Global and Local Damages from Climate Change

Michael Greenstone (University of Chicago)

November 9, 2023

Climate change will have large effects on global temperatures

Climate change will have many impacts on human wellbeing

Extreme Heat

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAGO

Climate change will have many impacts on human wellbeing

More Powerful Storms

Extreme Heat

FEPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAGO

Climate change will have many impacts on human wellbeing

Extreme Heat

EPIC AT THE UNIV

More Powerful Storms

More Frequent Wildfires

Climate change is a global challenge, but its impacts are felt locally

Source: Associated Press

Climate change is a global challenge, but its impacts are felt locally

Key Takeaways

Advances in economics and climate science allow for <u>quantification</u> of the global- and local-level impacts of climate change.

Damages are larger and more heterogeneous than previously thought

- 2099 damages are estimated to be equivalent to 6.4% of global GDP under high emissions
- For low income countries, damages are estimated to be 12% of GDP

Key Takeaways

Costs are especially concentrated in today's poor and hot places

Combined Damages in 2099

Scenario: RCP8.5 & SSP3

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAGO

The Social Cost of Carbon

The Social Cost of Carbon (SCC) - the monetary value of the damages imposed by the release of one additional ton of carbon dioxide.

For every climate change mitigation policy, the SCC is central to determining whether it is cost-effective.

The SCC enables analysis of policy tradeoffs involving climate change mitigation.

"Ingredients" for estimating the SCC

Carleton & Greenstone (REEP, 2022)

Updating the Social Cost of Carbon

The SCC is important summary measure of climate damages

- $\bullet\,$ New CIL SCC estimates are ${\sim}4$ times larger than previously estimated.
- These estimates suggest that current yearly emissions correspond to \sim \$7 Trillion damages (\sim 7% of current global GDP)

Outline

1 Approach to Estimating Climate Change Impacts: 1990-2020

- 2 Approach to Estimating Climate Change Impacts: After 2020
 - Mortality
 - Electricity
 - Labor
 - Characterization of Uncertainty
- 3 Partial (Aggregate) Climate Damages
 - Climate Damages Year by Year
 - Social Cost of Carbon

Original IAM damage assessments

Global Mean Temperature Rise (°C above Preindustrial Levels)

Source: Interagency Working Group on SCC, 2010

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHIC/

Original IAM damage assessments

RICE model includes 12 regions: US, EU, Japan, Russia, Eurasia, China, India, Middle East, Africa, Latin America, other higher-income, and other non-OECD Asia (Nordhaus 2010)

Original IAM damage assessments

"[M]uch of the research on which [the SCC models] are based is dated...damage formulations do not in many cases reflect recent advances in the scientific literature."

-National Academies of Sciences, Engineering, and Medicine (2017)

Outline

1) Approach to Estimating Climate Change Impacts: 1990-2020

- 2 Approach to Estimating Climate Change Impacts: After 2020
 - Mortality
 - Electricity
 - Labor
 - Characterization of Uncertainty
 - 3 Partial (Aggregate) Climate Damages
 - Climate Damages Year by Year
 - Social Cost of Carbon

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAGO

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAGO

CIL Guiding Principles

Global climate damage calculations should...

- \longrightarrow be based on best-available **empirical evidence**
- \longrightarrow be based on best-available climate models
- \longrightarrow be globally representative
- \longrightarrow account for adaptation and $its\ costs$
- \longrightarrow value uncertainty and unequal impacts

CIL Guiding Principles

Global climate damage calculations should...

- \longrightarrow be based on best-available **empirical evidence**
- \longrightarrow be based on best-available climate models
- \longrightarrow be globally representative
- \longrightarrow account for adaptation and $its\ costs$
- \longrightarrow value uncertainty and unequal impacts

For this purpose, the Climate Impact Lab has developed the **Data-driven Spatial Climate Impact Model (DSCIM)**.

