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Abstract

Non-technical losses – including theft – and poor grid reliability are pervasive and

costly problems for electricity utilities globally. To mitigate these challenges, some

utilities have installed smart meters. Through a randomized experiment in the Kyr-

gyz Republic, we study the impact of smart meters on electricity bill payment and

timing, electricity service quality, and household expenditures. Smart meters led to a

significant reduction in outages and voltage fluctuations, an improvement in electricity

service quality. Billed electricity consumption weakly increased during peak electricity

consumption months following meter installation, likely the result of both improved

electricity services and reductions in non-technical losses, but not theft per se. With

improvements in electricity quality, consumers increase household expenditures on elec-

trical appliances indicating demand for more reliable electricity service.
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1 Introduction

Non-technical losses – including theft – are a pervasive problem for electricity utilities glob-

ally, totalling an estimated $25 billion per year (Depuru, Wang and Devabhaktuni, 2011).

Electricity theft means consumers are not paying the full cost of the electricity services

they consume, leading to over consumption of such services and, in locations where elec-

tricity generation uses “dirty” fuels, and excessive pollution. For electricity utilities, these

losses translate into lower levels of cost recovery and thereby insufficient funds to invest in

infrastructure maintenance, modernization, and technical upgrades.

Poor reliability and electricity service quality often result from insufficient gird in-

vestments, a first-order problem for economic development. Although electrification rates

increased worldwide over the past decade,1 reliability lags (Moss, 2019). Poor service quality

is an impediment to achieving economic benefits from the electrical grid (Pargal and Baner-

jee (2014); Blimpo and Cosgrove-Davies (2019)), impacting both households (Chakravorty,

Pelli and Marchand, 2014) and firms (Allcott, Collard-Wexler and O’Connell, 2016). Yet

unreliable service perpetuates when consumers believe it warrants non-payment for their

electricity consumption. This persistent cycle – an “infrastructure quality trap” (McRae,

2015a) – is illustrated in Figure 1.

Smart meter installations have skyrocketed in the past decade worldwide.2 They are

installed by utilities in both developed and developing countries for a variety of purposes,

including improving grid reliability3 and reducing non-technical losses;4 Although the po-

1The Sustainable Development Goals (United Nation, 2016) stress the prominent role of energy in devel-
opment. The United Nations state “Energy is crucial for achieving almost all of the Sustainable Development
Goals, from its role in the eradication of poverty through advancements in health, education, water supply
and industrialization, to combating climate change.”

2In the United States, approximately 79 million smart meters were installed by 2017 (EIA, 2018) ac-
counting for roughly half of the meters serving electricity customers (FERC, 2018).

3Industry news accounts document these purposes. See for example: www.smart-energy.com/magazine-
article/global-trends-in-smart-metering/

4For example, the Canadian utility, BCHydro, documents the installation of smart meter to deter theft
on its website (www.bchydro.com).
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tential benefits from these meters include interrupting the infrastructure quality trap, there

is a dearth of evidence.5

We fill this gap through a randomized installation of smart meters, collaborating with

an electricity utility operating within a small city in the Kyrgyz Republic.6 Specifically, we

study the impact of smart meters on electricity service quality, bill electricity consumption

and indicators of theft, as well as household expenditures. In doing so, we contribute to a

nascent experimental literature on electricity reliability7 and provide the first of such evidence

on ways to interrupt the infrastructure quality trap.

The experimental intervention proceeded as follows. We collaborate with an electricity

utility in a city within the Kyrgyz Republic. Twenty transformers within the city were se-

lected to be included in the study, covering more than 1500 utility customers. In spring 2019,

smart meters were installed at all 20 project transformers to measure electricity consumption

for the neighborhood.8 Transformers were randomly assigned to treatment or control status,

resulting in 10 transformers in each group. Smart meters were installed at all houses within

the treatment transformers by September 2018. These smart meters replace old meters,

which are susceptible to various sources of electricity loss and do not protect against voltage

surges. Households in control transformers retained the old meters. We collected baseline

and follow-up survey data from households in the treatment and control transformers in

the spring of 2018 and 2019, respectively. These complement other data, including monthly

billing data from the electricity utility, as well as the electricity data from the smart meters

5Prior economics research involving smart meters primarily uses the technology as a vehicle for other
interventions, such as facilitating time-varying electricity prices or providing households with real-time in-
formation on electricity consumption. For examples, see: Wolak (2011); Jessoe and Rapson (2014); Ito, Ida
and Tanaka (2018))

6The Kyrgyz Republic is a lower-middle income country located in Central Asia.
7Carranza and Meeks (2019) study the role of energy efficiency investments in electricity reliability in a

different location with a different electricity utility within the Kyrgyz Republic.
8Transformers on the electrical grid convert high-voltage electricity to usable, low-voltage electricity for

household consumption. Each transformer can transfer a certain maximum electricity load at any given time
and exceeding that load may cause breakage (Glover, 2011).
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installed on all study transformers.

Results indicate the smart meter technology alone did not improve cost recovery or

reduce non-technical losses. We find the smart meters did not significantly reduce indicators

of theft, as measured by the transformer level smart meters. Billed electricity consumption

– an indicator of reduced losses – increased during the peak electricity consumption months

(winter), albeit insignificantly. During non-peak months, billed electricity consumption de-

creased. Conditional on paying their electricity bill,treated households are less likely to

report paying their bill late.

In contrast, the smart meters led to improvements in electricity quality, including re-

ductions in outages and voltage fluctuations, as measured by the transformer-level smart

meters. There is suggestive evidence that service quality – in the form of voltage qual-

ity – may have initially worsened after the meter installation before improving. This, in

conjunction with lower reported household appliance damage, demonstrates that the meter

functionality protecting against voltage spikes may result in more service disruptions (in the

short run) but then pressured the utility to make necessary repairs.

