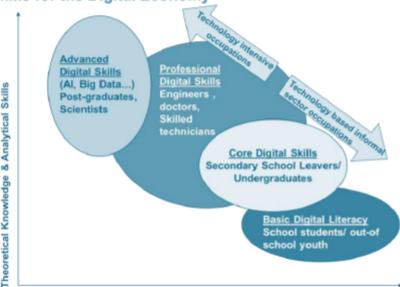
Digital skills pyramid

e-Business Skills

Business skills + technology skills: being able to identify how digital technologies can create new business opportunities, new business models, or new ways of doing exisisting business

Digital Specialist Skills

Skills required for researching, developing, designing, producing, installing, managing, and maintaining ICT tools and systems


Digital User Skills

Skills required for the effective use of ICT tools, systems, and devices to support non-ICT functions, incl. the use of internet, applications, and software

Source: Entrepreneurship in the Digital Economy Report (WB, 2017)

Skills for the Digital Economy

Technological Skills & Competencies

DOMAINS, COMPLEXITY, PROFICIENCY and EDUCATION LEVELS

Cognitive Domain	Remembers	Understands	Evaluates and applies knowledge	Deep theoretical knowledge, high analytical skills. Ability to create
Autonomy / Complexit y of tasks	Simple tasks with guidance	Well defined, routine and non-routine tasks; needs some guidance	Uses technology, can provide guidance to others in range of tasks and new situations	Develops new products, services, applications. Proposes new ideas for complex tasks and resolves complex problems
Proficienc y Levels	FOUNDATION	INTERMEDIATE	ADVANCED	HIGHLY SPECIALIZED

NEW COURSES ARE REQUIRED and NEED TO BE TAUGHT DIFFERENTLY

Digital Skills Level

	INTERMEDIATE	ADVANCED	HIGHLY SPECIALIZED
Who	All students in higher education/ TVET, irrespective of course	Undergraduate students in science, engineering, mathematics, technology courses	Postgraduate students in applied sciences, engineering, technology
What	Online collaboration, information literacy, data security, using databases, image editing, etc	Computing skills, familiarity with basic algorithms	Sophisticated programming skills; knowledge of complex algorithms

The indicators that could be used are below:

Percentage of 15-year old who have basic digital skills (target: all 15-year old by 2030)

• Number of graduates produced annually with advanced digital skills (target: 100,000 annually by 2030)

A RANGE OF EDUCATIONAL TECHNOLOGIES CAN BE USED

Formal Education: A Taxonomy of Education Technologies By Cluster

How Prepared Are We?

INDICATORS USED TO CLUSTER (29 COUNTRIES)

ACCESS

Mobile cellular subscriptions (per 100 people)

Active mobile-broadband subscriptions per 100 inhabitants

Households w/ personal computer, %

Fixed broadband subscriptions (per 100 people)

International Internet bandwidth, kb/s per user

SKILLS/CAPABILITIES

Gross enrolment ratio, lower secondary, both sexes (%)

Gross enrolment ratio, upper secondary, both sexes (%)

Gross enrolment ratio, tertiary, both sexes (%)

Adult literacy rate, population 15+ years, both sexes (%)

AFFORDABILITY

PRICING AND TAXATION

Price of Mobile-broadband, prepaid handset-based (500 MB)

as % of GNI p.c.

Tax rate include in Mobile-Broadband (%)

USE

BANKING

Adults with Bank Account (% age 15+)

Made or received digital payments in the past year (% age 15+)

ONLINE CONNECTIVITY

UN Online Service Index-OSI (0-1)

IDENTIFICATION

Formal ID coverage (%)

INDICATORS AND SECTORS

Dimensions		ICT indicators	Source
Access	1	Mobile cellular subscriptions (per 100 people)	World Bank (WB)-World Development Indicators (WDI) from (International Telecommunications Union
			(ITU,) World Telecommunication/ ICT (WTI) Report and database (2015)
	2	Active mobile-broadband subscriptions per 100 inhabitants	WB TCData 360 (Open Trade and Competitiveness Data), taken from ITU WTI Report and database
	3	Households w/ personal computer, %	World Economic Forum (WEF) Global Information Technology Report 2016, taken from ITU, WTI
			Report and Indicators Database (2015)
	4	Fixed broadband subscriptions (per 100 people)	WB TCData 360, taken from ITU, WTI Report and database
	5	International Internet bandwidth, kb/s per user	WEF Global Information Technology Report 2016, taken from ITU WTI Report and Indicators Database
			(2015)
Price and Taxing	6	Price of Mobile-broadband,	ITU ICT Prices 2017 Report (Table 3)
		prepaid handset-based (500 MB) as % of GNI p.c.	
	7	Tax applicable on mobile service (as % of total sale sale)	ITU ICT Prices 2017 Report (Table 3)
Banking	8	Adults with Bank Account (% age 15+)	The WB Global Findex 2017 Database
	9	(*) Made or received digital payments in the past year (% age 15+)	
Digital Adoption	10	(*) UN Online Service Index-OSI (0-1)	UN E-Government Development Database (UNeGovDD), ca 2018
	11	(*) Formal ID coverage (%),	WB Identification for Development (ID4D) Global Database, ca2018

