The Economics of Building Decarbonization

Siqi Zheng

November 2024

(MIT Center for Real Estate)

Buildings: 1/3 of total energy use and carbon emissions

IEA (2019). All rights reserved.

Notes: *Construction industry* is the portion (estimated) of overall industry devoted to manufacturing building construction materials such as steel, cement and glass. Indirect emissions are emissions from power generation for electricity and commercial heat.

Ші

Center for Real Estate

Global Alliance for Buildings and Construction, "The 2019 Global Status Report for Buildings and Construction"

- The evidence for green premium
- Drivers and barriers of building decarbonization

The evidence for green premium

The economics of green buildings: **Doing well by doing good**

Green Building

Brown Building

Is there a business case for green buildings?

Green building certificates

• The role of certificates: Solving information asymmetry.

- LEED: Checklist based process
- Ratings: Certified (40-49); Silver (50-59); Gold (60-79); Platinum (80+)

Proje	D v4 for BD+C: New Construction and Major ct Checklist	r Renovatio	n Proje	ect Na	me: Ca	imbridge Crossing	
Y ? N Credit	Integrative Process	1					
13 3 0 Locat	ion and Transportation	16	2	6 6	Materi	ials and Resources	13
Credit	LEED for Neighborhood Development Location	16	Y	_	Prereq 1	Storage and Collection of Recyclables	Required
1 Credit 1	Sensitive Land Protection	1	Y		Prereq 2	Construction and Demolition Waste Management Planning	Required
2 Credit 2	High Priority Site	2		6	Credit 1	Building Life-Cycle Impact Reduction	5
5 Credit 3	Surrounding Density and Diverse Uses	5		2	Credit 2	Building Product Disclosure and Optimization - Environmental Product Declarations	2
5 Credit 4	Access to Quality Transit	5		2	Credit 3	Building Product Disclosure and Optimization - Sourcing of Raw Materials	2
1 Credit 5	Bicycle Facilities	1		2	Credit 4	Building Product Disclosure and Optimization - Material Ingredients	2
1 Credit 6	Reduced Parking Footprint	1	2		Credit 5	Construction and Demolition Waste Management	2
1 Credit 7	Green Vehicles	1		_			
			6	7 3	Indoo	r Environmental Quality	16
9 1 0 Susta	inable Sites	10	Y		Prereq 1	Minimum Indoor Air Quality Performance	Required
Y Prereq	Construction Activity Pollution Prevention	Required	Y		Prereq 2	Environmental Tobacco Smoke Control	Required
1 Credit 1	Site Assessment	1	1	1	Credit 1	Enhanced Indoor Air Quality Strategies	2
1 1 Credit 2	Site Development - Protect or Restore Habitat	2	2	1	Credit 2	Low-Emitting Materials	3
1 Credit 3	Open Space	1	1		Credit 3	Construction Indoor Air Quality Management Plan	1
3 Credit 4	Rainwater Management	3		2	Credit 4	Indoor Air Quality Assessment	2
2 Credit 5	Heat Island Reduction	2	1		Credit 5	Thermal Comfort	1
1 Credit 6	Light Pollution Reduction	1		2	Credit 6	Interior Lighting	2
	-			3	Credit 7	Daylight	3
6 3 2 Water	r Efficiency	11		1	Credit 8	Quality Views	1
Y Prereq 1	Outdoor Water Use Reduction	Required	1		Credit 9	Acoustic Performance	1
Y Prereq 2	Indoor Water Use Reduction	Required					
Y Prereg 3	Building-Level Water Metering	Required	6	0 0	Innova	ation	6
2 Credit 1	Outdoor Water Use Reduction	2	5		Credit 1-5	Innovation	5
2 2 2 Credit 2	Indoor Water Use Reduction	6	1		Credit 6	LEED Accredited Professional	1
1 1 Credit 3	Cooling Tower Water Use	2		_			
1 Credit 4	Water Metering	1	1	2 2	Regio	nal Priority	4
				1	Credit 1	Regional Priority: Renewable Energy Production (2 point threshold)	1
13 4 16 Energ	y and Atmosphere	33		1	Credit 2	Regional Priority: Optimize Energy Performance (8 point threshold)	1
Y Prereq 1	Fundamental Commissioning and Verification	Required		1	Credit 3	Regional Priority: High Priority Site (2 point threshold)	1
Y Prereq 2	Minimum Energy Performance	Required		1	Credit 4	Regional Priority: Building Life-Cycle Impact Reduction (2 point threshold)	1
Y Prereq 3	Building-Level Energy Metering	Required	1		Credit 5	Regional Priority: Rainwater Management (2 point threshold)	
Y Prereq 4	Fundamental Refrigerant Management	Required		1	Credit 6	Regional Priority: Indoor Water Use Reduction (4 point threshold)	
6 Credit 1	Enhanced Commissioning	6		_			
5 3 10 Credit 2	Optimize Energy Performance	18	57 2	26 29	TOTA	LS Possible Poir	nts: 110
1 Credit 3	Advanced Energy Metering	1			Certifie	d: 40 to 49 points, Silver: 50 to 59 points, Gold: 60 to 79 points, Platinum: 80 to	o 110
2 Credit 4	Demand Response	2					
3 Credit 5	Renewable Energy Production	3				I FED CERTIFICATION TARGET	- SILVER
1 Credit 6	Enhanced Refrigerant Management	1					ULVLII
2 Credit 7	Green Power and Carbon Offsets	2					
						(5/ PUINTS)	