How did the households respond to the smart meters and resulting improvements in

electricity quality? Treated households increase expenditures on home appliances by approx-

imately 14 USD over a 3 month period. There is evidence the treated households invest in

energy efficiency, in the form of replacing windows.

Understanding the feasibility of smart meters to improve electricity service quality

and/or cost recovery is of first-order importance for development. Poor reliability may be

one reason for the heterogeneous benefits document in studies measuring electrification’s

impacts.9 The technology’s other characteristics – such as the enforcement of payment,

monitoring of electricity consumption, and the ability to balance electricity load and reduce

9Although electrification has improved indicators of development in some settings (Dinkelman (2011);
Lipscomb, Mobarak and Barnham (2013); Rud (2012); Van de Walle et al. (2013)), it does not always (Lee,
Miguel and Wolfram (2018); Burlig and Preonas (2016)).
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voltage fluctuations – may themselves provide a solution to the infrastructure quality trap,

rather than merely serving as the tool permitting tariff reform or providing information.

In addition, we contribute to a literature measuring the impacts of metering interven-

tions on water and electricity consumption and their ability to increase utility cost recovery

for those services.10 McRae (2015b) measures the impact of moving from a zero to a pos-

itive marginal price, as facilitated by the introduction of electricity meters, on residential

electricity consumption in Colombia. Jack and Smith (2018) assess the impacts of shifting

from traditional post-pay to pre-pay meters in South Africa, which reduces the costs of bill

enforcement to the utility. Both studies find that metering introduction led to reductions in

consumption (albeit by varying magnitudes and subject to differing heterogeneities).

The paper proceeds as follows. In Section 2, we explain the problem with electricity

losses, their contribution to the infrastructure quality trap, and how the functionality of

smart meters might interrupt this cycle. Section 3 describes the experiment, the data, and

balance tests. The empirical specifications and results are presented in Section 4. Section 5

wraps up with some conclusions.

2 Electricity losses and smart meters

2.1 Electricity losses

Non-technical losses (NTL) come from a number of sources, some of which are theft-related

but not all. Common sources of NTL include: meter malfunctioning (for example, if the

voltage is very low due to grid quality issues the meter might not register the household’s

electricity being consumed), meter tampering (consumers have countless ways of “rolling

back” or pausing the metering of their consumption), by-passing the meter (this involves

10Szabo and Ujhelyi (2015) implement a randomized information intervention to measure its impact on
water bill payment in South Africa.
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running the electrical wires from the house directly to the distribution wires, thereby avoiding

the meter), billing irregularities (consumers may pay off the meter reader – a human that

comes to document the consumption logged on the meter, typically once per month – to log

a lower consumption than the amount actually registered on the meter), and non-payment of

bills (depending on capacity and will to enforce payment, utilities may or may not disconnect

consumers if a certain period of time passes without payment). Only the first of this list is

not theft-related.

These non-technical losses play a role in the infrastructure quality trap as portrayed in

Figure 1. The utilitys low cost recovery is due to these NTL, including low bill payment, high

levels of electricity theft, etc. The low cost recovery translates into constraints on funding for

infrastructure maintenance and investments in expansion. The lack of investments lead to

(or perpetuate existing) poor service quality in the form of frequent electricity outages and

substantial voltage fluctuations with the capacity to damage or ruin expensive household

appliances. This further contributes to low cost recovery, as customers do not feel compelled

to pay for poor quality services. Such traps are common in developing countries and are

not limited to electricity infrastructure; other basic services such as water provision, also fall

prey.

2.2 Smart meters

The functionality of smart meters permits potential disruption of the infrastructure quality

trap in two ways, as depicted in Figure 2.

First, smart meters may improve service quality – as depicted in Model A of the figure

– through several channels. First, the smart meters are directly in contact with the utility,

detecting and reporting outages in real time. If the utility is monitoring this information,

it can be more responsive when an outage occurs. Second, smart meters detect voltage

anomalies outside of a “safe” range and automatically disconnect a house from the source
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when the voltage spikes, thereby protecting appliances from damage. When the voltage

returns to a safe, normal range, the consumer can re-start the electricity flow by pressing a

button on the smart meter. If the voltage does not return to a safe range, then utility must

perform repairs. Importantly, this automatic disconnect serves as proof of unsafe voltage

fluctuations, supporting consumers as they pressure the utility to take on maintenance and

repair activities (without this, it is difficult for consumers to verify voltage problems).

Model B shows how smart meters could improve cost recovery. The meters measure

electricity consumption every 15 minutes and relay this information to the utility. If the

utility monitors consumption patterns, it can quickly identify theft and other losses and

take action to rectify them. In addition, the utility can remotely disconnect non-paying

consumers, providing a low-cost mechanism to enforce on-time bill payment. Without the

ability to remotely disconnect, the utility previously would send a team of employees to

manually disconnect the non-paying household. Upon bill payment, the same employee

team would return to reconnect the household. This is process is labor intensive and costly.

3 Randomized experiment and support

3.1 Electricity in Kyrgyzstan

Kyrgyzstan is a lower-middle income country in Central Asia and nearly 100% of its popula-

tion has access to electricity. Residential electricity demand has increased since the country’s

independence in 1992. Over the past two decades, the proportion of total electricity con-

sumption comprised by the residential sector steadily increased, with 63% of the country’s

current electricity supply consumed by the residential sector (Obozov et al., 2013).

In the Kyrgyz Republic, much of the existing electricity infrastructure dates back to the

Soviet Union including all 16 of its power plants (Zozulinsky, 2007). Technically, the capac-

ity of both generation and transmission infrastructure could constrain household electricity
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services and result in unreliable electricity services (frequent electricity outages); however,

during the study period, distribution constraints are the primary source of unreliable service.

