Econometrica, Vol. 87, No. 5 (September, 2019), 1439-1474
THE ALLOCATION OF TALENT AND U.S. ECONOMIC GROWTH

CHANG-TAI HSIEH
Booth School of Business, University of Chicago and NBER

ERIK HURST
Booth School of Business, University of Chicago and NBER

CHARLES I. JONES
Graduate School of Business, Stanford University and NBER

PETER J. KLENOW
Department of Economics, Stanford University and NBER

In 1960, 94 percent of doctors and lawyers were white men. By 2010, the fraction
was just 62 percent. Similar changes in other highly-skilled occupations have occurred
throughout the U.S. economy during the last 50 years. Given that the innate talent
for these professions is unlikely to have changed differently across groups, the change
in the occupational distribution since 1960 suggests that a substantial pool of innately
talented women and black men in 1960 were not pursuing their comparative advantage.
We examine the effect on aggregate productivity of the convergence in the occupational
distribution between 1960 and 2010 through the prism of a Roy model. Across our
various specifications, between 20% and 40% of growth in aggregate market output
per person can be explained by the improved allocation of talent.
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1. INTRODUCTION

THE LAST 50 YEARS HAVE SEEN A REMARKABLE CONVERGENCE in the occupational dis-
tribution between white men, women, and black men. For example, 94 percent of doctors
and lawyers in 1960 were white men. By 2010, the fraction was just over 60 percent. Simi-
lar changes occurred throughout the economy, particularly in highly-skilled occupations.'
Yet no formal study has assessed the effect of these changes on aggregate economic per-
formance. Since the innate talent for a profession among members of a group is unlikely
to change over time, the change in the occupational distribution since 1960 suggests that
a substantial pool of innately talented women and black men in 1960 were not pursu-
ing their comparative advantage. The resulting (mis)allocation of talent could potentially
have important aggregate consequences.
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This paper measures the aggregate effects of the changing allocation of talent from
1960 to 2010. We examine labor market outcomes for race and gender groups through
the prism of a Roy (1951) model of occupational choice. Within the model, every person
is born with a range of talents or preferences across occupations. Each individual chooses
the occupation where she obtains the highest utility given her talents and preferences.

We introduce three forces that will cause individuals to choose occupations where they
do not have a comparative advantage. First, we allow for discrimination in the labor mar-
ket. Consider the world that Supreme Court Justice Sandra Day O’Connor faced when
she graduated from Stanford Law School in 1952. Despite being ranked third in her class,
the only job she could get in 1952 was as a legal secretary (Biskupic (2006)). We model la-
bor market discrimination as an occupation-specific wedge between wages and marginal
products. This “tax” is a proxy for many common formulations of discrimination in the
literature.’

Second, the misallocation of talent can be due to barriers to forming human capi-
tal. We model these barriers as increased monetary costs associated with accumulating
occupation-specific human capital. These costs are a proxy for parental and teacher dis-
crimination in favor of boys in the development of certain skills, historical restrictions on
the admission of women to colleges or training programs, differences in school quality be-
tween black and white neighborhoods, and differences in parental wealth and schooling
that alter the cost of investing in their children’s human capital.®

Finally, we allow for differences in preferences or social norms to drive occupation dif-
ferences across groups. For example, there might have been strong social norms against
women and black men working in high-skilled occupations in the 1960s. This possibility
has been highlighted in the work of, among others, Johnson and Stafford (1998), Alton;i
and Blank (1999), and Bertrand (2011). We treat the home sector as additional occupa-
tion. As a result, we also allow for differences across groups in the extent to which they
want to work in the home sector. This factor can capture changes in social norms related
to women working at home. However, we can interpret the change in the preference for
the home sector over time broadly so that it also includes changes in the preference for
children or the ability to control the timing of fertility.*

To measure these three forces, we make a key assumption that the distribution of innate
talent of women and black men—relative to white men—is constant over time. With this
assumption, we back out the changes in labor market frictions, human capital frictions,
and occupational preferences from synthetic panel data on the occupations and wages of
women and black men relative to white men from 1960 to 2010. We infer that preferences
changed and/or labor and human capital frictions declined from 1960 to 2010 to jointly
explain the convergence in occupations and wages of women and black men relative to

2See Becker (1957), Phelps (1972), and Arrow (1973), and a summary in Altonji and Blank (1999).

3Karabel (2005) documented that Harvard, Princeton, and Yale systematically discriminated against blacks,
women, and Jews in admissions until the late 1960s. Card and Krueger (1992) showed that public schools for
blacks in the U.S. South in the 1950s were underfunded relative to schools for white children. Goldin and
Katz (2002), Bailey (2006), and Bailey, Hershbein, and Miller (2012) documented that innovations related to
contraception had important consequences for female labor market outcomes and educational attainment.
Neal and Johnson (1996) documented differences in AFQT scores across race and how controlling for AFQT
explains a portion of black-white gaps. Akcigit, Grigsby, and Nicholas (2017) highlighted how parental liquidity
constraints can affect investments in their children’s education.

4See Fernandez, Fogli, and Olivetti (2004) and Ferndndez (2013) on the role of cultural forces, Greenwood,
Seshadri, and Yorukoglu (2005) on the role of home durables, and Goldin and Katz (2002) on the role of birth
control in explaining changes in female labor supply over time. Surveys of this extensive literature can be found
in Costa (2000) and Blau, Ferber, and Winkler (2013).
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white men. When we view these facts through the lens of our general equilibrium model,
we find that these shifts account for roughly two fifths of growth in U.S. market GDP
per person between 1960 and 2010. They also account for most of the rise in labor force
participation over the last five decades.

We use the model to decompose the contribution of each force. In our base specifica-
tion, individuals draw a vector of idiosyncratic productivities across occupations. With this
assumption, wage differences across groups within an occupation discipline our estimates
of changing group preferences. If women did not like being lawyers in 1960, the model
says women must have been paid more to compensate for this disamenity. Second, we
use the life-cycle structure of the model to distinguish between barriers to human capital
investment and labor market discrimination. In our setup, human capital barriers affect
an individual’s choice of human capital prior to entering the labor market. The effect of
these barriers remains with a cohort throughout their life-cycle. In contrast, labor market
discrimination affects all cohorts within a given time period. We then use the evolution
of life-cycle wages across groups to distinguish occupation-specific human capital barriers
(akin to “cohort” effects) from occupation-specific labor market discrimination (akin to
“time” effects).

We find that declining obstacles to accumulating human capital were more important
than declining labor market discrimination: the former explains 36 percent of growth
in U.S. GDP per person between 1960 and 2010, while the latter explains 8 percent of
growth. Changing group-specific occupational preferences explain little of U.S. growth
during this time period.

Our main findings are robust to having workers draw a vector of occupation-specific
preferences instead of productivities. Even if individuals sort only on preferences, we find
that one-fifth of growth in market GDP per person over the last five decades can be traced
to declining occupational barriers. A key reason is that women and black men are moving
into high-skilled occupations over time. When individuals have occupation-specific abili-
ties, this reallocation represents a better allocation of talent. When workers have the same
ability in all occupations and choose occupations based on idiosyncratic preferences, the
movement of women and black men into high-skilled occupations increases the average
market return to their ability.

To recap, this paper makes a conceptual point and an empirical point. Conceptually,
we show that quantities (occupational shares) are more robustly related to group-specific
occupational frictions than are wage gaps. Empirically, we demonstrate that there could
be substantial gains in GDP as a result of declining occupational barriers facing women
and black men. Both our empirical and conceptual points hold as long as individuals sort
at least partially on ability.

The rest of the paper proceeds as follows. Section 2 presents the model. Section 3
discusses data and inference for our baseline in which individuals differ in occupational
productivities. Section 4 presents the main results for this setting. Section 5 explores ro-
bustness when individuals sort based on preferences or on both preferences and produc-
tivities. Section 6 discusses other robustness checks. Section 7 concludes.

2. MODEL

The economy consists of a continuum of workers, each in one of M discrete sectors, one
of which is the home sector. Workers are indexed by occupation i, group g (such as race
and gender), and cohort c. A worker possesses heterogeneous abilities €; or preferences
w; over occupations. Some people are better teachers while others derive more utility
from working as a teacher.
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2.1. Workers

In a standard Roy (1951) model, workers are endowed with idiosyncratic talent € in
each occupation. We add two additional forces to this setup. First, we assume workers
are heterogeneous in either their talent or their preferences over occupations, but not
both; heterogeneity on both dimensions hinders tractability. Second, we allow for forces
that distort the allocation of workers across occupations. We have in mind forces such as
discrimination in the labor market, barriers to human capital accumulation, and group-
specific social norms.

Individuals invest in human capital and choose an occupation in an initial “pre-period.”
They then work in their chosen market occupation or in the home sector for three working
life-cycle periods (“young,” “middle,” and “old”). We assume that human capital invest-
ments and the choice of occupation are fixed after the pre-period.

Lifetime utility of a worker from group g and cohort ¢ who chooses occupation i is a
function of lifetime consumption, time spent accumulating human capital, and occupa-
tional preferences:

c+2

logU =B |:Z log C(c, t)j| + log[l - s(c)] +logz,(c) +logpu. (1)

1=c

C(c, t) is consumption of cohort c¢ in year ¢, s denotes time allocated to human capital
acquisition in the pre-period, z;, is the common utility benefit of all members of group g
from working in occupation i, u is the idiosyncratic utility benefit of the individual from
the occupation, and B parameterizes the trade-off between lifetime consumption and
time spent accumulating human capital.” We normalize the time endowment in the pre-
period to 1, so 1 — s is leisure time in the pre-period. Changes in social norms for women
working in the market sector or changing preferences for fertility can be thought of as
changes in z in the home sector for women. The idiosyncratic preference of a specific
woman in an occupation is represented by L.

Individuals acquire human capital in the initial period, and this human capital remains
fixed over their lifetime. Individuals use time s and goods e to produce #:

hig(c, t) = hiy(t — ¢)s;(c) ¥ e ().

i_zig captures permanent differences in human capital endowments and y parameterizes
the return to experience. We assume vy is only a function of age = ¢t — ¢ and h;, is fixed for a

given group-occupation. &, reflects any differences in talent common to a group in a given

occupation. ¢; is the occupation-specific return to time investments in human capital,

while 7 is the elasticity of human capital with respect to human capital expenditures.
Consumption equals “after-tax” earnings net of expenditures on education:

Clc, ) =[1— () wi()ehy(c, 1) — ey (c, H[1+ 7l (c)]. ()

Net earnings are the product of 1 — 7% and a person’s efficiency units of labor, which in

turn is the product of the price per efficiency unit w;, the worker’s idiosyncratic talent in
their chosen occupation €, and their human capital /. Individuals borrow e(c¢)(1 + Ti"g(c))

°In the first period of cohort ¢, ¢ = ¢. We omit subscripts on other individual-specific variables for ease of
notation, but z;, has subscripts to emphasize that it varies across groups and occupations.
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in the first period to purchase e(c) units of human capital, a loan they repay over their
lifetime subject to the lifetime budget constraint e(c) = :f e(c, t).