Estimate green premium: Hedonic model

American Economic Review 100 (December 2010): 2492–2509 http://www.aeaweb.org/articles.php?doi=10.1257/aer.100.5.2492

Doing Well by Doing Good? Green Office Buildings

By Piet Eichholtz, Nils Kok, and John M. Quigley*

The behavior of the building and real estate sectors is quite important in matters of environmental sustainability. It is reported, for example, that buildings account for approximately 40 percent of the consumption of raw materials and energy. In addition, 55 percent of the wood that is not used for fuel is consumed in construction. Overall, buildings and their associated construction activity account for at least 30 percent of world greenhouse gas emissions (Royal Institution of Chartered Surveyors, RICS 2005). The impact of energy costs directly affects tenants and building owners. Energy represents 30 percent of operating expenses in a typical office building; this is the single largest and most manageable operating expense in the provision of office space.

Hedonic regression Building and location controls $Log(Price_{ijt}) = X_{1i}\beta_1 + X_{2j}\beta_2 + U_{ijt}$ $X'_{1i}\beta'_1 + \beta_g Green$ Dummy (green = 1, otherwise = 0) Green Or categorical variables, such as LEED Premium {Silver, Gold, Platinum}

How to make an "apple-to-apple" comparison

TABLE 2.-COMPARISON OF GREEN-RATED BUILDINGS AND NEARBY CONTI PROPENSITY-SCORE WEIGHTED OBSERVATIONS (STANDARD DEVIATIONS Rental Sample Raled Control PSM Buildings Buildings Controls 1.943 18,858 Sample size 18,858 Contract rent (dollars/sq. ft.) 26.75 29.28 25.83 (9.67)(12.48)(12.12)Effective renta (dollars/sq. ft.) 22.28 22.70 25.24 (12.39)(9.61)(10.89)Sales price (dollars/sq. ft.) Size (thousands sq. ft.) 299.83 155.65 282.88 (245.73)(292.40)(176.74)Occupancy rate (%) 83.45 85.32 85.80 (13.11)(16.39)(31.54)Building class (%) Class A (1 = yes)75.75 26.9 71.94 (42.87)(44.34)(37.53)52.73 Class B (1 = yes)23.21 26.90 (42.23)(49.93)(12.57)Class C (1 = yes)1.04 20.37 1.16 (10.15)(40.27)(1.31)53.22 25.93 Age (years) 24.65 (34.33)(17.36)(7.56)Renovated building (%) 24.25 40.31 26.20 (49.05)(42.87)(18.39)Stories (number) 13.71 10.24 13.67 (12.64)(10.05)(6.95)On-site amenities (%)b 53.53 28.851.88 (49.89)(45.28)(31.82)Public transport (%)^c 11.55 12.75 12.46 (33.37)(31.96)(15.84)Employment growth, 2006-2008 (%) 1.18 -0.07-1.47(5.86)(3.33)(4.56)Rental contract (%) Triple net (1 = yes)22.11 14.74 22.94 (41.51)(35.45)(42.05)Modified gross (1 = yes)7.94 2.581.31 (11.39)(27.04)(15.85)Plus all utilities (1 = yes) 8.81 9.51 9.86 (28.36)(29.37)(29.81)Gross (1 = yes)9.07 7576 67.20 2.86) (46.95)

*Effective rent equals the contract rent multiplied by the occupancy rate.

Matching:

• Geographic matching

Eichholtz, P., Kok, N., & Quigley, J. M. (2013). The Economics of Green Building. *The Review of Economics and Statistics*, *95*(1), 50-63.

