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Abstract 
Property valuation models can achieve mass valuation transparently and cheaply. This paper 
develops a number of property valuation models for Kigali, Rwanda, and tests them on a 
unique dataset combining remote sensing data and infrastructure and amenities data for 
properties in Kigali, with sales transaction data for 2015. We use a machine learning approach, 
Minimum Redundancy Maximum Relevance, to select from 511 features those that minimise 
ten-fold cross validated Mean Absolute Error. Cross validated diagnostics are used to 
eliminate overfitting given that our goal is to generate a model that can be used to extrapolate 
value estimates out of sample. The performance of Ordinary Least Squares (OLS) is compared 
to that of a range of spatial models. Our best model covering all taxed parcels, achieves a cross 
validated R2 of 0.600 and a cross-validated Mean Absolute Error of 0.541. We find that 
locational variables relating to connectivity are most consistently important for overall 
property value across different models. We also attempt to develop the most accurate method 
of calculating building values. Our recommendations for future property valuation in 
Rwanda are: i) Given that the goal is extrapolation of the model to estimate the value of all 
properties outside of the sample of transacted properties, it is essential to eliminate overfitting 
as far as possible. This can be done by optimising cross validated diagnostics such as Mean 
Absolute Error and R2. ii) The use of spatial models is desirable, in terms of out-of-sample 
accuracy, if and only if extensive testing of various spatial models alongside OLS on the basis 
of cross validated diagnostics, is possible; such models often overfit in sample but do not 
always outperform OLS out of sample. iii) Ideally a Computer Assisted Mass Appraisal would 
help determine full property taxes or land taxes, and not only building taxes, given that it is 
more accurate at estimating full property values or land values than it is at finding building 
values. Building values are also not directly observable and thus it is impossible to assess the 
accuracy of our imputed building value estimates.  iv) Additional structural building data on 
variables such as building materials and numbers of rooms, which the Government of 
Rwanda plans to collect, would improve model accuracy. 

1. Introduction 
Property valuation is a valuable tool for effective tax revenue collection, but traditional 
valuation methods are expensive, time consuming, hard to independently verify, and 
vulnerable to corruption. This paper develops a number of property valuation models for 
Kigali, Rwanda, and tests them on a unique dataset combining remote sensing data for 
buildings in Kigali, with sales transaction data for 2015. We use machine learning techniques 
to select a model from among a large number of variables and ensure that the identified model 
is capable of generalising to out of sample properties. Specifically we employ Minimum 
Redundancy Maximum Relevance (mRMR) to select the variables that best predict property 
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price data using Ordinary Least Squares (OLS) for parameter estimation and an out-of-sample 
evaluation. A key innovation is using cross-validation both to avoid overfitting and to obtain 
accurate estimates of performance. We employ this approach to estimate a model for the 
whole of Kigali province. We then estimate a range of spatial models based on the variables 
selected by mRMR and compare their performance with the benchmark OLS model. 

Rwanda is one of the most densely populated countries in Africa and is urbanising rapidly 
from a low base of 16.5% (National Institute of Statistics Rwanda, 2012). The capital, Kigali 
has a fast-growing population which was 1.1 million in 2012 (National Institute of Statistics 
Rwanda, 2012) but is likely to grow to 2.5 million by 2032 (Bower and Murray 2019). Land and 
building values are increasing fast, and capturing some of the growth in these values will be 
vital to fund infrastructure to support the growing population. 

Rwanda is of interest for two reasons. As Ali et al. (2018) note, it was the first African country 
to complete a nationwide land registration programme, helping to establish a complete and 
fully digitised legal cadaster. Secondly, Rwanda recently introduced a property tax law which 
came into effect on 1st January 2019, which moves from a “flat” rate per square metre to a rate 
based on building values, although land is still taxed at a flat rate decided at the local level. 
Computer Assisted Mass Appraisal (CAMA) is mentioned as a possibility for detecting 
inappropriately low building values in the new property tax law, with the intention to 
introduce it in January 2020. There is an opportunity to use the complete cadastral data to 
develop a CAMA that can support the implementation of the new property tax law either by 
validating self declarations of building value to detect under-valuation, or by classifying 
buildings into tax bands. The models in this paper could provide a prototype for a CAMA 
model which uses more up to date independent variable data. The model in this paper, or an 
updated version, could also be used to estimate the revenue potential of the new property tax 
law. 

2. Literature Review 
Hedonic pricing theory, which posits that price reflects certain internal and external utility-
bearing characteristics of a product, was introduced in a seminal paper by Rosen (1974). 
Spatial variables were then increasingly incorporated into various hedonic regression 
analyses on land and property valuation. Harrison and Rubinfeld (1978) estimated the impact 
on housing prices of spatial variables such as weighted distance to employment centres and 
accessibility to radial highways, as well as air pollution and other variables. Shonkwiler and 
Reynolds (1986) used hedonic price models on distance and land use variables to analyse land 
prices in the urban fringe. Heikkila et al. (1989) found that simple central business district 
(CBD) gradient models are not sufficient to predict these values, especially in polycentric 
cities. Urban structures matter and spatial patterns have a distinct influence on accessibility, 
and economic and social interactions (Anas et al. 1998). In 1996, Wyatt published his results 
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on property valuation using a Geographic Information System (GIS) for the geospatial 
analysis on accessibility to the road network. 

The literature on modelling land values, housing values, or both, contains a range of 
characteristics, especially locational characteristics, of properties, that turn out to be 
statistically significant predictors: land-use, topography and environment (Heikkila et al. 
1989, Srour et al. 2002, Demetriou 2016, Kim and Kim 2016, Ai 2005, Ali et al 2018, Jayyousi et 
al 2014); traffic connectivity (Wyatt 1996, Orford 2002, Yomralioglu and Nisanci 2004, Song 
and Sohn 2007, Cellmer 2014, Demetriou 2016, Kim and Kim 2016, Sasaki and Yamamoto 2018, 
Lan et al. 2018, Ai 2005); distance to amenities, services and CBD (Srour et al. 2002, Orford 
2002, Yomralioglu and Nisanci 2004, Brasington and Hite 2005, Baroussa et al. 2007, Song and 
Sohn 2007, Kim and Kim 2016, Zainora et al. 2016, Lan et al. 2018, Ai 2005, Ali et al 2018, 
Jayyousi et al 2014); zoning and regulations (Glaeser and Gyourko 2002, Glaeser and Ward 
2009, Ai 2005); socioeconomic variables (Heikkila et al. 1989, Orford 2002, Brasington and Hite 
2005, Baroussa et al. 2007, Song and Sohn 2007, Cellmer 2014, Jiang et al. 2015, Zainora et al. 
2016, Ali et al 2018); natural hazard risks (Brasington and Hite 2005, Sasaki and Yamamoto 
2018) and housing characteristics (Sirmans et al. 2006, Bourassa et al. 2007, Song and Sohn 
2007, Chrostek and Kopczewska 2013, Ali et al. 2018). A review of modelling approaches and 
spatial variables in the land and house valuation literature is available in Xiao (2017).  

In addition, remote sensing-derived variables on buildings, infrastructure and land-use find 
their way into land valuation analyses (Dabrowski and Latos 2015, Chew at al. 2018). It allows 
the derivation and updating of urban information in a cost-effective manner (Dean and Owen 
2019). 

Our paper makes three contributions to the literature. First, we draw from a particularly wide 
range of data on property characteristics and data that we found was common in the literature, 
which we then compiled and processed. These include land-use, environment, road 
connectivity, distances to amenities and services, zoning and regulations, economic variables, 
and housing footprint area and volume. In particular, we use remote sensing-derived building 
footprint and height data for Kigali in 2015 published in Bachofer et al (2019). 