Labor market discrimination 7}, works as a “tax” on individual earnings. We assume
7}, affects all cohorts of group g within occupation i equally at a given point in time.
Barriers to human capital attainment Tf'g affect consumption directly by increasing the
cost of e in (2), as well as indirectly by lowering acquired human capital e. We interpret
ﬂrf’g broadly to incorporate all differences in childhood environments across groups that
affect accumulation of human capital. That is, Tf'g reflects more than just discrimination
in access to quality schooling. Because the human capital decision is made once and fixed
thereafter, Tf’g for a given occupation varies across cohorts and groups, but is fixed for a
given cohort-group over time.

Given an occupational choice, a wage per efficiency units w;, and idiosyncratic ability
€ in the occupation, the individual chooses consumption in each period and e and s in
the initial pre-period to maximize lifetime utility given by (1) subject to the constraints
given by (2) and e(¢) = ;:CZ e(c, t). Individuals will choose the time path of e(c, ) such
that expected consumption is constant and equals one-third of expected lifetime income.
Lifetime income depends on 7{; in the first period (when the individual is young) and the
expected values of w;, 7y, and y in middle and old age. For simplicity, we assume that
individuals anticipate that the return to experience varies by age but that the labor tax 7j;
and returns to market skill w; they observe when young will remain constant over time.
Because individuals expect the same conditions in future periods as in the first period
(except for the accumulation of experience), expected lifetime income is proportional to
income in the first period.

The amount of time and goods an individual spends on human capital are then

y 1

S = —

i 1_77’

1+
3B
Bd) ) 1 (3)

. (n(l — Ti‘fg’)wiifhigsf’ie> =
eig— 1+ng )

where y =1+ y(1) + y(2) is the sum of the experience terms over the life-cycle with y(0)
set to 1. Time spent accumulating human capital is increasing in ¢;. Individuals in high
¢; occupations acquire more schooling and have higher wages as compensation for time
spent on schooling. Forces such as w;, i_t,-g, Ti’;,, and Tig do not affect s because they have the
same effect on the wage gains from schooling and on the opportunity cost of time. These
forces do change the return to investing goods in human capital (relative to the cost) with
an elasticity that is increasing in 1. These expressions hint at why we use both time and
goods in the production of human capital. Goods are needed so that distortions to human
capital accumulation matter. As we show below, time is needed to explain average wage
differences across occupations.

After substituting the expression for human capital into the utility function, indirect
expected utility for an individual from group g working in occupation i is

o~ 38
U,-:, = wi[ywge ],
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where
~ o 1 hingg
Wig = w;s; (1 —s;)3 - ,
Tig
KM
(1 + 'rig)
Tg= ——0>
w
1-— Tig
and
- 1
Zig = Zig 3B,

The effect of labor market discrimination and human capital barriers is summarized by
the “composite” 7;,. More human capital barriers or labor market discrimination increase
Ti¢, Which lowers indirect utility for an individual from group g when choosing occupation
i. Group-specific disutility from working in occupation i is represented as a low value
of z;,. We represent group-specific preferences by Z instead of z to make the units of
group preferences comparable to those of 7. Higher innate talent e or preferences u also
increases the rewards for choosing an occupation.

Finally, turning to the distribution of the idiosyncratic talent € and preferences u, we
borrow from McFadden (1974) and Eaton and Kortum (2002). Each person gets either a
skill draw €; or a preference draw u; in each of the M occupations. To be clear, if a worker
gets a skill draw, we assume that u = 1 for the worker. If the person gets a skill draw,
talent in each occupation is drawn from a multivariate Fréchet distribution:

M
Fi(€,...,€ym) = exp|:— Zei9j|.
i=1

The parameter 6 governs the dispersion of skills, with a higher value of 6 corresponding
to smaller dispersion. We normalize the mean parameter of the skill distribution to 1 in
all occupations for all groups, but this mean parameter is isomorphic to }_zig.

If the individual instead gets a preference draw, these preferences are also drawn from a
multivariate Fréchet distribution, where the shape parameter for the Fréchet distribution
of preferences is equal to %;’”. This assumption makes the elasticity of labor supply to
an occupation of individuals with heterogeneous preferences the same as that of workers
with ability heterogeneity. We assume the ability of workers who sort on preferences is
the same in all occupations and given by €; = ' where I' =T'(1 — ——) is the Gamma

6(1-m)
function. This assumption makes average ability the same for the two groups of workers.

2.2. Occupational Choice

Given the above assumptions, the occupational choice problem thus reduces to picking
the occupation that delivers the highest value of U};,. Because heterogeneity is drawn from
an extreme value distribution, the highest utility can also be characterized by an extreme
value distribution, a result reminiscent of McFadden (1974). The overall occupational
share can then be obtained by aggregating the optimal choice across people®:

Proofs are in the Supplemental Material (Hsieh, Hurst, Jones, and Klenow (2019)).
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PROPOSITION 1—Occupational Choice: Let p;,(c) denote the fraction of people from co-
hort ¢ and group g who choose occupation i, a choice made when they are young. Aggregating
across people, the solution to the individual’s choice problem leads to

~ 0
pig(c) - Mujlg&a (4)

> " iy(c)’
s=1

where il (€) = wi(€)s; (€)1 — 5;(c)] ' - O

Occupational sorting depends on w;,, which is the overall reward that someone from
group g with the mean talent obtains by working in occupation i, relative to the power
mean of w for the group over all occupations. The occupational distribution is driven by
relative returns and not absolute returns: forces that change w for all occupations have no
effect on the occupational distribution. Occupations where the wage per efficiency unit w;
is high will attract more workers of a/l groups. In contrast, differences between groups in
occupational choice are driven by differences in z, h;,, 7, and 7. The fraction of group
g who choose occupation i is low when the group dislikes the occupation (Zz;, is low), has
low ability in the occupation (4, is low), is discriminated against (7}, is high), or faces a
barrier in accumulating human capital (77, is high).

We view home production as simply another occupation, so the share of a group in the
home sector is also given by equation (4). The labor force participation rate therefore
depends on the return in the home sector relative to the market. For example, the decline
in the labor force participation rate of white men since the 1960s can be driven by higher
returns in the home sector (such as better video games), a decline in labor market oppor-
tunities (such as the decline of blue-collar jobs), or changing preferences for the market
sector relative to the home sector. The increase in female labor force participation rates
from 1960 to 2010 can be due to less labor market and human capital discrimination in
market occupations.

2.3. Worker Quality

For individuals with heterogeneous abilities, sorting affects the average quality of work-
ers in an occupation. For individuals with heterogeneous preferences, sorting has no ef-
fect on the average quality of workers in an occupation. But sorting on productivities or
preferences has different effects on occupational wages. Average worker quality in an oc-
cupation is therefore a weighted average of the quality of workers who sort on ability and
those who sort on preferences:

PROPOSITION 2—Average Quality of Workers: For a given cohort ¢ of group g at time
t, the geometric average of worker quality in each occupation, including both human capital
and talent, is

e]E log[hjg(c,1)€ig(c)]

1-8

ns,«(c)“’f“)&fzigw,-(c)[l—r;;(c)]>11’n( 1 ) 5)
1+ng(c) Pig(©) ’

=Tsi(c)*Oy(t — C)<
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The parameter 6 denotes the share of the population with idiosyncratic preferences (so
1 — & is the share of workers with idiosyncratic ability) and I is a constant.” By varying 9,
we can explore the robustness of our results to sorting that occurs completely on talent
(6 = 0), sorting that occurs completely on preferences (6 = 1), or sorting that occurs on
both margins. When all individuals possess heterogeneous abilities (6 = 0), average qual-
ity is inversely related to the share of the group working in the occupation p;(c). This
captures the selection effect. For example, the model predicts that if the labor market dis-
criminated against female lawyers in 1960, only the most talented female lawyers would
have chosen to work in this occupation. And if the barriers faced by female lawyers de-
clined after 1960, less talented female lawyers would move into the legal profession and
thus lower the average quality of female lawyers. Conversely, in 1960, the average quality
of white male lawyers would have been lower in the presence of labor market discrimina-
tion against women and black men. At the other extreme, when 6 = 1 (all workers sort on
preferences), this selection effect is absent.

2.4. Occupational Wages
Next, we characterize the average wage for a given group working in a given occupa-
tion—the model counterpart to what we observe in the data.

PROPOSITION 3—OQOccupational Wages: Let wage,,(c, t) denote the geometric average of
earnings in occupation i by cohort c at date t of group g. Its value satisfies
wage,,(c, 1) = (1 - ﬂr}g(t))w,—(t)eEl"g[hig(C”)Eig]

L

= fﬁ[pig(c)amg(c)]ﬁiig(c)_ﬁ[1 — ()]
1- Tiu;(t) w;(t) y(t—c¢) si(c)¢i(t)
I-mh@wle) 7 si(e)*’

(6)

where mg(c) = Zf‘il Wig(¢)? and = nn/ =",

A-rpwi(n
(A= (@)wi(c) —
When all individuals sort on ability (6 = 0), average earnings for a given group among the
young differ across occupations only because of differences in s; and Z;,. Occupations
in which schooling is especially productive (a high ¢; and therefore a high s;) will have
higher average earnings. Occupations where individuals have a strong common disutility
from being in the profession (z;, is small) have higher wages as compensation for the lower
utility. These are the only two forces that generate differences in wages across occupations
for the young when individuals sort completely on talent (6 = 0). Average earnings are no
higher in occupations where a group faces less discrimination in the labor market, lower
frictions in human capital attainment, a higher wage per efficiency unit, or where the
group has more talent in the sector. The reason is that each of these factors leads lower
quality workers to enter those jobs. This composition effect exactly offsets the direct effect
on earnings when the distribution of talent is Fréchet.

The composition effect would not be present if selection was driven by forces other than
occupational ability. When all workers select based on idiosyncratic preferences (6 = 1),

. .. . . . . o (c)Pi (D)
For individuals in the young cohort, ¢ = ¢, which implies ‘<, = = 1 and
’ ’ si(e)i(©

T is defined in equation (A7) in the Supplemental Material (Hsieh et al. (2019)).
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selection affects the average utility of workers in an occupation, but has no effect on aver-
age ability. In this case, there is no quality offset due to selection and the average wage in
an occupation varies with p;,—so the average wage and the occupational share will both
be higher in occupations where a group faces less discrimination or where the wage per
efficiency unit is higher.

The general point is that the wage gap is not a robust measure of the frictions faced by
a group in a given occupation. The elasticity of the wage gap with respect to occupational
frictions depends on the share of individuals who sort on preferences instead of ability.
When individuals sort entirely on ability (6 = 0), the wage gap is uncorrelated with these
frictions because of the offsetting effect of selection.

Equation (6) for the average wage also identifies the forces behind wage changes over
a cohort’s life-cycle. For a given cohort-group in an occupation, s;, Z;,, and p;, are fixed.
Therefore, the average wage increases over time when the price of skills in the occupation
w; increases, labor market discrimination 7* falls, return to experience is positive, or the
return to schooling increases.

2.5. Relative Propensities

Putting together the equations for the occupational shares and wages in each occupa-
tion, and assuming the experience profiles are the same across groups, we get the relative
propensity of a group to work in an occupation:

PROPOSITION 4—Relative Propensities: The fraction of a group working in an occupa-
tion—relative to white men—is given by

CUNECINEANE. TR 0
pi,wm(c) N T,',Wm(C) I:Li,wm \Wgei,wm(c7 c) )

where the subscript “wm” denotes white men.