TABLE 3.—GREEN RATINGS, RENTS, AND SALES PRICES PROPENSITY-SCORE WEIGHTED OBSERVATIONS, 2009 SAMPLE FRAME

=

_

	Rent (per square foot)		Effectiv (per squa	Effective Rent# (per square foot)		Price are foot)
	(1)	(2)	(3)	(4)	(5)	(6)
Green rating $(1 = yes)$	0.026*** [0.007]		0.076*** [0.010]		0.133*** [0.017]	>
Green rating \times gross (1 = yes)	- 0.011 [0.008]		<u>-0.037***</u> [0.012]			
Green rating \times modified gross (1 = yes)	-0.024 [0.035]		0.016 [0.053]			
Green rating \times plus utilities (1 = yes)	-0.001 [0.013]		-0.049** [0.019]			
Energy Star $(1 = yes)$		0.021*** [0.005]		0.065*** [0.007]		0.129*** [0.0191]
Label vintage (years)		-0.004** [0.002]		-0.010*** [0.002]		-0.017* [0.011]
LEED $(1 = yes)$		0.058***		0.060***		0.111***
Building size (millions of square feet)	0.034***	0.034***	0.076*** [0.004]	0.076***	-0.049^{***}	-0.049***
Fraction occupied	-0.000 [0.000]	-0.000 [0.000]	[0.004]	[0.004]	[0.010]	[0.010]

Rental premium for green buildings

Author,			%
Year	Rent Premium	ES (95% CI)	Weight
Bond and Devine (2016)		0.05 (0.02, 0.08)	3.90
Bond and Devine (2016)		0.09 (0.07, 0.12)	4.13
Caijas and Piazolo (2013)		0.07 (0.04, 0.09)	4.21
Cheaut, Eichholtz, and Kok (2014)		0.31 (0.21, 0.42)	1.71
Devine and Kok (2015)	•	0.03 (0.01, 0.04)	4.34
Devine and Kok (2015)		0.04 (0.02, 0.05)	4.29
Devine and Kok (2015)	•	0.10 (0.08, 0.12)	4.29
Eichholtz, Kok, and Quigley (2013)	•	0.03 (0.01, 0.04)	4.37
Feige, McAllister, and Wallbaum (2013)		0.11 (-0.38, 0.60)	0.12
Fuerst and McAllister (2011a)		0.09 (-0.03, 0.21)	1.40
Fuerst and McAllister (2011b)		0.05 (0.00, 0.10)	3.29
Fuerst and McAllister (2011c)		-0.56 (-0.79, -0.34)	0.53
Fuerst and van de Wetering (2015)		0.21 (0.08, 0.34)	1.26
Fuerst, van de Wetering, and Wyatt (2013)		0.11 (-0.02, 0.25)	1.18
Gabe and Rehm (2014)	▲	-0.02 (-0.04, 0.01)	4.16
Koirala, Bohara, and Berrens (2014)	T -	0.23 (0.18, 0.29)	3.02
Nappi?Choulet and Décamps (2013)	-	0.02 (-0.01, 0.04)	4.12
Newell, MacFarlane, and Walker (2014)	T •	0.07 (0.04, 0.09)	4.12
Reichardt (2014)	+	0.03 (0.01, 0.06)	4.13
Reichardt (2014)		0.07 (0.04, 0.10)	3.89
Reichardt (2014)		0.10 (0.05, 0.15)	3.22
Reichardt et al. (2012)	•	0.03 (0.01, 0.04)	4.40
Reichardt et al. (2012)	+	0.03 (-0.00, 0.06)	3.92
Robinson and McAllister (2015)		0.02 (-0.02, 0.06)	3.61
Robinson and McAllister (2015)		0.07 (-0.05, 0.19)	1.45
Robinson and McAllister (2015)		0.14 (0.07, 0.22)	2.32
Sánchez-Ollero, García-Pozo, and Marchante-Mera (2014)		0.05 (0.02, 0.09)	3.75
Szumilo and Fuerst (2015)	•	0.02 (0.01, 0.04)	4.35
Wiley, Benefield, and Johnson (2010)	•	0.09 (0.06, 0.11)	4.11
Wiley, Benefield, and Johnson (2010)		0.17 (0.08, 0.27)	1.92
Zheng et al. (2012)	•	-0.00 (-0.01, -0.00)	4.49
Overall (I-squared = 94.8%, p = 0.000)		0.06 (0.04, 0.08)	100.00
NOTE: Weights are from random effects analysis			
787	I I 0 .76	17	

Dalton and Fuerst (2018): Meta analysis of green real estate rents

Overall significant rent premium of 6%

- 5.4% commercial
- 8.2% residential

Studies also find 5% - 9% higher occupancy rates for commercial real estate.

