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Abstract 

 

We combine household data from rural areas of Mozambique with 

detailed information on the local physical environmental to 

characterize the relation between food security and the environment 

in rural areas of Mozambique. Using machine learning techniques 

(forest trees and associated surrogate models), we characterize the 

heterogeneity in the profiles of vulnerability to food insecurity as well 

as its environmental best predictors. Temperature in the first months 

of the main production season is the main predictor of food 

consumption score, but the effect of this variable is nonlinear.  We use 

the predictive nature of the surrogate model to quantify the prevalence 

of food insecurity under different temperature scenarios. Our results 

highlight the central role of livelihood transitions (and the associated 

role of policy) in determining the outcomes of global warming. 
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1 Introduction 

 

Mozambique is considered highly vulnerable to climate change given its geographical location, its 

long coastline and the importance of the area close to (or below) mean sea level. Global warming 

may impact the welfare of rural populations through rising sea levels, as well as the increase in the 

intensity and frequency of natural hazards, including droughts, floods and cyclones. While these 

shocks have deservedly received much attention, changes in average temperature may also lead to 

other, slow moving, impacts, via changes in the profitability and risk of current agricultural 

production. Because these changes have received less attention, particularly when relying on 

detailed microeconomic data, their effects are less well understood. This report is one first effort 

to address this gap.  

In the next section we briefly present the household data used in our analysis, the Inquerito 

Agricola Integrado 2012-2014 (IAI2012), as well as the indicator of food security used in our 

analysis, the Food Consumption Score. In addition to its statistical design, that makes it 

representative of rural areas of Mozambique, our data includes precise information on household’s 

location, allowing us to link the socio-economic data with a wide array of other datasets of spatially 

explicit environmental variables, including climatic variables. These data are also presented in 

section 2. 

Section 3 presents our empirical approach. Following a well-established literature in both 

production economics and poverty measurement, we use the characterization of the conditional 

distribution of food security (ie, estimates of the conditional mean and variance of the food 

consumption score), and characterize vulnerability as the empirical probability of a household with 

specific characteristics to have a diet classified as below acceptable. We hypothesise that the 

relation between food security and environmental characteristics is essentially heterogeneous and 

use machine learning techniques to explore this heterogeneity.   

Our results, presented in section 4, show that households in rural areas of Mozambique can be 

classified into eleven more homogeneous groups, with significantly different levels of food 

security. These groups reflect environmental production conditions (and, implicitly, households’ 

choice of livelihood strategies, including agricultural production, as an adaptation to those 

conditions). Importantly, this result suggests a nonlinear relation between food security and 
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average temperature at critical times of the main agricultural season. While households living in 

cooler areas (characterised as those with an average temperature during the first two months of the 

main agricultural season below 25C) are, on average, more food secure than those living in warmer 

areas, there is an important exception: households living in very hot areas (average temperature 

during the first two months of the main agricultural season above 29C) are exceptionally well-off, 

possibly reflecting their apparent specialisation in intensive cattle production. 

We then use climate scenarios to predict future (2050, 2070 and 2090) vulnerability to food 

insecurity, assuming different alternative livelihood options (ie, when we include/exclude the 

possibility of adapting to increases in temperature by practicing the set of activities practiced by 

the cluster of households in the warmest cluster identified in the data). These simulations illustrate 

that what is considered as feasible adaptation strategies can have a large effect on the predictions 

of the effect of global warming, even in the absence of technological change. While under a 

restricted set of options, global warming leads to a reduction in food security, the opposite is true 

when we assume that rural households can adapt by adopting, without restrictions, current 

technologies. We discuss the limitations of this analysis and further work suggested by this 

analysis in the final section of this report.
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2 Data and methods 

2.1 Data 

We use data from the Inquerito Agrario Integrado 2012 PME (IAI2012), a nationally 

representative survey of 6708 households distributed across 11 provinces and 146 districts, to 

quantify food insecurity in rural Mozambique. In addition to information on household 

demographic characteristics and assets, and detailed information on agricultural production, the 

IAI2012 included data on food consumption which we will use to calculate the Food Consumption 

Score, our indicator of food insecurity. 

Importantly, this survey includes detailed information about the geographic location of each 

household. This allows us to to create a spatially explicit dataset on food insecurity and climatic 

variables for rural Mozambique in 2012, by linking the household data from the IAI2012 to spatial 

data on a large set of environmental variables that are potentially important predictors of 

agricultural production (and consumption) and, in the case of climatic variables, are predicted to 

change in the future.  