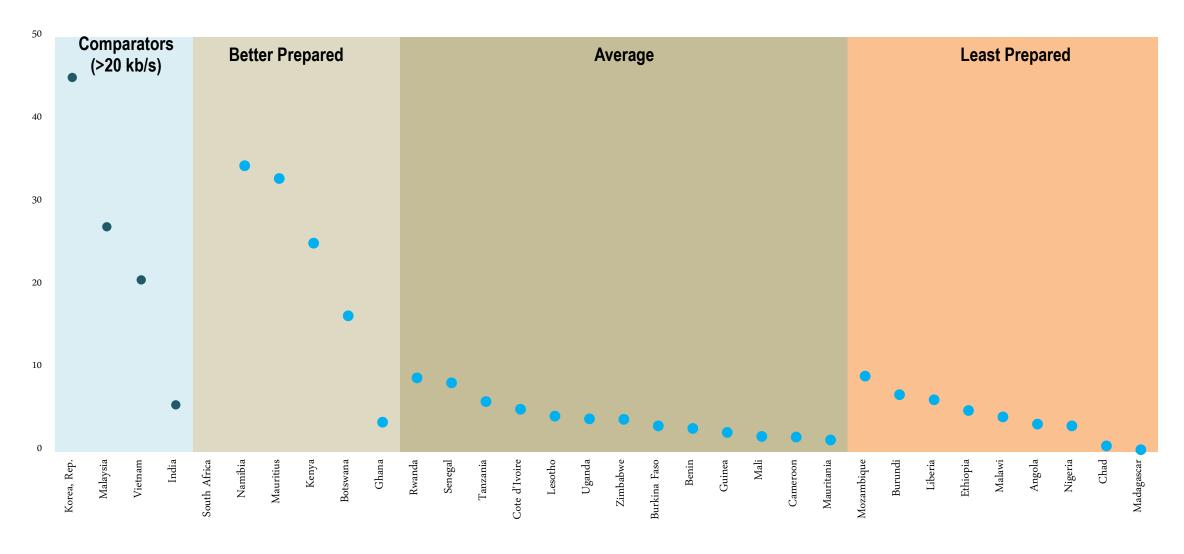
		Education Indicators	Source
Skills	1	Gross enrolment ratio, lower secondary (%)	UIS.Stat Database Release September 2018
	2	Gross enrolment ratio, upper secondary, (%)	UIS.Stat Database Release September 2018
	3	Gross enrolment ratio, tertiary (%)	UIS.Stat Database Release September 2018
	4	Adult literacy rate, population 15+ years (%)	UIS.Stat Database Release September 2018