Center for Real Estate

Fuerst, Dalton And. 2018. The Green Value Proposition in Real Estate: A Meta-Analysis. Routledge.

Price premium for green buildings

Dalton and Fuerst (2018) also look at evidence sales prices

Overall price premium of 7.6%

- For commercial 11.5%
- For residential 5.5%

Fuerst, Dalton And. 2018. *The Green Value Proposition in Real Estate: A Meta-Analysis.* Routledge.

Drivers and barriers for building decarbonization

Negative Lifecyle Cost: Market Opportunity Unexploited

Exhibit 8.7.2

Global GHG abatement cost curve for the Buildings sector

Societal perspective; 2030

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €60 per tCO₂e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play. Source: Global GHG Abatement Cost Curve v2.0

Center for Real Estate

McKinsey Curve:

"Carbon emissions in the Building sector can be substantially reduced, either with net economic benefits or at low cost."

Why are the vast negative cost green opportunity unexploited?

Energy efficiency gap: Investment in energy efficient technologies/products is below (privately) optimal level.

What could explain this gap?

An easy-to-read piece: Jaffe, A. B., R. G. Newell, and R. N. Stavins. 2004. "Economics of Energy Efficiency." *Encyclopedia of Energy* 2: 79-90.

A good review piece: Allcott, H., & Greenstone, M. (2012). Is there an Energy Efficiency Gap? *The Journal of Economic Perspectives: A Journal of the American Economic Association*, *26*(1), 3–28.

Market failures

- Environmental externalities: regulations and subsidies (e.g. LL97 in NYC)
- Inadequate information

Davis, Lucas W., and Gilbert E. Metcalf. 2016. "Does Better Information Lead to Better Choices? Evidence from Energy-Efficiency Labels." *Journal of the Association of Environmental and Resource Economists* 3 (3): 589–625.

Zhang, Li, Cong Sun, Hongyu Liu, and Siqi Zheng. "The role of public information in increasing homebuyers' willingness-to-pay for green housing: Evidence from Beijing." *Ecological Economics* 129 (2016): 40-49.

- Split incentive in the rental sector

Aydin, Erdal, Piet M. A. Eichholtz, and Rogier Holtermans. 2024. "Split Incentives and Energy Efficiency Investment: Evidence from the Housing Market." *Social Science Research Network*. https://doi.org/10.2139/ssrn.4944953.

Non-market failure explanations

- Heterogeneity in energy users
- Under-estimated costs and overestimated energy savings
 - Performance gap

Information, learning and WTP for green buildings

• "The Role of Public Information in Increasing Homebuyers' Willingness-to-Pay for Green Housing: Evidence from Beijing." Zhang, Sun, Liu and Zheng 2016, *Ecological Economics*

Information & knowledge matter!

Fig. 3. Respondents' knowledge of Chinese green building label. Notes: 1 = "Do not know it"; 2 = "Only heard of it"; 3 = "Familiar. Know its logo"; 4 = "Very familiar. Has specialized knowledge about it".

Low awareness among residents in non-green buildings

Center for Real Estate

Intervention: information card

Significant increase in the WTP for green buildings for non-green building residents

Split incentive in rental properties

If tenants pay the bill (such as the "triple net lease", NNN)

Does not pay the energy bill thus will not benefit if they pay for energy efficiency upgrades

Tenants

Do pay the energy bill but do not own the building, thus usually hesitant to make long-term investment on someone else's building.

Similarly, for buildings with a full-service lease structure (i.e., no additional expenditure for utility):

Gross Lease

- The owner wants to keep the energy cost down
- Tenants have no incentive to save energy as they pay the flat rate.

Aydin, E., Eichholtz, P. M. A., & Holtermans, R. (2024). Split incentives and energy efficiency investment: Evidence from the housing market. In *Social Science Research Network*. https://doi.org/10.2139/ssrn.494495

Dutch housing market covering 3.8 million homes. Rental properties exhibit approximately 7.7% lower energy efficiency compared to similar owner-occupied homes.

- the transition from rental to owner status leads to a reduction in subsequent energy consumption of up to approximately 6%.

Center for Real Estate

Net Lease

Performance gap

Realized savings are 58% (Allcott and Greenstone, 2017), 30% (Fowlie et al., 2018), 51% (Christensen et al., 2021) of predicted savings.

