Sustainable Urbanization

Gharad Bryan

September 11, 2023

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

Everything I will Say

- 1. We will have urbanization in developing countries
 - Likely sped up by climate migration
- 2. Externalities mean it could be good, or bad
 - Which occurs is a policy choice
- 3. Appropriate policies are theoretically known
 - Address the externalities of density
- 4. But, we need empirical work, which means

- Policy Experimentation
- Early collaboration
- Bespoke data collection

Urbanization is Coming: Africa as an Example

UN predicts

- 1.5 Billion Urban Residents in Africa by 2050
- 1 Billion more than now

Why?

- Growth/Urbanization Correlation
- Climate Migration

Two Possible Outcomes: The Best Case

Density Creates Positive Externalities - The Pros:

- 1. Protected:
 - A dense community is easier to protect (citadel)

- Cities can be anywhere (ideas, not place)
- 2. Pollution Free:
 - Your proximity means I can walk
 - Your AC cools me
 - etc.
- 3. Productive:
 - My ideas help you
 - Large labor pool improves matching
 - etc.

Two Possible Outcomes: The Worst Case

Density Creates Negative Externalities - The Cons:

- 1. Congested:
 - My car use slows you
- 2. Climate vulnerable:
 - e.g., informal housing often sits in flood plains
 - but social networks are hard to move
- 3. Carbon emitting:
 - e.g., urban heat \rightarrow AC
 - idling cars are worse for pollution
- 4. Conflictual:
 - How will incumbents cope with mass in-migration?

Two Possible Outcomes: A Policy Choice

Externalities require Collective Action

A Challenge: Urbanization Without Growth

Gov resources:

- Income; and
- State Capacity

Are historically low

Relative to Population

Source: Jedwab and Vollrath

Implications: Theory

Efficient use of resources is key

Efficiency requires the state does only those things the market will not

Leverage private resources to achieve state aims

In principle this means follow the externalities:

- Out-Migration affects the left behind
- In-Migration affects host communities
- Informal housing is often misallocated
- Fixed costs of infrastructure mean it's a natural monopoly
- My waste is your water supply
- Etc.

Theory can be very helpful:

- Ask: What is the least cost action to create a market?
- e.g., can mandating waste separation create a market for waste?

e.g., can site and services move informal populations?

So we know the theoretical answer

But, we do not usually know the empirical answer

How to we get empirical answers?

We need

- Policy experimentation
- Early collaboration
- Bespoke data collection

Two examples from my own work ...

Example: Evicted in Ethiopia (with Franklin and Winton)

Informal housing - negatives:

- Vulnerable to climate change
- Infrastructure hard to supply
- ▶ Land may be misallocated etc.

Informal housing - positives

- Close to jobs
- Social networks etc.

Forced slum clearance is common

But, what needs to be done in compensation?

We study a large evictions program in Addis

Experimentation is necessary

Evicted in Ethiopia: Importance of Early Collaboration

Happen to have WB funded baseline

Collected before announcement

- Large sample
- Geo-located

Evicted in Ethiopia: Importance of Early Collaboration

Evicted in Ethiopia: Perhaps Not That Bad?

						I
	Expenditure	Non-Rent/Transport Expenditure	Transport Costs	Rent	Food Consumption	Total earnings per working-aged member
Panel A: Average	Treatment L	Effects				
RD_Estimate	208.309	38.629	23.560	176.840	39.509	304.277
	(94.006)**	(80.770)	(8.713)***	(36.656)***	(35.398)	(145.810)**
Control Mean	1271.63	1155.68	57.03	58.93	762.12	1441.04
Observations	1763	1749	1749	1749	1749	1722
Panel B: Housing	Privately Ov	wned at Baseline				
RD_Estimate	323.742	160.203	14.746	205.225	65.221	339.917
	(246.211)	(194.015)	(24.396)	(107.509)*	(97.564)	(346.309)
Control Mean	1339.99	1248.05	66.33	25.60	850.28	1468.19
Observations	235	233	233	233	233	231
Panel C: Housing	Privately Re	nted at Baseline				
RD_Estimate	334.607	139.934	47.400	168.375	-18.631	529.037
	(289.919)	(240.364)	(23.817)**	(112.702)	(84.683)	(402.147)
Control Mean	1565.67	1178.78	57.81	329.09	785.95	1777.25
Observations	291	289	289	289	289	288
Panel D: Governi	nent Housing	at Baseline				
RD_Estimate	164.498	4.290	16.840	169.684	30.421	212.347
	(102.295)	(93.539)	(10.034)*	(35.658)***	(42.248)	(173.470)
Control Mean	1191.90	1124.39	54.72	12.79	738.73	1387.93
Observations	1237	1227	1227	1227	1227	1203