COUNTRY CLUSTERING

Using 11 ICT indicators

Using 11 ICT indicators and 4 education indicators

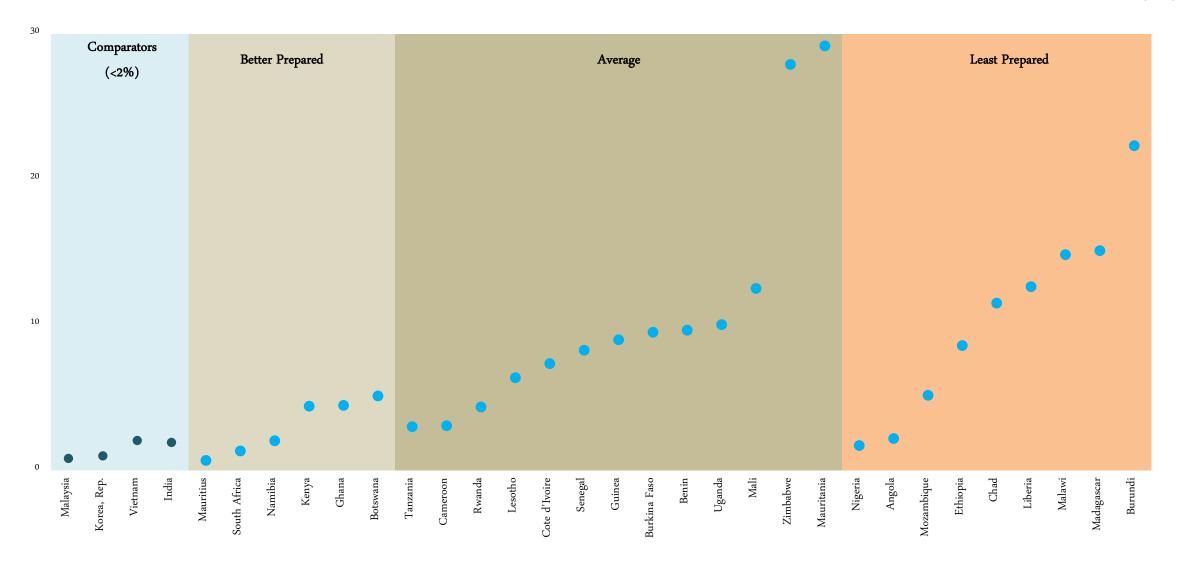
3 Clusters using 11 ICT indicators

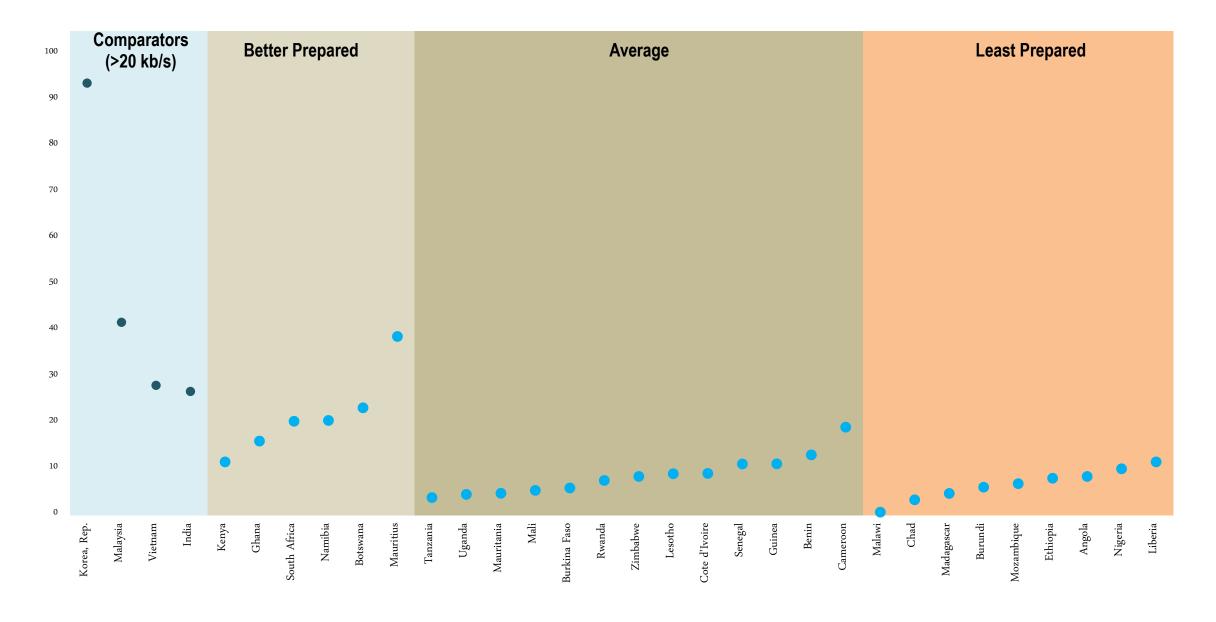

Outlier	Better Prepared	Least	Prepared
South Africa	Botswana	Angola	Malawi
	Cote d'Ivoire	Benin	Mali
	Gabon	Burkina Faso	Mauritania
	Ghana	Burundi	Mozambique
	Kenya	Cameroon	Nigeria
	Mauritius	Chad	Rwanda
	Namibia	Ethiopia	Senegal
		Guinea	Tanzania
		Lesotho	Uganda
		Liberia	Zambia
		Madagascar	Zimbabwe
1	7		22

3 Clusters using 11 ICT indicators and 4 education indicators

Most Prepared	Average	Least Prepared
Botswana	Benin	Angola
Ghana	Burkina Faso	Burundi
Kenya	Cameroon	Chad
Mauritius	Cote d'Ivoire	Ethiopia
Namibia	Guinea	Madagascar
South Africa	Lesotho	Malawi
	Rwanda	Mozambique
	Tanzania	Nigeria
	Uganda	Liberia
	Mauritania	
	Mali	
	Senegal	
	Zimbabwe	
6	13	9

INTERNATIONAL INTERNET BANDWIDTH, KB/S PER USER - COUNTRIES CLUSTERED BY ICT AND EDUCATION INDICATORS




PRICE AS % OF GROSS NATIONAL INCOME PER CAPITA –

AFFORDABILITY TARGET IS 2 %

Not in graph: Congo, Dem. Rep. (44) Guinea-Bissau (103) Somalia (130)

TERTIARY GROSS ENROLMENT RATIO, ca 2017 — Median is 9 percent in SSA

1: AFRICA ARISEN

Young entrepreneurs access markets

Farmers use

technology

Education quality

improves

2: AFRICA FOR AFRICA (2040)

Small manufacturers emerge

Agriculture

improves

AR improves tourism and

entertainment

AI and VR enhance knowledge sharing

3: AFRICA ADRIFT

Global market changes

Climate change hits Africa hard

Education remains a challenge

Majority of people work low-paying informal iobs

Poverty is difficult to escape

Crime runs high

What is required?

- Training at basic literacy
- Training in basic digital literacy
- Human centered design
- Address gender barriers to participation
- Advanced high level skills
- Collaboration between both public and private sectors on market demands and supply of skilled people.
- Collaboration between various Ministries as per mandate.
- Ensuring institutions are teaching a relevant curriculum
- Focus on innovation and entrepreneurship.
- Beyond the education sector government will have to ensure increased connectivity and affordability.