Second, our paper contributes to a small and growing literature that models property values 
in Africa. Of the sample of 26 papers we reviewed that model property values, we counted 18 
that cover cities in Europe or the US, five that cover Asia and the Middle East, one that covers 
New Zealand, and four that cover cities in Africa including Kumasi, Lagos, Cape Town, 
Nairobi and Kigali. As Ali et al (2018) note, Rwanda is of particular interest because it was the 
first African country to complete a nationwide land registration programme, helping to 
establish a complete and fully digitised legal cadaster. 

Third, this paper contributes methodologically by i) comparing the results and accuracy from 
a range of spatial modelling techniques - for instance, we respond to the claim noted in 
Bidanset and Lombard (2014) that whilst they have found that geographically weighted 
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regression performs better than OLS, further research is needed to evaluate and understand 
the performance of locally weighted regression and geographically weighted regression 
models; ii) unlike much of the literature, we use machine learning in the form of Minimum 
Redundancy Maximum Relevance (mRMR) to find the most accurate model; and iii) unlike 
some of the literature we take the need for out-of-sample accuracy seriously - because the goal 
of our model is to extrapolate property values from those with sales values, to the entire city 
- by using cross-validation to eliminate overfitting. 

Ali et al (2018) was the first paper to model property values for Kigali; given that our paper 
does the same, it is worth pointing out a number of differences: Ali et al (2018) focus more on 
making the case for the potential of property valuation models, or Computer Assisted Mass 
Appraisal, to enable efficient property tax collection, and the benefits given the policy context 
of the introduction of a new property tax in Rwanda. Their policy discussion in particular is 
useful to read alongside this paper. However, our paper has a more purely methodological 
focus as well as a number of methodological differences. For instance, Ali et al (2018) use sales 
values from 2013 to 2016 to maximise the number of observations whereas our paper uses 
2015 sale prices only, on the grounds that much of the data for the independent variables is 
from 2015; we compile and draw on a wider range of data, we test a greater range of spatial 
models, we use the machine learning approach mRMR, and we cross-validate our model to 
eliminate overfitting. 

3.  Data 

To generate a comprehensive list of potential independent variables that can be mined to find 
an optimal property valuation model, we compile and process two types of data and merge 
them into a single dataset of characteristics on 367,667 parcels in Kigali Province. The first type 
of data is a national dataset of parcels, which includes parcel boundary shapes and unique 
parcel identifiers (UPIs) on the basis of which we match to the other two types of data; a subset 
of parcels that were transacted, also have sales values. The second data type includes a large 
range of parcel characteristics including building height and footprint data and a range of 
urban amenities, and is sourced from a variety of other, smaller datasets. 

3.1 Parcel Boundaries and Sales Transaction Values 

The first data type mentioned above is a dataset of parcel boundaries extracted from the Land 
Administration Information System (LAIS) which is hosted by the Rwanda Land Use and 
Management Authority. This is a comprehensive record of all the parcel boundary shapes for 
the entire country and provides the basis for linking the different types of data as each parcel 
is assigned a UPI.  

Of these parcels, the subset for which there was a transfer of freehold title or emphyteutic 
lease, also have a market transaction value and date of transaction. The information on these 
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transactions comes from Rwanda’s LAIS, with the sales values recorded starting in 2015. The 
number of sales per year are listed in the first row of Table 1. 

Table 1: Sales Transactions for Kigali Province 

Year 2015 2016 2017 2018 

All Sales 10,246 13,991 16,352 15,155 

All Parcels 7,445 9,383 10,329 9,045 

Taxed Parcels 4,726 5,608 5,521 4,634 

Taxed Land Parcels 998 1,199 1,066 865 

Taxed Building Parcels 3,728 4,409 4,455 3,769 
Source: Land Administration Information System. 
 

For the purpose of our analysis, the parcels are sorted into four additional main groups, which 
we refer to as “parcel data groupings” throughout the rest of the paper. The first, “all parcels” 
group, refers to the set of usable parcel data that results at the end of a four step filtering 
procedure described below; for 2015 this contains 7,445 parcels out of the original total of 
10,246. The second “taxed parcels” group is a subset of the “all parcels” group, and includes 
only the parcels on which buildings will be taxed; for 2015 this contains 4,726 parcels. This 
includes parcels with the following official land use types: residential, commercial, industrial, 
economic, scientific, social and tourism; agricultural land is omitted as it is not taxed under 
the new law. Any buildings on these taxed parcels are subject to the new property tax law, 
but this group of data includes both built and unbuilt parcels. The third and fourth groups of 
data are two mutually exclusive subsets of the second group: the third group of data 
comprises taxed unbuilt parcels - land only - and includes 998 parcels in 2015; and the fourth 
group comprises taxed land that has a building on it and includes 3,738 parcels. 

To get to the sales values we use as our final dependent variable, the natural log of price per 
square metre in 2015, we filter the sales using a four step procedure. In the first step we 
eliminate parcels that cannot be matched between the sales transactions data and the parcel 
characteristics data. When pairing the sales transaction data to parcel characteristics based on 
parcel boundary, matches do not always occur. This happens when parcel boundaries are not 
the same for the sales transaction data as they are for the parcel characteristics data. Over time, 
the number of parcels increases as parcels are merged, split and undergo boundary changes 
and completely new parcels are added to the system. Whenever there is a change, new UPIs 
are created and old UPIs are retired, except in the case of the amendment of the boundary 
between two parcels that otherwise remain intact. It is necessary to omit parcels that cannot 
be matched between sales transaction data and parcel characteristics data from the analysis.  

The second step involves removing parcels that underwent a boundary change and for which 
there are discrepancies between the parcel areas for the same UPI; these are removed because 
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the parcel characteristics will be incorrect. In practice, to avoid discrepancies due to precision, 
we remove the transaction from our dataset if the areas differ by more than 1%. 

In the third step we remove duplicate sales transactions data for parcels that have been sold 
more than once. For the sales in 2015, we keep the sale which is nearest the date of the satellite 
image from which the building footprint and height data are derived. For sales in the 
following years, we keep the sale which occurred first, although we do not use this data in 
this paper. 

In the final step we filter the data for any outliers. This includes removing parcels with a price 
less than 100 RWF per square metre, or above 300,000 RWF per square metre as well as parcels 
with areas less than 50 meters squared or greater than 300,000 meters squared. We identify 
the outliers through a combination of expert opinion and visualisation techniques by plotting 
the rank against the logarithm of sales value per meter squared and parcel size. 

3.2 Parcel Characteristics 

The second category of data is a broad range of characteristics assigned to each parcel which 
are extracted and processed from a variety of sources. These characteristics are used as the 
independent variables for our regression model; here we describe the various sub-types of 
data within this. We also include log and squared transformations where appropriate which 
allows us to capture non-linearities while still using linear models for estimation. In total, we 
end up with 511 potential independent variables in addition to a constant term. 

3.2.1 Remote Sensing-Derived Building Characteristics Data 

Building footprint, building height and characteristics data for Kigali are derived from two 
satellite images. The process by which these are generated is described in Bachofer and 
Murray (2018), which provides a comprehensive dataset to the City of Kigali (and 
collaborating researchers) on the stock of buildings in the city, and changes in the building 
stock, over time between 2008-2009 and 2015. To produce this data, images of Kigali were 
obtained from the very high resolution (VHR) Pléiades stereoscopic satellite and the high 
resolution (HR) RapidEye satellite mission for 2015, as well as aerial images for 2008-2009. The 
data covers the whole of Kigali Province, with the VHR images available inside the red 
boundary shown in Figure 1, which represents the densely built up area. Outside the red 
boundary, we obtain RapidEye satellite images which were sufficient to detect buildings, but 
not the respective building type. 

