Bread Lecture Series Evaluating the Effects of Transit Infrastructure

Nick Tsivanidis U.C. Berkeley

Transport in Cities

- Urban models like Ahlfeldt et. al. (2015) are very well set-up to study impacts of urban policies (transport, housing, zoning)
- Today we focus on papers on impact of transit:
 - Tsivanidis (2022) Bus Rapid Transit in Bogota
 - Extra: Allen and Arkolakis (2022) develop tractable, discrete choice framework of routing to think about locally optimal transport investments

Urban Transit Infrastructure

Empirical Questions:

- 1. What are the **aggregate** effects of improving urban transit?
 - 2.5 billion people will move into cities by 2050, most in developing countries

- 2. How are the gains distributed across the low- and high-skilled?
 - Bogota in 1995: low-skilled 25% more likely to commute using informal bus...
 - Which were 32% slower than cars

TransMilenio: World's Most Used Bus Rapid Transit System

Opened across 3 phases in 2000s

Similar speed to subways, but **Faster** and **Cheaper** to build

Currently being built in many developing countries

Combine with detailed **tract-level data** to examine impact

Approach of This Paper

1. Quantitative general equilibrium model of a city

- New Features: Low/High-skill workers + Multiple transit modes
- 2. New Commuter Market Access approach from general equilibrium theory to measure effects of transit infrastructure within cities
 - Individuals: Access to Jobs. Firms: Access to Workers
 - Advantages vs Standard Distance-to-Station Approach
 - Sufficient Statistics: Change in CMA + Elasticities of Activity to CMA (in single-group special case of model)

3. Structural Estimation + Quantification:

- Some of the first estimates of productivity/amenity spillovers w/in less dev. ctry cities
- Connect with Value of Travel Time Savings (VTTS) approach, unpack differences

Model Ingredients

Extend workhorse quantitative urban model (Ahlfeldt, Redding, Sturm & Wolf 2015):

- Multiple skill groups of workers
- Multiple transit modes (cars vs public)
- Multiple industries

Model Environment

Geography: Many discrete locations $i \in I$ that differ in:

- Amenities and productivities
- Time to commute to other locations
- Total supply of housing floorspace

Workers:

- Fixed population type $g \in \{Low, High\}$
- Choose where to live, work, own car

Firms:

- ▶ Rep. firm in each location from each industry produces freely traded variety
- CES labor input over low- and high-skill

Landowners: Allocate floorspace between res and comm use to max profits General Equilibrium: Wages and floorspace prices adjust to clear mkts

Workers

Utility: Worker ω type-*g* living in *i* with car ownership $a \in \{0, 1\}$

$$U_{iag}(\omega) = u_{iag} C^{eta} (H - ar{h})^{1-eta}
u_{ia}(\omega)$$

- Amenity u_{iag}
- Final numeraire good C
- ▶ Residential housing floorspace H_R , w/subsistence requirement \bar{h}
- Idiosyncratic pref. for choice *i*, *a*, $\nu_{ia}(\omega)$ (iid Frechet with shape η_g)

Budget Constraint: If works in *j*

$$C + r_{Ri}H + p_aa = rac{w_{jg}\epsilon_j(\omega)}{d_{ija}}$$

- Price of housing r_{Ri}
- Price of car p_a
- Wage per eff unit of labor w_{jg}
- Commute cost $d_{ija} = \exp(\kappa t_{ija})$
- ldiosyncratic match-prod. with firms in j, $\epsilon_j(\omega)$ (iid Frechet with shape θ_g)

Timing: First choose where to live, then choose where to work

Workers

Employment: From $\max_{j} \{ w_{jg} \epsilon_{j}(\omega) / d_{ija} \}$, probability commute to j from (i, a):

$$\pi_{j|iag} = rac{(w_{jg}/d_{ija})^{ heta_g}}{\Phi_{Riag}} \;\; ext{where} \;\; \Phi_{Riag} \equiv \sum_s (w_{sg}/d_{isa})^{ heta_g}$$

where Φ_{Riag} (Resident Commuter Market Access) reflects access to well-paid jobs