The propensity of a group to work in an occupation (relative to white men) depends on
three occupation-specific terms: relative frictions, relative talent, and the average wage
gap between the groups. From Proposition 3, the wage gap itself is a function of the
distortions faced by the group, the talent of the group, and the price of skills in all oc-
cupations. With data on occupational shares and wages, we can infer the combined effect
of labor market discrimination, barriers to human capital attainment, and talent in the
sector. The preference parameters z;, do not enter this equation once we have controlled
for the wage gap; instead, they influence the wage gaps themselves.

2.6. Relative Labor Force Participation

The labor force participation rate of a group relative to white men is given by equation
(7). We normalize Z =1, 7 =0, and " = 0 for the home sector. With these normaliza-
tions, the labor force participation rate relative to white men is given by the following:

PROPOSITION 5—Relative Labor Force Participation: Let LFP, = 1 — pyome , denote the
share of group g in the market occupations. The share of group g in the home sector relative
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to white men is then

1 —LFP,(c)  mum(c)
1 —LFPyn(c)  my(c)

_ <7wagefg("” ¢ )_m_n)( Zs(©) >_9< Pis(©) )8 viemarket, (8)

Wagei,Wm(Ca C) Ei,wm(c) pi,wm(c)

M~ 0
Mwm(c) _ iz Diwm(€)
where mater = W i

Since the return to the home sector is the same for all groups (our normalization that
the home sector is undistorted), "ZHL(S) is the return to market work of white men relative
8

to group g. For example, if women are discriminated against in the labor market or in
accumulating human capital for the market sector, this will drive down female labor force
participation rates. If social norms discourage women from the market sector (low Zz in
market sectors), this will also lower female labor force participation.

The second equation in (8) says that the relative return to market work is given by a
power function of the gap in market wages in any market sector, the relative occupational
preference term in that sector, and the relative occupational propensity in the sector with
an elasticity that depends on the share of people that sort on preferences 6. We will use
this insight to back out z in the market sectors from data on labor force participation of
the group and wage gaps, both relative to white men.

2.7. Firms

A representative firm produces final output Y from workers in M occupations:

M 7o
Y= [Z<A,--H,-)”T‘l} , ©)
i=1

where H; = Zg > . 4.(c) pic(c)E[hi(c)e(c)] denotes total efficiency units of labor in oc-
cupation i, A; is the exogenously-given productivity of occupation i, and o is the elasticity
of substitution across occupations in aggregate production.

2.8. Equilibrium

Sections B and C of the Supplemental Material (Hsieh et al. (2019)) contain the re-
maining details of the model. Section B endogenizes 7% and 7" as a function of the dis-
criminatory preferences of firm owners. Section C defines the general equilibrium of the
model and contains a proposition describing how the equilibrium allocation and prices
can be solved for.

2.9. Intuition

To develop intuition, consider the following simplified version of the model. First, as-
sume only two groups, men and women, and that men face no distortions. Second, assume
occupations are perfect substitutes (o — 00) so that w; = A4;. With this assumption, the
production technology parameter pins down the wage per unit of human capital in each
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occupation. In addition, labor market and human capital frictions affect aggregate output
produced by women but have no effect on output produced by men. Third, assume ¢; =0
(no schooling), f_z,- =1, and that each cohort lives for one period.

In the case with no selection on ability (6 = 0), aggregate output is given by

. 1

LN (At may) T
m.(;Ai) +1—F""<Z( ) )) , (10)

i=1

=

output from men output from women

where ¢q,, and g,, denote the number of women and men, and 7 denotes the earnings-
weighted average of the labor market friction facing women.® The first term in (10) is
aggregate output produced by men and is not affected by the occupational distortions
facing women because occupations are perfect substitutes here. The second term is ag-
gregate output produced by female labor. The effect of 7, 7", and Z on aggregate output
shows up in the second term; it is increasing in the number of people in the discriminated
group ¢,. Also note that the effect of z on aggregate output is isomorphic to the effect
of 7 and 7". Societal preferences shift the allocation of talent in exactly the same way as
labor market and human capital distortions.

We illustrate how this setup can be used to gain intuition by focusing on 7*; the effects
of 7" or Z can be analyzed in a similar fashion. Assuming 7 =0, Z = 1, and that 7 and 4
are jointly log-normally distributed, aggregate output produced by women Y, (the second
term in equation (10)) is given by

1

N g a1 o6-1
InY,=Ing, +In( ) A + 1 In(1-7) - E-l—-Varln(l—T) (11)
i=1 -7 N

T affects output via the last two terms in equation (11). The mean of 7 changes the
return to investment in human capital. This effect is captured by the third term in equation
(11) and its magnitude depends on elasticity of output with respect to human capital 7.
The dispersion of 7" across occupations affects aggregate output via a different channel.
Here, dispersion of 7" affects the allocation of female labor across occupations. A decline
in the dispersion of 7 improves the allocation, which increases aggregate output. This
effect is captured by the fourth term in equation (11).

Equation (11) suggests that the effect of unequal barriers on aggregate output is in-
creasing in 0. While this is true for a given variance of labor distortions, our inference
about the magnitude of that variance from observed data also depends on 6. Using the
equation for relative propensities, the variance in the labor distortion is given by’

plg

Varln(1 — 7") = pol - Varln /% )

This says that, conditional on data on occupational shares, the implied dispersion of 7* i
decreasing in 0. Expressed as a function of data on occupational propensities, aggregate

— pmwage /ZM PJuW*gew

W

8-w — M w
=3y w;T", where w; =

9We maintain the assumption that 7 is the only source of variation.
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output from female labor is

M [
n _ 1 6—1 Dig
1nYw=1nqw+1n<ZAf) —|——-ln(1—7“’)——-7~Varln(— .
i=1 1_77 2 (1_77)92 pi,wm

The elasticity of Y,, with respect to the variance in the observed propensities in the data
is 1 - ﬁ;; ;2> While the elasticity with respect to the variance in 7" is § - {= . Intuitively,
a higher value of 6 implies that a given amount of misallocation has a larger effect on
aggregate output. On the other hand, given the observed data on occupational shares, a
higher 6 also implies a smaller amount of misallocation. For this reason, as we document
later, the effect of changes in occupational shares on output growth will not be overly
sensitive to the values we use for 6.

Finally, now consider the case in which individuals only sort on preferences (6 = 1).
The effect of dispersion in 7 on average utility is exactly the same as in the case when in-
dividuals only sort on ability, but the effect on aggregate output is different.!’ Specifically,
maintaining the same assumptions behind equation (11), the log of aggregate output of
women is given by’

M

ZAQ+1

InY, =Ing, +In-=——+ 6 Cov[ln 4, In(1 — 7}") . (12)

2.4
j=1

Now aggregate output increases in the covariance of A; and 1 — 7. Aggregate output falls
when a group is under-represented in high A; occupations. Similarly, a change in labor
market frictions can raise aggregate output if 7 declines in high A4; occupations.

3. INFERENCE WITH SELECTION ONLY ON ABILITY (6 =0)

We now explain how we identify the driving forces of our model given data on wages
and occupational shares for different groups of workers. We begin by considering the
case where all individuals only draw occupational talent (6 = 0). In Section 5, we discuss
inference when selection occurs on both ability and preferences (6 > 0). In that section,
we also provide an estimate of 8. The results with our estimated 6 are not far from our
results with 6 = 0, so we use = 0 as our benchmark specification.

The inference exercise—for any value of 6—is based on two key assumptions. First,
we assume the relative mean latent occupational talent of a group relative to white men
hie/hiwm is constant over time. This is a key assumption and we cannot proceed without
it. It implies that the change in the occupational distribution of women and black men
relative to white men since 1960 must be driven by changes in labor market or human
capital frictions or by changes in common occupational preferences. Second, we assume
that idiosyncratic occupational abilities or preferences are distributed i.i.d. Fréchet. This
assumption is not as crucial, but it buys us enormous tractability because it leads to simple

A=) gl 1
U700 y0y 5 T in the two cases.
a+em

UFor simplicity, equation (12) also assumes 7 = 0.

19 Average utility of women is given by (3", (
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expressions for occupational shares and wages as a function of the occupational frictions.
Relaxing this assumption is a valuable direction for future research but would not change
the fact that the 7’s and z’s must have changed since the 1960s to explain the observed
changes in the distribution of occupations of white women and blacks relative to white
men over the last fifty years.'

This section proceeds as follows. First, we describe the data. Second, we explain what in
the data allows us to measure the composite friction T and the group-specific occupational
preferences z. Third, we show how to decompose the composite 7 into labor market fric-
tions (7*) and human capital barriers (7). Finally, we explain how we infer productivity
and the return to skill in each occupation.

3.1. Data

We use data from the 1960, 1970, ... 2000 decennial Censuses and the 2010-2012 Amer-
ican Community Surveys (ACS)."* We restrict the sample to four groups: white men, white
women, black men, and black women. We include individuals between the ages of 25 and
54. This restriction focuses the analysis on individuals after they finish schooling and prior
to retirement. Finally, we exclude individuals who report being unemployed (not working
but searching for work) or on active military duty.!*

We create pseudo-panels by following synthetic cohorts from 1960 to 2010. We define
three ages within a cohort’s life-cycle: young (age 25-34), middle (age 35-44), and old
(age 45-54). For example, a synthetic cohort would be the young in 1960, the middle aged
in 1970, and the old in 1980. We have information on eight cohorts for the timespan we
study. We observe information at all three life-cycle points for four cohorts (the young in
1960, 1970, 1980, and 1990) and one or two life-cycle points for the remaining cohorts.

We define a person as either in the home sector or in the market sector based on their
number of hours worked. We classify a person as being in the home sector if she is not
currently employed or works less than ten hours per week. Individuals working more than
thirty hours per week are classified as employed in one of 66 market occupations.'® Those
who are employed but usually work between ten and thirty hours per week are classified
as part-time workers. We split the sampling weight of part-time workers equally between
the home sector and the reported market occupation.

We measure earnings as the sum of labor, business, and farm income in the previous
year. When calculating earnings, we restrict the sample to individuals who are currently
working, who worked at least 48 weeks during the prior year, and who earned at least
1000 dollars (in 2010 dollars) in the previous year. We convert all earnings data from the
Census to constant dollars. Our measure of wage gaps across occupations and groups is
the difference in the log of the geometric average of earnings.!®

2Lagakos and Waugh (2013) and Adéo (2016) estimated selection models with arbitrary correlation but
with only two or three sectors. We do not know how to do something similar for the 67 occupations we have.

3When using the 2010-2012 ACS data, we pool all three years together for power and treat them as one
cross section. Henceforth, we refer to the pooled 2010-2012 sample as the 2010 sample.

“The Supplemental Material (Hsieh et al. (2019)) reports summary statistics. For all analysis, we apply
survey sample weights.

5The 66 market occupations (shown in Supplemental Material (Hsieh et al. (2019)) Table FII) are based
on occupation codes in the 1990 Census. We chose the 1990 codes as they are available in Census and ACS
years since 1960.