For the 2015 satellite image data, a semi-automated process using an Object-Based Image 
Analysis (OBIA) approach (Blaschke 2010), followed by manual correction, is applied to 
identify building footprints and classify these into building typologies. The data and analysis 
for 2015 has been made available within the “Rapid Planning” project by the University of 
Tübingen. Image quality of the 2009 aerial images make a fully automated process impossible, 
so building footprints and building typology have been generated manually (Bachofer and 
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Murray 2018). The building objects of both datasets refer to each other, which makes a 
quantitative and qualitative change analysis possible. The entire dataset was revised in 2019 
and published in an open access data repository and contains further information on building 
heights (Bachofer et al. 2019). 

For the purposes of this paper, we focus on the building characteristics from 2015. We also 
calculate estimated building volume by combining data on building footprints and heights. 
Various combinations such as building volume per parcel area were also included. 
Furthermore, this dataset is essential for determining the taxed land and taxed built parcel 
categories.  

Figure 1: Kigali Province and High Resolution Satellite Image 

 
Source: Bachofer and Murray, 2018 (modified). 

3.2.2 Amenities and Infrastructure Data 

We compile amenities data on the location of roads, bus stops, bus routes, markets, schools, 
hospitals and other amenities in addition to zoning areas; this data was kindly made available 
by Rwanda’s Ministry of Infrastructure, City of Kigali One Stop Centre, National Institute of 
Statistics or were retrieved from Open Street Map (OSM). This data is available for the years 
between 2012 and 2015. 

Data on the location of amenities is used to calculate minimum distances between parcels and 
the amenities in addition to counts for different administrative levels including village, cell 
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and sector; we also generate a non-administrative “block” level from the building data which 
is smaller than the village level. Data on zoning for permitted land use enables us to determine 
the area and share of each geographic level which is subject to a specific zoning regulation.  

3.2.3 Economic Data 

We also include economic variables which might capture labour market opportunities in 
certain geographic areas. Unfortunately, household survey data is only available at the district 
level which is insufficiently disaggregated for our purposes. Therefore, we rely on the 2014 
establishment census for which the data is available at the sector level and include firm sizes 
and employment. 

3.2.4 Grouping of Parcel Characteristics by Type 

Furthermore, we can break down the parcel characteristics into three broad groups following 
Xiao (2017): i) structural, ii) locational, and iii) neighbourhood-level variables. Structural 
variables are internal attributes which describe the physical characteristics of the parcel. We 
further divide these variables into structural land and structural building variables. The 
structural land variables are any physical characteristics that are unrelated to any buildings 
such as slope, area and perimeter of the parcel. The structural building variables describe the 
buildings on the parcel and include footprint area, height and volume. Locational variables 
include the distance of the parcel to amenities and infrastructure. Neighbourhood variables 
include the social and economic characteristics of the neighbourhood at block level or other 
geographic level above the parcel level, and includes proportions and areas of zoning 
variables, counts of amenities and sector-level economic variables. Grouping the 
characteristics in this manner is a useful way to think about the variables which intuitively 
should affect land values (structural land, locational and neighbour variables) and those 
which should affect building values (structural building).  

4. Model Types 

In this section we describe a suite of econometric models, most of which incorporate spatial 
components, that we use to try to improve the accuracy of our property valuation models as 
applied to the four parcel data groupings described in section 3.1. Our modelling process has 
two phases: first, for each parcel data grouping we run a Minimum Redundancy Maximum 
Relevance process that incorporates -fold cross-validation, which generates two 
“benchmark” OLS models, the parsimonious model and full model, defined in section 5, each 
containing a set of variables. Second, we use these eight sets of variables to generate three 
main groups of models described in this section: i) coordinate adjustment models, ii) spatial 
autoregressive models, and iii) local linear models. In total, we run a combined 97 models for 
each set of variables, which implies 194 models for each parcel data grouping. The majority of 
the spatial econometric models described below are reproduced from LeSage and Pace (2009). 
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4.1 Ordinary Least Squares 

The benchmark model that is used for all comparisons is ordinary least squares. This is also 
the model that is used for the mRMR variable selection procedure. Let  be an  vector of 
observations on the dependent variables,  be an  matrix of the observations on the  
independent variables,  be a  vector of coefficients and  be an  vector of error 
terms. Then we can express the general linear model as: 

  

We then define the OLS estimate of the vector of parameters  as  and define the vector of 

predicted dependent variables as  and the vector of residuals is . 

4.2 Coordinate Adjustment Models 

These types of models are simple modifications to OLS, that incorporate coordinate variables. 
Spatial components are modelled using linear, quadratic or cubic polynomial expansions of 
the latitude and longitude data of each parcel. These higher order polynomials help to capture 
the complexities of location. We define the three polynomial expansions with  where  is 
the order of the polynomial expansion. 

4.2.1 OLS with Coordinates 

The most direct way to incorporate these coordinate expansions is to supplement the OLS 
model with these variables directly: 

 

For the purposes of this paper, we use linear and quadratic coordinate expansions for this 
type of model.  

4.2.2 Trend Surface Correction 

An alternative is to model the error terms of the OLS model and create a locational variable 
that enters as a supplementary variable to the initial OLS model. It is a simple two step model. 
First, run the OLS regression  and obtain estimates of the error term . Then run 
a regression of  on a constant and the coordinates: 

 

Then, obtain predictions of the error term and refer to this new variable as a locational 
variable, . Finally, add this location variable as a supplementary variable in the 
original OLS model: 
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For the purposes of this paper, we use the cubic coordinate expansion. For extrapolation, the 
trend surface correction models requires the auxiliary regression coefficients to calculate the 
location variable  and then final regression coefficients to obtain . 

4.3 Spatial Autoregressive Models 

Spatial autoregressive models quantify location through spatial weighting matrices  which 
are  matrices where the element  captures the spatial weight of parcel  on parcel . In 
its most general form the model is: 

 

In this model, there is a spatial component in the dependent variable and the error term. In 
general,  does not have to equal  but for our purposes, we impose the restriction that 

. Given certain restrictions on the coefficients  and , we define a subgroup of 
spatial autoregressive models. 

4.3.1 Spatial Autoregressive Error Model 
When  for the above two equations, then location only enters the model through the error 
term. We refer to this model as the spatial autoregressive error model which reduces to: 

 

4.3.2 Mixed Autoregressive Model 
When  and  then location only enters the model as a linear combination of 
neighbouring units. We refer to this model as the mixed autoregressive model which reduces 
to: 

 

4.3.3 General Spatial Model 
In cases when there are no restrictions on both  and , we refer to this model as the general 
spatial model which reduces to: 

 

4.3.4 Weighting Matrices 

The type of weighting matrix, , used is a key input for these types of models. For parcels  
and ,  is the weight that parcel  has on parcel . By convention, the weight of a parcel with 
respect to itself is zero such that . These types of weighting matrices can be derived 
from contiguity relations, distance functions or a combination of both. For this paper, we focus 
on weighting matrices defined by distance. 
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To create this type of weighting matrix, we begin by creating a distance matrix  where 
 measures the distance between parcels  and . Note that this matrix is symmetric 

with all diagonal elements equal to zero as . With this distance matrix, there are three 
main characteristics that are needed to describe each weighting matrix: i) weighting function, 
ii) truncation, and iii) normalisation.  

The first step is to define a weighting function  which converts distance into a weight. 
Suppose that  is the weighting matrix prior to truncation and normalisation. Then 

 for some weighting function . This does not apply to the main diagonal which 
is set to zero by definition. For this paper, we focus on two simple weighting functions: i) 
inverse distance, and ii) binary distance. The inverse distance function simply means that the 
weight of a parcel on another parcel is inversely proportional to the distance. The binary 
distance function takes on values of 0 or 1 and means that either a parcel has constant weight 
or no weight at all. This function only works if the model is truncated by some distance 
otherwise all parcels will have equal weight on all other parcels.  