The electricity’s sector biggest problems are service quality and cost recovery, with re-

ported distribution losses 15-18% (World Bank, 2017). In 2009-2012, distribution companies

reported 2 outages/hour. In addition, the system has regular voltage and frequency fluctua-

tions (World Bank, 2017). Per a 2013 survey > 50% survey respondents reported problems

with voltage (including low voltage and voltage fluctuations) and 18.9% of respondents re-

ported damage to electrical appliances because of poor electricity quality.

Residential consumers face a two-tiered increasing block price. The non-linearity in

the price is at 700 kWh per month. Below the cutoff consumers pay .77 tyin per kWh.

Above the cutoff, consumers pay 2.16 tyin per kWh. Residential consumers rarely exceed

the threshold between the first and second tiers in the warm summer months; however, it is

common in the winter, as many households heat with electricity.

Electric heating leads to large seasonal variations in electricity consumption, with av-

erage winter consumption approximately three times that of summer. The country’s utilities

face growing electricity consumption while constrained by a distribution system designed for

substantially lower demand.

3.2 Randomized experiment

We collaborate with an electricity utility in a small city within the Kyrgyz Republic. Both

electricity losses and service quality concerns for this utility. The experiment focuses on

residential electricity consumers, which can reside in either multi-story apartment buildings

or single family dwellings. Pre-intervention households were individually metered, but the

meters were between old and susceptible to various forms of NTL.

The experimental intervention was designed around the last two steps in electricity dis-

tribution: the transformers and the households. Transformers on the electrical grid convert
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high-voltage electricity to usable, low-voltage electricity for household consumption. Each

transformer can transfer a certain maximum electricity load at any given time and exceeding

that load may cause breakage (Glover, Sarma and Overbye, 2011).

The intervention proceed as depicted in Figure 3. Smart meters were installed at all

20 project transformers, which typically serve between 50 - 100 households, to measure elec-

tricity consumption for neighborhood. These transformer-level smart meters were installed

in May 2018. Transformers were assigned to treatment or control status, resulting in 10

transformers in each group. Households in the treatment transformer had a smart meter in-

stalled to replace their old meters by September 2018. Households in the control transformers

retained the old meters.

Installing smart meters at neighborhood transformers provides critical measurements

at the level of treatment-assignment. First, the transformer-level smart meters collect infor-

mation or “alarms” on indicators of both service quality issues (outages, voltage spikes, etc)

and potential theft. Second, we can measure electricity losses as the differences between the

transformer-level measurements of consumption and the aggregated household-level mea-

surements of billed electricity consumption.

3.3 Data

We employ data from several sources for the analysis.

Survey data: We collected baseline and follow-up survey data in the spring of 2018

and 2019, respectively. Both surveys ask questions on characteristics of the home, quality of

electricity services, the set of home appliances, and overall household expenditures.

We sought to survey all households within the treated and control transformers. Ac-

tual responding households numbered 1143 and 1125 in the baseline and follow-up surveys,

respectively. When limited to the balanced panel of respondents in both the baseline and

follow-up surveys, the dataset includes 880 households.
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Smart meter data: Smart meters collect data at both the transformer and household

level. Data are collected in 15-minute increments. These data are collected at an electronic

aggregator installed at the transformer and then submitted to the electricity utility’s server.

Transformer smart meter data begin in April 2018, approximately 4 - 5 months prior to the

installation of the household-level meters within the treatment group.

Utility billing data: We use monthly data on billed electricity consumption and

timing of bill payment, as provided by the electricity utility. These monthly data start in

January 2017, giving approximately 1.5 years of pre-intervention baseline data.

3.4 Baseline balance tests

We use both the billed electricity consumption and the baseline survey data to test for

balance across the treatment and the control groups. Table 1 shows balance across the two

groups on all of the household characteristics, including the size of the house, fuel used for

heating and various measures of electricity quality.

Figure 4 depicts balance across groups with respect to electricity consumption. There is

no significant difference in electricity consumption in any month during the pre-intervention

period. In addition, the figure highlights that T and C households have the same seasonal

electricity consumption pattern, which is indicative of electric heating in winter.

4 Analysis and results

4.1 Empirics

We employ a standard difference-in-differences model for most empirical specifications, with

variations depending on whether the outcome data are at the transformer or household level.

For example, analysis of the impacts of the treatment on transformer alarms can be
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represented as:

agt = τTreatg ∗ Post+ βPostt + δTreatg + γt + τg + εg (1)

where agt is the number of alarms recorded by the transformer smart meter in one

day for transformer g in time t, Treatg is an indicator of transformer treatment status, γt

are month-by-year fixed effects, and τg are transformer fixed effects. Standard errors are

clustered at the transformer level.

Alternatively, analysis of the impacts of smart meters on household billed electricity

consumption can be represented by the following equation:

qigt = τTreatig ∗ Post+ βPostt + δTreatig + γt + λi + εi (2)

where qigt is billed electricity consumption (kWh) for household i in transformer g in

time t, Treatg is an indicator of transformer treatment status, γt are month-by-year fixed

effects, and λi are household fixed effects. In our preferred specification, we cluster standard

errors at the transformer level.

In regressions using the household survey data, we employ the baseline and follow-up

survey data in a panel when the data allow.11 Preferred specifications limit analysis to the

balanced panel.

4.2 Impacts on electricity quality

Our measures of electricity quality are overall transformer-level alarms per day, electricity

quality-specific alarms (voltage spikes, outages), and household quality reports.

In Table 2, we test the impact of the treatment on the total transformer alarms post in-

11The baseline was a streamlined survey, meant to be a limited touch at the household level. The follow-up
survey was more extensive, resulting in greater data available for the follow-up period.

