OPTIMAL ASSIGNMENT OF BUREAUCRATS:
EVIDENCE FROM RANDOMLY ASSIGNED TAX COLLECTORS IN THE DRC

Augustin Bergeron1 Pedro Bessone2
John Kabeya Kabeya3 Gabriel Tourek4 Jonathan Weigel5

1University of Southern California 2Uber 3Direction Générale des Recettes du Kasaï Central
4University of Pittsburgh 5UC Berkeley

April 26, 2023
Improving the Assignment of Public Sector Workers

Assignment of workers to tasks and teams: important determinant of firm productivity (Mas-Moretti 2009, Bandiera et al 2010)
Improving the Assignment of Public Sector Workers

- Assignment of workers to tasks and teams: important determinant of firm productivity (Mas-Moretti 2009, Bandiera et al 2010)

- Assignment margin could also raise performance in the public sector
Improving the Assignment of Public Sector Workers

- Assignment of workers to tasks and teams: important determinant of firm productivity (Mas-Moretti 2009, Bandiera et al 2010)

- Assignment margin could also raise performance in the public sector

1. Constraints on raising performance through incentives in public sector
 - Hiring: often weakly tied to expected performance (examinations)
 - Promotion: often based on seniority
 - Firing: life-appointment to public service
Improving the Assignment of Public Sector Workers

- Assignment of workers to tasks and teams: important determinant of firm productivity (Mas-Moretti 2009, Bandiera et al 2010)

- Assignment margin could also raise performance in the public sector

1. Constraints on raising performance through incentives in public sector
 - Hiring: often weakly tied to expected performance (examinations)
 - Promotion: often based on seniority
 - Firing: life-appointment to public service

Improving the Assignment of Public Sector Workers

- Assignment of workers to tasks and teams: important determinant of firm productivity (Mas-Moretti 2009, Bandiera et al 2010)

- Assignment margin could also raise performance in the public sector

1. Constraints on raising performance through incentives in public sector
 - Hiring: often weakly tied to expected performance (examinations)
 - Promotion: often based on seniority
 - Firing: life-appointment to public service

- Assignment: costless tool to increase performance?
Optimal Assignment of Tax Collectors in DRC

- **Setting**: 2018 property tax campaign in Kananga, DRC

- **Experiment**: two-stage random assignment
 1. 34 tax collectors to new two-person teams each month
 2. Collector teams to 180 neighborhoods (19,600 properties)
Optimal Assignment of Tax Collectors in DRC

► **Setting:** 2018 property tax campaign in Kananga, DRC

► **Experiment:** two-stage random assignment
 1. 34 tax collectors to new two-person teams each month
 2. Collector teams to 180 neighborhoods (19,600 properties)

► **Roadmap:** we estimate
 1. Household and collector type: local chief knowledge, observed performance
 2. **Expected tax compliance** for each combination
 ▶ Mechanism analysis using survey data
 3. **Optimal assignment:** max compliance s.t. status quo constraints
 4. **Impact of optimal assignment** compared to status quo assignment
 5. **Benchmarks:** counterfactual selection policies
Outline

Introduction

Design

Framework

Estimation

Optimal Assignment

Conclusion
Kananga, D.R. Congo

- Fourth most populous city in the DRC
 - Population ≈ 1.6 million
- Median HH income: ≈ $106 (PPP $168) per month
A Weak State with Very Low Tax Revenue

- Provincial tax revenue extremely low: <$1 per person
A Weak State with Very Low Tax Revenue

- Provincial tax revenue extremely low: <$1 per person
- Trying to raise revenue with property tax ($\approx 29\%$ tax revenue):
 - Potentially easy to tax, efficient, rapid urbanization
A Weak State with Very Low Tax Revenue

- Provincial tax revenue extremely low: < $1 per person
- Trying to raise revenue with property tax (29% tax revenue):
 - Potentially easy to tax, efficient, rapid urbanization
- First systematic property tax collection in 2016:
 - Door-to-door campaign by state agents
 - Low tax compliance: $\approx 10\%$ (Weigel 2020)
Property Tax Details

- **Fixed annual fee** – common in LICs w/o valuation roll
 - “Low value band” (90% of prop.): 3,000 FC (≈ 2 USD)
 - “High value band” (10% of prop.): 13,200 FC (≈ 9 USD)

<table>
<thead>
<tr>
<th>Low band ($1,000 value)</th>
<th>High band ($8,134 value)</th>
<th>Examples</th>
</tr>
</thead>
</table>

ML approach

- **Delinquency**: tax + fine (1.5x), court summons

Sanctions

- Enforcement uncommon, but 52% think sanctions likely
Property Tax Details

- **Fixed annual fee** – common in LICs w/o valuation roll
 - “Low value band” (90% of prop.): 3,000 FC (≈ 2 USD)
 - “High value band” (10% of prop.): 13,200 FC (≈ 9 USD)

<table>
<thead>
<tr>
<th>Low band ($1,000 value)</th>
<th>High band ($8,134 value)</th>
</tr>
</thead>
</table>

- **Rate**: ≈ 0.34% of property value (US 0.27% – 2.44%)

- Delinquency: tax + fine (1.5x), court summons

- Sanctions: enforcement uncommon, but 52% think sanctions likely
Property Tax Details

- **Fixed annual fee** – common in LICs w/o valuation roll
 - “Low value band” (90% of prop.): 3,000 FC (≈ 2 USD)
 - “High value band” (10% of prop.): 13,200 FC (≈ 9 USD)

- **Rate**: ≈ 0.34% of property value (US 0.27% – 2.44%)

- **Delinquency**: tax + fine (1.5x), court summons
 - Enforcement uncommon, but 52% think sanctions likely
2018 Property Tax Campaign Mechanics

