Measuring the inequities of climate change

Tamma Carleton Bren School of Environmental Science and Management University of California, Santa Barbara & NBER

> BREAD-IGC Virtual PhD Lecture Inequality of Environmental Damages

Climate change is a **global** challenge, but its impacts are felt **locally**

Source: Associated Press

Climate change is a ${\bf global}$ challenge, but its impacts are felt ${\bf locally}$

Accurate local damage estimates are critical to climate policy

- Mitigation: Aggregate climate damages are inaccurate if heterogeneity is ignored
- Adaptation: Planning for climate impacts requires accurate local projections

Early global climate damage assessments

"Estimating the damages from greenhouse warming has proved to be extremely difficult. The DICE model assumes that a 3°C warming would lower world output by **1.3 percent**."

-Nordhaus (AER, 1993)

A new era for climate damage estimation

Climate Impact Lab: \sim 25,000 regions capture subnational inequality of damages

A new era for climate damage estimation

Spatial equilibrium models increasingly can be resolved at high resolution and account for feedbacks and other general equilibrium effects

Figure 7. Effect of climate change on real output per capita in 2200 *Note:* The log of real output per capita under climate change minus the log of real output per capita under no climate change in period 200.

Conte, Desmet, Nagy, Rossi-Hansberg (J Econ Geo, 2021)

Using data to quantify local-level climate impacts

Climate Impact Lab: interdisciplinary collaboration for local climate impacts analysis

Мо	r tality — h All cause mortality	teat and $contract (<5)$	All cause mortality (>64)	eton e	All cause mortality (5-64)		
Agr	iculture — ^{Maize} Soybean	- crop yield ^{Wheat} Sorghum	ls (Hultgren et a Rice Cassava	al., <i>in</i>	review)		
Energy — energy and electricity demand (Rode et al., 2021) Electricity consumption Other fuels consumption							
Lab	or — labor _{High risk labor}	^r supply &	disamenity (Ro Low risk labor	de et	al., <i>in review</i>)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Inte	gration —	- valuing m	narginal damage Valuing inequality	s (Na Pricing r	th et al., <i>in prep.</i>)		

Estimating data-driven local climate damages

Step 1: Collect and harmonize comprehensive data for each sector

Step 2: Estimate **causal impact relationships**, accounting for key drivers of adaptation

Step 3: Project impacts globally today and into the **future** using high resolution climate projections

Energy (Rode et al., 2021)

International Energy Agency (IEA) provides data from 146 Countries (1971-2012).

Annual consumption of residential, commercial, and industrial electricity and other fuels

Mortality (Carleton et al., QJE 2022)

Subnational mortality records covering 55% of the global population

Age-specific annual mortality rates at \sim county level

Agriculture (Hultgren et al., in review)

Collection of subnational crop production data covering 41,186 region \times crop units

Annual yield for maize, soybean, rice, wheat, sorghum and cassava

Labor (Rode et al., in review)

Time use and labor force surveys representing \sim 30% of the global population

Minutes worked per day/week for labor force participants ages 15-65

Coastal (Depsky, et al., 2023)

Downscaled, globally-comprehensive measures of exposure and hazard

- Coastal elevation from CoastalDEM (Climate Central)
- Asset value data downscaled from national accounts by LitPop (Climada)
- Population data from Gridded Population of the World
- Extreme sea level distributions from Global Tide and Surge Reanalysis (GTSR)

High-resolution climate & covariate observations

Dataset	Variables	Resolution
Historical		
GMFD	Temp, precip	$0.25^{\circ} \times 0.25^{\circ}$
BEST	Temp	$1^{\circ} \times 1^{\circ}$
UDEL	Precip	$0.5^{\circ} \times 0.5^{\circ}$
Gennaioli et al. (2014)	GDP	ADM1
NASA DMSP-OLS	Nighttime lights	30 arcsecond
LandScan	Gridded population	30 arcsecond
FAO	Irrigated area	5 arcminute
<u>Future</u>		
NASA NEX-GDDP	Temp, precip	$0.25^{\circ} \times 0.25^{\circ}$
IIASA SSPs	Age-specific national	National
	populations	
OECD Env-Growth	Age-specific national populations & GDP	National