10



stallation. We see alarms are significantly lower in the treated transformers post-treatment,

indicating an overall difference. Appendix Table A1 confirms the treatment groups trans-

formers were balanced at baseline.

Table 3 displays the estimated impacts on alarms specific to electricity quality. We

see an that alarms indicating voltage spikes and power outages are significantly lower in the

treatment transformers that the control.

Table 4 utilizes the panel data on reported outages, voltage spikes and appliance dam-

ages, as collected via the baseline and follow-up surveys. We show some signs that the

treatment households experience increases in outages and voltage spikes, but a decrease in

appliance damages post smart meter installation. These results are not statistically signifi-

cant when standard errors are clustered at the transformer level, the preferred specification.

Although speculative, these results suggest that the electricity service quality provided by

the transformers may have been initially problematic post meter installation and thereby

triggering the household smart meters’ mechanism to disconnect upon a spike in voltage.

This could have pressured the utility to make improvements and perform maintenance. This

explanation is also consistent with the reported reduction in household appliances damaged

by voltage spikes.

4.3 Impacts on billed consumption and theft

Table 6 shows that billed electricity consumption was not impacted by the smart meters.

These results are not consistent with any reduction of non-technical losses. Table 7 breaks

this analysis by season. Impacts are heterogeneous by season, with billed consumption

increasing in peak electricity months (winter) and decreasing in off-peak electricity months.

An event study graph in Figure 5 illustrates this heterogeneity across seasons.

We test the household self-reported bill response. Results are in Table 8. Households

in treated transformers are significantly less likely to report paying their electricity bill
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late. This is indicative of households’ awareness of the smart meters’ remote disconnection

functionality and an increased probability of disconnection for late/non-payment of bills. It

suggests the smart meters act as a deterrent to late- or non-payment; however, it does not

indicate decreases in overall electricity theft as result of the smart meter intervention.

4.4 Other household responses

4.4.1 Household expenditures

Household expenditures were balanced across treatment groups at baseline, as shown in

Appendix Table A2. In Table 9, we see a small – approximately 14 USD in value during

a 3 month period – but statistically significant increase in house appliance expenditures

post intervention. There are no statistically significant changes in any of the other expen-

diture categories, such as food, schooling, utilities, transportation, clothing or discretionary

expenses.

4.4.2 Energy efficiency

If households are paying higher price (billed the full cost) for electricity services post-meter

installation, then they may be incentivized to increase investment in energy efficiency or that

may change the overall consumption patterns. Here we provide evidence on the household

responses with respect to energy efficiency investments, investments in protection against

poor reliability electricity service, and overall household consumption.

We first provide evidence on the changes in energy efficiency made following the in-

stallation of the smart meters. Treatment households are no more likely to install insulation

(Table 12) or invest in energy efficient lighting (Table 10). They are, however, significantly

more likely to to report having replaced their windows (Table 11). Window replacement

is considered a a cost-effective energy efficient investment, given the cold winters and old
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housing stock.

Tests of additional types of appliance changes (Tables A3 and A4), differences in electric

device ownership, such as generators, stabilizers, batteries, etc (Table A5),and differential

use of electricity services show no evidence of impacts.

5 Conclusions

Pro-poor growth in the developing world is expected to result in greater household appliance

ownership and, thus, increased residential electricity demand (Wolfram, Gertler and Shelef,

2012). Pressure on the existing infrastructure, therefore, will continue to build and such

quality traps will exacerbate constraints on growth, acting as a barrier to future development.

With this in mind, there is tremendous need for evidence-based mechanisms to disrupt this

cycle and break free from the infrastructure quality trap. Yet, very limited evidence exists

to date.

Through a randomized experiment in collaboration with an electricity utility in the

Kyrgyz Republic, we provide evidence on the impact of smart meters on the infrastructure

quality trap. Utilities in both developed and developing countries install smart meters for

the purpose of reducing such losses; yet the existing economics research does not address

these potential benefits. Through this study, we contribute to a literature on methods to

improve electricity reliability and provide the first of such evidence on ways to interrupt

infrastructure quality trap.

These findings, which provide evidence on the short-run impacts of the meters, indi-

cate that the smart meters assist in improving electricity quality. Results suggest that smart

technologies alone are insufficient to eliminate non-technical losses (electricity theft). The

technological improvements likely must be paired with monitoring of the information pro-

vided by the technology and enforcement against theft. Electrical utilities installing smart
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meters to reduce theft ought to budget not only for purchasing technological improvements,

but also for labor costs required to monitor the technology.
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Figure 1: Example of infrastructure quality trap
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Figure 2: Smart meters potential to interrupt the infrastructure quality trap
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Figure 3: Randomized design
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Table 1: Balance at Baseline: Treated and Control Household Characteristics

Mean Treatment Mean Control Mean Difference P-value

Average # of rooms in the house 2.968 2.958 2.977 -0.020 0.942
Proportion of homes owned 0.802 0.778 0.826 -0.048 0.383
Proportion of homes with insulation 0.213 0.264 0.162 0.102 0.352
Proportion of houses using EE lightbulbs 0.200 0.208 0.191 0.017 0.798
Proportion of houses using central heating 0.057 0.079 0.035 0.044 0.485
Proportion of houses using electric heating 0.651 0.688 0.614 0.075 0.393
Proportion reporting 1+ outages per week (Jan - Feb 2018) 0.467 0.451 0.482 -0.030 0.817
Proportion reporting 1+ voltage fluctuations per week (Jan - Feb 2018) 0.705 0.695 0.717 -0.022 0.854
Proportion of houses with electric generators 0.004 0.005 0.004 0.002 0.715
Proportion of houses with stabilizers 0.005 0.005 0.005 0.000 0.991
Proportion of houses with appliances that have been damaged 0.210 0.239 0.183 0.056 0.595