The next step is to truncate the model by some distance . This means that parcels which are 
more than  units apart do not affect each other. Suppose that  is the truncated weighting 
matrix, then we have that: 

 

 

For this paper, we focus on three truncation distances in which ,  and  
where the units are in kilometres. For the inverse distance weighting function, we also include 
a weighting matrix with no truncation which is not possible for the binary weighting function.  

Finally, we chose a normalisation method to create the final weighting matrix . For this 
paper, we focus on row and spectral normalisation approaches. Row normalisation simply 
means that the sum of each row is equal to unity. This could potentially involve multiplying 
each row by a different scalar which will convert a symmetric matrix into an asymmetric one 
instead. This normalisation amounts to spreading the spatial effect of neighbours 
proportionally. Spectral normalisation divides each element in the matrix by the largest 
eigenvalue of the matrix. Therefore, this normalised matrix differs only by a single scalar and 
thus, symmetry is maintained. This implies that in total, we consider two weighting functions, 
three truncation distances and two normalisation methods resulting in 14 total weighting 
matrices (including the pair of non-truncated inverse distance matrices). 

4.3.5 Estimation Methods 
We use two estimation methods for all these spatial autoregressive models. The first is 
through maximum likelihood and the second is a general method of moments approach. As 
both estimation methods yield different results, we include the regression results from both. 
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Therefore, in total, we have three types of spatial autoregressive models, 14 weighting 
matrices and two estimation methods for a combined 84 separate estimations per model. 

4.4 Local Linear Models 
The idea of a local model is to offer a means of representing global nonlinear relationships 
using a local approximation.  Essentially, a local neighbourhood is defined around the state 
vector and an appropriate method is then used to describe the dynamics around that point. 
The state space refers to the space spanned by the set of explanatory variables. The 
geographical nature of models for valuing parcels suggests that there is also the potential of 
thinking about the locational aspects of parcels and their proximity to each other. It is intuitive 
to expect that neighbouring geographical parcels will have similar valuations. It is also 
possible to consider additional variables about characteristics such as building type and 
height, in order to appropriately measure similarity; however, for the purposes of this paper, 
we focus on geographical similarity. 

In comparison to the previous global models which attempt to capture spatial dependence, 
local linear models account for spatial heterogeneity. In these cases, we attempt to model 
location  with its own location-specific model with location-specific coefficients. In a simple 
linear context, we would have the following for each location : 

 

By estimating location specific coefficients for the  vector  for all locations using all  
data points, we would normally encounter a degrees of freedom problem as we simply do not 
have sufficient data to obtain the  total coefficients. Therefore, to overcome this particular 
issue, we employ local linear models.   

4.4.1 Local Average  
The simplest version of this approach is known as local analogue which refers to finding the 
most similar state vector observed in the past, often referred to as the nearest neighbour and 
using this to generate a forecast. An obvious extension is to consider the  nearest neighbours 
and to take an average of their trajectories to determine the forecast. These approaches have 
been successfully used for forecasting physical systems that display nonlinear and potentially 
chaotic dynamics (McSharry & Smith., 2004). It is also possible to use a kernel to weight the 
influence of the neighbours and this was found to provide highly competitive point and 
probabilistic forecasts of economic output (Arora et al., 2013). 

4.4.2 Spatial Expansion Model  
In the spatial expansion model, we run a global model on all the data to obtain a set of core 
coefficient estimates  which can be transformed using location information for parcel  to 
obtain the location specific coefficients . To describe this model, we need to introduce slightly 
different notation. The  vectors  and  remain the same but the explanatory variable 
matrix  is now an  matrix consisting of the  vectors  in the form below. We also 
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define  as an  vector containing all the location specific coefficients  stacked on top of 
each other. These two new matrices are: 

 

Given these definitions, the spatial expansion model can then be written in a similar way to 
that of OLS: 

 

The spatial expansion aspect comes from the fact that we can obtain the location specific 
coefficient  with data on the latitude and longitude of location , denoted by  and , in 
addition to a set of core coefficients , which is a  vector consisting of a  vector of 
latitude coefficients  stacked on top of another  vector of longitude coefficients . 
The equation for  is given by: 

 

Therefore, for the spatial expansion model, we estimate the core coefficients  and can then 
easily extrapolate the set of coefficients for any parcel  as long as we have the coordinates 
data. 

4.4.3 Geographic Weighted Regression 

For geographic weighted regressions, we require a spatial weighting matrix that is different 
from that in the spatial autoregressive models. We denote these weighting matrices as  for 

which the off-diagonal elements are all zero. The diagonal elements  is the spatial weight 
between parcel  and . For this paper, we define three weighting functions: i) gaussian, ii) 
exponential, and iii) tricube. We define  as the distance between parcels  and . The three 
weighting functions are presented as follows in order: 

 

 

 

The parameter  is a bandwidth parameter that describes how the weights decline with 
distance.  is the standard normal density and  is the standard deviation of the distance 
vector . Parcel  is the  nearest neighbour of parcel  and  is an indicator function. For 
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the three different weighting functions, we calibrate the parameter  or identify the  nearest 
neighbour. 

Once we have the weighting function  for each parcel, we run  separate weighted 
regressions of the following form: 

 

To extrapolate with this model, suppose that we only have explanatory variables for parcel . 
We introduce additional notation for expositional purposes. We define  and  as the 
training data which excludes information on parcel . We then create the weighting matrix  
and estimate the parcel  specific coefficients: 

 

With  and explanatory variables for parcel , we can then calculate the predicted value of 
that parcel . Therefore, extrapolation requires running a new regression for each out of 
sample location. The in-sample data is used to calibrate the necessary parameters and as the 
source of data to run each additional regression. Finally, given the three weighting functions, 
we obtain three geographic weighted regressions in total. 

4.4.4 Geographic Non-Weighted Regression 
We define geographic non-weighted regressions as geographic regressions for which the 
weights are binary. This is equivalent to running regressions on subsets of the data. For a 
given , we run a regression for parcel  using the  nearest neighbours. Using the indicator 

function notation from the earlier subsection, and defining parcel  as the  nearest 
neighbour, the weighting function would be: 

 

We calibrate  by choosing the value of  which minimises the mean absolute error of the 
model's predictions. We limit  to have a minimum value of twice the number of parameters 
estimated. We then double the value of  until we exceed the number of possible neighbours. 
A model for which  is equal to the entire sample of neighbours would be equivalent to a 
standard OLS model for the whole dataset. 

The simplicity of this weighting function and the calibration procedure allows for a range of 
possible functional forms. For this paper, we consider OLS, all the three coordinate models 
and the spatial expansion model. Therefore, we obtain five geographic binary-weighted 
regressions in total. 
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5. Methodology 
The aim is to find the model that best predicts building values on taxed parcels. We begin this 
approach by developing one model for each of the four parcel data groupings, which comprise 
all parcels, taxed parcels, taxed built parcels and taxed land. Each model only uses sales data 
from that particular grouping and the number of sales are recorded each year are given in 
Table 1. The first step is to select the variables to be used to estimate the model. Our variable 
selection method creates two sets of variables comprising the parsimonious model and the 
full model. The parsimonious model is the most conservative in that a variable is included 
only if machine learning has selected it as optimal for all ten folds of the cross-validation 
process described in section 5.3. The full model contains all variables selected for each of the 
ten folds in the cross-validation process. Afterwards, we estimate a complete suite of models 
- for each model type, a parsimonious and a full model for each of the four parcel data 
groupings. We then compare the models on the basis of R2 and Mean Absolute Error, to find 
which combination of model type and set of variables gives the highest performing model as 
described in section 5.4. This results in a final four models for each of the parcel data 
groupings. We then find the optimal building model as described in section 5.5. 