- Two stages of door-to-door tax collection by teams of 2 collectors

1. Property register of full neighborhood (no valuation roll)
 - Assess tax liability based on building material
 - Property owners receive a unique tax ID and a tax letter

2. Tax visits: door-to-door tax appeals
 - Collectors use handheld printers to issue receipts to payers
 - Effort (number/timing of visits) and tactics to convince taxpayers at discretion of collectors
Status Quo Collector Assignment

- **Two-stage random assignment:**
 1. Each month, teams of 2 randomly formed
 2. Teams randomly assigned to two neighborhoods for rest of month
 - Balance Tests: Chars. of prop., owner, and neighborhood

- **Median assignment load:**
 - 6 different teammates
 - 12 different neighborhoods
 - 1,524 properties

- **Rationale:** Avoid collusion (collector-collector, collector-household)
 (Brewer 1990, Bertrand et al 2020, Chu et al 2020)
Outline

Introduction

Design

Framework

Estimation

Optimal Assignment

Conclusion
Expected Tax Compliance by Type Combinations

- Collector type: “high” or “low” effectiveness
- Household type: “high” or “low” ability to pay
- “Match” is combination of types: e.g., \((c_1, c_2, hh) = (L, H, h)\)
- Expected Tax Compliance: compliance one would expect to observe for a particular combination
 - Experiment provides estimate for each combination
 - Randomization ensures unbiased by other factors
Optimal Assignment

- Assignment function f: distribution of assignments across type combinations

- Optimal assignment function (f^*):
 - Distribution that maximizes compliance
 - I.e., how can we reshuffle assignments to achieve the highest compliance possible?

- Status quo constraints:
 1. Non-overlapping assignment: one team of coll. per household
 2. Workload constraint: nb of assignments by coll. type same as f^{SQ}
Outline

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Design</th>
<th>Framework</th>
<th>Estimation</th>
<th>Optimal Assignment</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Introduction

Design

Framework

Estimation

Optimal Assignment

Conclusion
Defining Household and Collector Types

- **Household Types**: Local Chief Predictions
 - Chief predicted ability to pay of each property owner
 - Low-type = “unlikely”, High-type = “likely/very likely” to pay

- **Collector Types**: FE model + sample splitting
 - Collector’s effectiveness across random assignments
 - Estimate in holdout sample to avoid overfitting
Estimating Compliance Function and Optimal Assignment

- **Average Compliance Function:**
 - Use observed data in analysis sample to estimate average compliance for each combination
 - Five combinations: $(H, H, h), (L, H, h), (L, L, h), (H, H, l), (L, H, l)$
 - Omitted category is (L, L, l)

- **Optimal Assignment Function:**
 - Plug in estimates \hat{y}_{hnt} in optimal assignment pb and solve for f^*
Outline

Introduction

Design

Framework

Estimation

Optimal Assignment

Conclusion
Characterizing the Optimal Assignment

The diagram shows the assignment probability for different household types under the status quo. The x-axis represents different household types: LL, LH, HH for low-type households and LL, LH, HH for high-type households. The y-axis represents the assignment probability. The bar chart indicates a significantly higher assignment probability for HH households in the high-type category compared to other types.
Characterizing the Optimal Assignment
Tax Compliance by Collector and Household Type

Convex in collector type: $H_1: Y(H, H, h) - Y(L, H, h) > 0 (p = 0.037)$
Complementarities in Collector Type

Convex in collector type:

\[H_1 : [Y(H, H, h) - Y(L, H, h)] - [Y(H, L, h) - Y(L, L, h)] > 0 \ (p=0.037) \]
Complementarities in Collector-Household Type

Convex in collector-household type:

\[H_1 : \left[Y(H, H, h) - Y(L, L, h) \right] - \left[Y(H, H, l) - Y(L, L, l) \right] > 0 \quad (p < 0.001) \]
Impacts of the Optimal Assignment

Implementing the optimal assignment would increase compliance by 37%.
Implementing the optimal assignment would **↑ compliance by 37%**.
Impacts of the Optimal Assignment

Collector-household and collector-collector would contribute equally
Mechanisms and Benchmarks

1. What explains complementarities?

 ✗ Collector skills: No compl. persuasion techniques

 ✔ Collector effort: Compl. in number of days hours spent collecting
 ▶ Consistent with coordination problem: if either collector is late, both don’t collect (e.g., O-Ring properties (Kremer 1993))
Mechanisms and Benchmarks

1. What explains complementarities?
 - Collector skills: No compl. persuasion techniques
 - Collector effort: Compl. in number of days hours spent collecting
 - Consistent with coordination problem: if either collector is late, both don’t collect (e.g., O-Ring properties (Kremer 1993))

2. Benchmark policies
 - Reallocate 62% of c_L assignments to c_H to = optimal assignment
 - Replacing c_L cannot yield same gains
 - Increase wages by 69%, but net revenue loss

Conclusion
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Design</th>
<th>Framework</th>
<th>Estimation</th>
<th>Optimal Assignment</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Outline

Introduction

Design

Framework

Estimation

Optimal Assignment

Conclusion
Taking Stock on the Optimal Assignment of Collectors

- Field experiment studying the random assignment of tax collectors to neighborhoods and teammates

- Optimal assignment:
 - Assortative matching on collector type and collector-household type
 - Complementarities reflect c^H exerting higher effort when matched with other c^H, especially for h-type properties

- Impact:
 - Implementing the optimal assignment would \uparrow compliance by 37%

\Rightarrow Bureaucrat assignment as a resource neutral policy to \uparrow fiscal capacity
Thank you!

gabriel.tourek@pitt.edu