Estimating data-driven local climate damages

Step 1: Collect and harmonize comprehensive data for each sector

Step 2: Estimate **causal impact relationships**, accounting for key drivers of adaptation

Step 3: Project impacts globally today and into the **future** using high resolution climate projections

Exposure and vulnerability in climate impacts

Damages from climate come from exposure e (e.g., how many hot days) and vulnerability x (e.g., access to A/C):

Damage = f(e, x)

Exposure and vulnerability in climate impacts

Damages from climate come from exposure e (e.g., how many hot days) and vulnerability x (e.g., access to A/C):

Damage = f(e, x)

Local differences in climate change impacts arise: due to differential **exposure**, **nonlinearities**, and differential **vulnerability**:

Hsiang, Oliva & Walker (2019)

Estimating an impact relationship (nonlinearity)

Use <u>random variation</u> in short-run weather to causally identify the effect of weather realizations on sector-specific outcomes.

Estimating an impact relationship (nonlinearity)

Use <u>random variation</u> in short-run weather to causally identify the effect of weather realizations on sector-specific outcomes.

For example:

Reviews of related literature: Auffhammer (*JEP*, 2018), Carleton & Hsiang (*Science*, 2016), Dell et al. (*JEL*, 2014)

Heterogeneity in response to weather (vulnerability)

Allow the shape of the function describing the impact relationship at a location be a <u>function of conditions at that location</u>.

Heterogeneity in response to weather (vulnerability)

Allow the shape of the function describing the impact relationship at a location be a <u>function of conditions at that location</u>.

$$Outcome_{it} = \sum_{p} \beta^{p} Weather_{it}^{p} \dots controls$$

$$\uparrow$$

$$\beta^{p}(i) = \gamma_{0}^{p} + \gamma_{1}^{p} Climate_{i} + \gamma_{2}^{p} \log(GDPpc)_{i} + \dots$$

Covariates determining heterogeneity depend on sector

- \rightarrow *Climate*_i = long-run avg. climate (e.g. temperature, degree days, precipitation)
- $\rightarrow \log(GDPpc)_i = average \log income per capita$
- \rightarrow area_irrigated_i = share of area equipped for irrigation

Similar approaches: Auffhammer (*JEEM*, 2022); Heutel et al. (*ReStat*, 2021); Garg et al. (*WP*, 2020); Butler & Huybers (*Nat. Clim. Chg.*, 2013); Roberts & Schlenker (*PNAS*, 2009)

Adaptation to income \times climate

Adaptation to income \times climate

Labor: Sector of employment determines sensitivity

- High risk workers: Agriculture, mining, construction, manufacturing
- Low risk workers: All other sectors

Workforce composition is empirically modeled based on income and climate

T. Carleton — Climate inequality

Agriculture: adaptation determined by climate, income, irrigation

<u>Crop-specific cross-validation</u> used to select from many functional forms and possible interactions.

Agriculture: adaptation determined by climate, income, irrigation

Estimating data-driven local climate damages

Step 1: Collect and harmonize comprehensive data for each sector

Step 2: Estimate **causal impact relationships**, accounting for key drivers of adaptation

Step 3: Project impacts globally today and into the **future** using high resolution climate projections

Project future climate using climate model ensemble

The probability distribution of estimated change in Global Mean Surface Temperature in 2080-2099 of the 33 models and model surrogates under RCP 8.5