Residence: Probability live in *i* with car ownership *a*:

$$L_{Riag} \propto \left(u_{iag} \left(\underbrace{\bar{y}_{iag} - p_a a - r_{Ri} \bar{h}}_{\text{Expected Net Income}} \right) r_{Ri}^{\beta - 1} \right)^{\eta_g}$$

where $\bar{y}_{iag} \propto \Phi_{\textit{Riag}}^{1/\theta_g}$ is expected income

Key Elasticities:

- \blacktriangleright Higher $\theta \Rightarrow$ employment decisions respond more to commute costs
- Higher $\eta \Rightarrow$ residents more mobile

Closing the Model

Firms: In industry s, produce using labor N_{js} and commercial buildings H_{Fjs}

$$Y_{js} = A_{js} N_{js}^{\alpha_s} H_{Fjs}^{1-\alpha_s} \text{ where } N_{js} = \left(\sum_{g} \alpha_{sg} \tilde{L}_{Fjgs}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

where A_{js} is TFP. Hire inputs taking wages w_{jg} and floorspace price r_{Fj} as given

Landowners: Choose share of floorspace allocated to each use $(r_{Ri} \text{ vs. } r_{Fi})$

General Equilibrium:

- 1. Land Market Clearing:
 - Demand for floorspace equals supply
 - Floorspace allocated to most profitable use
- 2. Labor Market Clearing: Demand for workers equals supply
- 3. Closed City: Population adds up to city total

- $\Rightarrow \text{floorspace prices}$
- \Rightarrow floorspace supply
- \Rightarrow wages
- \Rightarrow welfare
- See paper for specification and estimation of productivity and amenity externalities Bread Lecture Series. N. Tsivanidis

- Consider special case of the model with (i) one group of workers, (ii) no fixed elements of expenditure or income, (iii) exogenous share of floorspace allocated to residential + commercial use.
 - Isomorphic to broader class of models which have log-linear equilibrium equations
- Model admits log-linear reduced form. Change in CMA and reduced form elasticities are sufficient statistics for impacts of transit
- Use this to guide empirics (validate class of models) and assess aggregate impacts using suff stats

Commuter Market Access: Summarizes Effect of Transit

Resident CMA (Φ_{Ri}): Reflects access to well-paid jobs $\Rightarrow \uparrow$ supply of residents

• Resident Supply:
$$L_{Ri} \propto \left(u_i \Phi_{Ri}^{1/\theta} r_{Ri}^{\beta-1} \right)^{\eta}$$

Firm CMA (Φ_{Fi}) : Reflects access to workers $\Rightarrow \uparrow$ supply of labor

• Labor Supply:
$$L_{Fj} = \sum_{i} \pi_{j|i} L_{Ri} = w_j^{\theta} \Phi_{Fj}$$

Given data (L_{Fj}, L_{Ri}) and commute costs $d_{ij}^{-\theta}$, CMA terms are unique solution to

$$\Phi_{Ri} = \sum_{j} d_{jj}^{- heta} rac{L_{Fj}}{\Phi_{Fj}}$$
 $\Phi_{Fi} = \sum_{j} d_{ji}^{- heta} rac{L_{Rj}}{\Phi_{Rj}}$

Distance-Based Treatment Effect: Close vs Far

Distance-Based Treatment Effect: Close vs Interm. vs Far

Residents: Change in InRCMA

Hot: Larger increase Cool: Smaller increase

Firms: Change in InFCMA

Hot: Larger increase Cool: Smaller increase

Reduced Form Representation

In this special case, equilibrium can be written in the form:

$$\Delta \ln \mathbf{Y}_i = \mathbf{A}^{-1} \mathbf{B}_R \Delta \ln \Phi_{Ri} + \mathbf{A}^{-1} \mathbf{B}_F \Delta \ln \tilde{\Phi}_{Fi} + \mathbf{e}_i$$

where

$$\blacktriangleright \Delta \ln \mathbf{Y}_{i} = \begin{bmatrix} \Delta \ln L_{Ri} & \Delta \ln r_{Ri} & \Delta \ln r_{Fi} & \Delta \ln \tilde{L}_{Fi} \end{bmatrix}^{\prime}$$