5.1 Machine Learning 

Machine learning (ML) refers to a collection of techniques that are required to construct a 
model from data. The justification for the technique selected depends on the nature of the 
challenge, the type of data, the application domain and implementation. The task of 
identifying a model that can predict the value of parcels is termed “supervised learning” given 
that a set of historical transaction prices will be used to train the model. It is also necessary to 
choose a performance metric by which to compare models; we discuss performance metrics 
in section 5.2. 

An overarching theme in ML is the challenge of overfitting, in which a model fits both the 
underlying data generating process and the noise in a given set of data, with the result that its 
accuracy metrics are spuriously high. In our case, the challenge for a property valuation model 
that will be accurate for a whole city is to find a model of property values for the parcels for 
which there is sales data, that can be most accurately extrapolated to the rest of the parcels. It 
is thus important that the underlying signal is extracted rather than fitting any noise that may 
be present in the particular set of observations that are available. It is relatively easy to overfit 
the training data when there are many variables relative to the amount of observations; we 
have 511 variables.  

Arora et al. (2018) demonstrate that overly complex models are unlikely to be competitive for 
out-of-sample forecasting. The philosophical principle of Occam’s Razor also provides 
motivation for parsimony, and for a property valuation model, transparency is a virtue. In the 
presence of so many potential variables, cross-validation is a useful way to eliminate them to 
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leave only those that are likely to be predictive out-of-sample. The cross-validation process 
uses a different set of data for training and for testing so that all estimates are out-of-sample 
and never in-sample. It is important to use cross-validation techniques when constructing 
predictive models for which the out-of-sample predictive performance that is likely to be 
achieved in practice needs to be accurately assessed.  

The ML approach usually involves three stages: (1) feature construction; (2) feature selection; 
and (3) model construction.  Each of these generic stages is first explained before providing 
additional details of the chosen approaches for performance evaluation, cross-validation and 
variable selection. We describe them briefly here. 

5.1.1 Feature Construction 

In ML terminology, a feature is an explanatory variable; feature construction is the first stage 
of ML and involves the generation of features from available data and also new features from 
existing ones. For example, variables may be normalised with respect to others such as 
dividing by the number of square metres; mathematical transformations may be applied, for 
example, taking natural logarithms or quadratics; and for remotely sensed data, 
neighbourhood or block level variables may be constructed from geographically finer grained 
data such as percentage vegetation coverage. In what follows, we will refer to features as 
variables for consistency with the rest of the paper.  

5.1.2 Feature Selection 

In ML there are a large number of feature selection techniques available. A common approach 
to variable selection is to first select those variables that are most relevant. For example, 
relevance could be established by selecting those variables that are most strongly correlated 
to the dependent variable. There are a number of heuristic algorithms available, such as the 
sequential forward and backward selection, also known as stepwise regression. Stepwise 
approaches consider the addition of a new feature and removal of existing features at each 
step. A substantial challenge results from the fact that some variables are likely to be strongly 
correlated with each other and therefore including two of these variables in the model would 
lead to redundancy in the subset of selected variables. Ideally it is best to select features that 
are independent from each other while still containing predictive information about the 
dependent variable. It is also possible to start with all variables included and to eliminate one 
variable at a time. Both stepwise approaches will terminate once there is nothing left to add 
or remove. When faced with many variables, there is no guarantee that these two stepwise 
approaches will agree.  

A more appropriate approach would be to add a penalty to the cost function that determines 
which variables are selected in order to focus on a sparse set of variables and therefore a more 
parsimonious model. Ridge regression, least absolute shrinkage and selection operator 
(LASSO) and elastic net are all variable selection techniques that rely on penalty terms (Hastie 
et al., 2009).  In the case of our specific challenge, we have a large number of collinear variables 
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and require a selection technique that can account for redundancy when considering 
candidate variables with high levels of correlation. Indeed the high levels of correlation 
between variables is exacerbated by including transformations of variables, such as logs and 
squared terms. One approach known as Minimum Redundancy Maximum Relevance 
(mRMR) selection was introduced to avoid this redundancy issue (Peng et al., 2005) and has 
been found to be more powerful than the maximum relevance selection in a number of 
empirical comparisons (Tsanas et al, 2012). mRMR is able to identify relevant variables but 
also takes account of the variables that have already been selected; we utilise this and describe 
it further in section 5.4.  

5.1.3 Model Construction 

Linear regression offers a means of understanding the importance of different explanatory 
variables. While there are many more complicated nonlinear models that could be considered, 
a linear model structure offers transparency and best facilitates communication of the 
meaning and relevance of the selected variables. This is an important consideration given that 
the resulting model will be used by policymakers and for decision-making. Nevertheless 
while linear regression is linear in the parameters, it can also include nonlinear terms. Indeed 
this has been the approach taken here and log terms have been selected.  Therefore we have 
essentially constructed a nonlinear model while carefully monitoring the contribution of each 
individual variable.   

There are many other model structures that could be considered: decision trees, random forest 
(RF), k nearest neighbours (KNN),  support vector machine (SVM) and artificial neural 
networks (ANN). Unfortunately, many of these models have the disadvantage of being more 
complex and therefore much more difficult to understand.  The beauty of the linear model is 
the ability to construct a scorecard that could be simply calculated. Our primary goal here is 
to achieve a high level of predictive accuracy, that we are confident will hold in the future and 
where we can easily explain the role of each variable.   

5.2 Performance Evaluation 

A range of metrics could be used to evaluate the performance of the models that we estimate. 
These include standard statistical and forecasting metrics such as the coefficient of 
determination, R2, root mean squared error (RMSE) and the mean absolute error (MAE). 
Metrics exist that are specific to property valuation such as the coefficient of dispersion and 
coefficient of variation. Another metric that may be useful to policy makers is the proportion 
of valuations that lie within a certain percentage range of actual sales values. Where property 
values are self-declared for tax purposes, the property valuation model could both provide 
the benchmark model-estimated property value against which self-declarations are evaluated, 
and show a reasonable percentage range below which they should be investigated for under-
valuation. This reasonable minimum percentage of the model-estimated value would be 
based on the actual dispersion of actual sales values around predicted values. 
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However, we choose to focus specifically on the MAE as the main metric for establishing 
success when comparing and contrasting different models. Given that the predictions are in 
natural logs, the mean absolute error can be interpreted as the mean percentage deviation of 
the model’s predictions from the true values. This is particularly helpful as it can be easily 
conveyed to policymakers and the tax administrators. 

It is worth distinguishing between deterministic and non-deterministic model diagnostics to 
compare models. Non-deterministic model diagnostics are the mean of multiple metrics, 
obtained for each data fold for the tenfold cross validation explained in the following section. 
In the context of a -fold approach, for all  subsamples used as training data, we would obtain 
 independent model diagnostics. Therefore, the cross-validated nondeterministic model 

diagnostic would be the mean of these  subsample model diagnostics. The benefit of this 
approach is that it also provides standard errors for these diagnostics. 

However, for this paper all cross-validated model diagnostics we report will be deterministic. 
This approach is only valid in cases where the cross-validation method yields a unique 
prediction for each observation in the entire dataset and all the predictions are used to obtain 
a single model diagnostic which is referred to as a deterministic model diagnostic. For 
example, instead of taking the mean cross-validated MAE for all  regressions generated by 
the cross validation process, we take the predictions from all the folds to generate a single 
model diagnostic. This approach has the benefit that it is perfectly comparable to any in-
sample diagnostics. 

Metrics such as the MAE are virtually the same if they are calculated in a deterministic or non-
deterministic way, because they are linear; the only difference comes from the fact that not all 
of the  subsamples will be of equal size. The same cannot be said of other metrics such as the 
R2. It is also worth noting that as our emphasis is on cross-validated model diagnostics, we do 
not use the adjusted R2 as additional variables do not necessarily improve the cross-validated 
fit in the same way that it weakly improves the in-sample fit.  