T. Carleton - Climate inequality

Capturing differential vulnerability

Capturing differential vulnerability

T. Carleton - Climate inequality

Capturing differential vulnerability

Impacts are distributed unequally across the globe

 Δ Mortality + adapt. costs due to warming; 2099, high-emissions scenario

T. Carleton - Climate inequality

Pakistan: 376 deaths/100k

Mean Mortality Impacts, deaths per 100k

Ghana: 200 deaths/100k Respiratory infections: 55 deaths/100k

T. Carleton — Climate inequality

Ghana: 200 deaths/100k Respiratory infections: 55 deaths/100k

Deaths per 100,000 population

2100, RCP8.5 (high emissions), SSP3

Deaths per 100,000 population

2100, RCP8.5 (high emissions), SSP3

Impacts are distributed unequally across the globe

2100, RCP8.5 (high emissions), SSP3

Uncertainty

T. Carleton - Climate inequality

Agriculture: Losses greatest in breadbaskets

Impact of climate change in 2100 (change in yield, %)

Labor: Disutility impacts in hot & poor places

Rode et al. (in review)

Aggregate damages are borne disproportionately by today's poor...

Jina, Carleton, Hultgren, Rode et al (in prep.)

...and particularly by the poor in hot climates

Aggregate losses: 4°C warming, end-of-century

Jina, Carleton, Hultgren, Rode et al. (in prep.)

Making local damage estimates relevant for climate policy

- **Mitigation:** Social cost of carbon (SCC) drives mitigation and can embed distributional consequences (*next section*)
- Adaptation: Local and regional planning for climate impacts can leverage local impact projections (*extra slides*)

The Social Cost of Carbon

The Social Cost of Carbon (SCC) - the monetary value of the damages imposed by the release of one additional ton of carbon-dioxide.

The SCC enables analysis of policy tradeoffs involving climate change mitigation.

The SCC in practice

Increasingly influences a wide range of government actions

BRIEFING ROOM > STATEMENTS AND RELEASES

New steps will catalyze action across the federal government to account for climate change impacts in budgeting, procurement, and other agency decisions, and save hardworking families money

US President Joe Biden addresses the 78th United Nations General Assembly at UN headquarters in New York City on September 19, 2023. Credit: Ed Junes/AFP via Getty Images

US govt. spends \$600bn/year and has vehicle fleet of 600,000
SCC now being incorporated into: procurement, international aid, budgeting,

Interquartile range generated by resampling ${\sim}100,000$ climate model input parameters to capture the full range of climate sensitivity uncertainty

Interquartile range generated by resampling ${\sim}100,000$ climate model input parameters to capture the full range of climate sensitivity uncertainty

Interquartile range generated by resampling ${\sim}100,000$ climate model input parameters to capture the full range of climate sensitivity uncertainty

Interquartile range generated by resampling \sim 100,000 climate model input parameters to capture the full range of climate sensitivity uncertainty

Accounting for inequality in the SCC calculation

Implementation: compute a spatial certainty equivalent damage function that places higher weight on damages accruing to poor regions, where each dollar is worth more utility (CRRA utility with $\eta = 2$)

Damage Functions Using Average Global Income (Left) Versus Spatial Certainty Equivalent (Right)

Nath et al. (WP, 2023)

Accounting for inequality in the SCC calculation

Sectors: Mortality, energy, labor, agriculture, coastal

	Constant discounting: $\delta=2\%$			Endogenous discounting
	Mean over	Certainty	Equity	Ramsey w/
	uncertainty	equivalent	weighting	uncertainty
RCP4.5	<mark>\$43</mark>	\$58	<mark>\$77</mark>	\$156
RCP7.0	<mark>\$71</mark>	\$116	<mark>\$112</mark>	\$941

Assumptions: $\eta = 2$ and $\rho = 0$; SSP3 (constant δ); SSPs 2-4 (endog. discounting)

 \rightarrow Many alternative valuation metrics presented in Nath et al (in prep.)