Evicted in Ethiopia: Importance of Bespoke Data

	Network size	Network satisfaction	Neighbours- litter	Neighbours- caring	Neighbours- fights
Panel A: Averag	e Treatment E	ffects			
RD_Estimate	-3.410	-0.621	-0.064	-0.308	-0.369
	(2.258)	(0.085)***	(0.089)	(0.093)***	(0.069)***
Control Mean	14.94	3.37	1.98	1.85	0.65
Observations	1763	1749	1749	1749	1749
Panel B: Housin	g Privately Ow	ned at Baseline			
RD_Estimate	-3.236	-1.109	-0.180	-0.610	-0.867
	(4.531)	(0.214)***	(0.307)	(0.275)**	(0.180)***
Control Mean	13.88	3.49	1.97	1.83	0.55
Observations	235	233	233	233	233
Panel C: Housin	g Privately Rei	nted at Baseline			
RD_Estimate	-5.762	-0.354	-0.408	-0.056	-0.189
	(3.297)*	(0.207)*	(0.199)**	(0.209)	(0.157)
Control Mean	13.50	3.19	1.95	1.76	0.46
Observations	291	289	289	289	289
Panel D: Govern	nment Housing	at Baseline			
RD_Estimate	-2.782	-0.572	0.068	-0.265	-0.300
	(3.017)	(0.103)***	(0.102)	(0.107)**	(0.084)***
Control Mean	15.19	3.38	1.98	1.87	0.71
Observations	1237	1227	1227	1227	1227

Evicted in Ethiopia: Summary

What does forced eviction do?

- Incomes increase
- But so do rents
- Networks worsen
- todo: how can we trade these off?

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ ○ ○

Example: Inclusive Infrastructure (with Balboni, Morten, O'Connor & Siddiqi)

The issue: Infrastructure is often local

E.g., public transport useful for those who live on the line

But, that means it can be taken!

- \blacktriangleright Build transport \rightarrow rents increase \rightarrow the poor are priced out
- Local infrastructure may be hard to target

To understand, we are evaluating DART

Dar Es Salaam Bus Rapid Transit

DART: Importance of Early Collaboration

Early collaboration through WB

- Allowed us to collected baseline
- Geo-located
- Also ex-ante travel times

Allows "difference in differences"

Did more affected locations see greater changes?

DART: Importance of Bespoke Data

We track arrivers and exiters

	BL	EL	
House 1	¥	¥	Stayer
House 2	¥	¥	Exiter Arriver
Retrospective	(})		Arriver
House 3		¥	Exiter

Also man and women in each hh

Data sets are usually:

- At location
- Or structure level

Our data allows us to ask:

- Are arrivers different?
- What happens to exiters?
- Do women use the transport?

DART: Importance of Bespoke Data

Increase FLFP!

But also Rent : (

LFP at Structure					
	(1) Mean	(2) M	(3) F		
De-meaned pred. decrease TT CBD Ph1	0.481	-0.066	0.930		
	0.179***	0.235	0.190***		
Constant	0.000	-0.001	0.001		
	0.012	0.013	0.014		
N	1320	940	1144		
Mean EL value	0.663	0.816	0.542		

Rent at Structu	Jre		
	(1) Mean	(2) M	(3) F
De-meaned pred. decrease TT CBD Ph1	0.481	-0.066	0.930
	0.179***	0.235	0.190***
Constant	0.000	-0.001	0.001
	0.012	0.013	0.014
N	1320	940	1144
Mean EL value	0.663	0.816	0.542

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

DART: Importance of Bespoke Data

There is Evidence of Selection

But that is not all the effect!

Baseline Commuting: Arivers v. exiters

	(1) Mean	(2) M	(3) F
De-meaned pred. decrease TT CBD Ph1	0.178	0.127	0.208
	0.095*	0.067*	0.149
Constant	-0.000	0.001	-0.002
	0.007	0.007	0.009
Ν	712	496	361
Mean EL value	0.676	0.839	0.446

Impact of BRT on Incumbents

	(1) All	(2) M	(3) F
De-meaned pred. decrease TT CBD Ph1	0.427	0.162	0.729
	0.203**	0.172	0.247***
Constant	0.000	0.001	0.000
	0.014	0.013	0.019
N	2164	994	1170
Mean EL value	0.683	0.838	0.551

<□▶ < 理▶ < 注▶ < 注▶ = 三 の Q ()

Inclusive Infrastructure: Summary

Is DART Inclusive?

- Increases FLFP :)
- But raises rents : (
- Evidence that FLFP partially driven by selection

More to come ...

For both DART and Addis

- Early collaboration and bespoke data
- Key to answering our questions

Summary

Urbanization is coming

- Externalities mean it could be good or bad
- Sustainable for unsustainable

In Principle we know what to do

Target the externalities!

In practice we need empirical facts, which requires

- 1. Policy experimentation
- 2. Early collaboration
- 3. Bespoke data collection