5.3 Variable Selection Using Minimum Redundancy Maximum 
Relevance and Cross Validation 

A key contribution of this paper to the literature on property valuation is the consistent 
implementation of cross-validation techniques to ensure that we are optimising a model’s 
accuracy for out-of-sample predictiveness. The rationale for cross-validation to avoid 
overfitting and overstating a model’s out-of-sample accuracy is covered in section 5.1. This 
paper focuses on non-exhaustive cross-validation methods. For all of our models, we use a -
fold approach. This involves partitioning the data into  equally sized subsamples or “folds” 
of data. For the purposes of this paper, we set . We then run  estimations where each 
subsample is used as the validation data while the remaining  subsamples are used as 
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training data. Given that , we thus use 90% of the data to generate a model, then test it 
on the remaining 10% of the data; we repeat this process for all folds of the data.  

The choice of mRMR was explained in section 5.1.2. For each parcel data grouping (all parcels, 
all taxed parcels, taxed built parcels, taxed land parcels), mRMR is utilised to select optimal 
variables. mRMR assesses the performance of models with specifications consisting of 
different numbers of variables and a constant. As we rely on 10-fold cross-validation, for each 

 number of variables we obtain  separate regressions consisting of  variables. 

We evaluate the cross-validated diagnostics across these  separate regressions to obtain the 
optimal number of variables  which minimise the mean cross-validated mean absolute error. 
An alternative approach could be to choose  as the number of variables which maximise the 
mean cross-validated R2. In almost all cases, both definitions provide the same . From here, 
we note that in these 10 separate regressions, there can either be a maximum of 10 unique 
variables (in the unlikely case that each regression contains a different set of variables) or a 
minimum of  unique variables (in the case that each regression contains an identical set of 
variables). As noted in section 5 we define the full set of variables as all the unique variables 
that appear in all 10 separate regressions. We also define the parsimonious set of variables 
which contain only the variables which occur in all 10 of the regressions.  

5.4 Model Selection for each Parcel Data Grouping 

For each parcel data grouping (all parcels, taxed parcels, taxed built parcels, taxed land 
parcels), the mRMR variable selection method produces two sets of variables, the full set and 
the parsimonious set. For both sets of variables, we generate all types of model described in 
the earlier section. In order to determine the best model for each data grouping, we find the 
model from the list of all models, both full and parsimonious, that minimises the cross-
validated MAE. In cases where the difference in MAE between the two best models is 
minimal, we evaluate the cross-validated R2 to determine the best model. In cases where the 
difference in R2 is minimal, the model with fewer variables is preferred. We then assign that 
model type and variable set as the best model for its parcel data grouping. 

5.5 Model Selection to Obtain the Most Accurate Building Values 

Whilst our broader goal is to find the best model for all parcel data groupings, the main goal 
of this paper is to obtain accurate building values, upon which the level of taxation in Rwanda 
is directly based. However, the building value is not directly observable, only the land value 
for unbuilt properties and the property value, which combines the value of land and of any 
buildings on it. For any built property, to predict the building value, we need to first obtain a 
prediction of land value. Thus, we use the models developed for the four parcel data 
groupings and evaluate which is the most predictive model for taxed land parcels - somewhat 
counterintuitively whilst we have used machine learning to find the optimal model for taxed 
land parcels, models generated using larger sample sizes may perform better. In the same way 
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we evaluate which model is the most predictive for taxed built parcels (including land and 
buildings). Finally, to obtain the best predicted building values, we subtract the predicted 
values of taxed built parcels from the predicted land values of those parcels, to get the 
predicted building model. 

6. Results 
This section presents our results. Section 6.1 describes the types of variables chosen by our 
feature selection process for each parcel data grouping. Section 6.2 compares the model results 
for each parcel data grouping. Section 6.3 outlines the additional step to find the best model 
to use to impute building values. Finally, Section 6.4 illustrates the predictive performance of 
the final models arrived at in Sections 6.2 and 6.3, using a broader range of model diagnostics. 

6.1 Variable Selection 

For each parcel data grouping, the mRMR feature selection process generated two sets of 
variables. These variables are listed in Table 2, for a parsimonious and a full model as defined 
at the start of section 5. Furthermore, these variables are organised by the parcel characteristic 
groups described in Section 3.2.4. 

The parcel perimeter is the only structural land variable that appears, and does so in all 
models except for the taxed built parcel category model. For three parcel data groupings 
containing built parcels, the structural building variables frequently chosen were, building 
volume and footprint area variables; often these variables are normalised by parcel area which 
is consistent with our choice of dependent variable, value per square metre. The building 
count variable is only selected for the model for all taxed parcels. 

Locational variables proved to be consistently important determinants of value. Amongst the 
large list of distance variables available, distances to roads, bus stops and bus routes, or 
quadratic or logarithmic transformations of these three variables, were selected for all the 
parcel grouping models; this implies an unsurprising link between urban connectivity and 
property values. Additionally, a binary variable for routing distance to roads under 500m 
away and distance to primary school were selected for the taxed parcel and taxed land parcel 
groupings respectively.  
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Table 2: Selected Variables 
All Parcels Taxed Parcels Taxed Land Parcels Taxed Built Parcels 

Parsimonious Model Variables 

Structural (Land) 

Perimeter1,2,3 - Perimeter1 - 

Structural (Building) 

Building Volume to Area1,2 Building Volume to Area1,2 - Building Volume to Area1,2 

Building Footprint to Area - - - 

Building Count1 - - - 

Locational 

Distance to Road1,2,3 Distance to Road1 Distance to Road1 Distance to Road1 

Distance to Bus Stop1,2,3 Distance to Bus Stop3 Distance to Bus Stop1 Distance to Bus Stop1 

Distance to Bus Route1 Distance to Bus Route1 Distance to Bus Route1 Distance to Bus Route1 

- - Distance to Primary 
School1 - 

Neighbourhood 

Block Agricultural Share1,2 Block Agricultural Share1 - Block Agricultural Share1,2 

Block Vegetation Share1,2,3 - Block Vegetation Share1 - 

Block Agricultural Area1 - - - 

Block Nature Share1 - - - 

Cell Single Family Area1 Cell Single Family Area1 - Cell Single Family Area1 

Cell Vacant Share1 Cell Nature Share1 Cell Nature Share1 Cell Nature Area1 

Additional Full Model Variables 

Structural (Land) 

- Perimeter1,2 Perimeter2,3 - 

Structural (Building) 

Building Volume1 Building Volume1 - - 

Building Footprint to Area Building Count1 - - 

Locational 

Distance to Bus Route2,3 Distance to Road2 Distance to Road3  

- Routing Distance Under 
500m to Road1 Distance to Bus Stop3 - 

Neighbourhood 

- Block Vegetation Area1 Block Vegetation Area1 - 

- Block Vegetation Share1 Block Vegetation Share1,2 - 

- Block Agricultural Share1,2 Block Open Space Share1 - 

Cell Education Share1 - Cell Vacant Area1 - 

Cell Vegetation Share1 - Cell Vacant Share1 - 

Sector Education Share1 - Sector Defence Area1 - 

- - Sector Plantation Area1 - 

Notes: Superscripts 1, 2 and 3 refer to linear, quadratic and logarithmic transformations respectively. 
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For the neighbourhood variables, there is some variety in the types of variables selected across 
the different parcel grouping models. Furthermore, these variables appear at the block, cell 
and sector level of aggregation. The main variables that are consistent across all parcel 
grouping models are agricultural zoning and vegetation cover or block share, mostly at the 
block level. The other informative variables are single family residential zones, nature zones 
and vacant zones, often at the cell level. 

Finally, it is worth highlighting some of the differences between the parsimonious and full set 
of variables for each parcel data grouping. For the taxed built parcel grouping, there is only a 
parsimonious set of variables as all nine of the selected variables were chosen by all ten folds 
in the mRMR procedure. This is not the case for the other three data groupings and the 
number of additional variables selected is often fairly large.  