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAG

CIL Produces Hyper-local Estimates of Damages

 \sim 25,000 impact regions capture subnational inequality of damages

Modular damage analysis

Mortality — heat and cold deaths (Carleton et al, *QJE 2022*) All-cause mortality (<5) All-cause mortality (>64) All-cause mortality (5-64)

Agriculture — crop yields (Hultgren et al, *in review*)

Maize	Wheat	Rice
Soybean	Sorghum	Cassava

- **Energy** energy and electricity demand (Rode et al, *Nature 2021*) Electricity consumption Other fuels consumption
- Labor labor supply & disamenity (Rode et al, *in review*) High risk labor Low risk labor
- Coastal sea level rise and storm damages (Depsky et al, GMD 2022)Sea level rise inundationSLR × tropical cyclone surge

Modular damage analysis

Mortality — heat and cold deaths (Carleton et al, *QJE 2022*) All-cause mortality (<5) All-cause mortality (>64) All-cause mortality (5-64)

Agriculture — crop yields (Hultgren et al, in review)

Maize	Wheat	Rice
Soybean	Sorghum	Cassava

- **Energy** energy and electricity demand (Rode et al, *Nature 2021*) Electricity consumption Other fuels consumption
- Labor labor supply & disamenity (Rode et al, *in review*) High risk labor Low risk labor
- Coastal sea level rise and storm damages (Depsky et al, GMD 2022)Sea level rise inundationSLR × tropical cyclone surge

...

Modular damage analysis

Mortality — heat and cold deaths (Carleton et al, *QJE 2022*) All-cause mortality (<5) All-cause mortality (>64) All-cause mortality (5-64)

Agriculture — crop yields (Hultgren et al, in review)

Maize	Wheat	Rice
Soybean	Sorghum	Cassava

...

Pricing risk

- **Energy** energy and electricity demand (Rode et al, *Nature 2021*) Electricity consumption Other fuels consumption
- Labor labor supply & disamenity (Rode et al, *in review*) High risk labor Low risk labor
- **Coastal** sea level rise and storm damages (Depsky et al, *GMD 2022*) Sea level rise inundation SLR × tropical cyclone surge

Integration — valuing marginal damages (Nath et al, 2022)

Intertemporal discounting Valuing inequality

Global climate change damages across sectors: 2099

Scenario: RCP8.5 & SSP3

Outline

1 Approach to Estimating Climate Change Impacts: 1990-2020

- Approach to Estimating Climate Change Impacts: After 2020
 Mortality
 - Electricity
 - Labor
 - Characterization of Uncertainty

3 Partial (Aggregate) Climate Damages

- Climate Damages Year by Year
- Social Cost of Carbon

Global climate change damages across sectors: 2099

Quantifying climate damages from mortality

THE QUARTERLY JOURNAL OF ECONOMICS

VALUING THE GLOBAL MORTALITY CONSEQUENCES OF CLIMATE CHANGE ACCOUNTING FOR ADAPTATION COSTS AND BENEFITS*

TAMMA CARLETON AMIR JINA MICHAEL DELGADO MICHAEL GREENSTONE TREVOR HOUSER SOLOMON HSIANG ANDREW HULTGREN ROBERT E. KOPP KELLY E. MCCUSKER ISHAN NATH JAMES RISING ASHWIN RODE HEE KWON SEO ARVID VIAENE JIACAN YUAN ALICE TIANBO ZHANG

Mortality data coverage

Subnational mortality records covering 55% of the global population

Age-specific annual mortality rates at \sim county level Carleton et al. (QJE, 2022)

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAGO

Estimating an impact relationship

Concept

Use <u>random variation</u> in short-run weather to causally identify the effect of weather realizations on sector-specific outcomes.

For example:

$$Mortality_{-}rate_{ait} = f_{a}(Temp_{it}) + g_{ca}(Precip_{it}) + \underbrace{\alpha_{ai} + \delta_{act}}_{tact} + \varepsilon_{iat}$$

nonparametric location & time controls

Mortality rates observed for age group a in location i in country c at date t.

Extreme heat and extreme cold impact mortality rates:

Heterogeneity in response to weather

Concept

Allow the shape of the function describing the impact relationship at a location be a <u>function of conditions at that location</u>.

$$Outcome_{it} = \sum_{p} \beta^{p} Weather_{it}^{p} \dots controls$$

$$\uparrow$$

$$\beta^{p}(i) = \gamma_{0}^{p} + \gamma_{1}^{p} Climate_{i} + \gamma_{2}^{p} \log(GDPpc)_{i} + \dots$$

Covariates determining heterogeneity depend on sector

- \rightarrow Climate_i = long-run avg. climate (e.g. temperature, degree days, precipitation)
- $\rightarrow \log(GDPpc)_i = average \log income per capita$
- \rightarrow area_irrigated_i = share of area equipped for irrigation

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAG

Effect day at 35° C relative to 20° C for ages 65 and over. Coefficient calculated for deciles of *TMEAN* (red shaded area).

