Climate Migration

Gharad Bryan & Melanie Morten

October 19, 2023

Climate change is a spatial phenomenon

- Country
 - Poorer countries will be more exposed
- Regional
 - Coastal parts of countries
- Sectoral
 - Weather-dependent agriculture vs. manufacturing
- Spatial issue: will likely lead to flows of people
 - ► Migrants: leave because of both direct (e.g., weather) + indirect (e.g., violence)
 - ▶ Migrants: cause both direct (e.g., wage impacts) and indirect (e.g., GE) effects

Temperature change: hitting poorest countries

Source: Climate Impact Lab, https://impactlab.org

Spatial effects: temperature change heterogeneous within region/country

Number of climate migrants will potentially be large

▶ WB predicts 143m climate migrants (2.8% of pop) in SSA, South Asia, Latin America

World Bank, 2018, Groundswell report

Plan

Existing empirical evidence

Baseline spatial model to analyze migration

2 locations

V locations

ndogenous prices

Model predictions & model problems

Conclusion

Where do (temporary/permanent) migrants go?

- Rural individuals very exposed to climatic shocks
- Destination choices
 - Rural-rural
 - Rural-urban
 - International
- Structural change: broader implications

External validity of current empirical results

- Current evidence: localized shocks
- What happens when climate shock hits many people at the same time?
 - World-wide permanent shock
- ► GE effects, other channels of assistance may differ

Plan

Existing empirical evidence

Baseline spatial model to analyze migration 2 locations N locations Endogenous prices

Model predictions & model problems

Conclusion

Migration through the lens of a spatial model

- Economists think about spatial equilibrium
- People choose where to live based on returns and costs
 - Not just wages: amenities, cost of living,...
- Spatial equilibrium adjusts through endogenous wages, house prices
- Natural starting point for analyzing impact of climate shocks

Simple example: 2 locations, exogenous prices

- Assume wages, rents, amenities are exogenous
- Person i's indirect utility of being in A:

$$V_A^l = \underbrace{\textbf{wage}_A - \textbf{rent}_A + \textbf{Amenities}_A}_{ ext{common to A } (V_A)} + \epsilon_A^l$$

Person *i*'s indirect utility of being in B:

$$V_B^l = \underbrace{\textit{wage}_B - \textit{rent}_B + \textit{Amenities}_B}_{\textit{common to B}(V_B)} + \epsilon_B^l$$

Live in A if:

$$V_A + \epsilon_A > V_B + \epsilon_B$$

 $\epsilon_A > \epsilon_B + (V_B - V_A)$

Value of shock B (ϵ_B)

Value of shock B (ϵ_B)

Live in A if:

$$V_A + \epsilon_A > V_B + \epsilon_B$$

 $\epsilon_A > \epsilon_B + (V_B - V_A)$

Spatial equilibrium: what share of people live in each location?

Person i will choose to live in A if:

$$V_A + \epsilon_A^i > V_B + \epsilon_B^i$$

 $\rightarrow \epsilon_B - \epsilon_A < V_A - V_B$

- ▶ Assume $\epsilon_B \epsilon_A$ is uniform on $[-S, S]^1$
- Overall share of the population who live in A

$$\begin{aligned} P(\epsilon_B - \epsilon_A < V_A - V_B) &= F_{\epsilon_B - \epsilon_A} (V_A - V_B) \\ &= \frac{V_A - V_B + s}{2s} \\ &= \frac{1}{2} + \frac{V_A - V_B}{2s} \end{aligned}$$

If it's costly to move from b to a: return is $V_A - V_B - \tau$

$$P(\text{move to A if start in B}) = \frac{1}{2} + \frac{V_A - V_B - \tau}{2s}$$

How to extend to more than 2 locations?

- Can easily extend to whole country / whole world
- \blacktriangleright Very convenient to assume that the ϵ are distributed extreme-value
- ▶ In this case, get closed-form solutions for migration:

Gumbel:
$$p(\text{choose i}) = \frac{e^{v_i}}{\sum_i e^{v_i}}$$

Frechet: $p(\text{choose i}) = \frac{v_i^{\theta}}{\sum_i v_i^{\theta}}$

- Can make predictions about how people will move, how welfare will change
- ▶ But the economics is the same as the simple case

Endogenous prices (wages, housing, goods price)

- First model with endogenous prices: Rosen-Roback (endogenous cost of living)
 - Easy to extend to endogenous wages, trade model for prices
- Consider a productivity shock in A
 - Wages increase in A
 - Holding prices constant, more people want to live there
 - If more people move, rents increase
 - Could easily add other spillovers e.g., congestion, agglomeration
 - So, not all people would move
- ▶ End up with new equilibrium where noone wants to change location

See Moretti (2011, Handbook of Labor Economics) and Redding and Rossi-Hansberg (2018, Annual Review) for overviews of spatial models.

Spatial adjustment after a productivity shock

Spatial adjustment after a productivity shock

Plan

Existing empirical evidence

Baseline spatial model to analyze migration

2 locations

V locations

dogenous prices

Model predictions & model problems

Conclusion

What can we do with a model?