2.1.1 Food insecurity 

We measure dietary adequacy of food consumption by estimating the food consumption score 

(FCS). The FCS represents the frequency of food consumption across different food groups, 

including starches, pulses, vegetables, fruit, meat, dairy, fats and sugar in the 7 days prior to the 

survey (World Food Programme, 2024). Respondents are asked to recall the number of days they 

consumed different foods, from a list of 14 food items, with each item in the list corresponding to 

a food group. The crosswalk between items and food group is used to identify the number of days 

a food was eaten from each food group, with the maximum value for any food group capped at 7. 

The number of days each food group (Staples - St, Pulses - P, Vegetables - V, Fruits - Fr, Meat - 

M, Dairy – D, Fats – Fa, Sugars - Su) is consumed is weighted by their nutritional content leading 

to the food consumption score. We calculate the FCS using the expression:  

𝐹𝐶𝑆 = 2𝑆𝑡 + 3𝑃 + 𝑉 + 𝐹𝑟 + 4(𝑀 + 𝐷) + .5(𝐹𝑎 + 𝑆𝑢) 
 

(1) 

The FCS can be used as a continuous indicator or used to define categories of diet quality: we 

define a household as being food insecure if their FCS is less or equal to 35, the threshold at above 

which a diet can considered adequate. Figure 1 presents the distribution of the FCS in our sample: 

worryingly, and by this measure, approximately 55 percent of the households are food insecure. 
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Figure 1 Distribution of the Food Consumption Score in IAI2012. 

 

2.1.2 Spatial data 

We characterize the environmental conditions affecting households surveyed in IAI2012 using 

different spatial datasets with global coverage. We start by creating buffer zones with a radius of 

5000 metres centred on household locations, as provided by IAI2012 (see Figure 2) and calculate 

the mean of each variable within this buffer area for each spatial dataset. In most cases this process 

is performed using Google Earth Engine (GEE), and the results are exported for further analysis 

in R (see methods section). When data is missing for a household, we replace the missing data. 

with the sample mean. 
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Figure 2 Household location (Note: these are approximate locations; exact locations were masked)  

 

2.1.2.1 Natural capital 

We characterize household’s natural capital as the set of physical characteristics of the terrain, 

including elevation, slope and ruggedness, and soil properties (such as soil ph and soil carbon).  

Many of these variables, described in Table 1, are available on GEE. 

 

Table 1 Natural capital variables 

Variable Description Resolution Year 

Elevation 

 

MERIT DEM is a high accuracy global DEM at 3 arc second resolution 

(~90 m at the equator) produced by eliminating major error components 

from existing DEMs (NASA SRTM3 DEM, JAXA AW3D DEM, Viewfinder 

Panoramas DEM) (Yamazaki et al., 2017). 

90m 2017 

Slope  

 

We calculate slope in degrees from MERIT DEM. 

The local gradient is computed using the 4-connected neighbors of each 
pixel. The slope at the selected pixel is calculated based on the elevation 
differences between the selected pixel and each of its four neighbors. 

90m 2017 
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Variable Description Resolution Year 

Ruggedness 

 

We use the high-resolution global Terrain Ruggedness Index data 

compiled by Nunn and Puga (2012) following the approach suggested by 

Riley et al. (1999) and calculated with data from GTOPO30 (USGS 1996) 

elevation data.  

GTOPO30 is a global elevation data set developed through a collaborative 

international effort led by staff at the US Geological Survey's Center for 

Earth Resources Observation and Science (EROS).  

The Terrain Ruggedness Index (TRI) is calculated as: 

𝑇𝑅𝐼𝑟,𝑐 =  √∑ ∑ (𝑒𝑖,𝑗 − 𝑒𝑟,𝑐)2
𝑐+1

𝑖=𝑐−1

𝑟+1

𝑖=𝑟−1
 

where 𝑒𝑟,𝑐 is the elevation in row r and cell c of the global elevation matrix 

of cells. TRI is the square root of the sum of all squared differences of the 

elevation of a grid from the elevation of its 8 surrounding grids. 

30 Arc 

Seconds 

1996 

Soil carbon This indicator provides a measure of the soil organic carbon content in 

soils at a depth of 30cm. The unit of measure is tonnes of carbon per 

hectare of soil, in the top 30 cm of soil. The resolution of the data is 250 

metres (Hengl and Ichsani Wheeler, 2018). 

  

Soil ph This indicator provides a measure of the soil ph in H2O at a depth of 30cm. 

The resolution of the data is 250 metres. The scale ranges from 0 to 140 

(Hengl, 2018). 