Effect day at 35° C relative to 20° C for ages 65 and over. Coefficient calculated for deciles of *TMEAN* (red shaded area).

Effect day at 35° C relative to 20° C for ages 65 and over. Coefficient calculated for deciles of *TMEAN* (red shaded area).

Effect day at 35° C relative to 20° C for ages 65 and over. Coefficient calculated for deciles of *TMEAN* (red shaded area).

Effect day at 35° C relative to 20° C for ages 65 and over. Coefficient calculated for deciles of *TMEAN* (red shaded area).

Effect day at 35° C relative to 20° C for ages 65 and over. Coefficient calculated for deciles of *TMEAN* (red shaded area).

Effect day at 35° C relative to 20° C for ages 65 and over. Coefficient calculated for deciles of *TMEAN* (red shaded area).

Effect day at 35° C relative to 20° C for ages 65 and over. Coefficient calculated for deciles of *TMEAN* (red shaded area).

Effect day at 35° C relative to 20° C for ages 65 and over. Coefficient calculated for deciles of *TMEAN* (red shaded area).

Effect day at 35° C relative to 20° C for ages 65 and over. Coefficient calculated for deciles of *TMEAN* (red shaded area).

Effect day at 35° C relative to 20° C for ages 65 and over. Coefficient calculated for deciles of *TMEAN* (red shaded area).

Mortality damages vary by income

Response function for 65+ age group in cold regions. Income groups split into terciles at the region level.

Mortality damages vary by income

Response function for 65+ age group in cold regions. Income groups split into terciles at the region level.

Mortality damages vary by income

Response function for 65+ age group in cold regions. Income groups split into terciles at the region level.

How to fairly represent the global population?

We use our estimated response surface to predict response functions for all impact regions globally.

$$\hat{\beta}^{p}(r) = \hat{\gamma}_{0}^{p} + \hat{\gamma}_{1}^{p} \underbrace{TMEAN_{r}}_{observable} + \hat{\gamma}_{2}^{p} \underbrace{\log(GDPpc)_{r}}_{observable} + \dots$$

Requires we assemble data for present (and future) in each region r

Income & populaton:

- $\, \bullet \,$ OECD $\times \,$ nightlights \rightarrow downscale income to subnational level
- IIASA Shared Socioeconomic Pathways (SSP) incomes to 2100

Weather & climate:

- 33 GCMs downscaled to impact region level
- Average climate calculated as 15 year average of temperature

Irrigation:

- FAO Aquastat
- Held fixed at present levels for all future years

PIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHIC

Example: today's mortality response to hot days in sample (ages 65+)

Damages at 35C relative to reference temperature (deaths per 100,000)

Greenstone: Global and Local Climate Damages

20

Example: today's mortality response to hot days globally (ages 65+)

Damages at 35C relative to reference temperature (deaths per 100,000) 10

Greenstone: Global and Local Climate Damages

20

Mortality: Representativeness in climate \times income space

Mortality: Representativeness in climate \times income space

Mortality: Representativeness in climate \times income space

Example: Projecting mortality response to hot days (2020)

EP

Example: Projecting mortality response to hot days (2050)

10

EP

20

Example: Projecting mortality response to hot days (2080)

Damages at 35C relative to reference temperature (deaths per 100,000) 10

Greenstone: Global and Local Climate Damages

20

Example: Projecting mortality response to hot days (2100)

Damages at 35C relative to reference temperature (deaths per 100,000)

Greenstone: Global and Local Climate Damages

20

Mortality impacts are distributed unequally

Δ Mortality + adapt. costs due to warming; 2099 Scenario: RCP8.5 & SSP3

Mortality impacts are distributed unequally, even within countries

Pakistan: 376 deaths/100k Heart disease: 110 deaths/100k

Mortality impacts are distributed unequally, even within countries

Pakistan: 376 deaths/100k Heart disease: 110 deaths/100k

Ghana: 200 deaths/100k Respiratory infections: 55 deaths/100k

Mortality impacts across income groups

Income groups are defined based on 2021 income statistics at the national level. World Bank definition of Low Income: <1085 (USD) GNIpc (\approx \$3 per day). Scenario: RCP8.5 & SSP3, Population and GDP from 2021

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAGO

Mortality: distribution of burden by income

Global climate change damages to mortality

Scenario: RCP8.5 & SSP3 Current global average mortality rate: 770 deaths per 100,000