16Qur results are robust to adjusting for hours worked across groups. This is not surprising given we already
condition on full-time work status. When computing average earnings by occupation, we include top-coded
and imputed data; excluding such data had little effect on our estimated 7’s.
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FIGURE 1.—Standard deviation of relative occupational shares. Note: The figure shows the standard devi-
ation of In(£%-) across occupations for each group weighting each occupation by the share of earnings in that

Pwm

occupation. Specifically, we show the data for young white women (middle line), young black men (bottom
line), and young black women (top line) relative to young white men.

3.2. Composite Frictions versus Occupational Preferences

Equation (4) says that differences in occupational choice between women and black
men relative to white men are driven by differences in the ratio of occupational prefer-
ences to occupational frictions z/7. Figure 1 plots the standard deviation of the shares
of women and black men relative to white men across market occupations for the young
cohort in each decade. The sorting of women and blacks has converged toward that of
white men over time. Viewed through the lens of (4), this fact indicates that the 7 and/or
z of women and black men must have converged toward that of men. This is one key fact
behind our finding that the allocation of talent has improved over the last five decades.

Equation (6) says that wage gaps across occupations for the young are proportional to

gaps in 2™ . For example, if white women are poorly compensated (relative to white men)
as lawyers compared to secretaries, it must be the case that women receive higher utility
from working as secretaries compared to lawyers. When & = 0, for a given estimate of 7
we can infer relative z across groups by fitting the occupational wage gaps across groups
and occupations for the young.

Equation (7) then says that, conditional on having an estimate of the parameters 6 and
7, the composite friction 7 can be recovered from data on relative occupational shares
after controlling for the average wage gap. Intuitively, the wage gap controls for the effect
of preferences on occupational choice. The “residual” occupational choice is therefore
only driven by the effect of 7. Our base results normalize /;,/h;wm = 1 and assume the
occupational choice of white men is undistorted (i.e., 7;wm = 1).” So when the share of
some group in an occupation is low relative to white men after we control for the wage
gap, we infer that the group faces a high 7% or a high 7" in the occupation.

We need estimates of 6 and 7 to infer 7’s and 2z’s from the data. To estimate 6, we use
the fact that distributional assumptions imply that wages within an occupation for a given
group follow a Fréchet distribution with the shape parameter 6(1 — n). This reflects both
comparative advantage (governed by 1/6) and amplification from endogenous human
capital accumulation (governed by 1/(1 — n)). Using micro data from the U.S. Population

1"We will later show robustness to these two normalizations.
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Census/ACS, we estimate 6(1 — n) to fit the distribution of the residuals from a cross-
sectional regression of log hourly wages on 66 x 4 x 3 occupation-group-age dummies in
each year.'® The resulting estimates for 6(1 — n) range from a low of 1.24 in 1980 to a
high of 1.42 in 2000, and average 1.36 across years."

The parameter n denotes the elasticity of human capital with respect to education
spending and is equal to the fraction of output spent on human capital accumulation.
Spending on education (public plus private) as a share of GDP in the United States aver-
aged 6.6 percent over the years 1995, 2000, 2005, and 2010.%° Since the labor share in the
United States in the same four years was 0.641, this implies an 1 of 0.103.>! With our base
estimate of (1 — 1) = 1.36, n =0.103 gives us 6 = 1.52.

Alternatively, we can estimate 6 from the elasticity of labor supply. In our model, the
extensive margin elasticity of labor supply with respect to a wage change is 6(1 — LFP,).
The meta analysis in Chetty, Guren, Manoli, and Weber (2012) suggests an extensive
margin labor supply elasticity of about 0.26 for men. The underlying data in their meta
analysis come from the 1970-2007 period. In 1990, roughly in the middle of their analysis,
89.9% of men aged 25-34 were in the labor force. To match a labor supply elasticity of
0.26, our model implies that 6 would equal 2.57. This is higher than the estimate of 6 we
get from wage dispersion. As a compromise between our two estimates, we will use 6 =2
as our base case, but will also provide results with 6 of 1.5 and 4.

With these values for 6 and 7, we can now infer 7 and z from data on occupational
propensities and wage gaps. Figure 2 shows the mean of 7 of each group across the 67
occupations. For white women, the mean of 7 fell from about 7 in 1960 to around 3 in
2010, with most of the decline occurring prior to 1990. Average 7 facing black women
declined from around 8 to about 3 from 1960 through 2010. Black men experienced a
decline in mean 7 from around 3 to 1.5 during the five decades. For both black women
and black men, most of the decline occurred between 1960 and 1980.

Black women

2W

1 . . . . ,
1960 1970 1980 1990 2000 2010

FIGURE 2.—Mean of composite occupational frictions. Note: Figure shows earnings-weighted mean of 7
for each group.

8We use MLE, taking into account the number of observations which are top-coded in each year.

YSampling error is minimal because there are 300-400k observations per year for 1960 and 1970 and 2-3
million observations per year from 1980 onward. We did not use 2010 data because top-coded wage thresholds
differed by state in that year.

8ee http://www.oecd.org/education/eag2013.htm.

YLabor share data are from https://research.stlouisfed.org/fred2/seriessLABSHPUSA156NRUG. The
young’s share of earnings is from the U.S. Population Census/ACS.
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FIGURE 3.—Variance of composite frictions and occupational preferences. Note: Figure shows the earn-
ings-weighted variance of In 7 (left panel) and In Z (right panel).

Figure 3 shows the dispersion of In (left panel) and InZz (right panel) across all 67
occupations. For all three groups, the variance of In 7 fell by about 0.4 log points between
1960 and 2010. The right panel shows that the decline in the dispersion of In z is much
smaller than the decline in the dispersion of 7. For black men and white women, there
is essentially no change in the dispersion of occupational preferences relative to white
men so almost all of the occupational convergence is due to 7. So for black men and
white women, almost all of the convergence in occupational propensities is due to the
convergence in 7. For black women, the variance of relative In z fell, but the magnitude of
the decline is only 17% of the decline in the dispersion of In 7. So even for black women,
most of the occupational convergence is due to T convergence.

Figure 4 displays 7 for white women for a subset of occupations. The composite friction
was high for women in 1960 working in construction, as lawyers, and as doctors relative
to working as teachers and secretaries. For white women lawyers and doctors, 7 in 1960
was around 10. If 7 reflected labor market discrimination only, the implication would be
that women lawyers in 1960 were paid only one-tenth of their marginal product relative to
their male counterparts. The model infers large 7’s for white women in these occupations
in 1960 because there were few white women doctors and lawyers in 1960, even after
controlling for the gap in wages. Conversely, a white woman in 1960 was 24 times more

Construction

Doctors

Teachers
1 \

12

1/4 W

1 1 1 1 I

1/8
1960 1970 1980 1990 2000 2010

FIGURE 4.—Occupational barriers (7,,) for white women. Note: Author’s calculations based on equation
(7) using Census data and imposing 6 = 2 and 1 = 0.103.
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likely to work as a secretary than was a white man. The model explains this huge gap by
assigning a 7 below 1 for white women secretaries.

Over time, 7 of white women in the lawyer and doctor professions fell. By 2010, white
women faced composite frictions below 2 in the lawyer, doctor, and teacher occupations.
The barrier facing white women in the construction sector remained large. This fact could
be the result of women having a comparative disadvantage (relative to men) as construc-
tion workers, a possibility we consider later in our robustness checks.

3.3. Labor Market versus Human Capital Discrimination

The occupational frictions shown in Figures 3 and 4 are a composite of labor market
discrimination (7) and human capital barriers (7"). We now show how we distinguish
between these two forces by exploiting life-cycle variation. The key assumption is that
individuals make an active choice to obtain human capital prior to entering the labor
market. This assumption implies that human capital discrimination is akin to a cohort
effect, whereas labor market discrimination affects all cohorts in the labor market at the
same point in time and thus is like a time effect.

The wage gap of cohort ¢ and group g (relative to white men) in occupation i at time ¢
relative to the wage gap at time ¢ (when cohort ¢ was young) is

gap,(c, 1) o =7 (0)
gap,(c,c) 1 —1(c)’

(13)

The change in the wage gap over the life-cycle depends on the change in 7% over time. If
labor market discrimination diminishes over time, this raises the average wage (relative to
white men) in occupations where the group previously faced discrimination. We therefore
use the change in the wage gap over a cohort-group’s life-cycle to infer the change in %
over time. We then use 7;, = (1+ Tl.hg)” /(11— Tig) O infer the change in 7" from the change
in 7 after controlling for the change in 7. Intuitively, the change in 7" is calculated as the
difference in the wage gap of the young between successive cohorts after controlling for
the slope of the life-cycle wage gap for a given cohort.

Figure 5 shows the wage gap of white women (left panel) and black men (right panel)
vis a vis white men data for different cohorts over their life-cycle. A decline in 7% in a given
year steepens a given life-cycle profile. As 7 falls, the wage of a given group relative to
white men converges during an individual’s life-cycle. On the other hand, a decline in
either 7% or 7" will shift up the intercept of the life-cycle wage gap profiles. Figure 5 shows
clearly the large increases in the intercept of the wage gap of the young white women
across successive cohorts. However, there are only small changes in the slopes of the
cohort profiles over time, which suggests that most of the shift of the intercept is due to
a decline in human capital barriers. For black men, however, we see both shifts in the
intercepts and steepening slopes particularly during the 1960s to 1980s, suggesting a role
for both declining human capital and labor market frictions.?

22We weight equally wage growth from young to middle age and from middle age to old to infer the change
in 7%. We also need to normalize the initial split of the composite 7 between 7 and 7". For our baseline, we
assume a split of 50/50 in 1960. In subsequent years, we let the data speak to the importance of 7" relative to
7", Finally, we place an additional constraint on the 7 breakdown to keep aggregate “revenue” from changing
by more than 10 percent of GDP over our sample period. This requires 7" to be no lower than 0.8, to keep
subsidies for women secretaries from getting too large.
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FIGURE 5.—Wage gaps relative to white men by time and cohort. Note: Log wage gaps are shown for the
life-cycle of each cohort by connected line segments for young, middle-aged, and old periods.

3.4. Home Sector, Technology, and Return to Skill Parameters

We now show how we pin down the parameters that determine the labor force partici-
pation rate. Remember that the home sector is simply another sector, so the labor force
participation rate is simply determined by the returns in the market sector relative to the
returns in the home sector. We assume the home sector is undistorted in that 7" and 7*
in the home sector are zero for all groups. This implies that distortions in the market sec-
tor lower the labor force participation rate. We also normalize the common home sector
preference term (Zhome) to 1 for all groups. This implies that the z,’s we estimate for the
market occupations are relative to the home sector. So the labor force participation rate
is decreasing in 7%, 7", Z and in the ratio of w; and ¢, in the home sector relative to the
market sectors. And the gap in labor force participation rate relative to white men is de-
creasing in 7 and z (w; and ¢; have the same effect on labor force participation for all
groups).

