m Cities that Work E1.

Cities Spatial Model

This user manual describes how to install R and use the open
source IGC.CSM package — a Quantitative Spatial Equilibrium
(QSE) model toolkit.

QSE models offer valuable insights for policymakers seeking
to assess the impacts of hypothetical urban interventions.
The IGC.CSM package aims to bridge the gap between
policymakers and cutting-edge advancements in the urban
economics literature by fostering a better understanding of
QSE models, and facilitating their practical utilisation.

It requires only basic programming knowledge, and a dummy
dataset is provided.

Note: this user manual does not include guidance on organising
and cleaning the data necessary to apply the model to your
own city, nor does it include guidance on visualisation of the
results.

To Install R

1. Go to www.cloud.r-project.org.
2. Select the installer you need for your operating system. The rest of
these instructions showcase the approach for Windows.

Download and Install R

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want
one of these versions of R:

QS
I + Download R for Windows I

R is part of many Linux distributions, you should check with your Linux package management system in addition to the link
above.

3. Click on the "install R for the first time" link.

R for Windows

« Download R for Linux (Debian, Fedora/Redhat, Ubuntu)

Subdirectories:

base Binaries for base distribution. This is what you want Jo install R for the first time.
contrib Binaries of contributed CRAN packages (for R >=3
old contrib Binaries of contributed CRAN packages for outdated versions of R (for R < 3.4.x).

Riools Tools to build R and R packages. This is what you want to build your own packages on Windows, or to build R itself.
Please do not submit binaries to CRAN. Package developers might want to contact Uwe Ligges directly in case of questions / suggestions related to Windows binaries.

You may also want to read the R FAQ and R for Windows FAQ.

Note: CRAN does some checks on these binaries for viruses, but cannot give guarantees. Use the normal precautions with downloaded executables.

4. Click on the Download R 4.2.1 for Windows link.

IDownload R-4.2.1 for Windows (|9 megabytes, 64 bit)
on the Windows binary distribution

New features in this version

5. Save the .pkg file on your computer. Double-click it to open it, and

follow the installation instructions.
6. After installing R, you need to download and install RStudio.

https://cloud.r-project.org/

To Install RStudio

1. Go to https://posit.co/

2. At the top of the page, click on "Products” and then "RStudio IDE"

under "OPEN SOURCE.

PRODUCTS

Open Source > Enterprise

RStudio IDE

DATA SCIENCE HANGOUT

PELE]
Science
Hangout

CHECK OUT THE DATA SCIENCE HANGOUT -

3. At the next page, click the "DOWNLOAD RSTUDIO" button in blue.

DOWNLOAD

RStudio IDE

The most popular coding environment for R, built with love by

Posit.

Used by millions of people weekly, the RStudio integrated development
environment (IDE) is a set of tools built to help you be more productive with R and
Python. It includes a console, syntax-highlighting editor that supports direct code
execution, It also features tools for plotting, viewing history, debugging and

managing your workspace.

If you're a professional data scientist and want guidance on adopting open-source

tools at your organization, don't hesitate to book a call with us.

DOWNLOAD RSTUDIO DOWNLOAD RSTUDIO SERVER

4. Select theinstaller you need for your operating system. Save the .dmg
file on your computer, double-click it to open it, and follow the

installation instructions.

https://posit.co/

To use the IGC.CSM package

Open this link and download the folder named “Demo”. It has two
subfolders: one with the code that allows us to install and use the package,
and another one with the data we will use as input for the model.

B Demo v 3

1. Data for model: In the second subfolder from the Demo folder, you
will find two .csv files with the minimum data requirements of the
model.

a. Chars.csv contains the main characteristics of each location.
Recall from the model documentation that for each spatial unit,
L_i and L_j correspond to its total number of residents and
workers, K represents its total area, and Q is the average
floorspace price. The package does not require the variables to
be in any particular units. For example, the total area K could
be measured in squared kilometres or squared yards.

= 1. Data for model
" 2. Code

1D

Lj
47.37584
198.96779
162.42056
139.17191
85.51427
28.41402
24.09016
150.19174
40.96824
76.53559

Li
86.28924
278.36234
189.60155
180.58063
99.53900
34.79294
30.39358
240.18462
68.70436
119.98940

K

0.4443182
1.4570343
1.1504550
0.8752334
0.5879538
0.2304748
0.2092945
0.7478168
0.1945897
0.3782248

Q
2123.541

1576.814
1371.179
1931.233
1637.644
1939.255
1570.956
1607.084
1369.072
1469.248

The latter example uses 10 locations, but you can add as many
locations as you want when using the code with your own
dataset. We suggest not to change any of the variable's names
in the input file, but if you do, remember that you should change
the names accordingly in the code file "Main.R".

b. MatrixTravelTimes_mins.csv is a matrix of the travel times
across all the locations. Each one of its values indicates the
time it takes to travel between two locations.

https://drive.google.com/file/d/1UNhjdOgqvsMrr_nkuEBRTf4CWP4-Q5Bd/view?usp=sharing

For example, the value placed in column one and row three
represents the time it takes to go from location three to
location one.