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAGO

Global climate change damages to mortality

Scenario: RCP8.5 & SSP3 Current global average mortality rate: 770 deaths per 100,000

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAGE

Decrease | Increase +200 annual deather per 100,000 people Change in death rate par 100 The Washington Post

https://www.washingtonpost.com/ climate-environment/interactive/ 2023/hol-cold-extreme-temperature-deaths/

Bloomberg https://www.bloomberg.com/ graphics/2020-climate-heat-inequality/

Outline

1 Approach to Estimating Climate Change Impacts: 1990-2020

Approach to Estimating Climate Change Impacts: After 2020

- Mortality
- Electricity
- Labor
- Characterization of Uncertainty

3 Partial (Aggregate) Climate Damages

- Climate Damages Year by Year
- Social Cost of Carbon

Global climate change damages across sectors: 2099

Energy data coverage

International Energy Agency (IEA) provides energy consumption data from 146 countries (1971 - 2012)

Estimating effects of temperature on energy use

$$Electricity_consumption_{jt} = f(Temp_{jt}) + g(Precip_{jt}) +$$

$$\underbrace{\alpha_{ji} + \delta_{wt}}_{t} + \varepsilon_{jt}$$

country-by-reporting regime & region-by-year controls

Electricity consumption observed in **country** j in **region** w under **reporting regime** i at **date** t.

Outline

1 Approach to Estimating Climate Change Impacts: 1990-2020

Approach to Estimating Climate Change Impacts: After 2020

- Mortality
- Electricity
- Labor
- Characterization of Uncertainty

③ Partial (Aggregate) Climate Damages

- Climate Damages Year by Year
- Social Cost of Carbon

Global climate change damages across sectors

Labor data coverage

Time use and labor force surveys representing \sim 30% of the global population

Estimating effects of temperature on labor supply

- Hourly wages are fixed for workers, so they must express labor disutility through daily labor supply decisions
- Separate responses for Low- and High- Risk Workers:

Work minutes observed for **individual** i of **risk-group** r in **region** j at **date** t.

Labor supply response to temperature

- High risk workers: Agriculture, mining, construction, manufacturing
- Low risk workers: All other sectors

Labor supply response to temperature

- High risk workers: Agriculture, mining, construction, manufacturing
- Low risk workers: All other sectors

Labor supply response to temperature

- High risk workers: Agriculture, mining, construction, manufacturing
- Low risk workers: All other sectors

Temperature (C)

Annual temp. realization depends on climate C: $\mathbf{T} \equiv \{T_t(C)\}_{t=1}^{365}$

Annual temp. realization depends on climate C: $\mathbf{T} \equiv \{T_t(C)\}_{t=1}^{365}$

At start of year, workers and firms form expectations about weather, set wages and choose sector $s \in \{I, h\}$

Annual temp. realization depends on climate C: $\mathbf{T} \equiv \{T_t(C)\}_{t=1}^{365}$

At start of year, workers and firms form expectations about weather, set wages and choose sector $s \in \{I, h\}$ Daily Labor Market Equilibrium

Annual temp. realization depends on climate C: $\mathbf{T} \equiv \{T_t(C)\}_{t=1}^{365}$

At start of year, workers and firms form expectations about weather, set wages and choose sector $s \in \{I, h\}$

Annual temp. realization depends on climate C: $\mathbf{T} \equiv \{T_t(C)\}_{t=1}^{365}$

At start of year, workers and firms form expectations about weather, set wages and choose sector $s \in \{I, h\}$ Daily Labor Market Equilibrium

Annual temp. realization depends on climate C: $\mathbf{T} \equiv \{T_t(C)\}_{t=1}^{365}$

At start of year, workers and firms form expectations about weather, set wages and choose sector $s \in \{I, h\}$ Daily Labor Market Equilibrium

Annual temp. realization depends on climate C: $\mathbf{T} \equiv \{T_t(C)\}_{t=1}^{365}$

At start of year, workers and firms form expectations about weather, set wages and choose sector $s \in \{I, h\}$ Daily Labor Market Equilibrium

Annual temp. realization depends on climate $C: \mathbf{T} \equiv \{T_t(C)\}_{t=1}^{365}$

At start of year, workers and firms form expectations about weather, set wages and choose sector $s \in \{I, h\}$ Daily Labor Market Equilibrium