Observations 1143 568 575

Notes: Data collected via baseline household survey, conducted in spring 2018. Robust standard errors are clustered at the transformer level

and included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001).
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Notes: Billing data are provided by the electricity utility. The analysis here is basic comparison and no

other variables are controlled. The standard errors are clustered at the transformer level. The grey lines in

the upper figure indicate the 90% confidence interval.
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Table 2: Transformer-Level Smart Meter Alarms - Total

(1) (2)
VARIABLES Total alarms in one day

Treat × Post -3.707** -0.900*
(1.727) (0.480)

Post 6.314*** 3.412***
(1.347) (0.258)

Constant -0.276 -1.469***
(0.615) (0.237)

Mean of Control Group 0.246 0.246
Observations 4,647 4,647
R-squared 0.219
Transformer FE Y Y
Cluster SE Transformer Transformer
Model OLS Poisson

Notes: Alarms data are the smart meters installed on the transformers and cover the period from April 2018

to June 2019. The outcome variable is the total number of alarms recorded by the transformer smart meter

in one day. Robust standard errors are clustered at the transformer level and included in parentheses (∗

p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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Table 3: Transformer-Level Smart Meter Alarms - Electricity Quality Alarm

VARIABLES Voltage problems Power outage Other alarms
(1) (2) (3) (4) (5) (6)

Treat -4.206*** -2.555*** -0.305*** -0.395*** -0.125*** -0.352***
(1.200) (0.715) (0.056) (0.067) (0.028) (0.069)

Constant 4.076*** 1.435*** 0.922*** -0.088 0.417*** -0.878***
(1.114) (0.415) (0.068) (0.084) (0.031) (0.078)

Mean of Control Group 4.486 4.486 0.936 0.936 0.422 0.422
Observations 3,176 3,176 3,176 3,176 3,176 3,176
R-squared 0.156 0.006 0.005
Cluster SE Transformer Transformer Transformer Transformer Transformer Transformer
Model OLS Poisson OLS Poisson OLS Poisson

Notes: Alarms data are provided by the electricity utility covering the period from September 2018 to June 2019. The outcome variable

is the number of alarms recorded by the transformer smart meter in one day. Regressions control for transformer characteristics including

number households served by the transformer and its capacity. Robust standard errors are clustered at the transformer level and included in

parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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Table 4: Electric Service Quality – Self-reported

(1) (2) (3) (4) (5) (6)
VARIABLES At least 1 outage/week More than 1 voltage spike/week Appliance ever damaged

Treat × Post 0.067 0.067 0.080 0.080** -0.096 -0.096***
(0.190) (0.048) (0.103) (0.037) (0.103) (0.033)

Treat 0.005 0.005 -0.003 -0.003 0.066 0.066**
(0.119) (0.034) (0.107) (0.031) (0.098) (0.028)

Post -0.098 -0.098*** 0.135** 0.135*** -0.086 -0.086***
(0.155) (0.033) (0.068) (0.027) (0.061) (0.023)

Constant 0.451*** 0.451*** 0.757*** 0.757*** 0.209*** 0.209***
(0.116) (0.041) (0.092) (0.037) (0.066) (0.029)

Mean of Control Group 0.445 0.445 0.703 0.703 0.187 0.187
Observations 1,739 1,739 1,736 1,736 1,755 1,755
Number of id 880 880 879 879 880 880
Basic Characteristics Y Y Y Y Y Y
Cluster SE Transformer Household Transformer Household Transformer Household

Notes: Data collected through baseline and follow-up surveys. Analysis is restricted to the balanced

panel. outage is a binary variable and equals 1 if the household experienced more than once electricity outage

per week in the previous January and February. voltage is a binary variable and equals 1 if the household

experienced more than once voltage fluctuations per week in the previous January and February. appliance

damage is a binary variable and equals 1 if the household ever had an appliance damaged by electricity

problems. Household basic characteristics include the number of rooms in a house, and whether the house

is owned by the household. Robust standard errors are clustered at the transformer level and included in

parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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Table 5: Transformer-Level Smart Meter Alarms - Potential Theft

(1) (2)
VARIABLES Potential theft alarms in one day

Treat -0.035 -0.056
(0.455) (0.735)

Constant 0.776*** -0.225
(0.257) (0.407)

Mean of Control Group 0.654 0.654
Observations 3,176 3,176
R-squared 0.002
Cluster SE Transformer Transformer
Model OLS Poisson

Notes: Alarms data are the smart meters installed on the transformers and cover the period from April

2018 to June 2019. The outcome variable is the number of alarms indicating potential theft recorded

by the transformer smart meter in one day. Regressions control for transformer characteristics including

number households served by the transformer and its capacity. Robust standard errors are clustered at the

transformer level and included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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Table 6: Billed Electricity Consumption

(1) (2)
VARIABLES bill lag bill

Treat × Post 5.460 23.493
(12.991) (14.405)

Post -653.245*** -683.679***
(39.257) (36.661)

Constant 923.106*** 889.196***
(21.520) (19.590)

Mean of Control Group 611.827 586.899
Observations 40,128 38,789
Number of Households 1,383 1,383
Adjusted R-squared 0.274 0.276
Household Fixed Effect Y Y
Month-by-Year Fixed Effect Y Y
Cluster SE Transformer Transformer

Notes: Billing data are provided by the electricity utility covering the period between January 2017 and

April 2019. The outcome variable bill measures the monthly billed electricity consumption (kWh/month)

for a household. lag bill is the one-period lagged monthly billed electricity consumption. Robust standard

errors are clustered at the transformer level and included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.001)
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Table 7: Billed Electricity Consumption - By Season

(1) (2) (3) (4)
VARIABLES bill bill lag bill lag bill

Treat × Post 37.475 -28.945* 26.571 6.395
(25.615) (15.723) (25.062) (17.521)