Fowlie, M., Greenstone, M., & Wolfram, C. (2018). Do energy efficiency investments deliver? Evidence from the weatherization assistance program. *The Quarterly Journal of Economics*, *133*(3), 1597-1644.

The weatherization Assistant Program in Michigan – Upfront costs are about twice the actual energy savings. The rate of return = -7%

Non-monetary costs:

Center for Real Estate

Fowlie, M., Greenstone, M., & Wolfram, C. (2015). Are the non-monetary costs of energy efficiency investments large? Understanding low take-up of a free energy efficiency program. *American Economic Review*, *105*(5), 201–204. Explained by

- Rebound effect 6%
- Bias in engineering models 41% (overestimated savings in wall insulation)
- Heterogeneity in workmanship/installation
 43%

Christensen, P., Francisco, P., Myers, E., & Souza, M. (2023). Decomposing the wedge between projected and realized returns in energy efficiency programs. *Review of Economics and Statistics*, *105*(4), 798-817.

Research directions

- RCT to test mechanisms and the effectiveness of policy instruments
 - Energy audits and energy conservation

Akesson, J., Hahn, R. W., Kochhar, R., & Metcalfe, R. D. (2023). Do Water Audits Work? https://www.nber.org/papers/w31831

• Information acquisition value

La Nauze, A., & Myers, E. (2023). *Do Consumers Acquire Information Optimally? Experimental Evidence from Energy Efficiency*. https://www.nber.org/papers/w31742

• Peer effects

Carattini, S., Gillingham, K., Meng, X., & Yoeli, E. (2024). Peer-to-peer solar and social rewards: Evidence from a field experiment. *Journal of Economic Behavior & Organization*, *219*, 340–370.

Research directions

• Machine learning for targeting

Christensen, P., Francisco, P., Myers, E., Shao, H., & Souza, M. (2024). Energy efficiency can deliver for climate policy: Evidence from machine learning-based targeting. *Journal of Public Economics*, *234*(105098), 105098.

A data-driven approach to predicting retrofit impacts based on previously realized outcomes is more accurate than the status quo engineering models. Targeting high-return interventions based on these predictions dramatically increases net social benefits.

Gerarden, T., & Yang, M. (2022). Using targeting to optimize program design: Evidence from an energy conservation experiment. *Journal of the Association of Environmental and Resource Economists*. https://doi.org/10.1086/722833

• New "green" technologies

Center for Real Estate

Davis, L. W. (2023). *The Economic Determinants of Heat Pump Adoption* (No. 31344). National Bureau of Economic Research. <u>https://doi.org/10.3386/w31344</u>

Knittel, C., Ontiveros J., Palacios, J. Zheng, S. (2024). Learning by Doing: Contractors' Learning in Heat Pump Installations

Energy Performance Criteria – LL97 in NYC

LL97

Buildings Mandate

Requires all buildings larger than 25,000 square feet to meet ambitious carbon reduction targets

- With the current building stock, building owners face sizeable fines
- Strong need to retrofit properties to meet targets

Center for Real Estate

Emissions Distribution of Covered Properties

This graph is meant as a conceptual aid and does not represent actual properties or emissions limits.

Carbon Emission Standard

OCCUPANCY CLASSIFICATION	2024-2029 LIMIT (kg CO2 eq/sf/year)	2030-2034 LIMIT (kg CO2 eq/sf/year)
<u>B</u> - Ambulatory health, emergency response, and other critical applications listed in LL97 <u>H</u> - High Hazard <u>I 2 & I 3</u> - Institutional	23.81	11.93
<u>M</u> - Mercantile	11.81	4.03
<u>A</u> - Assembly	10.74	4.20
<u>R 1</u> - Residential (Hotels)	9.87	5.26
<u>B</u> - Business	8.46	4.53
<u>E</u> - Educational <u>I 4</u> - Institutional	7.58	3.44
<u>R 2</u> - Residential (Multifamily)	6.75	4.07
<u>F</u> - Factory	5.74	1.67
<u>S</u> - Storage <u>U</u> - Utility & Miscellaneous	4.26	1.10
<u> 1</u> - Institutional	11.38	5.98

The penalty for emissions above the limit is \$268/year/metric ton.

https://be-exchange.org/ll97-calculator/

The Role of Future Uncertainties

Building Energy Model + Financial Model: Incorporating uncertainties

Echeverria, A. J. V., Palacios, J., Davila, C. C., & Zheng, S. (2023). Quantifying the financial value of building decarbonization technology under uncertainty: Integrating energy modeling and investment analysis. *Energy and Buildings*, *297*, 113260.