- \rightarrow With EPA probabilistic socioeconomic and emissions trajectories: \$190
- ightarrow Also used to compute SC-methane (\$850) and SC-nitrous oxide (\$49,000)
Accounting for inequality in the SCC calculation

nature

Explore content V About the journal V Publish with us V

nature > articles > article

Article Published: 21 April 2021

Equity is more important for the social cost of methane than climate uncertainty

Frank C. Errickson, Klaus Keller, William D. Collins, Vivek Srikrishnan & David Anthoff

Nature 592, 564–570 (2021) Cite this article

7913 Accesses 22 Citations 245 Altmetric Metrics

Challenges in integrating local sectoral damages into aggregate damage metrics

<u>#1</u>: Monetization Conversion from physical units \longrightarrow \$\$ can be difficult and depend critically on strong assumptions.

- Mortality: Whether and how to use an income elasticity of the VSL? (Carleton et al., 2022)
- Labor: Disutility estimates depend on a set of stylized assumptions (Rode et al., 2023)
- Crime and conflict: ?? Mental health: ??

Challenges in integrating local sectoral damages into aggregate damage metrics

#2: Feedbacks Interactions and feedbacks are poorly characterized

Challenges in integrating local sectoral damages into aggregate damage metrics

#3: Migration Migration is likely first-order but a very difficult problem

- $\bullet\,$ Inherently a general equilibrium problem \longrightarrow difficult to characterize with reduced form approaches
- Climate-driven expectation formation poorly understood

Key research gaps in climate inequality

Climate damage estimates that account for differential exposure and vulnerability are lacking for key categories of impacts

Specialty agricultural crops Wildfire Ecosystem services Vector borne disease

...

Key research gaps in climate inequality

Climate damage estimates that account for differential exposure and vulnerability are lacking for key categories of impacts

Specialty agricultural crops Wildfire Ecosystem services Vector borne disease

② Many dimensions of inequality are insufficiently studied

Individual-level data could enable investigation of race, class, gender, education, access to healthcare, etc.

Key research gaps in climate inequality

Climate damage estimates that account for differential exposure and vulnerability are lacking for key categories of impacts

Specialty agricultural crops Wildfire Ecosystem services Vector borne disease

2 Many dimensions of inequality are insufficiently studied Individual-level data could enable investigation of race, class, gender, education, access to healthcare, etc.

3 Mechanisms behind adaptation are poorly understood

Experimental work can help with causality and precision (e.g., Masuda et al. (2021))

When is adaptation optimal or suboptimal? When is adaptation intervention necessary? (e.g., Baylis & Boomhower (2022))

Tools: Using multidimensional data

Scientific and climate data is often stored as multidimensional arrays and saved in file formats like ${\bf netcdf}$

- Data variables are indexed by coordinates (such as longitude, latitude, time, etc.) and can be assigned attributes containing metadata
- Packages such as **xarray** (for python) and **tidync** (for R) are useful tools for working with large datasets stored in this format

Tools: Processing climate data easily in R

https://github.com/tcarleton/stagg

spatiotemporal aggregation of climate data in R

Resample a raster laver to a different

spatial resolution

Cheat Sheet

The R Package stagg enables simple and efficient pairing of climate and economic or political data for use in nonlinear regression analyses. This is accomplished by aggregating gridded ERA5 data to the level of administrative regions in a 3 step process.

1. secondary weights()

Argument	Description	Format	States and
secondary_raster	Data on a seperate variable to weight climate data by during aggregation	Raster layer, raster brick, or raster stack	High Resolution Croplar
grid	Grid with the same resolution as climate data to resample the secondary raster to, defaults to the ERA5 grid	Raster layer, raster brick, or raster stack	
extent	Longitude and latitude boundaries to crop the secondary raster for greater efficiency, defaults to reading in entire raster	Numeric vector of length 4, in the order c(xmin, xmax, ymin, ymax)	

staggregate * is a family of functions which take mostly difference between each is the transformation performe