  

 

 

2.1.2.2 Climate 

We create historical climatic variables using ERA5 (European Centre for Medium-Range Weather 

Forecasts Reanalysis Atmosphere 5th generation) daily data (Copernicus Climate Change Service, 

2023) and create future climatic variables using Coupled Model Intercomparison Project climate 

projection data (Copernicus Climate Change Service, 2021). These historical climatic variables 

are processed using GEE, while future climate variables are processed using R. 

ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate. Reanalysis 

combines model data with observations from across the world into a globally complete and 

consistent dataset. ERA5 DAILY provides aggregated values for each day for seven ERA5 climate 

reanalysis parameters: 2m air temperature, 2m dewpoint temperature, total precipitation, mean sea 

level pressure, surface pressure, 10m u-component of wind and 10m v-component of wind, and 

the data is available from 1979 to three months from real-time. We use data on 2m air temperature 

(presented as daily averages) and total precipitation (presented as daily sums) in our analysis.  

https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_PH-H2O_USDA-4C1A2A_M_v02#description
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CMIP climate projection data provides daily projections on several climatic variables for 2015 to 

2100. We use data for SSP1-2.6, SSP2-4.5 and SSP5-8.5, where SSP1, SSP 2 and SSP5 refer to 

shared socioeconomic pathways 1, 2, and 5 respectively, and Representative Concentration 

Pathways (RCPs) 2.6, 4.5 and 8.5 refer to levels of radiative forcing in watts per square metre 

(W/m2) by 2100. Generally, positive radiative forcing leads to warming of the Earth's surface and 

atmosphere because more energy is being retained in the Earth system. SSP1-2.6 is often 

considered a stringent mitigation scenario where strong efforts are made to reduce greenhouse gas 

emissions while SSP5-8.5 is characterized by high greenhouse gas emissions, particularly carbon 

dioxide, resulting from continued fossil fuel use and limited mitigation efforts, and SSP2-4.5 is 

considered the middle of the road (Gidden et al., 2019).  

We select three different scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5) to quantify the sensitivity of 

vulnerability to food insecurity, and compute all variables, except hot days and wet days for 3 

different years (2050, 2070 and 2090) across these three different scenarios (SSP1-2.6, 2-4.5 and 

5-8.5). We select these three scenarios as they contrast in terms of their levels of radiative forcing, 

and their coupled social scenarios. We use the past 33 years (as we did when we constructed 

variables for 2013), where the construction of a variable relies on data prior to the year of interest. 

 

Table 2 Climatic variables 

Variable Description Resolution Year 

Mean monthly 

temperature 

Average monthly air temperature in degrees Celsius, at 2 m 

above the surface, for the year 2013. Monthly averages are 

averages of daily air temperature. 

~27km 2013 

Temperature in first 

month of planting 

season 

Average daily air temperature in degrees Celsius, at 2 m 

above the surface, in the planting season (Oct-Dec) in 2012. 

~27km 2013 

Variance of average 

monthly temperature 

This variable is a measure of the variance of monthly 

average temperature (air temperature in degrees Celsius at 2 

meters above the surface) across 1980 to 2013. 

~27km 1980-

2013 

Variance of 

temperature in first 

months of planting 

season 

This variable is a measure of the variance of monthly 

average temperature (air temperature in degrees Celsius at 2 

meters above the surface) in the planting season (Oct-Dec) 

for the period 1980-2013. 

~27km 1980-

2013 

Average monthly 

rainfall 

Average monthly rainfall (in mm), for the year 2012. Monthly 

rainfall is calculated as the sum of daily sums. 

~27km 2013 
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Variable Description Resolution Year 

Rainfall in first month 

of planting season  

This variable is a measure of rainfall (in mm) in the planting 

season (Oct-Dec) in 2012. 

~27km 2013 

Variance of monthly 

rainfall 

This variable is a measure of the variance of monthly rainfall 

(in mm) across 1980 to 2012. 

~27km 1980-

2013 

Variance of rainfall in 

first month of 

planting season 

This variable is a measure of the variance of monthly rainfall 

(in mm) in the planting season (Oct-Dec) for the period 1980-

2012. 

~27km 1980-

2013 

Standardised 

deviation of 

Temperature 

This variable measures the deviation of total monthly rainfall 

in November or December 2012 from the average monthly 

rainfall between 1980 and 2013. The variable is standardised 

using the standard deviation of monthly rainfall between 1980 

and 2012, 

~27km 1980-

2013 

Standardised 

deviation of Rainfall 

This variable measures the deviation of average monthly 

temperature in November or December 2012 from the 

average monthly rainfall between 1980 and 2013. The 

variable is standardised using the standard deviation of 

average monthly temperature between 1980 and 2012. 