In Figure 3, we showed the dispersion of z imputed from the dispersion of the wage
gap across occupations, but not the level of z. We now use equation (5) to infer the level
of z (relative to white men) from the gap in the labor force participation rate after condi-
tioning on the wage gap. Intuitively, the wage gap captures the effect of = on labor force
participation, so the residual has to be driven by preferences for market work relative to
the home sector. Figure 6 shows that mean z for white women was about 0.5 in 1960.
Intuitively, the gap in labor force participation rates between white women and men in
1960 was larger than can be explained by the wage gap, so we infer that white women did
not like working in the market sector relative to the home sector in 1960. Over time, to
match the fact that female labor force participation rates rose relative to those of white
men, the model infers that white women’s preference for working in the market relative
to the home sector must have increased. For black men in 1960, the gap in labor force
participation rates relative to white can be entirely explained by the wage gap, so average
z is about 1. Over time, the labor force participation rate of black men fell relative to
white men. The model “explains” this fact as a result of a decline in the mean Z of black
men in the market sectors relative to white men.

The last thing are the parameters that determine the level of the labor force participa-
tion rates of white men, which are w; and ¢; in all sectors (including the home sector) and
z in the market sectors for white men. We pick ¢; in each year to match data on school-
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FIGURE 6.—Mean of occupational preferences (relative to white men). Note: Figure shows earn-
ings-weighted mean of z for each group relative to white men.

ing differences for young white men across occupations in each year.”® Then, conditional
on estimates of ¢;, we pick z; in each occupation to fit the average wage by occupation.
Then, given z; and ¢;, we pick w; to exactly fit occupational shares for young white men.
Occupations with a large share of young white men in a given year are ones where the
price of skills w; is high. With estimates of w;, we then back out the technology parameter
Ai~24

3.5. Recap and Model Fit

Table I summarizes the identifying assumptions and normalizations for our base pa-
rameterization of the model wherein individuals only draw occupational talent (6 = 0).

TABLE I
IDENTIFYING ASSUMPTIONS AND NORMALIZATIONS

Parameter Definition Determination Value
™ m Human capital barriers (white men) Assumption 0
T wm Labor market barriers (white men) Assumption 0
f_z,-vg Talent in each occupation (all groups) Assumption 1
Tﬁome’ p Home human capital barriers (all groups) Assumption 0
Thome,g Home labor market barriers (all groups) Assumption 0
Zhome, g Home occupational preference (all groups) Normalization 1

BThe first-order conditions for schooling (equation (3)) says that s; is a function of ¢; and the parameters
n and B. We assume the pre-market period is 25 years long so that s; = %f““"”" We already have an

-1
estimate of 7, so all we need is 8. The average wage of group g in occupation i is proportional to (1 —s;) 3, so

the Mincerian return ¢ + 1 year around mean schooling § satisfies e2/ = (}=533%) % s0 B =In( =)/ (64).
Since the average Mincerian return from a cross-sectional regression of log income on years of schooling (with
group dummies) averages 12.7% in our data, this gives us g =0.231.

2We need the elasticity of substitution among occupations (in aggregating to final output) o to infer 4;
from w;. We choose o = 3 as our baseline value, but we have no information on this parameter. Given this, we

explore the robustness of our results to alternate values of o
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TABLE I1
BASELINE PARAMETER VALUES

Parameter Definition Determination Value
0 Fréchet shape Wage dispersion, Frisch elasticity 2
n Goods elasticity of human capital Education spending 0.103
o EoS across occupations Arbitrary 3
B Consumption weight in utility Mincerian return to education 0.231

To reiterate, we assume 7 and 7" are zero for white men in all occupations. We can-
not identify the level of 7% and 7", only their levels relative to a given group. We assume
that relative innate talent levels are the same across all groups and are normalized to 1
(hi; = 1). We also assume 7 and 7" in the home sector are zero for all groups. We nor-
malize preferences in the home sector to be 1 for all groups. Again, we cannot identify
the level of preferences, only their level relative to the home sector.

Table II summarizes the key parameters and Table 111 the endogenous variables and
the target data for their indirect inference. Some forcing variables depend on cohorts
and some on time, but never both. Variables changing by cohort include the human cap-
ital barriers (7""), common group-specific occupational preferences (z), and the elasticity
of human capital with respect to time investment (¢). Labor market barriers (7*) and
technology parameters (A) vary over time. Human capital barriers, labor market discrim-
ination, and occupational preferences vary across occupation-groups.

Finally, Table IV compares the data and the model’s predictions for aggregate earnings
per worker and labor force participation by year. Remember that the model only targets
the occupational shares and labor force participation rates of the young. Despite this,
predicted per-capita earnings and labor force participation rates in the model are not
very far from the data. For example, in 2010, predicted earnings in the model are within
2 percent of the actual earnings in the data. In the model, labor force participation rate
increases by 15 percentage points between 1960 and 2010. The actual increase between
1960 and 2010 is 16 percentage points.

4. RESULTS WITH SELECTION ONLY ON ABILITY (6 = 0)
Given the discussion of inference above, we can now answer the key question of the pa-
per: how much of the overall growth from 1960 to 2010 can be explained by the changing

TABLE III
FORCING VARIABLES AND EMPIRICAL TARGETS WHEN 6 = 0?

Parameter Definition Empirical Target

A;i(t) Technology by occupation Occupations of young white men

bi(t) Time elasticity of human capital Education by occupation, young white men
T{’g(c) Human capital barriers Occupations of the young, by group

i () Labor market barriers Life-cycle wage growth, by group

Zig(c) Occupational preferences Wages by occupation for the young

y(1), y(2) Experience terms Age earnings profile of white men

aThe variable values are chosen jointly to match the empirical targets. § = 0 refers to the polar case where individuals draw
idiosyncratic ability for each occupation (but not idiosyncratic tastes).
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TABLE IV
MODEL VERSUS DATA: EARNINGS AND LABOR FORCE PARTICIPATION?®

Year Earnings Data Earnings Model LFP Data LFP Model
1960 18,383 18,615 0.599 0.599
1970 24,645 25,000 0.636 0.614
1980 27,088 27,900 0.702 0.653
1990 33,953 34,265 0.764 0.720
2000 39,419 41,134 0.747 0.743
2010 41,541 42,717 0.759 0.748

4This table shows average market earnings per worker in 2009 dollars and labor force participation in the Census/ACS data
alongside the corresponding model values by year.

labor market outcomes of women and black men during this time period? In this sec-
tion, we explore this question assuming that all individuals only draw occupation-specific
talent. In the next section, we explore how the results change if individuals also draw
occupational preferences.

Real earnings per person in our census sample grew by 1.8 percent per year between
1960 and 2010. According to our model, this observed earnings growth can come from
five sources. First is general occupational productivity growth (changing A’s). Second
is growth in the returns to schooling, which results in more human capital attainment
(changing ¢’s). Third, changing preferences can reallocate labor across occupations and
generate earnings growth (changing z’s). Fourth, growth in the relative share of each
group in the working age population can also mechanically change earnings per capita
(changing ¢’s). Finally, as described in Section 2.9, changing gender- and race-specific
barriers to occupational choice can result in economic growth (changing 7’s).

To assess how much the changing 7’s contributed to economic growth, we hold the
7’s fixed while allowing the A’s, ¢’s, z’s, and ¢’s to evolve. We then use the difference
between the actual path in the data and the counterfactual “no change in 7’s” path to
measure the contribution of changing 7’s.

4.1. Income and Productivity Gains

The results of our baseline counterfactual are shown in the first column of Table V. The
changes in 7’s account for 41.5% of growth from 1960 to 2010 in market GDP per person
(row 1) and 38.4% in market earnings per person (row 2). Market earnings and market
GDP differ due to changing “revenue” from labor market discrimination over time.” The
decline in market revenue from the declining 7’s results in the market earnings growth of
workers being slightly larger than market GDP growth over the sample.

A portion of the growth in both market GDP per person and market earnings per per-
son reflects rising labor force participation of women in response to falling frictions. Ag-
gregate labor force participation rates rose steadily in the data, from 60% in 1960 to 76%
in 2010, primarily due to increased female labor supply. Changes in the 7’s account for
90% of this increase, as seen in row 3 of Table V. Declining 7’s also contributed to the
growth in market GDP per person by raising the average wages of those who work in the

BSee the Supplemental Material (Hsieh et al. (2019)) for the time series trends in the model’s implied
revenue from 7% and 7".
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TABLE V
SHARE OF GROWTH DUE TO CHANGING FRICTIONS (ALL AGES)*

Share of growth accounted for by

" and 7V o 3 75, only Tw only
Market GDP per person 41.5% 40.8% 36.0% 7.7%
Market earnings per person 38.4% 37.5% 18.9% 26.0%
Labor force participation 90.4% 112.7% 24.9% 56.2%
Market GDP per worker 24.0% 15.0% 40.0% —9.8%
Home + market GDP per person 32.7% 32.1% 30.6% 4.4%

2Entries in the table show the share of growth in the model attributable to changing frictions under various assumptions. The
variables are 7/ (human capital frictions), 7 (labor market frictions), and Z (occupational preferences).

market. As seen in row 4 of the table, declining 7’s account for 24% of the increase in mar-
ket GDP per worker. Declining labor market frictions allowed women and black men to
better exploit their comparative advantage reducing misallocation in the economy. Given
that the occupations with the highest 7’s in 1960 were more likely to be high-skilled oc-
cupations, the declining 7’s resulted in women and black men accumulating more human
capital which also contributed to aggregate growth in market output per worker.

The final row of column 1 of Table V shows that the declining 7’s explain about one-
third of the growth in total GDP (inclusive of home sector output) during the last fifty
years. The reduction in labor market discrimination and barriers to human capital growth
drew more women into the market sector, which had a direct effect of raising market GDP
per person and simultaneously lowering home sector GDP per person. On net, however,
declining labor market frictions for women and black men substantially increased the sum
of market and home output per person.

Figure 7 shows the time series decomposition of growth in market GDP per person
coming from the changing 7’s. The top line in the figure shows growth in market GDP
per person implied by the model. The bottom line is the counterfactual growth in market
GDP if the 7’s were held fixed. Not surprisingly, the productivity effect of the 7’s has
grown over time. Additionally, our results suggest that productivity growth would have

GDP PER PERSON (1960=100)
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FIGURE 7.—GDP per person, data and model counterfactual. Note: The graph shows the cumulative growth
in GDP per person (market), in the data (overall), and in the model with no changes in 7’s as in Table V.
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been close to zero during the 1970s had it not been for the reduction in labor market
barriers to women and black men during that time period.

Column 2 of Table V assesses how much of growth can be explained by declining labor
market and human capital frictions (the 7’s) and changing common occupational pref-
erences (the z’s). Comparing the first and second columns, it can be seen that changing
occupational preferences has only a modest effect on productivity growth. If anything,
changing occupational preferences actually had a slightly negative effect on market GDP
per person. The combined effect of the 7’s and z’s explained 40.8% of the growth in
market GDP per person since 1960, whereas the 7’s alone explained 41.5%. Changing
preferences do explain a small amount of the change in aggregate labor force participa-
tion, with most of the effect being driven by women. The results in column 2 also imply
that the majority of the growth in market GDP per person over the last half-century was
due to changes in the A;’s and the ¢,’s. These forces are not group-specific and explained
59% of growth between 1960 and 2010.

Why can’t changing preferences for market work explain the growth in market GDP
per person? If women simply did not like some occupations in 1960, the model with only
sorting on talent says they would have been paid more in occupations in which they were
under-represented. The data show no such patterns. The gender (wage) gap was no lower
in skilled occupations, and it did not fall faster in skilled occupations as the share of
women rose. So while preference changes did result in the reallocation of women and
black men across occupations and did explain some of the rise in their labor force partic-
ipation, it did not generate substantial economic growth.