Post 91.082*** -409.210*** -269.278*** -152.771***
(24.716) (31.661) (25.476) (22.940)

Constant 922.223*** 641.526*** 889.069*** 423.114***
(17.882) (15.979) (19.427) (6.102)

Mean of Control Group 855.462 433.885 816.285 419.017
Observations 17,445 22,683 17,428 21,361
Number of Household 1,383 1,383 1,383 1,383
Adjusted R-squared 0.044 0.174 0.089 0.259
Household FE Y Y Y Y
Month-by-Year FE Y Y Y Y
Cluster SE Transformer Transformer Transformer Transformer
Season Heating Non-Heating Heating Non-Heating

Notes: Billing data are provided by the electricity utility covering the period between January 2017 and

June 2019. The outcome variable bill measures the monthly billed electricity consumption (kWh/month)

for a household. lag bill is the one-period lagged monthly billed electricity consumption. Heating season

covers from November to March. Robust standard errors are clustered at the transformer level and included

in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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Figure 5: Post-treatment Billed Electricity Consumption (kWh/month)

Notes: Billing data are provided by the electricity utility. The analysis here is basic comparison and no

other control variables are included. The standard errors are clustered at the transformer level. The grey

lines in the upper figure indicate the 90% confidence interval.
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Table 8: Household Arrangements for Bill Payment

VARIABLES Made arrangement for delayed payment Paid electricity bill late Paid other bill late

(1) (2) (3) (4) (5) (6)

Treat -0.112 -0.112*** -0.061** -0.061*** -0.027 -0.027
(0.142) (0.026) (0.024) (0.016) (0.026) (0.018)

Constant 0.171 0.171*** 0.131*** 0.131*** 0.181*** 0.181***
(0.122) (0.041) (0.036) (0.030) (0.041) (0.032)

Mean of Control Group 0.398 0.398 0.105 0.105 0.111 0.111
Observations 1,125 1,125 1,125 1,125 1,125 1,125
R-squared 0.034 0.034 0.016 0.016 0.009 0.009
Basic Characteristics Y Y Y Y Y Y
Cluster SE Transformer Household Transformer Household Transformer Household

VARIABLES Reduced expenditure on essential items Reduced expenditure on non-essential items

(7) (8) (9) (10)

Treat 0.034 0.034 0.064 0.064**
(0.078) (0.029) (0.061) (0.030)

Constant 0.520*** 0.520*** 0.600*** 0.600***
(0.090) (0.046) (0.074) (0.046)

Mean of Control Group 0.352 0.352 0.421 0.421
Observations 1,125 1,125 1,125 1,125
R-squared 0.018 0.018 0.023 0.023
Basic Characteristics Y Y Y Y
Cluster SE Transformer Household Transformer Household

Notes: Data collected through household follow-up survey. The outcome variables are binary indicators and equal 1 if the household reports

the corresponding behavior in the past year. Control variables for basic household characteristics include the number of rooms in a house, and

whether the house is owned by the household. Robust standard errors are clustered either at the transformer level or the household level and

included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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Table 9: Household Expenses (in KGS)

(1) (2) (3) (4) (5) (6)
VARIABLES food school electricity heat other utilities communication

Treat × Post -405.360 -1,370.930 42.235 -31.577 -16.915 -42.354
(318.015) (2,428.577) (99.037) (63.354) (35.725) (58.857)

Treat 325.162 1,122.246 10.460 9.648 12.179 87.322
(350.981) (1,992.095) (49.588) (11.998) (31.823) (66.843)

Post 72.182 1,992.837** 796.880*** 57.224 24.062 71.056**
(136.038) (933.554) (71.442) (59.525) (30.690) (27.609)

Constant 1,702.943*** 3,173.740*** -11.988 68.976 121.135*** 268.552***
(197.337) (1,217.277) (69.489) (44.668) (33.946) (43.533)

Control Group Mean 2079.244 3991.788 338.849 2.067 236.284 403.260
Observations 1,760 1,760 1,760 1,760 1,760 1,760
Number of id 880 880 880 880 880 880
Basic Characterstics Y Y Y Y Y Y
Cluster SE Transformer Transformer Transformer Transformer Transformer Transformer

(7) (8) (9) (10) (11) (12)
VARIABLES transportation medical clothing house expenses house appliance discretionary expenses

Treat × Post -111.895 262.024 -1,010.192 -2,185.022 912.637** -10,081.081
(330.734) (350.155) (781.090) (3,391.429) (464.975) (20,259.433)

Treat 50.534 -401.516 661.354 3,376.204 6.873 9,305.921
(301.547) (338.622) (779.583) (2,806.444) (635.113) (20,459.956)

Post -116.059 -999.452*** 645.538* 901.688 414.410* -27,538.243**
(179.535) (225.318) (380.000) (1,833.053) (232.972) (12,705.953)

Constant 676.919*** 1,442.204*** 2,573.377*** 3,560.180 959.313* 37,696.130***
(262.678) (315.924) (590.554) (2,284.247) (528.743) (13,426.979)

Control Group Mean 1161.502 1587.556 3010.333 4919.822 1328.899 38750.120
Observations 1,760 1,760 1,760 1,760 1,760 1,760
Number of id 880 880 880 880 880 880
Basic Characterstics Y Y Y Y Y Y
Cluster SE Transformer Transformer Transformer Transformer Transformer Transformer

Notes: Data collected via household baseline and follow-up surveys. We restrict analysis to the balanced

panel of households in both surveys. The outcome variables measure households’ expenses on the corre-

sponding items over the past week (food), past year (school), past one month (electricity, heat, other utility,

communication, transportation, medical), and past 3 months (clothing, house expenses, house appliance,

discretionary). The exchange rate at time of the baseline survey was 1 USD to 68.5 KGS. Control variables

for basic household characteristics include the number of rooms in a house and whether the house is owned

by the household. Robust standard errors are clustered at the transformer level and included in parentheses

(∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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Table 10: Use of Energy Efficient Lightbulbs

(1) (2) (3) (4) (5) (6)
VARIABLES EElight EElight EElight EElight EEbulbshare EEbulbshare

Treat×Post 0.048 0.048 0.056 0.056
(0.098) (0.037) (0.099) (0.041)

Treat 0.021 0.021 0.049 0.049***
(0.054) (0.023) (0.048) (0.018)

Post 0.291*** 0.291*** 0.282*** 0.282***
(0.081) (0.026) (0.073) (0.029)

Constant 0.003 0.003 0.197*** 0.197*** 0.137** 0.137***
(0.048) (0.031) (0.025) (0.010) (0.064) (0.028)

Mean of Control Group 0.191 0.191 0.193 0.193 0.229 0.229
Observations 2,267 2,267 1,759 1,759 1,125 1,125
R-squared 0.128 0.128 0.206 0.206 0.017 0.017
Cluster SE Transformer Household Transformer Household Transformer Household
Basic Characteristics Y Y Y Y
Household FE Y Y

Notes: Data collected through baseline and follow-up surveys. EElight is a binary variable and equals 1 if the

household use energy efficient lightbulbs in their home. EEbulbshare is the share of energy efficient lightbulbs

among all lightbulbs used by the household. In column (3) and (4), we use a balanced panel restricted to

households in both baseline and endline survey. Due to more in-responses in the endline survey, we have

fewer observations. Control variables for household basic characteristics include the number of rooms in a

house, and whether the house is owned by the household. Robust standard errors are clustered either at the

transformer level or at the household level and included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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Table 11: Changes in Home Energy Efficiency

(1) (2) (3) (4) (5) (6) (7)
VARIABLES made install replace insulate change energy install energy replace

any change insulation windows window efficient appliances efficient lightbulbs heating system

Treat 0.075* -0.009 0.087*** -0.000 0.001 0.015 0.003
(0.041) (0.045) (0.030) (0.003) (0.002) (0.012) (0.004)

Constant 0.045 -0.008 0.052* 0.000 0.007 0.012 -0.002
(0.042) (0.047) (0.027) (0.005) (0.004) (0.014) (0.004)

Mean of Control Group 0.205 0.109 0.080 0.004 0.002 0.019 0.002
Observations 1,125 1,125 1,125 1,125 1,125 1,125 1,125
R-squared 0.024 0.021 0.020 0.001 0.002 0.003 0.002
Cluster SE Transformer Transformer Transformer Transformer Transformer Transformer Transformer
Basic Characteristics Y Y Y Y Y Y Y

Notes: Data collected through household follow-up survey in spring 2019. The outcome variables are binary variables indicating whether the

household made certain changes to their house “since last summer” and equals 1 if they made the corresponding change. We control household

basic characteristics, including the number of rooms in a house, and whether the house is owned by the household. Robust standard errors are

clustered at the transformer level and included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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Table 12: Home Insulation - Whether Installed in 2018?

(1) (2) (3) (4) (5)
VARIABLES external wall internal wall attic floor/celling floor foundation

Treat 0.002 -0.009 0.001 0.012 -0.133
(0.045) (0.019) (0.014) (0.025) (0.107)

Constant -0.016 -0.017 -0.003 0.004 0.155
(0.048) (0.021) (0.013) (0.021) (0.101)

Mean of Control Group 0.530 0.417 0.261 0.347 0.929
Observations 1,125 1,125 1,125 1,125 1,125
R-squared 0.018 0.017 0.007 0.006 0.054
Cluster SE Transformer Transformer Transformer Transformer Transformer
Basic Characteristics Y Y Y Y Y

Notes: Data collected through household follow-up survey. The outcome variables are binary indicators and

equal 1 if the household installed insulation at the corresponding places in “the past year”. Household basic

characteristics include the number of rooms in a house, and whether the house is owned by the household.

Robust standard errors are clustered either at the transformer level or the household level and included in

parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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APPENDIX: FOR ON-LINE PUBLICATION
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Table A1: Balance Test for Transformer-Level Smart Meter Alarms

Month Control Treat Difference

2018 04 0.767 0.727 -0.040
(0.252) (0.300) (0.195)

2018 05 0.306 0.418 0.112
(0.028) (0.260) (0.097)

2018 06 0.270 0.272 0.002
(0.079) (0.071) (0.038)

2018 07 0.103 0.124 0.020
(0.052) (0.069) (0.032)

Observations 10 10 20

Notes: Alarms data are provided by the electricity utility covering the period prior to the introduction of

smart meters in the treatment households (from April to July 2018). The outcome variable is the number

of alarms recorded by the transformer smart meter in one day.
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Table A2: Balance Table - Household Expenses

control treat difference

food 2,056.565 2,459.921 403.356
(1,380.428) (1,699.949) (336.971)

school 3,864.957 5,099.296 1,234.339
(10,885.922) (12,669.304) (1,808.371)

electricity 335.310 352.352 17.043
(298.500) (467.313) (48.077)

heat 1.617 11.866 10.249
(17.118) (154.182) (11.342)

other utility 231.663 238.722 7.059
(298.501) (315.631) (29.501)

communication 416.162 518.889 102.727
(479.406) (509.067) (65.633)

transportation 1,325.628 1,320.215 -5.413
(3,679.287) (2,800.123) (297.625)

medical 1,537.965 1,172.292 -365.673
(4,501.009) (3,372.664) (303.175)

clothing 2,881.478 3,896.083 1,014.604
(4,430.101) (5,465.106) (787.867)

house expenses 5,401.600 8,576.937 3,175.337
(20,515.947) (46,904.070) (3,009.059)

house appliance 1,475.478 1,383.081 -92.397
(4,955.584) (4,962.081) (588.709)

discretionary expenses 39,352.930 47,553.195 8,200.265
(75,666.883) (102625.523) (18,718.855)

Observations 575 568 1,143

Notes: Data collected through questions on household expenditures in baseline survey. The outcome variables

measure household’s expenses on the corresponding items. The outcome variables measure households’

expenses on the corresponding items over the past week (food), past year (school), past one month (electricity,

heat, other utility, communication, transportation, medical), and past 3 months (clothing, house expenses,

house appliance, discretionary). The exchange rate at time of the baseline survey was 1 USD to 68.5 KGS.