When daily temp. is realized, workers optimize by changing labor supply

Where ϵ is the Frisch elasticity = 0.5 (Chetty et al. 2011) FPIC :

Projecting the share of high-risk workers as a function of future long-run temperatures and income

Combining this with temperature projections, we can calculate the impact of climate change on labor supply

And the impact of climate change on labor disutility

Outline

1 Approach to Estimating Climate Change Impacts: 1990-2020

Approach to Estimating Climate Change Impacts: After 2020

- Mortality
- Electricity
- Labor
- Characterization of Uncertainty

③ Partial (Aggregate) Climate Damages

- Climate Damages Year by Year
- Social Cost of Carbon

Multiple sources of uncertainty in climate change impacts

Multiple sources of uncertainty in climate change impacts

Additional sources of uncertainty: emissions and socioeconomic scenarios

FEPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAGO

Accra: $\sim 8\%$ probability deaths are > 500/100k $\sim 75\%$ probability deaths are > malaria deaths today

Accra: 8% probability deaths are >500/100k $\sim75\%$ probability deaths are >malaria deaths today

São Paolo: 0% probability deaths are ${>}500/100k$ ${\sim}40\%$ probability deaths are ${>}lung$ cancer deaths today

Scenario: RCP8.5 & SSP3

Scenario: RCP8.5 & SSP3

Uncertainty in impacts of climate change

Scenario: RCP8.5 & SSP3

Uncertainty in impacts of climate change

Scenario: RCP8.5 & SSP3

Valuing uncertainty in global impacts of climate change

Expected Damages and the Risk Premium

Outline

1) Approach to Estimating Climate Change Impacts: 1990-2020

- 2 Approach to Estimating Climate Change Impacts: After 2020
 Mortality
 - Wortality
 - Electricity
 - Labor
 - Characterization of Uncertainty
- 3 Partial (Aggregate) Climate Damages
 - Climate Damages Year by Year
 - Social Cost of Carbon

Outline

1 Approach to Estimating Climate Change Impacts: 1990-2020

Approach to Estimating Climate Change Impacts: After 2020

- Mortality
- Electricity
- Labor
- Characterization of Uncertainty
- 3 Partial (Aggregate) Climate Damages
 Climate Damages Year by Year
 Social Cost of Corbon
 - Social Cost of Carbon

Aggregating total climate damages across sectors

Mortality — heat and cold deaths		
All-cause mortality ($<$	5) All-cause mortality (>64)	
All-cause mortality (5-	64)	
Agriculture — crop y	ields	
Maize Wheat	Rice	
Soybean Sorgh	um Cassava	
Energy — energy and electricity demand Electricity consumption Other fuels consumption		
Labor — labor supply & disamenity		
High risk labor	Low risk labor	
Coastal — sea level rise and storm damages Sea level rise inundation Sea level rise inundation SLR × tropical cyclone surge		

Aggregating total climate damages across sectors

Mortality — heat and cold deaths			
	All-cause morta	ality (<5)	All-cause mortality (>64)
	All-cause morta	ality (5-64)	
Agri	iculture —	crop yields	
	Maize	Wheat	Rice
	Soybean	Sorghum	Cassava
Energy — energy and electricity demand Electricity consumption Other fuels consumption			
Labor — labor supply & disamenity			
	High risk labor		Low risk labor
Coastal — sea level rise and storm damages			
	Sea level rise ir	nundation	${\sf SLR}\times{\sf tropical}$ cyclone surge

...

Aggregating total climate damages across sectors

Mortality — heat and cold	deaths
All-cause mortality ($<$ 5)	All-cause mortality (>64)
All-cause mortality (5-64)	
Agriculture — crop yields	
Maize Wheat	Rice
Soybean Sorghum	Cassava
Energy — energy and electr	icity demand
Electricity consumption	Other fuels consumption
Labor — labor supply & dis	amenity
High risk labor	Low risk labor
Coastal — sea level rise and	storm damages
Sea level rise inundation	SLR $ imes$ tropical cyclone surge
Integration — valuing marg	inal damages
Intertemporal discounting	Valuing inequality
Pricing risk	
EPIC AT THE UNIVERSITY OF CHICAGO	

Aggregating total climate damages across regions

Global GDP in 2021: 96.1 Trillion USD

Aggregating total climate damages across regions

Combined Damages in 2099

Scenario: RCP8.5 & SSP3

Aggregate damages are borne disproportionately by today's poor

Income groups are defined based on 2021 income statistics at the national level.