This matrix will always be squared and have zeros on its main
diagonal. However, the matrix does not have to be symmetrical.

ID total_ minutesl total_minutes2 total_minutes3 total_minutesd total_minutes5 total minutesé total_minutes7 total minutes8 total_minutes9 total_minutes10

1 0.00000 26.779896 22.12936 22.511690 25.73510 22.042036 30.185078 29.039228 27.140682 27.500105
2 27.08187 0.000000 1565955 18.466438 17.67596 8911154 18.193659 21.844681 20.459673 23.454853
3 22.12936 15.659554 0.00000 11560599 12.14857 10.580830 16.598543 15.452694 14.067684 16.549013
4 22.57792 18.411120 11.50528 0.000000 11.18785 13332396 14.892115 13.746266 8.862508 10.163894
5 25.62609 17.675960 12.14857 11187854 0.00000 12.580544 12.440310 12.030558 10.645550 17.217774
6 22.34402 8911154 10.58083 13387715 12.58054 0.000000 9.956466 16.765959 15.380949 18.376129
7 30.07607 18.193659 16.59854 14.892115 12.44031 9.956466 0.000000 9.617954 12.522184 18.057659
8 28.93022 21.844681 15.45269 13.746266 12.03056 16.765959 9.617954 0.000000 10.408021 12.156618
9 27.08947 20.048313 13.65633 8.745062 10.23419 14.969591 12.110826 9.996662 0.000000 8.356397
10 27.56633 23.399532 16.49369 10.163894 17.21777 18320810 18.057659 12.156618 8.473843 0.000000

The position of locations in files Chars.csv and
MatrixTravelTimes_mins.csv must coincide. For example, if a
location corresponds to row three in the file Chars.csv, it must
be placed on column three and row three in the travel times
matrix.

It is important to ensure that none of the variables have missing
values or values that are equal to zero. Otherwise, it will not be
possible to implement the following steps.

2. Code: Inside the code folder, you will find a file named "Main.R". This
is the only file you will need to use the package. However, make sure
to have an active internet connection since you will need to download
the package from an online repository. Then, open the "Main.R" file
using Rstudio.

a. First, you must change the working directory to the folder
containing the data and clear the working environment from
any previous values.

#1. Setup the working environment
#setwd("Copy here the Path to the <Demo> folder on your computer")
rm(list = 1s())

b. Then, you will need to download the package from the CRAN
repository.

Once you have installed the package for the first time, you will
not need to re-install it and you should only run the second line
below:

#2. Install the package from the CRAN repository
install.packages ('IGC.CSM")
Tibrary('IGC.CSM")

c. In the

third step, you will load the two CSV files (explained in

section 1) into the RStudio working space.

#3. Upload the required data
data_chars = read.csv("1l. Data for model/1. Chars.csv")
data_times = read.csv("1l. Data for model/2. TravelTimes.csv")

Number of workers in each location

L_j = as.data.frame(data_chars$L_j)

Number of residents in each location

L_i = as.data.frame(data_chars$L_i)

Normalize the number of residents in each location
L_i = L_i*sum(L_j)/sum(L_1)

Area in sq. km from each location

K = as.data.frame(data_chars$K)

Average floor space price in each location
Q = as.data.frame(data_chars3$Q)

Define the number of locations in the model

Use the travel times matrix without the index column

_ij

#
N = dim(L_1)[1]
it
t

= as.matrix(data_times[,2:(N+1)], dim=c(N,N))

d. Once you have completed steps a-c, you are ready to use the
main functions of the package. First, using “inversionModel”, you
will save a dataset named “inversion_m_Dbl" in the R workspace,

which contains the following results of the inversion of the
model under the baseline scenario:
@ inversion_m_bl List of 1@

$A :num [1:10, 1] 1.98 2 1.87 2.03 1.86 ...

$a : hum [1:10, 1] 1.89 1.9 1.77 1.93 1.76 ...

Su :onum [1:10, 1] 1.22 1.44 1.36 1.35 1.24 ...

$B D hum [1:10, 1] 1.13 1.13 1.01 1.11 0.98 ...

$b :onum [1:10, 1] 2.43 2.41 2.11 2.4 2.06 ...

Sw num [1:10, 1] 0.993 1.143 1.101 1.071 1.013 ...

$ varphi: num [1:1@, 1] 53.9 13@.2 13@.5 98 86.7 ...

$u

cnum [1, 1] 1.44

$ Q_norm: num [1:1@, 1] 1.293 @.96 @.835 1.176 0.997 ...
$ ttheta: num [1:10, 1] @.51 ©.599 @.638 0.609 0.622 ...

A corresponds to the productivity level in each location
after incorporating the agglomeration forces.

a corresponds to the productivity level in each location.
u represents the real income measure in each location
without the idiosyncratic shock.

U corresponds to the average welfare.

b corresponds to the amenities in each location.

B corresponds to the amenities in each location after
incorporating the congestion forces.

w corresponds to the wages that equalise the labour
supply predicted in the model with the one observed in
the data for each location.

varphi corresponds to the level of development density
in each location.