The last two columns of Table V report growth contributions separately for falling bar-
riers to human capital accumulation (7") and falling labor market discrimination (7*).
Falling human capital barriers alone would have accounted for 36% of growth in mar-
ket GDP per person, versus 8% from falling labor market discrimination. Ebbing labor
market discrimination looms larger for growth in market earnings (26% of growth). The
reason is that declining discrimination in the labor market contributes directly to earn-
ings growth relative to output growth. When we look at growth in home plus market GDP,
declining barriers to human capital are again more important (31% of growth) than is
diminishing labor market discrimination (4%). These results are consistent with Figure 5,
where most of the changes in wage gaps for white women show up as a cohort effect rather
than a time effect, suggesting a more important role for 7.

Table V suggests falling labor market discrimination drove much (over 56%) of the
rise in labor force participation. Falling barriers to human capital accumulation played
a lesser role since human capital is also useful in the home sector, albeit less so than in
some market occupations. The breakdown into contributions from human capital versus
labor market barriers is also revealing for why the contribution to growth in market GDP
per worker is smaller than the contribution to growth in market GDP per person (24%
vs. 42%). Falling human capital barriers, on their own, would have explained 40% of
the growth in market GDP per worker. But falling labor market discrimination actually
lowered growth in market GDP per worker (-10%) by enticing workers with marginal
talent to move out of the home sector and into market occupations.?

Table VI shows how the changing 7’s (column 1) and combined 7’s and z’s (column
2) affect earnings and wage gaps across groups. The third column shows the explanatory

2In four of the five rows in Table V, the combined effect of changing 7" and 7 is smaller than the sum of the
effects from eliminating them individually. The explanation for this is that misallocation is convex in barriers.
Reducing one of the barriers individually yields the largest gains to be had by moving highly misallocated
workers to the right occupation.
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TABLE VI
WAGE GAPS AND EARNINGS BY GROUP AND CHANGING FRICTIONS?

Share of growth accounted for by

7 and 7 o,z Full Model
Earnings, WM —12.2% —17.4% 91.4%
Earnings, WW 76.9% 86.3% 107.0%
Earnings, BM 28.7% 20.4% 100.5%
Earnings, BW 50.6% 52.5% 101.7%
Wage gap, WW 148.1% 98.3% 176.7%
Wage gap, BM 98.0% 115.4% 143.4%
Wage gap, BW 84.6% 71.4% 131.4%
LF Participation 90.4% 112.7% 93.6%

AEntries in the table show the share of growth in the model attributable to changing

frictions and other variables. The frictions are 7/ (human capital) and 7% (labor mar-
ket), and Z are occupational preferences. The last column reports the share of observed
growth explained by the full model solution, including the 4 and ¢ variables.

effect of our full model (7’s, z’s, A’s, and ¢’s) on group-specific earnings and wage gaps.
A few things are of note from Table VI. First, our model collectively does very well in ex-
plaining the average earnings growth of all groups between 1960 and 2010. The model ex-
plains about 100% of earnings growth for black men and black women while only slightly
overestimating earnings growth for white women and underestimating earnings growth
for white men. Second, falling labor market frictions account for 77% of earnings growth
for white women, 29% for black men, and 51% for black women. The declining 7’s, partic-
ularly for women, were the primary source of earnings growth over the last half-century.
Third, Table VI highlights that the changing 7’s actually lowered wage growth of white
men. This is because falling barriers to women and black men in high-skilled occupations
caused white men to shift to lower wage occupations. For men (both black and white),
wage growth was driven primarily by changes in technology and skill requirements (A’s
and ¢’s). Finally, the changing z’s again had only modest positive effects on the earnings
growth of women and modest negative effects on the earnings growth on men. As women
entered the labor force due to changing preferences, this increased their market earnings
and reduced the earnings of men.

Our model concludes that most of the change in wage gaps between groups and white
men can be explained by falling 7’s. Our model actually over-predicts the changing wage
gaps for all groups. This is because the model slightly under-predicts the earnings growth
of white men. With that in mind, declining 7’s explain 148% of the declining wage gap of
white women, while the model in total explains 177%. Other than this, our model does
fairly well in predicting the changing wage gaps over time. Our model, collectively, over-
predicts slightly the rising wages of women and black men relative to white men during the
1960-2010 period. For women, the changing 7’s more than explain the shrinking gender
gap in wages observed in the data. Declining barriers to human capital attainment and
declining labor market discrimination were primarily responsible for the declining gender
and racial wage gaps during the last fifty years.

Table VII breaks down the growth from changing 7’s into contributions by each group.
Changes in the 7’s of white women were much more important than changes in the 7’s
of blacks in explaining growth in market output per person during the 1960-2010 period.
This is primarily because white women are a much larger share of the population. Ta-
ble VII also shows that falling pre-labor market barriers to human capital accumulation
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TABLE VII
SHARE OF GROWTH IN MARKET GDP PER PERSON DUE TO DIFFERENT GROUPS*

1960-2010 7 and 7% " only 7 only
All groups 41.5% 36.0% 7.7%
White women 33.8% 29.8% 6.1%
Black men 1.2% 0.7% 0.6%
Black women 3.7% 3.2% 0.9%

2Entries are the share of growth in GDP per person from changing frictions for various groups

over different time periods. The variables are r/ (human capital barriers), and 7% (labor market
frictions).

contributed much more to growth than did declining labor market barriers. However, as
can be seen in Figure 5, declining human capital barriers and labor market discrimination
were roughly equally as important for black men, while for white women it was the decline
in human capital barriers that was primarily important.

Finally, we can ask: how much additional growth could be achieved by reducing frictions
(7’s) all the way to zero? If the remaining frictions in 2010 were removed entirely, we
calculate that GDP today would be 9.9% higher. These remaining gains result from the
fact that, even in 2010, there are still some differences in occupational choice and average
wages across groups. However, through the lens of our model, there are only modest
potential gains in GDP from reducing the 7’s for women and black men fully to zero. Most
of the large productivity gains from the occupational convergence across groups occurred
between 1970 and 2000. This is one reason to be less optimistic about U.S. economic
growth after 2010 compared to growth in the last half-century.

4.2. Model Gains versus Back-of-the-Envelope Gains

Our baseline estimate in Table V suggests that 7% and 7" account for 42% of the gains
in market GDP per person and 33% of the gains in total GDP per person. Is this number
large or small relative to what one might have expected? We have two ways of thinking
about this question. First, in the log-normal approximation to the model with only 7 vari-
ation that we presented back in Section 2.9, the elasticity of GDP to 1 minus the mean
of ™ is q,, - ﬁ If we assume that the share of women in the population g, is 1/2 and
n = 0.1, then this elasticity is 1 - 3. Figure 2 showed that the mean of the composite 7
of women fell from about 10 in 1960 to 3 in 2010. This decline in 7 can thus account for
a 7% increase in total GDP per person.”’ Figure 3 shows that Varln7 fell from about
0.9 to 0.6 from 1960 to 2010. In the log-normal approximation to the model, the semi-
elasticity of GDP to Varlnris g, - 3 - % ~ 0.3.% A 0.3 decrease in the variance of Int
thus could explain an 8% increase in total GDP per person. Thus, according to this back-
of-the-envelope calculation, changing 7’s for women boosted GDP about 15%. A sim-
ilar calculation for black men suggests that changing 7 for black men boosted GDP by
about 2%.% The overall increase of GDP per person in our setup was about 138%), so the
changing 7 explains 0.15/1.38 ~ 12.3% of growth in total GDP. This is significantly lower

271

1.1.1n(10/3) ~0.07.

281 12-1
2 2107 Y028

“Black men 8% of the population, mean 7 going from 3 to 1.5, and the variance of In  falling by 0.3.
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than the 33% contribution we estimate without imposing any parametric assumption on
the distribution of the barriers. Clearly, log-normal is not a reasonable assumption. Also,
the back-of-the-envelope calculation assumes no general equilibrium effects on wages of
white men from changes in the labor supply of women and black men across occupations.

A second way to answer the question is to compare our model-based contribution in
market earnings per person growth to what one would infer from the falling gaps in
earnings per person for women and black men relative to white men. The narrowing
gaps in earnings per person—including both declining wage gaps and rising labor force
participation—mechanically account for 37% of growth in market per person.** Coinci-
dentally, the model-based estimate of market earnings per person growth is nearly the
same as this naive back-of-the-envelope calculation. The back-of-the-envelope calcula-
tion assumes no general equilibrium effect of falling frictions on the earnings growth
of white men. Yet we reported above that white men’s wages fell 11% relative to what
they would have done without the changing barriers facing women and black men (see
Table VI). Moreover, this back-of-the-envelope calculation assumes that earnings gaps
would not have changed in the absence of falling frictions. That is, this calculation implic-
itly attributes the entire decline in earnings gaps to changing frictions.

Aswe also show in Table VI, changes in occupational productivity and returns to school-
ing also contribute to wage gaps between groups over time. It just so happens that these
effects roughly cancel out such that our model predictions and the back-of-the-envelope
predictions are approximately equal. Still, our back-of-the-envelope calculations suggest
that our model-based estimates of the growth consequences from falling labor market
barriers to women and black men are not implausibly large.

4.3. Robustness to Alternate Values of 0, v, and o

Table VIII explores the robustness of our productivity gains to different parameter val-
ues. In each case, we recalculate the 7, z, A, and ¢ values so that the model continues to
fit the occupation shares, wage gaps, etc. by group and year. The first row of Table VIII
replicates the gains from changing the 7’s in explaining the growth in market GDP per

TABLE VIII
ROBUSTNESS TO PARAMETER VALUES?

Growth in GDP per person accounted for by

7 and 7@ 7 alone 7% alone
Benchmark 41.5% 36.0% 7.7%
6=1.5 45.3% 41.2% 6.8%
0=4 32.2% 25.2% 7.0%
n =0.05 39.8% 33.8% 8.2%
n=0.20 44.4% 39.4% 7.2%
o=1.05 22.2% 19.8% 3.6%
o=10 42.9% 36.5% 8.5%

2Entries show the share of growth in the model attributable to changing fric-
tions 7/ (human capital) and 7% (labor market). The benchmark parameter val-
ues are 6 =2, n=0.103, and o = 3.

30For this calculation, we held fixed earnings per person relative to white men at 1960 levels, and found only
63% as much growth in earnings per person as seen in the data.
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person under baseline parameter values for comparison. The next row considers a lower
value for the Fréchet shape parameter 6, which is inversely related to the dispersion of
comparative advantage across occupations. With 6 = 1.5 rather than the baseline 0 = 2,
changing barriers explain modestly more of growth in market GDP per person (45.3%)
than in the baseline (41.5%).

Recall that our baseline 6 was estimated from wage dispersion within occupation-
groups. This might overstate the degree of comparative advantage because some of the
wage variation is due to absolute advantage. We thus entertain a much higher value (0 = 4)
than in our baseline (6 = 2). With this higher 6, the share of growth from changing 7’s
falls to 32.2% (vs. 41.5% in the baseline). Less discrimination is needed to explain occu-
pational choices when comparative advantage is weak. Even with this higher value of 6,
however, declining 7’s explain about one-third of growth in market GDP per person over
the last half-century.