6.2 Model Selection for each Parcel Data Grouping 

Given the set of full and parsimonious variables selected for each parcel data grouping, we 
run the entire set of models described in Section 4. In Table 3 we present the benchmark OLS 
regression model which is used in the mRMR feature selection procedure, and two other 
models; one that minimises the in-sample MAE and one that minimises the cross-validated 
MAE. For each model, we also present the in-sample and cross-validated MAE values for 
comparison and to highlight the benefits of our cross-validation approach. 

A key benefit of the simple OLS model is that the loss in performance between in-sample and 
cross-validated MAE is very marginal. This is true for all eight OLS results presented in Table 
3. This fact weighs in favour of the use of OLS models for the purpose of property valuation 
when cross-validation is not possible, because some complex spatial models that may perform 
extremely well in-sample, often suffer from weak cross-validated performance. 

This point is best illustrated by evaluating the model diagnostics of the best in-sample model 
type, which in our case is always the tricube geographic weighted regression (GWR) which 
significantly outperforms the other model types according to in-sample MAE. However, 
despite large in-sample improvements, the cross-validated performance of this model type is 
worse than the benchmark OLS model across all groupings. This further highlights the pitfall 
of focusing on in-sample metrics in model type selection which would actually have lowered 
the model’s predictive accuracy when compared to the benchmark. 

The best cross-validated model type is less consistent, and is split three ways between the 
spatial expansion and trend surface correction geographic binary weighted regression 
(GBWR) model types, as well as the Gaussian GWR model type. All of these model types 
improve upon the benchmark OLS in terms of both the in-sample and cross-validated MAE. 
With the exception of the trend surface correction GBWR model type, the other two model   
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Table 3: Best Models for Each Parcel Data Grouping 

 Models’ Mean Absolute Error 

Grouping Variables Mean Absolute 
Error Type Benchmark Best In-

Sample 
Best Cross-
Validated 

All 
Parcels 

Parsimonious 
 OLS GWR 

(Tricube) GBWR (CAS) 

In-Sample 0.623 0.478 0.538 
Cross-Validated 0.625 0.682 0.585 

Full 
 OLS GWR 

(Tricube) GBWR (TSC) 

In-Sample 0.617 0.502 0.581 
Cross-Validated 0.620 0.682 0.585 

Taxed 
Parcels 

Parsimonious 
 OLS GWR 

(Tricube) GWR (Gaussian) 

In-Sample 0.602 0.404 0.504 
Cross-Validated 0.604 0.637 0.551 

Full 
 OLS GWR 

(Tricube) GBWR (TSC) 

In-Sample 0.580 0.430 0.540 
Cross-Validated 0.583 0.674 0.541 

Taxed 
Land 
Parcels 

Parsimonious 
Model OLS GWR 

(Tricube) GWR (Gaussian) 

In-Sample 0.609 0.332 0.520 
Cross-Validated 0.614 0.673 0.576 

Full 
Model OLS GWR 

(Tricube) GBWR (CAS) 

In-Sample 0.573 0.390 0.517 
Cross-Validated 0.591 0.689 0.579 

Taxed 
Built 
Parcels 

Full 
Model OLS GWR 

(Tricube) GBWR  (CAS) 

In-Sample 0.577 0.391 0.514 
Cross-Validated 0.579 0.617 0.550 

Notes: The in-sample and cross-validated models presented here were the best models for each data grouping. 
GWR refers to Geographic Weighted Regression with the weighting function in parentheses. GBWR refers to 
the Geographic Binary-Weighted Regression with the estimation model in parentheses. CAS refers to the spatial 
expansion model and TSC refers to the trend surface correction model. 

types experience a sizable deterioration in model accuracy from in-sample to cross-validated. 
Whilst we have shown that improvements over OLS in cross validated MAE are possible, it 
seems difficult to know in advance which model type may outperform OLS; again this 
supports the use of OLS when it is not possible to test multiple types of spatial models, and 
the significant additional effort of testing multiple model types may be unlikely to yield a 
sizeable accuracy benefit, especially when a range of locational variables are included. 
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We must finally choose a model that is “best” for each parcel data grouping, in terms of cross-
validated MAE, from the full or parsimonious sets of variables. For the all parcel and taxed 
land parcel groupings, the improvements in performance from the full set of variables is very 
minor while this difference is slightly larger for the taxed parcel grouping. Therefore, we select 
as the “best” model for each parcel data grouping, the parsimonious set of variables for the 
all parcel and taxed land parcel groupings, and the full set of variables for the taxed parcel 
grouping. As the set of variables for the taxed building parsimonious and full models are the 
same, there is no distinction between the two.  

6.3 Model Selection to Obtain the Most Accurate Building Values 

To obtain building values, we first obtain predicted land values for all taxed parcels using the 
best taxed parcel model with the structural building values set to zero. Secondly, we obtain 
predicted property values using the best taxed parcel model for all taxed parcels. The 
difference between these two predicted values is the best possible prediction for the building 
value, provided that the best taxed parcel model (with both built and unbuilt parcels) is not 
inconsistent with the best taxed land model. 

Another step is possible in our model selection and will clarify whether the best taxed parcel 
model underperforms the best taxed land model, for taxed land parcels. We thus evaluate the 
four models selected in the previous subsection 6.2 on different parcel groupings. The results 
of these comparisons are presented in Table 4. Surprisingly, and conveniently, the taxed parcel 
model performs the best for taxed land parcel data while it is marginally outperformed by the 
all parcel model for the taxed built parcel data. However, as these differences are small, we 
select the more parsimonious model of the two which in this case is the taxed parcel model. 

Table 4: Model Comparison 

 Mean Absolute Error when the Best Parcel Data Grouping 
Model is Applied 

Grouping Mean Absolute Error 
Type All Parcels Taxed Parcels Taxed Land Taxed Built 

Taxed 
Parcels 

In-Sample 0.506 0.540 0.737 0.554 

Cross-Validated 0.540 0.541 0.748 0.573 

Taxed Land 
Parcels 

In-Sample 0.540 0.576 0.520 0.657 

Cross-Validated 0.570 0.568 0.576 0.657 

Taxed Built 
Parcels 

In-Sample 0.497 0.530 0.795 0.526 

Cross-Validated 0.532 0.534 0.795 0.550 
Notes: For the best taxed parcel models performance on the taxed land parcel grouping data, the cross-validated 
MAE is better than the in-sample MAE. This is due to the fact that the 10-fold cross-validation technique was 
performed over the taxed parcel grouping data combined with the fact that the in-sample method is run with the 
entire set of taxed parcel grouping data. 
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The fact that the all parcel and taxed parcel models fairly consistently outperform the taxed 
land and taxed building models for their respective data grouping is most likely driven by the 
fact that the former models draw on more data to avoid overfitting. Whilst the taxed land 
model outperforms the other models in its own grouping in terms of in-sample MAE, the 
taxed parcel model, followed by the all parcel model, outperforms it in terms of the cross-
validated MAE. 

Therefore, in an upgrade on the “best” models found in section 6.2, we will now use the taxed 
parcel model to predict both land and property values for all three taxed groupings - given 
that any differences between the performance of this model and that of the all parcel model 
are minimal. Using the taxed parcel model to predict both land and property values is 
equivalent to using the taxed parcel model to predict combined property values for all taxed 
parcels and then setting all structural building variable values to zero to impute the  

land value. Choosing a single model for both is beneficial because using two different models 
for land and property values could lead to some building values being imputed as negative. 

6.4 Final Model Performance 

Here we present a more diverse range of model diagnostics to evaluate the performance of 
the best taxed parcel model in Table 5. In addition to the MAE on which the models were 
evaluated, we present R2, root mean squared error (RMSE), and a statistic we label as ±20% 
which captures the fraction of predictions which fall within 20% of the true value. 