Robust standard errors are clustered at the transformer level and included in parentheses (∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.001)
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Table A3: Number of Total Electric Appliances

(1) (2)
VARIABLES appliance num appliance num

Treat × Post -0.001 -0.001
(0.002) (0.002)

Treat -0.004 -0.004
(0.343) (0.187)

Post -0.001 -0.001
(0.000) (0.001)

Constant 8.288*** 8.288***
(0.446) (0.298)

Mean of Control Group 9.851 9.851
Observations 1,760 1,760
R-squared 0.037 0.037
Basic Characteristics Y Y
Cluster SE Transformer Household

Notes: Counts of total number of appliances created using data from the household baseline and follow-up

surveys. Analysis is restricted to the balanced panel. The outcome variable is the total number of all the

electric appliances owned by the household. Control variables for household basic characteristics include the

number of rooms in a house, and whether the house is owned by the household. Robust standard errors are

clustered at the transformer level and included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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Table A4: Electric Appliance Ownership

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES refrigerator clothes color TV sound computers water cellphone electric

washer equipment laptops heater charger heater

Treat × Post -0.000 -0.000 -0.000 0.000 -0.000 -0.000 -0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Treat 0.064* -0.005 0.012 -0.045 0.004 0.079 -0.098 -0.112**
(0.033) (0.048) (0.040) (0.043) (0.028) (0.063) (0.120) (0.045)

Post -0.000 -0.000 0.000 -0.000 -0.000* -0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.774*** 0.796*** 0.838*** -0.008 0.059 0.302*** 0.661*** 0.707***
(0.053) (0.041) (0.038) (0.035) (0.065) (0.081) (0.119) (0.071)

Mean of Control Group 0.827 0.836 0.862 0.142 0.184 0.433 0.702 0.722
Observations 1,760 1,760 1,760 1,760 1,760 1,760 1,760 1,760
R-squared 0.011 0.003 0.002 0.036 0.013 0.014 0.012 0.014
Basic Characteristics Y Y Y Y Y Y Y Y
Cluster SE Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer

Notes: Data collected household baseline and follow-up surveys. Analysis restricted to balanced panel. The outcome variables are binary

indicators and equal 1 if the household have the corresponding electric appliance. Controls for household basic characteristics include the

number of rooms in a house, and whether the house is owned by the household. Robust standard errors are clustered at the transformer level

and included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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Table A5: Electric Device Ownership

(1) (2) (3) (4) (5) (6) (7)
VARIABLES electricity stabilizer battery uninterruptable solar solar other solar

generator with inverter power supply panel water heater devices

Treat × Post 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Treat 0.008 -0.006 0.000 -0.002 0.000 -0.002 0.000
(0.008) (0.006) (0.000) (0.002) (0.000) (0.002) (0.000)

Post -0.000 -0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant -0.014 -0.000 0.000 0.001 0.000 0.001 0.000
(0.015) (0.007) (0.000) (0.002) (0.000) (0.001) (0.000)

Mean of Control Group 0.009 0.011 0.000 0.002 0.000 0.002 0.000
Observations 1,760 1,760 1,760 1,760 1,760 1,760 1,760
R-squared 0.011 0.004 0.001 0.001
Basic Characteristics Y Y Y Y Y Y Y
Cluster SE Transformer Transformer Transformer Transformer Transformer Transformer Transformer

Notes: Data collected household baseline and follow-up surveys. Analysis restricted to balanced panel. The outcome variables are binary

indicators and equal 1 if the household has the corresponding electric device at home. Controls for household basic characteristics include the

number of rooms in a house and whether the house is owned by the household. Robust standard errors are clustered at the transformer level

and included in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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Table A6: Services using electricity

VARIABLES Cooking Lighting Appliances Heating water Heating house
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Treat -0.005 -0.005 0.000 0.000 0.000 0.000 0.024 0.024* 0.027 0.027*
(0.012) (0.008) (0.000) (0.000) (0.000) (0.000) (0.034) (0.013) (0.026) (0.015)

Constant 0.987*** 0.987*** 1.000 1.000 1.000 1.000 0.917*** 0.917*** 0.974*** 0.974***
(0.014) (0.013) (0.000) (0.000) (0.000) (0.000) (0.045) (0.022) (0.027) (0.021)

Mean of Control Group 0.983 0.983 1 1 1 1 0.943 0.943 0.922 0.922
Observations 1,125 1,125 1,125 1,125 1,125 1,125 1,125 1,125 1,125 1,125
R-squared 0.001 0.001 0.005 0.005 0.013 0.013
Basic Characteristics Y Y Y Y Y Y Y Y Y Y
Cluster SE Transformer Household Transformer Household Transformer Household Transformer Household Transformer Household

Notes: Data collected through household follow-up surveys. The outcome variables are binary indicators and equal 1 if the household use

electricity for the corresponding activities. Controls for household basic characteristics include the number of rooms in a house and whether

the house is owned by the household. Robust standard errors are clustered either at the transformer level or the household level and included

in parentheses (∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.001)
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