 \triangleright **B**_R, **B**_F : Direct effects

 \blacktriangleright A^{-1} : Indirect effects

e_i : Structural error containing changes in productivities/amenities

▶ Block structure of coefficients means R outcomes only depend on Φ_{Ri} (same for F)

Sufficient Statistics for Impact of Transit

Due the block structure

$$\begin{split} &\ln \hat{y}_{Ri} = \beta_R \ln \hat{\Phi}_{Ri} + e_{Ri}, \\ &\ln \hat{y}_{Fi} = \beta_F \ln \hat{\Phi}_{Fi} + e_{Fi}. \end{split}$$

where $\hat{y}_{Ri} = \begin{bmatrix} \hat{L}_{Ri}, \hat{r}_{Ri} \end{bmatrix}$ and $\hat{y}_{Fi} = \begin{bmatrix} \hat{L}_{Fi}, \hat{r}_{Fi} \end{bmatrix}$. Proposition 1 says:

- ▶ Relative changes in in economic activity $\hat{\hat{y}}_i = \hat{y}_i / (\sum_r \hat{y}_r)^{1/I}$ can be computed using (i) estimates of $\beta_{L_R}, \beta_{r_R}, \beta_{r_F}, \beta_{L_F}, \theta$, (ii) data on the initial distribution of economic activity $\{L_{R_i}, L_{F_i}, d_{ij}\}$ and (iii) data on the change in commute costs $\{\hat{d}_{ij}\}$.
- Level changes in \hat{y}_i and \hat{L} , \hat{U} can be computed from relative changes in part 2 with (i) an assumption on population mobility between the city and the rest of the country, and (ii) values for σ, β .
- These, and the equations for Φ_i, hold in a broader class of models with i) gravity in commuting and ii) log-linear supply and demand equations.

Data

	Dataset Source		Year	Variables
	Population	General Census/DANE	1993, 2005,2015	Residential Population by Education Group
	Commuting	DANE Mobility Survey	1995, 2005, 2011, 2015	Trip-diaries (trip and person characteristics)
	Housing	Cadastral Department	2000-2013	Property value and characteristics, land use, land and floorspace area
	Employment (Firms)	General Census	1990, 2005	Employment and industry (universe of estab.)
		Business Registry (Chamber of Commerce)	2000, 2014	Employment and industry (formal estab.)
	Employment (Workers)	DANE Household Surveys (ECH/GEIH)	2000-2014	Worker demographics and employment characteristics
Bread Lectu	Commute Times Ire Series. N. Tsivanidis	City Maps	-	Times by mode computed in ArcMap

Identification

$$\Delta \ln L_{Ri} = \beta \Delta \ln \Phi_{Ri} + \gamma_{\ell} + \gamma' X_i + \epsilon_{Ri}$$

Challenges: Δ Amenities in ϵ_{Ri} possibly correlated $\Delta \ln \Phi_{Ri}$

- 1. Mechanical: Contains population and employment in both periods
 - lnstrument: $\Delta \ln \overline{\Phi}_{Ri}$ holding $L_R + L_F$ fixed at initial levels
- 2. Non-Random Route Placement: Predict using
 - i. Location of Tram System in 1921
 - ii. Least cost construction paths between portals and CBD
 - lnstrument: $\Delta \ln \overline{\Phi}_{Ri}$ had TM been built along these predicted routes

Don't just rely on IV:

- ▶ Placebo/Burusyak and Hull: Use 4 planned networks to generate placebo/expected shock
- ► Falsification: No effects of CMA due to lines before opening
- Exploit residual variation in CMA conditional on distance to station
- Use variation in CMA due to new lines >1.5km away

Connecting the Model to Existing Approaches

- Standard approach is to value welfare effects based on value of travel time saved.
- Proposition: In the model without spillovers and no preference heterogeneity across residential locations, the equilibrium is efficient. The first order impact on welfare of a change in commute costs {*dt_{ij}*} is

$$d \ln ar{U} = -lpha eta \kappa \sum_{ij} rac{\mathsf{w}_{ij} \mathcal{L}_{ij}}{\sum_{\mathit{rs}} \mathsf{w}_{\mathit{rs}} \mathcal{L}_{\mathit{rs}}} dt_{ij},$$

where w_{ij} is average labor income on ij.