	Argument	Description	
		Common to all stag	
]	data	Climate data to aggregate	
	overlay_weights	Table of area weights (and poss secondary weights) to use in ag polygon level, created using pre	
	daily_agg	How to convert hourly values int	
	time_agg	The temporal scale to aggregate to	
	Unique to staggregate_polynom		
	degree	The highest order to raise the da	
	Uniqu	ue to staggregate_spline() - [Re	
	knot_locs	Knot locations	
		Unique to staggregate_bin	
	num_bins	Number of non-edge bins to dra	
	binwidth	Width of non-edge bins, override	
	min	Minimum value that non-edge b defaults to minimum in data pro	
	max	Maximum value that non-edge to defaults to maximum in data	
	start_on	Where to draw the left edge of a placement (start_on, center_on, be exercised. If none of these an	

Collaborators: Tyler Liddell, Anna Boser, Sara Orofino, Tracey Mangin

Tools: Build your own remotely sensed measures

Tools: Build your own remotely sensed measures

MOSAIKS = featurized daytime imagery + tutorial resources to help you do low-cost satellite imagery based machine learning on your own

- Method: Rolf et al. (2021)
- API: https://siml.berkeley.edu/portal/index/
- Processed data outputs: www.mosaiks.org
- Questions? Email us at mosaiksteam@gmail.com

Collaborators: Trinetta Chong, Hannah Druckenmiller, Solomon Hsiang, Eugenio Noda, Jonathan Proctor, Esther Rolf

Tools: A practical guide to climate econometrics

Interactive tutorial:

https://climateestimate.net/content/getting-started.html

GUIDE TO CLIMA ECONOMETRICS

NAVIGATING KEY DECISION POINTS IN WEATHER AND CLIMATE DATA ANALYSIS

Introduction to the Tutorial

Introduction to the Tutorial

The use of econometrics to study how social, economic, and biophysical systems respond to weather has started a torrent of new research. It is allowing us to better understand the impacts of climate change, disaster risk and responses, resource management, human behavior, and sustainable development. Here are some of the relationships that have been uncovered in recent years:

Contributors: Azhar Hussain, James Rising, Kevin Schwarzwald, Ana Trisovic

0 7 1: 0 d

THANK YOU! tcarleton@ucsb.edu

EXTRA SLIDES

Local damage estimates informing adaptation policy

Policy makers are faced with the following questions when considering how to best deploy adaptation and resiliency investments:

- How well prepared are today's populations for tomorrow's climate?
- Which communities will experience the greatest impacts from climate change?
- Through which channels will they be the most prevalent?

The California Climate Vulnerability Metric

- California uses CalEnviroScreen to assess community-level vulnerability to pollutant exposure and other local environmental harms
- But there is no existing quantitative framework for measuring vulnerability to climate change

As part of its 2022 Climate Change Scoping Plan, the California Air Resources Board (CARB) contracted the development of a **Climate Vulnerability Metric (CVM)** at the census tract level

A CVM complements other environmental justice screening tools

Combined Impacts of Climate Change in 2050 under Moderate Emissions Scenario Damages as share of 2019 tract income (%), DAC vs non DAC

Differential vulnerability

Unique response functions are estimated for each census tract based on tract-level determinants of vulnerability (demographics, economics, climate, etc.)

Tract-level response functions built from:

- Mortality Carleton et al. (2022)
- Natural gas & electricity Auffhammer (2022)
- Labor supply Rode et al. (in review)
- Flooding Bates et al. (2021)

Differential exposure

CMIP5 climate models are downscaled to the census tract level and projected to 2050 under a moderate emissions scenario (RCP 4.5)

Note: Bias correction is needed when using models from studies that leverage other climate models such as PRISM

Sector-specific results

Category specific impacts of climate are estimated, then monetized using category specific valuation techniques so that they can be summed.

The importance of accounting for differential vulnerability

Left: accounting for differential vulnerability **Right:** accounting only for differential exposure