Case Study: Office building in Manhattan

- 920,000 ft² office building in Manhattan
- Challenge: Do we construct a building that uses natural gas or a building that is fully electric.⁹
- Tradeoffs:

Three design options

Three design options:

<u>Option A</u> Building with natural gas heating systems Option B Building with fully electric heating systems Option C Building with the flexibility to fully electrify in the future

And a whole lot of uncertainty:

Rate of Grid Decarbonization

- Building energy use
- Technological development
- Energy efficiency
 market premiums
- Equipment performance / costs
- And more...

In 10,000 different future scenarios, which design option is most profitable most often?

The flexibility option always wins!

Results

Ш

Each point represents the **difference in NPVs** of two design options in **one scenario**

Center for Real Estate

The greater the number of points on one design option's side, the higher the probability that it will be more profitable across different scenarios

Residential sector: Where are today's residential heat pumps cost effective?

Heat Pump Adoption Rates by State

Center for Real Estate

Davis, L. W. (2023). *The Economic Determinants of Heat Pump Adoption* (No. 31344). National Bureau of Economic Research. <u>https://doi.org/10.3386/w31344</u>

Figure 2 Benefit-cost ratio of an air-source heat pump with an electric resistance heating backup compared to a central AC with a natural gas furnace.

Benefit-cost ratio of (heat pump + backup heating) compared to (AC + natural gas heating)

Johnson, B., & Krishnamoorthy, S. (2021). Where are Today's Residential Heat Pump Technologies Cost-Effective?. *ASHRAE Transactions*, 127(1).

Further challenge: shortage of qualified contractors

- Global demand for heat pump installers requires over 1.3 million workers by 2030, nearly triple the current amount, raising the potential for skilled labor shortages, especially for installers.
- Lack of heat pump installation skills lead to vast variations of total cost and installed capacity (MassCEC, MA homes that installed heat pumps in 2014-2019)

Knittel, C., Ontiveros, J., Palacios, J. & Zheng, S. (2024). Learning by doing: Contractors' Learning in Heat Pump Installations. *Working Paper*. Center for Real Estate

Controlling for: MOY, Year; Footage; Zillow value; Current Fuel Source; Num Heat Pump Units; Installed Capacity; Retrofit; Year Built; Home Type; Town; Bedrooms; Bathrooms; Number of Previous Installations

Learning effect on cost and capacity

- As contractors install more heat pumps, they are reducing the size of the systems.
 - Interpretation: for every doubling in experience, contractors are downsizing systems by 2.3%.
- A large amount of cost is described through the sizing of the system.
 - Larger system = higher total cost.

Center for Real Estate

• Learning leads to installation behavior shifts, but is it going to the right direction?

Knittel, C., Ontiveros, J., Palacios, J. & Zheng, S. (2024). Learning by doing: Contractors' Learning in Heat Pump Installations. *Working Paper*.

-		· /		2 07	
	(1)	(2)	(3)	(4)	(5)
Ln(Number Past	-0.026**	-0.029**	-0.031**	-0.033***	-0.033***
Installations)	(0.012)	(0.012)	(0.012)	(0.012)	(0.012)
DF Residuals	$13,\!503$	$13,\!017$	$12,\!992$	12,990	12,990
R-Squared	0.27	0.33	0.36	0.36	0.36
	()	B) Total C	ost of Insta	allation Mod	els
Ln(Number Past	-0.011	-0.018	-0.020	-0.021	0.011
Installations)	(0.013)	(0.014)	(0.014)	(0.014)	(0.0072)
					0.94^{***}
Ln(Installed Capacity)	-	-	-	-	(0.0093)
DF Residuals	13,503	$13,\!017$	$12,\!992$	12,990	12,989
R-Squared	0.34	0.38	0.4	0.4	0.84
			Controls	3	
Installer FEs	Yes	Yes	Yes	Yes	Yes
Year Installed FEs	Yes	Yes	Yes	Yes	Yes
Month Installed FEs	Yes	Yes	Yes	Yes	Yes
Hedonic Controls	Yes	Yes	Yes	Yes	Yes
Town FEs	No	Yes	Yes	Yes	Yes
Previous Heating Controls	No	No	Yes	Yes	Yes
Heat Pump Brand	No	No	No	Yes	Yes

Table 3: Relationship between installer experience, installed capacity, and installation costs

Trade-offs: private benefit vs. environmental benefit

Finding the right size with National Renewable Energy Laboratory (NREL)' ResStock tool

Center for Real Estate

Comparison of learning effect across outcomes

	(1) Ln(Total Cost)	(2) Backup Hours	(3) Modulation Hours	(4) Ln(Backup/ Mod Ratio)	/
Ln(Number Past Installs)	-0.024** (0.012)	56.46* (33.49)	-22.70 (22.48)	0.053** (0.022)	
Observations	12844	11424	11424	11424	

Downsizing comes at the cost of of using the backup heat source more hours out of the year.