Spatial models could be use to answer many questions, here are three

- 1. How many migrants should we expect?
- 2. What will be the welfare impact of climate change?
- 3. How does the welfare impact depend on migration constraints?

Answering these question requires estimating key parameters of the model, e.g.,

- How many will leave affected areas? Elasticity of migration to productivity change
- What will happen to productivity at destination? Elasticity of productivity to population
- What will happen to amenity at destination? Elasticity of amenity to population
- ightharpoonup ightarrow last two are congestion questions, important for what follows

We can then simulate based on climate scientist's predictions of physical impact

Example parameter estimation: amenity congestion

Migration into locations may create "congestion"

- ▶ Many people in London means less space to move, more disease etc.
- (these are policy dependent ...)

We usually model this as

- $ightharpoonup a_l = \bar{a}_l N_l^{-\lambda}$
- ▶ Taking logs and giving an error: In $a_l = \ln \bar{a}_l \lambda \ln N_l + \epsilon_l$
- We want to know λ : elasticity of amenity to population

Two steps to estimate

- ightharpoonup a_i is a "residual": lots of people live in I but wages are low and rents are high $\Rightarrow a_i$ large
- ightharpoonup Reverse causality requires instrument for N_i : use exogenous productivity

Answer

- In US cross sectional data: $\lambda = 0.32$ (Desmet et al. 2018)
- High productivity places have more people, but not as many as you might expect
- ▶ → very long run parameter

Other parameters and what question are we asking?

Important parameters for prediction

- Spatial distribution of productivity and amenity: rationalize wages and location choices
- Costs of migration: rationalize home bias

Other key "congestion" parameters

- Elasticity of production to population
- Elasticity of migration cost wrt number of migrants
- ightharpoonup ightharpoonup first is estimated similar to λ , second assumed 0 (long run)

All taken from long run data, with low migration rates, which means we are asking:

- What would be the impact of CC
 - ightarrow If the large permament change from CC leaves parameters unchanged

What does the model say? (Cruz and Rossi-Hansberg)

For warming alone, under RCP 8.5:

- 1. Welfare decreases by 6%
- 2. 1/2 a Billion people are displaced
- 3. If mig. costs \(25\%, \text{ welfare loss rises to 9\%}

How I interpret the model results

First key take-away

- Migration is essential for keeping losses low
- And there needs to be a lot of it

But, I see the 6% as an aspirational best case scenario

- The model is incredibly smooth, parameters are from long run, slow movement of people
- How things might look if we control "congestion"
 - Welcome migrants, build public goods in cities ...
 - Manage the timing and distribution of migrants?

But, as noted earlier

- Climate change is a permanent and large scale change
- Migration on historically large scale
- Not clear that the parameters are correct

- Thanks to Tom Cruise for data visualization

Worst case scenarios: evidence from science friction

Four points from War of the Worlds

- 1. Real damages (deaths) occur at pinch points
 - Migration causes congestion at destination or on the path
 - ▶ These congestions are a (the?) source of losses from CC
- 2. We will (likely) choose to make pinch points worse
 - Close borders, create refugee camps, criminalize travel etc.
- 3. Migration cannot realistically be stopped
 - People will travel despite high costs, and they will then be in harm's way
- 4. Morally, we all suffer
 - It does not matter whether you are on the boat or not

Messenia: 500 Presumed Dead

Mediteranean Per Year

https://missingmigrants.iom.int

Messenia: 500 Presumed Dead

Mediteranean Total Since 2014

https://missingmigrants.iom.int

Messenia: 500 Presumed Dead

Americas Per Year

https://missingmigrants.iom.int

Messenia: 500 Presumed Dead

Americas Total Since 2014

https://missingmigrants.iom.int

Worst case scenarios: evidence from economists

Just a selection of what we know

- Rapid population growth causes conflict
 - Acemoglu, Fergusson, Johnson (2020)
- Refugee arrivals causes right wing voting
 - Dustman, Kasijeva, Damm (2019)
- Climate change traps populations in agriculture
 - Liu, Shadmasani, Taraz (2023)
- Politicians less likely to help recent migrants in India
 - Gaokwad, Nellis (2020)
- **▶** ..

What's next? Find policies to get to 6%

Policy responses (that) matter

- ▶ House prices rise with refugees, but only if supply is inelastic
 - ► Rozo and Sviatschi (2021)
- More flexible labor markets help migrants adapt
 - Colmer (2021)
- Social cohesion between refugees and hosts improved through cash transfer to hosts
 - Beltramo, Nimoh, OBrien, Sequeira (In progress)
- Markets can be designed to allocate refugees more efficiently
 - Delacrétaz, Kominers, Teytelboym (2023)
- **.**..

Plan

Existing empirical evidence

Baseline spatial model to analyze migration

2 locations

N locations

ndogenous prices

Model predictions & model problems

Conclusion

Some parting thoughts

Migration could play a huge role in adapting to climate change

- At best, a triple benefit
- ▶ → Adaptation, Mitigation, Development

But, it need not go well by itself

- We must identify, test, and perfect policies to
- ► → Smooth migrants pathways and landings
- ► → And keep damages as low as possible

This is a very large, but incredibly important challenge

→ We need your help!