~27km 1980-

2013 
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3. Methods 

Our dataset contains the food consumption score, a set of natural capital and climate variables, and 

projections of climatic variables under different scenarios, for each household. This rich cross-

sectional dataset enables us to analyse climatic drivers of vulnerability to food insecurity. We 

proceed in two steps: firstly, we estimate vulnerability to food insecurity for clusters of households 

defined on the basis of best predictors of food security, selected using machine learning techniques. 

Then, using these results, we predict changes to vulnerability to food insecurity to reflect different 

climate change scenarios.  

3.1 Vulnerability to food insecurity 

Estimating vulnerability to food insecurity required consistent estimates of the mean and variance 

of the FCS. In a regression context, the first step was to characterise household food consumption, 

ch, as measured by the FCS, as a function of its observable characteristics, 𝑋ℎ, as 

𝑐ℎ = 𝑋ℎ�̂� +  𝜇ℎ (2) 

Using the estimates β̂ we can estimate the expected food consumption score which, conditional on 

𝑋ℎ, forms the deterministic component of the distribution of consumption: 

�̂�[𝑐ℎ|𝑋ℎ] = 𝑋ℎ�̂� (3) 

and the variance of consumption, conditional on 𝑋ℎ: 

�̂�[𝑐ℎ|𝑋ℎ] = �̂�𝜇,ℎ
2  = 𝑋ℎ�̂�  (4) 

for each household ℎ. Assuming that the FCS is normally distributed, we can use these estimates 

to: (1) characterise the distribution of the FCS conditional of the set of covariates Xh and (2) 

estimate the probability that a household with characteristics 𝑋ℎ, would be food insecure – that is, 

estimate the household’s vulnerability level. Letting Φ(.) denote the cumulative density function 

of the standard normal distribution, this estimated probability is given by: 

𝑣ℎ = 𝑃�̂�(𝑐ℎ < 𝑧|𝑋ℎ) = Φ(
z−𝑋ℎ�̂�

√𝑋ℎ�̂�

)  (5) 

 

Empirically, a large literature in production economics, building on Just and Pope (1978, 1979) 

shows how to analyse the conditional variance of an outcome variable (in our case, food 

consumption score) as a function of observable characteristics of the household. Pritchett et al. 

(2000) and Chaudhuri et al. (2002) are two early examples of using a conceptually similar 

approach to estimate vulnerability to poverty. See Santos et al., (2023) for a review of this 

literature.  

In this approach, we must first estimate the conditional mean of food consumption score as: 
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𝐹𝐶𝑆𝑖𝑗  =  𝛽0 + 𝛽1𝑋𝑖 +  𝛽2𝐶𝑖 +  𝜀𝑖𝑗 (6) 

where 𝐹𝐶𝑆𝑖𝑗 is the food consumption score of household i living in community j, 𝑋𝑖 are natural 

capital variables and 𝐶𝑖 are climatic variables.  

The estimates of the effect of observable characteristics on consumption is captured in 𝛽 and 𝜀𝑖 is 

an idiosyncratic error term that captures the unobserved determinants of consumption. With these 

estimates, we can then obtain the empirical estimates of the first two moments of the distribution 

of FCS (ie, the equivalent to equations (3) and (4)) and obtain estimates of the effect of household 

covariates on the variance of consumption, in our case using the same set of covariates as in 

equation (): 

𝜀�̂�
2 =  (𝐹𝐶𝑆𝑖  −  𝐸(𝐹𝐶𝑆𝑖|𝑋𝑖, 𝑆𝑖))2  =  𝜃0 +  𝜃1𝑋𝑖 +  𝜃2𝐶𝑖 +  𝑣𝑖𝑗 (7) 

Together with the estimates of the effect of each covariate on the expected value of FCS, we can 

then estimate the probability that each household will have a consumption below a specific 

threshold e estimated 𝜃 parameters allow us to quantify the main correlates of food consumption 

score risk and obtain estimates of vulnerability to food insecurity (in conjunction with the estimates 

of their effect on mean food consumption score).  

3.2 Creating homogenous cohorts and predicting their spatial distribution 

Implicit in the above framework is the assumption that, conditional on observable characteristics 

X, all observations fit the same food consumption score function. One way to avoid such a strong 

assumption is to use machine learning techniques to identify more homogeneous subgroups of 

observations.  