Table 5: Best Taxed Parcel Model 

 Model Diagnostics 

Category Sample MAE R2 RMSE ±20% 

Taxed 
Parcels 

In-Sample 0.540 0.618 0.729 26.3% 

Cross-Validated 0.541 0.600 0.746 26.6% 

Taxed Land 
Parcels 

In-Sample 0.576 0.475 0.757 22.8% 

Cross-Validated 0.568 0.458 0.771 24.5% 

Taxed Built 
Parcels 

In-Sample 0.530 0.545 0.721 27.2% 

Cross-Validated 0.534 0.522 0.740 27.1% 

 

Our best taxed parcels model achieves a cross-validated MAE of 0.541, an R2 of 0.600, a RMSE 
of 0.746 and 26.6% of actual values within 20% of the predicted value. Furthermore, there is a 
noticeable difference in the model’s predictiveness between taxed land and taxed built 
parcels. The model can more reliably predict the combined property values of taxed built 
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parcels than just pure taxed land. This is possibly explained by the inclusion of additional 
structural building values that are used to predict the property values. 

To obtain the most accurate building values possible, as noted, we subtract the predicted land 
values for all taxed parcels but with the structural building variables set to zero, from the 
predicted property values with the structural building variables included in the model. Whilst 
this is the most theoretically accurate building variable possible, it is not possible to directly 
observe building values and thus to measure the accuracy of our predictions. This underlines 
the technical difficulty of implementing a policy that stipulates the use of a CAMA for 
building values only. 

7. Conclusions and Recommendations 

We construct a set of models of property prices for the province of Kigali, Rwanda, for 2015, 
aiming to be as accurate as possible, in order to extract methodological lessons for a possible 
future CAMA to be implemented for Kigali in accordance with the property tax law that 
passed in 2018. To construct the models, we use digitised sales transaction data from the Land 
Administration Information System, for 7,445 parcels, divided by the area of the plot in square 
metres, to construct the dependent variable which was the logarithm of sales value per square 
metre. We then use a large set of explanatory variables, some of which are extracted from 
satellite images and processed, and some of which are extracted and processed from 
Government sources. The explanatory variables include structural land and building 
variables, locational variables such as distances to amenities and neighbourhood-level 
variables on land use, land zoning and land cover,  land use-related variables and relied on 
different datasets from the Government of Rwanda, satellite images and GIS mapping tools. 
This comprises a total of 235 variables, which become 511 after various mathematical 
transformations (logarithms and squared terms).  

Many of these variables are strongly correlated with each other and this represents a challenge 
for variable and model selection. We use a variable selection technique known as Minimum 
Redundancy Maximum Relevance, along with a deterministic cross-validation technique to 
eliminate overfitting. This is a vital step given that our goal is to use the 7,445 parcels for which 
there is sales data, to generate a model that can most accurately predict property values for all 
367,000 parcels in Kigali in 2015 (explanatory variables are available for all parcels), the vast 
majority of which are out of sample. The critical diagnostic on which we compare models is 
the cross-validated Mean Absolute Error. We test various model types including Ordinary 
Least Squares and a wide range of spatial model types, and identify the best performing 
models for each of four parcel data groupings: (1) all parcels; (2) taxed parcels; (3) taxed land 
and (4) taxed buildings.  

One goal is to find a way to predict building values as accurately as possible, because the 
Rwanda property tax law mandates the possible use of a Computer Assisted Mass Appraisal 
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to generate building values on the basis of which building tax will be calculated. We find that 
surprisingly, and conveniently, the best model trained on taxed parcel data outperformed the 
best model trained on taxed land data only, for taxed land parcels. This means that the best 
way to find building values is to use the taxed parcel model with the structural building 
variables set to zero to find imputed land values, and by subtracting these predicted land 
values from the predicted property values when the structural building variables are 
included.  

Our findings and reflections are as follows: 

● Our best taxed parcel model has a cross validated R2 of 0.600, a cross-validated MAE 
of 0.541, a cross-validated Root Mean Squared Error (RMSE) of 0.746 and 26.6% of 
actual values per square metre were within 20% of the cross-validated predicted value. 

● When using the same model to predict taxed unbuilt land values, the accuracy reduces 
slightly, to a cross validated R2 of 0.458, a cross validated MAE of 0.568, an RMSE of 
0.771 and 24.5% of actual values per square metre are within 20% of the cross-validated 
predicted value. Whilst this accuracy is not ideal, we are confident that it is the best 
possible on the basis of the 998 available data points for taxed unbuilt land. 

● The famous adage “location, location, location” is confirmed: Locational variables, 
especially distance to a road, a bus stop and a bus route, or logs and squared 
transformations of these variables, are consistently important, which underlines the 
importance of the interplay between urban connectivity and property prices. Other 
land use, land cover and land zoning variables, especially relating to agriculture, 
nature or vegetation cover, were consistently significant. Structural building variables 
- especially the building volume per unit land area and its squared term - are 
consistently important. Finally, a structural variable relating to land - specifically, the 
parcel perimeter - is present in the taxed parcel model and taxed land model, but not 
prominent. 

● Whilst spatial models generally outperform OLS in terms of in-sample diagnostics, 
when applied to our data they tend to underperform relative to OLS in terms of cross-
validated diagnostics, which implies that the added complexity of the spatial models 
tend to overfit the data. It follows that such excessively complex models with even the 
best-looking in-sample diagnostics, perform much worse than OLS for the purpose of 
out-of-sample property valuation unless they optimise cross-validated diagnostics. 
Whilst our extensive search for the best spatial model has indeed resulted in a set of 
models that outperform OLS in terms of cross-validated MAE, it is not possible to 
predict in advance which spatial model types will outperform OLS for any given 
dataset or model. We therefore conclude that use of spatial models is desirable if and 
only if extensive comparisons of different spatial models on the basis of cross validated 
diagnostics, is possible.  
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● Any property valuation model loses accuracy over time, as the explanatory variables 
change, and as inflation takes place; our analysis also shows this. It will be necessary 
to recalibrate the property valuation model behind a CAMA with up-to-date data on 
explanatory variables, every three to five years - at a rate that balances accuracy with 
cost. 

● However, the characteristics of properties change even from year to year, so value 
estimates for a property can be updated more regularly by adjusting the values of 
variables - for example if a road is built which decreases the distance to the nearest 
road for a number of properties and thus increases their value. In Rwanda, the 
property tax law specifies that a CAMA can only be used to tax buildings, and thus 
the Government would only need to be concerned with updating the building values. 
Where the single model approach to calculating building values described in section 
6.3 is used, the only data it would be necessary to update between full model re-
calculations would be the structural building variables, which in our model are the 
built volume per unit area and its squared term. This is because the other variables 
make no difference: building values can be calculated by simply multiplying the 
structural building variables - namely built volume per unit area and its squared term 
- by their model coefficients.9 

● Property tax law would ideally account for the technical limits of property valuation 
models in terms of accuracy. A property valuation model can most accurately predict 
total property values, and can also predict land values less accurately; however, it is 
hardest to predict building values accurately, as is necessary for Rwanda. Moreover, 
it is impossible to know how accurate the model is, given that buildings are not sold 
separately from the land on which they are built. In future, the Government of Rwanda 
might consider applying the CAMA either to all property, or to land, not solely to 
buildings. 

● The data used in this paper is almost exclusively of a “top down” nature. Additional 
“on the ground” building data would probably benefit model accuracy, including 
building materials, numbers of bedrooms, and similar details. Rwanda Revenue 
Authority plans to collect this data, which should be included in a future property 
valuation model if it is of sufficient quality and coverage. 

 

                                                      
9 The coefficients are constant in the case of OLS but vary across space for spatial models; in the latter 
case the coefficients would be already known from when the model was originally estimated. 
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