Table VIII also varies 7, the elasticity of human capital with respect to goods invested in
human capital. The gains rise slightly from 40% with n = 0.05, to 42% with our baseline
1 =0.103, to 44% with n = 0.20.

The last rows of Table VIII show the sensitivity of the results to the elasticity of sub-
stitution o between occupations in production. When the elasticity of substitution across
occupations is higher, the declining 7’s explain a higher portion of the growth in market
GDP per person. The gains in market GDP per person to changing 7’s when o = 1.05
(close to Cobb-Douglas) are 22.2%. While it may appear our results are quite sensitive
to changes in o, it should be noted that changing o simply reallocates how much of the
growth occurs in the market sector versus home sector. When o = 1.05, the declining 7’s
explain 33.5% of the growth in total GDP per person (inclusive of the home sector). This
is nearly identical to our base results in Table V. However, when o = 1.05, the declining
7’s explain only 70% of the rise in labor force participation. With a lower elasticity of sub-
stitution, fewer workers migrate from the home sector to the market sector when labor
market frictions fall.

The moderate sensitivity of our results to 8, n, and o may seem puzzling. But remember
that, as we entertain different parameter values, we simultaneously change the A’s and
7’s to fit observed wages and employment shares of the young in each occupation and
group in each year. However, our results are more sensitive if we vary the key parameters
holding all other parameter values and forcing variables fixed (the A4’s, ¢’s, 7’s, etc.).
That is, the sensitivity increases if we do not recalibrate. Consistent with the intuition
provided in Section 2.9, the gains from changing 7’s rise dramatically as we raise 6 holding
the other forcing variables fixed. Specifically, when ability is less dispersed (6 is higher),
comparative advantage is weaker and the allocation of talent is more sensitive to changing
7’s. The higher is 0, the more occupational decisions are distorted by given barriers, and
hence the bigger the gains from removing them. For example, if we hold the A4’s, z’s, 7’s,
and ¢’s fixed at baseline estimates, the declining 7’s explain 177% of the growth in market
GDP per person when 6 = 3.3

5. INFERENCE AND RESULTS WITH IDIOSYNCRATIC PREFERENCES (6>0)
5.1. Inference With 6 =1

When selection is entirely on idiosyncratic preferences rather than idiosyncratic abil-
ity, the way we identify the 7’s and z’s changes. Table IX summarizes how, italicizing the

3In the Supplemental Material (Hsieh et al. (2019)), we highlight the robustness of our results to other
empirical choices.
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TABLE IX
FORCING VARIABLES AND EMPIRICAL TARGETS WITH 6 = 1*

Parameter Definition Empirical Target

Ai(t) Technology by occupation Occupations of young white men

di(t) Time elasticity of human capital Education by occupation, young white men
T{;(c) Human capital barriers Wages by occupation for the young

i () Labor market barriers Life-cycle wage growth, by group

Zig(c) Occupational preferences Occupations of the young, by group

v(1), y(2) Experience terms Age earnings profile of white men

@Variables are chosen to match the empirical targets. § = 1 is the polar case where individuals draw idiosyncratic tastes for each
occupation, with no idiosyncratic heterogeneity in ability across occupations.

entries that switch in this polar case. With selection only on preferences, average prefer-
ences for an occupation do not affect average wages in that occupation. Using equation
(7) and imposing 6 = 1, the average wage gap in an occupation between a group and white
men can be expressed as

1

Wageig((:, C) |: }_l,'g/]jl[’wm i| T-n

Wagei,wm(c’ C) Tig(c’ C)/Ti,wm(cy C)

With 6 =1 and A;,/h;wm = 1, the wage gap between groups within an occupation is pinned
down by the relative 7’s between groups in that occupation. Conditional on the 7’s implied
by the wage gaps, the relative z’s can be inferred from the relative share of a group in an
occupation. In the polar case (6 = 0) considered earlier, the inference was precisely the
opposite: the z’s were inferred from the occupational wage gaps and the 7’s were inferred
from the differences in occupational sorting (conditional on the 2z’s).

5.2. Calibrating &

If selection is based at all on tastes for an occupation (6 > 0) instead of only on ability
(6 =0), then average wages in an occupation should be positively correlated with occu-
pational shares. Figure 8 shows there is no systematic relationship between the share of
young white women relative to young white men in an occupation in 1980 and the occupa-
tional wage gaps between young women and men in the same year.*> For example, young
white women were 64 times more likely to work as secretaries and one-fourth as likely to
work as lawyers in 1980. Yet the wage gap between young white women and young white
men among secretaries was nearly identical to the gender wage gap among lawyers. Fig-
ure 9 shows that there is similarly no systematic correlation between the change in relative
gender occupational shares and the change in the gender occupational wage gap over that
time, both from 1960 to 2010.

Of course, it is possible to reconcile any pattern of wage gaps—and how they change
over time—with just the right levels and changes in preferences (z’s) across occupation-
groups and years. To offset selection on idiosyncratic preferences, group-specific occu-
pational preferences (the z’s) would need to be negatively correlated with occupational
barriers. Women would need to dislike working in occupations in which they are discrimi-
nated against. As occupational barriers fall, their preferences would need to move in favor

32 A weighted regression of the scatter plot yields a slope coefficient of 0.01 with a standard error of 0.01.



ALLOCATION OF TALENT AND U.S. ECONOMIC GROWTH

OCCUPATIONAL WAGE GAP (LOGS)

@FarmMgrs
@Food
®Sales
@PersonalService
r o Vehicle @Doctors
0.5 @OtherVehicle < @Prod.Inspectors @PrivateHshld
° e )
MiscRepaire® MotorVehicle @@y i @FOOIPEP @Info Clerks
ger Textiles .
04+ ° ®MetalWork Re 8 @ ComputerTech  @FinancialClerk
Construction Cleaning ® @Misc. Admin
° @ MgmiRelated
o W
0.3 WoodWork @ - 0 surance  @HealihService
' Law Nachine  @Nurses @scercurics
@Extractive . ) @Soc.Scientists cecord
®bngince’ | @Guads  @As/Athletes g @HealthTechs
@Firefight ofessors .
02 .\';‘ :‘ ‘"‘"' ®Folice  Math/Compsy @ Professor © Thermnist
iechanics herapists
. @Scicnce P
PlantOperator ®Elcc Repairer
0.1F @Librarians
L L L @5gcialWork ) ) .

RELATIVE PROPENSITY, P(WW)/P(WM)

1467

FIGURE 8.—Wage gaps versus propensities across occupations for white women in 1980. Note: The figure
shows the relationship between the (log) occupational earnings gap for white women compared to white men
(both in the young cohort) and the relative propensity to work in the occupation for the two groups, p; ww/ Piwm
in 1980. A simple regression line through the scatter plot in the top panel yields a slope coefficient of 0.01 with

a standard error of 0.01.

of those occupations. In this sense, the 7’s and z’s could both be barriers to occupational
choice and human capital formation for women and black men.

The gains from changing 7’s and z’s, however, may depend on the value of 6. We there-
fore wish to show how the growth contributions of changing 7’s and z’s vary with &. Just
as important, we would like to estimate a plausible value for 6. Rearranging (6) for young
white men in year ¢, we can express schooling-adjusted wages as
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FIGURE 9.—Changes in wage gaps versus propensity gaps, young white women 1960-2010. Note: The figure
shows the relationship between the change in (log) occupational earnings gaps for white women compared to
white men (both in the young cohort) and the change in the relative propensity to work in the occupation for
the two groups, p;ww/piwm, between 1960 and 2010. A simple regression line through the scatter plot in the
top panel yields a slope coefficient of 0.06 with a standard error of 0.05.
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Letting A denote first differences, we obtain

Wage, (1) 8 1 -
Aln<4’l) =constant + ———Aln p; yn(t) — ——AlnZz; ().  (14)

[1_Si(t)]7ﬁ 6(1—m) 1-n
As (14) demonstrates, 6 > 0 implies that wages (conditional on years of schooling s;)
should be rising in occupations with rising propensities, controlling for preferences. There
will be no such relationship between wage changes and propensity changes when 6 = 0,
that is, when there is selection only on ability. When there is selection on preferences,
marginal workers with little preference for an occupation must be attracted by higher
wages to enter growing occupations.

If we run OLS on (14) for young white men from 1960 to 2010, treating preferences
as the residual, the implied & is 0.077 with a standard error of 0.055.* Figure 10 plots
the empirical counterpart of such an OLS regression. There is a simultaneity problem
with OLS, however, because the residual preference shifters are likely correlated with
changing occupational shares. We thus propose to instrument for changing p’s using the
model-implied changes in occupation technology parameters (A’s). This is a valid instru-
ment assuming the orthogonality condition:

Aln Ai,wm 1L Aln 2i,wm~

That is, we assume that changes in technology are uncorrelated with changes in prefer-
ences across occupations for young white men. We iterate on é until we obtain a value

CHANGE IN LOG EARNINGS (AD). FOR SCHOOLING)
0.8

0.4

04

06 . . . ; ; . '
-3 - - 3 4

CHANGE INLOG P

(5]
<
(8]

FIGURE 10.—Changes in wages versus propensities, young white men 1960-2010. Note: The figure shows the
relationship between the change in (log) occupational earnings for young white men (adjusted for schooling)
and the change in the log of their propensity to work in the occupation, p;wm, between 1960 and 2010.

¥ Average earnings and schooling by occupation are from the Census. We convert years of schooling into s
by dividing by 25 years, our assumed pre-work time endowment. We use the benchmark values of 6 =2 and
1 = 0.103 to calculate the implied 6 from the OLS coefficient. Running this regression across occupations in
each year, the coefficient averages 0.123 across years, with standard errors of around 0.04.
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such that the implied growth rates of technology and preferences are uncorrelated with
each other. This yields an estimate of 6 = 0.22. This is higher than the OLS estimate be-
cause it adjusts for the covariance between changing wages and changing preferences in
(14). The fact that changes in occupational propensities and wages (adjusted for years of
schooling) are weakly correlated for young white men suggests that individuals primarily
sort based on talent instead of preference heterogeneity.

5.3. Results With 6 > 0

Table X examines the contribution of falling barriers to growth when we entertain
6 =0.22, and also 6 = 1/2 and & = 1. The first column repeats our results with § =0
for comparison. With our estimated value of 6 = 0.22, the share of growth attributed to
changing 7’s falls modestly. The differences are even smaller if we consider the share of
growth coming from changing 7’s and changing preferences (z’s).

The growth contributions from changing 7’s fall more markedly when we move to 6 =
0.5, but still remain economically important. For example, changing 7’s account for 28%
of growth in market GDP per person with 6 = 0.5 versus 42% when 6 = 0. When 6 = 0.5,
the share of growth coming from the 7’s and z’s combined falls less, from 41% to 34%.
As & increases, the growth effects attributed to changing 7’s fall while the growth effects
from changing z’s rise, leaving the total effect on growth from the changing 7’s and z’s
less affected. In terms of economic growth, it matters little whether women in 1960 faced
labor market or human capital frictions in becoming doctors and lawyers or whether social
norms kept them from those professions.