World Bank definition of Low Income: <1085 (USD) GNIpc (\approx \$3 per day).

Scenario: RCP8.5 & SSP3, Population and GDP from 2021

FDIC ENERGY POLICY INSTITUTE

Aggregate damages are borne disproportionately by today's poor

Jina, Carleton, Hultgren, Rode et al (in prep.)

Climate damages by country

How costly are damages across countries?

Climate damages by country

How costly are damages across countries?

Outline

1 Approach to Estimating Climate Change Impacts: 1990-2020

Approach to Estimating Climate Change Impacts: After 2020

- Mortality
- Electricity
- Labor
- Characterization of Uncertainty

3 Partial (Aggregate) Climate Damages

- Climate Damages Year by Year
- Social Cost of Carbon

The Social Cost of Carbon

The most important number you've never heard of

The Social Cost of Carbon (SCC) - the monetary value of the damages imposed by the release of one additional ton of carbon dioxide.

Interquartile range generated by resampling ${\sim}100,000$ FAIR input parameters to capture the full range of climate sensitivity uncertainty. Climate damages are based on RFF socioeconomic and emissions scenarios.

Interquartile range generated by resampling ${\sim}100,000$ FAIR input parameters to capture the full range of climate sensitivity uncertainty. Climate damages are based on RFF socioeconomic and emissions scenarios.

Interquartile range generated by resampling ${\sim}100,000$ FAIR input parameters to capture the full range of climate sensitivity uncertainty. Climate damages are based on RFF socioeconomic and emissions scenarios.

Interquartile range generated by resampling ${\sim}100,000$ FAIR input parameters to capture the full range of climate sensitivity uncertainty. Climate damages are based on RFF socioeconomic and emissions scenarios.

Monetary damages from current emissions

Total CO_2 emissions since 1790: 1.96 trillion How costly are current annual emissions?

Monetary damages from current emissions

Total CO_2 emissions since 1790: 1.96 trillion How costly are current annual emissions?

DSCIM Social Cost of Carbon: \$189 Current World Annual CO₂ Emissions: 37,000 Mt \implies Resulting Economic Damages: ~7 Trillion USD

Breakdown of Social Cost of Carbon

How costly are damages to rich versus poor regions?

Income Groups	Population	SCC Contribution
	(billions)	(USD)
OECD	1.4	-\$11.3
Rest of World	5.8	\$186.2
Low Income	0.7	\$14.1
Total	7.9	\$189

Population shares: OECD (17%) Low Income (9%) RoW (74%) Income groups are defined using 2021 data. Scenario: RCP8.5 & SSP3 Source: World Bank (2022) and CIL

Original IAM Approach DSCIM

	Original IAM	
	Approach	DSCIM
Empirically-based damage functions	Х	\checkmark
Subnational heterogeneity	Х	\checkmark
Uncertainty valuation	Х	\checkmark
Endogenous discounting	Х	\checkmark

	Original IAM	
	Approach	DSCIM
Empirically-based damage functions	Х	\checkmark
Subnational heterogeneity	Х	\checkmark
Uncertainty valuation	Х	\checkmark
Endogenous discounting	Х	\checkmark
Sectoral/regional interactions	?	Х
Complete set of sectors	?	Х

	Original IAM	
	Approach	DSCIM
Empirically-based damage functions	Х	\checkmark
Subnational heterogeneity	Х	\checkmark
Uncertainty valuation	Х	\checkmark
Endogenous discounting	Х	\checkmark
Sectoral/regional interactions	?	Х
Complete set of sectors	?	Х
Social cost of carbon	\$51	\$189

DSCIM estimates include:

Mortality, electricity, heating fuels, agriculture, labor disutility, coastal damages, all with Ramsey discounting and RFF socioeconomic/emission projections
Aggregating impacts across sectors with step-by-step economics

A large SCC literature underscores the importance of declining marginal utility of consumption for:

- **1** Valuing uncertainty (e.g., Cai and Lontzek, 2016)
- "Equity weighting" across contemporaneous individuals (e.g., Anthoff, Hepburn, and Tol, 2009)
- 3 Endogenous discounting driven by economic growth and its uncertainty (e.g., Gollier and Weitzman, 2010)

DSCIM is able to integrate insights from this literature:

- Uncertainty across econometrics, socioeconomics and climate science
- Heterogeneity across 24,378 regions

Endogenous discounting based on scenario assumptions + impacts
EPIC ENTRY POLICY INSTITUTE
Greenstone: Global and Local Climate Damages

Sectors: Mortality, energy, labor, agriculture, coastal

	Constant discounting: $\delta = 2\%^*$			Endogenous discounting [†]
	Mean over uncertainty	Certainty equivalent	Equity weighting	Ramsey w/ uncertainty
RCP4.5	\$43	\$58	\$77	\$156
RCP7.0	\$71	\$116	\$112	\$941

Assumptions: $\eta = 2$ and $\rho = 0$; *SSP3; [†]SSPs 2-4

Sectors: Mortality, energy, labor, agriculture, coastal

	Constant discounting: $\delta = 2\%^*$			Endogenous discounting [†]
	Mean over uncertainty	Certainty equivalent	Equity weighting	Ramsey w/ uncertainty
RCP4.5	\$43	\$58	\$77	\$156
RCP7.0	\$71	\$116	\$112	\$941

Assumptions: $\eta = 2$ and $\rho = 0$; *SSP3; [†]SSPs 2-4

 \rightarrow Obama-era SCC: \$51

Sectors: Mortality, energy, labor, agriculture, coastal

	Constant discounting: $\delta = 2\%^*$			Endogenous discounting [†]
	Mean over uncertainty	Certainty equivalent	Equity weighting	Ramsey w/ uncertainty
RCP4.5	\$43	\$58	\$77	\$156
RCP7.0	\$71	\$116	\$112	\$941

Assumptions: $\eta = 2$ and $\rho = 0$; *SSP3; [†]SSPs 2-4

 \rightarrow Obama-era SCC: \$51

 \rightarrow EPA probabilistic socioeconomic and emissions trajectories: \$190

Sectors: Mortality, energy, labor, agriculture, coastal

	Constant discounting: $\delta = 2\%^*$			Endogenous discounting [†]
	Mean over uncertainty	Certainty equivalent	Equity weighting	Ramsey w/ uncertainty
RCP4.5	\$43	\$58	\$77	\$156
RCP7.0	\$71	\$116	\$112	\$941

Assumptions: $\eta = 2$ and $\rho = 0$; *SSP3; [†]SSPs 2-4

 \rightarrow Obama-era SCC: \$51

 \rightarrow EPA probabilistic socioeconomic and emissions trajectories: \$190

 \rightarrow Also used to compute SC-methane (\$850) and SC-nitrous oxide (\$49,000)

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHIC

The SCC in US Policy

- Agency rules must go through OIRA review before they can be released for comment or enacted.
- OIRA compares the costs and benefits of policies, including the value of changes in emissions.

FEPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAGO

SCC in action

Policy: Corporate Average Fuel Economy (CAFE) Standards for Model Years 2024—2026 Passenger Cars and Light Trucks (RIN 2127–AM34)

Summary: More stringent fuel economy standards for passenger cars and light trucks.

SCC in action Policy outcome:

SCC in action Policy outcome: Do not pass

SCC = \$0 \$131 B

SCC in action Policy outcome:

SCC in action Policy outcome: Pass

Billions 60

Cost

Benefit

Conclusion: New understanding of damages

 Advances in economics and climate science allow for <u>quantification</u> of the global- and local-level impacts of climate change

• Damages are larger and more heterogeneous than previously thought

• Costs especially concentrated in today's poor and hot places

Conclusion: Updated SCC

- <u>Social Cost of Carbon</u> (SCC) is important summary measure of climate damages
- New SCC estimates are ${\sim}4$ times larger than previously estimated
- These estimates suggest that current yearly emissions correspond to \sim \$7 Trillion damages (\sim 7% current global GDP)
- An updated SCC is important for guiding policy

Conclusion: More impact sectors

- Mortality heat and cold deaths
- Agriculture crop yields for seven major crops
- Energy energy and electricity demand
- Labor labor supply effects
- Coastal sea level rise and storm damages
- Inequality Distribution of damages across 5 sectors
- ☑ Conflict large-scale violent conflict
- Crime interpersonal violent crime
- Migration international and within-country
- Manufacturing projections using existing research
- Wildfires preliminary analysis

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAGO

Appendix

RCP Climate Scenarios

EPIC ENERGY POLICY INSTITUTE AT THE UNIVERSITY OF CHICAGO