Q_norm corresponds to the normalised floor space
prices in each location.

ttheta corresponds to the share of the floor space that
is used commercially.

e. Then, with the variables obtained previously, you can solve the
model to get an equilibrium. Specifically, using the development
density, wages, utility, floorspace prices, and the share of
floorspace used commercially, the function “solveModel" yields
the number of workers and residents in each location and their
real income.

© results_m_ bl List of 13
$w :hum [1:10, 1] ©.993 1.143 1.101 1.671 1.013 ...
$ W_i : hum [1:10, 17 1.16 1.26 1.28 1.28 1.26 ...
$B : num [1:1@, 1] 1.13 1.13 1.01 1.11 .98 ...
$A : num [1:10, 1] 1.98 2 1.87 2.03 1.86 ...
$Q : num [1:1@, 1] 1.293 .96 ©.835 1.176 0.997 ...
$ lambda_ij_i: num [1:10, 1:10] @.3328 0.0279 0.036 0.0348 0.0304 ...
$ L1 : num [1:10, 1] 61.9 199.8 136.1 129.6 71.5 ...
$ L3 : num [1:10, 1] 47.4 199 162.4 139.2 85.5 ...
$ ybar : num [1:1@, 1] 1.04 1.09 1.07 1.05 1.05 ...
$ lambda_i : num [1:10, 17 0.0965 @.2095 @.1427 ©.1359 0.0749 ...
$ ttheta : hum [1:10, 17 0.51 0.599 0.638 0.609 @.622 ...
$u : num [1:10, 17 1.22 1.44 1.36 1.35 1.24 ...

$u

:hum 1.8

w corresponds to the wages that equalise the labour
supply and the labour demand according to the
exogenous parameters in the model.

W_i corresponds to the market access measure from
each location.

B corresponds to the amenities in each location after
incorporating the congestion forces.

A corresponds to the productivity level in each location
after incorporating the agglomeration forces.

Q corresponds to the floor space prices in each location.
lambda_ij_i corresponds to the commuting share from
location i to j, conditional on living in location i
L_jcorresponds to the total number of residents in each
location after solving the model.

L_j corresponds to the total number of workers in each
location after solving the model.

ucorresponds to the welfare level in each location, which
represents a real income measure.

ybar corresponds to the average income in each
location.

e lambda_i corresponds to the share of workers that
decide to live in location i.

e ttheta corresponds to the share of the floor space that
is used commercially after the shock.

e Ucorresponds to the aggregate welfare level in the city.

All the results have the same order as the input data. Therefore, if a
location was in the second row in the data from section 1, its results
will also be in that row.

In the baseline scenario, the output variables from the function
inversionModel and the function solveModel coincide. In the next
step, you will see that when the model incorporates some of the
policy changes, the variables differ from those obtained in the
baseline scenario.

Similarly, you can use the function solveModel to find the model's
equilibrium after incorporating changes in some of the model
variables that reflect policies implemented by the government.

To implement the policy changes in the code, you need to change
the variables that the solveModel function uses as inputs. The table
below explains which variables should be changed for a couple of
policy interventions.

Policy intervention Change
Transport infrastructure t_ij: the travel times across
improvements locations
Business development a_i: the productivity levels
Revitalisation and building b_i: the level of amenities
projects
Housing subsidies Q: the floorspace price
Wage subsidies w: the salaries
Land development K: the total area available
Migration policies L_iand L_j: the number of

workers and residents

For example, after assuming an increase in the baseline productivity,
the function SolveModel can compute the same variables from the
previous step and save them in the data frame “results_m_as".

#6. Solve the model after changes in productivity levels

Shock

a = inversion_m_bl%a
p90=quantile(a, 0.99)
a_new = a*(1+0.1*(a>p90))

Solve model after shock

results_m_as = solveModel(N=N,
L_i=L_i,
L—j:L—j H
varphi=inversion_m_bl$varphi,
t_ij=t_ij,
K=K,
a=a_new,
b=inversion_m_bl$b,
w_eg=inversion_m_bliw,
u_eg=inversion_m_bl%u,
Q_eg=inversion_m_b13Q_norm,
ttheta_eg=inversion_m_bl$ttheta)

By comparing the variables obtained in the baseline scenario with
those obtained after incorporating the policy changes, this toolkit
can be used to estimate their potential impact.

Similarly, after assuming a change in the travel times, the function
SolveModel can compute a new equilibrium and store the result
variables in a data frame.

#7. Solve the model after changes in travel times
data_times_policy = read.csv("1l. Data for model/3. TravelTimes_Policy.csv")
t_ij_policy = as.matrix(data_times_policy[,2:(N+1)], dim=c(N,N))

results_m_trans = solveModel(N=N,
L_i=L_1i,
L—j=L—j,
varphi=inversion_m_bl%varphi,
t_ij=t_ij_policy,
K=K,
a=inversion_m_bl%a,
b=inversion_m_bl%b,
w_eg=inversion_m_b1l%w,
u_eg=inversion_m_bl5u,
Q_eg=inversion_m_b1%Q_norm,
ttheta_eq=inversion_m_bl$ttheta)

	To Install R
	To Install RStudio
	To use the IGC.CSM package