Only when we go all the way to pure selection on idiosyncratic preferences, 6 = 1, do
growth contributions from changing 7’s plummet. The contributions of changing 7’s and
Z’s combined fall less dramatically. With idiosyncratic preferences only, changes in 7 and

TABLE X
ALLOWING FOR SELECTION ON IDIOSYNCRATIC PREFERENCES?

Share of growth accounted for by 7/ and 7%

6=0 6=0.22 6=0.5 =1
Market GDP per person 41.5% 37.4% 28.3% 5.6%
Market earnings per person 38.4% 37.0% 31.2% 11.5%
Labor force participation 90.4% 88.1% 74.9% 21.2%
Market GDP per worker 24.0% 20.6% 14.2% 0.1%
Home + market GDP per person 32.7% 31.3% 25.7% 1.6%

Share of growth accounted for by rh, ¥, and z

6=0 6=0.22 6=0.5 =1
Market GDP per person 40.8% 38.9% 33.7% 19.8%
Market earnings per person 37.5% 36.8% 33.4% 20.8%
Labor force participation 112.7% 117.6% 117.1% 71.2%
Market GDP per worker 15.0% 12.7% 8.6% 1.8%
Home + market GDP per person 32.1% 32.3% 29.8% 7.5%

Entries in the table show the share of growth in the model attributable to changing frictions =/ (human capital frictions), 7% (labor
market frictions), and Z (occupational preferences), for alternate values of 6, the fraction of workers who draw occupation-specific
preferences rather than ability. 6 = 0 is our baseline with selection based only on talent. § = 1 is the opposite pole, with selection based
only on preferences.
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z contribute to growth only if they result in more representation of the group in high A4,
occupations. Changes in dispersion of the 7’s and z’s by themselves do not affect aggre-
gate output, at least in the case where the distortions and A; are log-normally distributed.
The fact that about 20% of growth was due to the change in 7 and Z in the model where
individuals have the same ability in all occupations indicates that 7/z of women and black
men fell by more in high A4; occupations over the last 50 years.

6. ROBUSTNESS TO ALTERNATE IDENTIFYING ASSUMPTIONS

One key identifying assumption that underlies our estimation is that any innate tal-
ent differences between men and women are constant over time. Under this assumption,
changes in occupational sorting and wage gaps between groups inform us about changes
in the 7’s and z’s. In our base specification, we go even farther and assume there are no
innate talent differences between groups in any period (4;, = 1 for all i and g in all time
periods). In this section, we explore alternative assumptions while still holding relative
talent across groups fixed over time.

Table XI shows how our results change with alternative assumptions about the evolu-
tion of £ across groups within different occupations over time under our base scenario of
& = 0.** The first row of the table redisplays our baseline estimates for market GDP per
person growth from Table V. The second row relaxes the assumption that men and women
draw from the same distribution of talent in all occupations. In particular, we consider the
possibility that some occupations rely more on physical strength than others, and that this
reliance might have changed over time because of technological progress. To see the po-
tential importance of this story, we go to the extreme of assuming no frictions at all faced
by women in any of the occupations where physical strength is arguably important (i.e.,

Tf‘g = 7;, = 0 for women in these occupations). These occupations include construction,

TABLE XI
ROBUSTNESS TO ALTERNATIVE ASSUMPTIONS ABOUT GROUP DIFFERENCES
IN TALENT?
Market GDP per person growth
accounted for by 7" and 7%
Benchmark 41.5%
No frictions in “brawny” occupations 38.7%
No frictions in 2010 35.8%

4Entries are the share of market GDP per person growth in the model attributable to chang-

ing frictions 7/ (human capital) and r* (labor market). A key identifying assumption is that any
talent differences across groups, to the extent they exist, are constant over time. In our base-
line specification, we assume that ﬁig =1 for all occupations and all groups; in other words,
that there are no innate talent differences between groups. The first row of the table recounts
are baseline estimates. In the second row, we allow men and women to have different /’s in
“brawny” occupations. Specifically, we assume no gender-specific 7’s in these occupations. In-
stead, we allow the /’s to evolve to exactly fit the quantity data for these occupations. “No
frictions in 2010” (the third row) assumes that there are no frictions in 2010 for any group, so
that differences in il,'g explain all group differences in that year; we then calculate 7’s for ear-
lier years assuming the mean value of the distribution of market skills in 2010 apply to earlier
years. For the results in this table, we assume 6 = 0.

3*Given that the growth results from & = 0 are so similar to the growth results with our estimates of § = 0.22,
we focus our robustness results on the 6 = 0 scenario.
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firefighters, police officers, and most of manufacturing.> We estimate differences in /;,
for young women to fully explain their allocation to these occupations in 1960, 1970, ...,
2010. As shown in Table XI, the fraction of market GDP growth per person explained by
changing frictions falls only slightly from 41.5% to 38.7% with this alternative identifying
assumption. Our results are not sensitive to this alternative because most of the gains we
attribute to changing 7’s come from the rising propensity of women becoming lawyers,
doctors, scientists, professors, and managers—occupations where physical strength is not
important.

The last row in Table XI makes a more extreme assumption. In this alternative, we
allow all groups to have different levels of innate talent in all occupations. We assume,
however, that these innate talent differences are constant over time. Specifically, we as-
sume all group differences among the young in 2010 reflect talent rather than distortions.
Specifically, we set the 2010 7’s to zero for all groups and all occupations and assume
differences in A, fully account for group differences in occupational choice among the
young in 2010. We keep talent in prior years at the 2010 values for each group, but back
out distortions in earlier years. In essence, this specification allows for arbitrary talent
differences between men and women to fit the 2010 data. Under this more flexible al-
ternative, eliminating the 7’s in the earlier years still generates 36% of growth in market
GDP per person. Thus, our gains are not an artifact of assuming the allocation of talent
was far from optimal in 2010.

These exercises highlight our key identifying assumption. What is important is not that
different groups have the same level of innate talent in all occupations. Instead, what
is important is that, whatever the talent differences are across groups, those talent dif-
ferences remain constant over time. This assumption is particularly important for high-
skilled occupations like doctors and lawyers and less important for “brawny” occupations
like construction workers.

Another assumption that facilitates our identification is that white men face no labor
market or human capital frictions. An alternative assumption might be that there was
no discrimination in 1960 at all, but growing discrimination against men and in favor of
women since then. If we assume women and men have the same mean talent, as we do
in our baseline specification of 6 = 0, this would imply identical average wages and occu-
pational distributions for women and men in 1960. This is something we do not observe
in the data. Assuming relative talent stays constant over time, this alternative would also
require women to earn increasingly more than men and be increasingly over-represented
in high-skilled occupations after 1960. All of these predictions are at odds with the pat-
terns documented above. If men and women have the same level of innate talent, the data
strongly reject the hypothesis that men have been increasingly discriminated against over
time.

Another alternative would be to assume discrimination in favor of men and no discrim-
ination against women in 1960, with the discrimination in favor of men abating over time.
This would fit the facts on wages and sorting over time, and would imply falling misallo-
cation. But it is not isomorphic to our baseline assumption. First, it would imply falling
education spending by men over the decades. Second, it would entail huge subsidies for
men that diminish over time. When we calibrate our baseline model with 6 = 0, we find
that earnings of men must exceed their marginal product by orders of magnitude. The
implied total subsidy to men would be multiples of 1960 GDP. Men must be paid massive

3Rendall (2017) classified occupations based on the importance of physical strength, and we define brawny
occupations for our analysis as those occupations in the top half of her brawny distribution.
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subsidies in order to induce so many of them, relative to women, to choose high-skilled
occupations. Earnings would need to vastly exceed GDP in 1960, which of course we do
not observe. Such an extreme outcome does not arise under our baseline assumption be-
cause no revenue is collected from qualified women who are driven out of occupations by
discrimination.

Yet another alternative would be to assume—contrary to our presumption—that
women are somehow innately less talented than men, supposedly explaining women’s
lower wages and under-representation in skilled occupations in 1960. Rising discrimina-
tion in favor of women since 1960 might then account for the closing gaps between men
and women. This hypothesis would entail rising misallocation and a drag on aggregate
growth. Data on individual test scores suggest women are not less talented than men. The
Armed Forces Qualifying Test (AFQT) was administered in both the NLSY 1979 and the
NLSY 1997. The NLSY tracks a sample of individuals who were 12-16 years old when
the surveys started. The AFQT scores in the NLSY are very similar for men and women
in both 1979 and 1997.% According to these scores, women seem no less talented than
men in their early teens. If we condition on working, women likewise have similar scores
to men in both 1979 and 1997.% If one believes the story of rising discrimination in fa-
vor of women, one would have expected the relative test scores of working women to fall
along with their rising participation rates. AFQT scores do not support the hypothesis
that women are innately less talented than men.

Collectively, these results suggest that alternate assumptions do not fit aspects of the
data as well as our baseline. We therefore prefer our baseline assumption that women and
black men faced human capital and labor market frictions in 1960 relative to white men,
and that these frictions fell over time.

7. CONCLUSION

How do discrimination in the labor market and barriers to the acquisition of human
capital for white women, black men, and black women affect their occupational choices?
And what are the consequences of the altered allocation of talent for aggregate income
and productivity? To tackle these questions, we develop a framework with three build-
ing blocks. First, we use a standard Roy model of occupational choice, augmented to
allow for labor market discrimination, barriers to the acquisition of human capital, and
occupation-specific preferences. Second, we assume an individual’s talent or preferences
in each occupation follow an extreme value distribution. Third, we embed the Roy model
in general equilibrium to account for the effect of occupational choice on the price of
skills in each occupation and to allow for the effect of technological change on occupa-
tional choice. We use synthetic cohort data measuring changes in relative occupational
sorting and wage gaps across time to discipline our model. A key identifying assumption
is that the distribution of innate talent of women and black men relative to that of white
men is constant over time.

We apply this framework to measure the changes in barriers to occupational choice fac-
ing women and black men in the United States from 1960 to 2010. We find large reduc-
tions in these barriers, concentrated in high-skilled occupations. We then use our general

%In 1979, the average normalized AFQT score was 54.3 for white men and 53.6 for white women. In 1997,
the respective averages were 55.5 and 57.4.

3"In 1979, the average normalized AFQT score for working white men was 51.8 and for working white
women was 52.3. In 1997, the respective averages were 52.6 and 54.9.
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equilibrium setup to isolate the aggregate effects of the reduction in occupational barriers
facing these groups. Our baseline calculations suggest that falling barriers explain roughly
40% of aggregate growth in market GDP per person.

In our baseline model, we assume that individuals are heterogeneous only in their draws
of occupational talent. We show that our baseline results are robust to instead assuming
that individuals draw idiosyncratic occupational preferences. Even under this polar as-
sumption, we find that one-fifth of U.S. market GDP growth can be explained by falling
labor market barriers, falling human capital barriers, and shifting occupational prefer-
ences. Much of the productivity gains come from drawing women and black men into
high-skilled occupations. Whether women increased their propensity to become lawyers
and doctors because of declining labor market frictions or because of changing social
norms, the growth implications are similar. That said, we estimate that occupational sort-
ing based on talent draws better fits the data than occupational sorting based on prefer-
ence draws.

Our general equilibrium Roy model assumed no correlation between an individual’s
absolute advantage and their comparative advantage, and that comparative advantage or
preferences followed a Fréchet distribution. These assumptions aided tractability, but we
hope they can be relaxed in future work.
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