So in a special case of the model, the envelope theorem implies the first order impact is (a particular average of) these time savings.

Aggregate Results from Sufficient Statistics Approach

Table 6: Aggregate Results Using Sufficient Statistics Approach

Panel A: VTTS Comparison

	VTTS	GE	GE (No Ext.)
Welfare Gain (%)	1.260	2.335	1.527
90% CI	(0.740,3.106)	(0.740,5.861)	
95% CI	[0.309,3.692]	[0.475,6.936]	
As Fraction of VTTS		53.95	82.49
90% CI		(44.20,71.74)	
95% CI		[39.22,85.96]	

Welfare Decomposition

Table 9: Main Quantitative Results & Distributional Effects

	Average Welfare	Inequality
Panel A: Main Results		
Diff θ , η , Imperf Sub	1.007	0.546
90% CI	(0.254, 4.022)	(-0.159, 0.875)
95% CI	[0.017, 4.407]	[-0.441, 1.138]
P-value $\widehat{{ar U}}_H > \widehat{{ar U}}_L$	0.15	
Panel B: Decomposing the Role of Elasticities		
Same η, θ , Perf Sub	2.191	-0.371
Diff θ , same η , Perf Sub	2.261	-0.163
Diff θ, η , Perf Sub	2.510	-0.139
Panel C: Model Extensions		
Domestic Services	0.832	0.585
Local Home Ownership	0.854	0.596
All Renters	0.867	0.619

~ ^

► Low-skill hurt because $\theta_L > \theta_H$ (Panel B, row 1 \rightarrow row 2)

• Low-skill hurt because by competition in the labour market (Panel B, row 3 \rightarrow Panel A)

Aggregate Impacts of TransMilenio

Panel B: Aggregate Effects

	No Migration	Migration
Welfare	2.282	0.597
GDP	3.121	15.131
GDP Net of Costs	2.504	14.514
Population	0.000	9.514
Rents	-0.672	5.283
% of Obs GDP Growth	2.963	14.362
% of Obs Population Growth	0.000	34.886

Incorporating Congestion

Panel C: Incorporating Congestion

	% Change in Welfare	% of No Congestion Welfare Change
No Congestion	3.921	100.00
Congestion	3.943	100.55
Convert TM to Car Lanes	0.028	0.641

Land Value Capture

- ▶ In Bogota, change in transit w/o complementary change in zoning laws
 - \blacktriangleright \Rightarrow No significant response in housing supply to TM

Land Value Capture:

- "Development Rights Sale" Gvt sells permits to build at higher densities near stations
 Successful in Asian cities to (i) finance construction and (ii) increase housing supply
- > 2 Policies: Allocate the same amount of new floorspace permits via
 - 1. Increase density by 30% within 500m of stations
 - 2. Increase density proportional to predicted change in CMA

Land Value Capture

Panel B: Land Value Capture Welfare Effects

% Increase Relative to Baseline

	Welfare	Output
Free Adjustment	44.04	15.78
LVC, Bands	24.47	9.17
LVC, CMA	43.82	11.95

Panel C: Land Value Capture Revenue Effects

	Closed City	Open City
LVC Band Revenue (mm)	58.62	152.77
As share of capital costs	4.04	10.54
LVC CMA Revenue (mm)	88.31	297.57
As share of capital costs	6.09	20.53

1. Average welfare gain 24-43% larger under LVC

2. Gvt earns 4-20% of capital costs from air rights sales

The Welfare Effects of Transportation Infrastructure Improvements

Allen and Arkolakis, 2021, Review of Economic Studies (forthcoming)

Recent "quantitative" revolution in spatial economics

- Spearheaded by flexible theory Eaton Kortum '02, Allen Arkolakis '14, Ahlfeldt Redding Sturm Wolf '15
- Fueled with swaths of spatial data

Key benefit: evaluation of major infrastructure projects

- Trains (Donaldson '18), subways (Severen '19), BRT (Tsivanidis '19)
- The "elephant in the room": Roads

Motivation