What might explain this behavior in downsizing?

Knittel, C., Ontiveros, J., Palacios, J. & Zheng, S. (2024). Learning by doing: Contractors' Learning in Heat Pump Installations. *Working Paper*.

Trade-offs: private benefit vs. environmental benefit

	(1)	(2)	(3)	(4)
	All Types	Natural Gas	Oil	Other
		(A) Outcome:	nstalled Capacity	
Ln(Number Past	-0.031***	-0.045**	-0.026	-0.014
Installations)	(0.012)	(0.021)	(0.016)	(0.031)
Observations	12825	4409	5001	2025
R-Squared	0.36	0.79	0.76	0.90
		(B) Outcome:	Installation Cost	
Ln(Number Past	-0.021	-0.046**	-0.0076	-0.0081
Installations)	(0.014)	(0.021)	(0.020)	(0.033)
Observations	12825	4409	5001	2025
R-Squared	0.41	0.80	0.78	0.91

Knittel, C., Ontiveros, J., Palacios, J. & Zheng, S. (2024). Learning by doing: Contractors' Learning in Heat Pump Installations. *Working Paper*.

Center for Real Estate

Natural gas is the cheapest source of heat, followed by electricity for heat pumps.

Keeping natural gas heating as the backup has a clear private benefit, with potential environmental cost. Aligning private benefit and environmental benefit with technological advances is important and possible.

Average Cost to Produce Heat this Winter (2023/24) for Different Technologies, Source: <u>MassGov DOER</u>

ESG push from the capital market: sustainable engagement

Van der Kroft, B., Palacios, J., Rigobon, R., & Zheng, S. (2024). *Timing sustainable engagement in real asset investments* (No. w32646). National Bureau of Economic Research.

enter for Real Estate

 S&P 1500 firms 14,689 times engaged from 2006 to 2022

- 58% Governance; 42% Environmental & Social topics
- Shareholder engagement affects financials (Dimson, Karakas, & Li, 2015) and is correlated with CO2 level reductions (Bauer, Derwall,& Tissen, 2022)
- Hedge fund activism (Akey & Appel, 2019) and Boardroom Accountability Project (Naaraayanan, Sachdeva, & Sharma, 2021) reduced pollution in US manufacturing plants
- Challenge in identification: endogenous selection in targets
 - Both profitable and environmental improvements?
 - Investors have limited engagement personnel (Bebchuk, Cohen, Hirst, 2017)
 - Impact optimization through target selection target low-hanging fruits
 - Economic rationale: Investors selectively engage, imposing a positive selection bias on the impact of engagement.

Engagement Process: Shareholder Proposal

SHAREHOLDER PROPOSALS

UNITED STATES SECURITIES AND EXCHANGE COMMISSION WASHINGTON, D.C. 20549

SCHEDULE 14A

PROXY STATEMENT PURSUANT TO SECTION 14(a) OF THE SECURITIES EXCHANGE ACT OF 1934 (AMENDMENT NO.)

Filed by the Registrant 🛛

Filed by a Party other than the Registrant \Box

Check the appropriate box:

- Preliminary Proxy Statement
- □ Confidential, for Use of the Commission Only (as permitted by Rule 14a-6(e)(2))

Center for Real Estate

- Definitive Proxy Statement
- Definitive Additional Materials
- □ Soliciting Material under §240.14a-12

SHAREHOLDER PROPOSALS

ITEM 11—SHAREHOLDER PROPOSAL REQUESTING A REPORT ON CERTAIN COMMUNITY IMPACTS

Beginning of Shareholder Proposal and Statement of Support:

WHEREAS:

"Environmental racism" occurs when pollution is disproportionately concentrated in communities of color. "Environmental justice" occurs when pollution is borne equitably across communities regardless of their racial profile.

Popular and governmental attention to environmental justice increased in 2019:

- First Presidential forum held on environmental justice (https://www.theguardian.com/environment/2019/nov/09/warren-booker-environmentaljustice-forum-south-carolina)
- Senator Cory Booker introduced "The Environmental Justice Act of 2019" and co-founded an "Environmental Justice Caucus" within the Senate (https://www.booker.senate.gov/?p=press_release&id=966)
- House Natural Resources Committee Chair Raul Grijalva and Rep. McEachin began a process to draft an environmental justice bill (https://naturalresources.house.gov/media/press-releases/chair-grijalva-rep-mceachin-launch-historic-effort-to-draft-environmentaljustice-bill-based-on-public-feedback-at-environmental-justice-convening)
- California passed Assembly member Robert Rivas's environmental justice bill (https://a30.asmdc.org/press-releases/20190912-state-legislatureapproves-assemblymember-robert-rivas-environmental-justice)
- A New School report counted 40 local policies aimed at achieving environmental justice (https://static1.squarespace.com/static/5d14dab43967cc000179f3d2/t/5d5c4bd0e1d5150001a5a919/1566329811163/NRDC_FinalReport_ 04.15.2019.pdf).

Evidence suggests Amazon's logistics operations may have an environmentally racist impact. Beyond carbon dioxide which drives climate change, diesel trucks also emit other dangerous substances:

- Nitrogen dioxide and microscopic particles permanently stunt lung development in children. (https://www.citylab.com/environment/2019/04/air-pollution-data-health-effects-child-asthma-choked-book/587545/)
- Heat causes nitrogen oxides to combine with volatile organic compounds to become ozone. Ozone causes breathing problems and
 premature death. (https://www.lung.org/our-initiatives/healthy-air/outdoor/air-pollution/ozone.html)

San Bernardino, California is a major logistics hub for Amazon and has some of the worst air quality in the country. Children in this region have many

Van der Kroft, B., Palacios, J., Rigobon, R., & Zheng, S. (2024). *Timing sustainable engagement in real asset investments* (No. w32646). National Bureau of Economic Research.

Real estate: engagement timing exogenous of retrofit waves

• We have the entire sample of 207 REITS in the US, with combined marketcap of \$1.3 trillion. We exact each building's attributes from CoStar %SNL, 1990-2023, in total 61,870 properties

- We also collect all US building new construction and retrofit permits., 1990-2022.
- Investors do not know the exact physical depreciation rhythms and thus the retrofit timing for each building, they also face legal constraints (SEC regulations) for engagement timing.

Van der Kroft, B., Palacios, J., Rigobon, R., & Zheng, S. (2024). *Timing sustainable engagement in real asset investments* (No. w32646). National Bureau of Economic Research.

Right-timing engagements boost sustainable performance

Sustainable retrofits $(\%)_{i,t} = \alpha + \beta_1 * \text{Sustainable Engagement}_{i,t} + \beta_2 * \text{Retrofit Wave}_{i,t} + \beta_2 * \text{Retrofit Wave}_{i,t}$

+ β_3 * Sustainable Engagement_{*i*,*t*} * Retrofit Wave_{*i*,*t*} + $\gamma_{i,t}$ + ψ_i + ψ_t + $\varepsilon_{i,t}$ (1)

	Share sustainable permits (%)					
VARIABLES		(2)	(3)	(4)		
Sustainable Engagement	-1.223 (4.781)	-4.992*** (0.656)		3		
Wave X Sustainable Engagement		9.902*** (1.323)				
Sustainable Engagement successful		(-3.191*** (0.919)			
Wave X Sustainable Engagement successful			17.528***			
Sustainable Engagement unsuccessful			(11100)	-5.631*** (0.661)		
Wave X Sustainable Engagement unsuccessful				-0.961		
Wave	-0.190 (0.124)	-0.243** (0.113)	-0.385** (0.128)	-0.208*** (0.095)		
Average share sustainable permits (%)	21.71	21.71	21.71	21.71		
Marginal Effects: Sustainable Engagement during wave (%)	-	4.67	13.95	-6.80		
Observations	3,076	3,076	3,025	3,025		
Adjusted R-squared	0.162	0.162	0.163	0.166		
REIT controls	YES	YES	YES	YES		
Time fixed effects	YES	YES	YES	YES		
REIT fixed effects	YES	YES	YES	YES		

Table 4: Sustainable engagement, sustainable investments, and physical depreciation

Van der Kroft, B., Palacios, J., Rigobon, R., & Zheng, S. (2024). *Timing sustainable engagement in real asset investments* (No. w32646). National Bureau of Economic Research.

Center for Real Estate

Past returns, size, leverage, net income, revenue. REIT and quarter fixed effects and clustered s.e.

Thank You! Questions?