The approach that we follow borrows from a related analysis, described in more detail in Santos 

et al (2023). Succinctly, we will focus on the use of regressions trees and related advances such as 

regression forests and the estimation of surrogate models, to re-estimate equation (6) as  

𝐹𝐶𝑆𝑖 = f1 (𝑋𝑖, 𝑆𝑖, ) 𝑖𝑓 𝑊 ≥ 𝑤0                (8.1) 

𝐹𝐶𝑆𝑖 = f2 (𝑋𝑖, 𝑆𝑖) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 (8.2) 

where the outcome depends on whether a specific variable W is above or below a certain cut-off 

(w0). If the condition identified in equation (8.1) is met (or not), then the effect of other variables 

(X, S) is better expressed by function f1 (or f2, if not), rather than imposing a common functional 

relation as in equation (6). The statistical selection of variables W and their threshold levels, w0, 

leads to the identification of a hierarchy of importance of those variables in predicting food 

consumption score.  
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3.2.1 Machine learning 

A large (and growing) number of statistical approaches, under the label of machine learning, aim 

to capture the basic intuition underlying equations (8.1) and (8.2): that it is better (in a predictive 

sense) to account for heterogeneity rather than assume homogeneity. This improvement in 

predictive power comes at the cost of increased complexity. The model captured by equations (8.1) 

and (8.2) is less parsimonious than the one described by equation (6), and this added complexity 

needs to be (negatively) weighted against the gain in predictive accuracy.  

The main reason for using machine learning algorithms is to create a relatively strong predictive 

model (even if it is a black box model), to predict the food consumption score under different 

climate scenarios as accurately as possible. As in Santos et al (2023) we use a surrogate decision 

tree model based on the predictions of a random forest model to produce a simpler and 

interpretable model of the role played by different covariates in determining our predictions of the 

impact of climate change, and in the process, create cohorts as units for further analysis. 

4. Results 

We present 3 main sets of results. 

1. analysis of the importance of environmental variables as predictors of food consumption 

score, which are made interpretable using surrogate models. 

2. vulnerability to food security, including different results by the clusters formed by the 

surrogate model 

3. predictions of food insecurity for households and clusters under different climate scenarios. 

4.1 Prediction of food insecurity 

We estimate a random forest model on a training set (60% of the sample, used to tune the different 

parameters of each model) and assess its accuracy using key performance metrics such as Rsquared 

and the RMSE as evaluated in the test set (40% of the sample). We run several different 

specifications to understand the performance of the model (see Table 3). We find little difference 

in predictive power across our models, and hence use a model that addresses the motivation of this 

study (to quantify the relation between food security and climatic variables under different 

scenarios) more directly (in bold, in table 3). 

Table 3- Rsquared and RMSE, random forest specification 

 RSquared RMSE 

Random Forest – all environmental variables 0.141 14.9 

Random forest – climatic variables 0.138 14.9 

Random forest - clusters 0.131 14.9 
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Random forest algorithms are complex and are not interpretable (when compared, for example, 

with OLS regression or regression trees), making it impossible to identify the main predictors of 

food insecurity. We overcome this limitation by using surrogate models to understand which 

environmental variables are most important in predicting consumption.  

Figure 3 presents the results of this approach. The R-squared for the surrogate model relative to 

the random forest model is .316. In this model, differences in average temperature in the first two 

months of the main planting season appear to have the greatest influence in terms of organizing 

the data: the full sample is first split into 2 groups as a function of whether the realized value of 

this variable is above a threshold of 25C, with warmer areas in those two months registering better 

outcomes in terms of average food security (and appearing to the left of this first split in the 

surrogate tree). Further splits of the sub-samples, as a function of whether the different criteria are 

met (and the observations show up to the left of the node) or not (observations are clustered to the 

right of the node) then allows us to present a clearer picture of the influence of climatic variables 

on the food consumption score (and food security). This logic can be followed until reaching the 

leaf (final) nodes.  

We can make some observations from the leaf nodes: 

• First, the regression tree succeeds in creating groups with meaningful differences in 

consumption: the expected food security in the most deprived cluster is 31 which is 14 points 

below the cluster with highest expected food consumption score.  

• Second, temperature seems to matter most among the weather conditions, either in terms of 

the average monthly temperature at the start of the planting season, and the variance of the average 

monthly temperature in the planting season. Higher average monthly temperatures in the planting 

season and less variance in average monthly temperatures in the planting season (lower risk) are 

linked to higher expected food consumption scores. However, and importantly, this relation is 

nonlinear: households living in areas with unusually high average temperatures at the start of the 

planting season (>29C) are much better off (in terms of average diet quality) than 90% of the rural 

households in the country. 

• Third, natural capital (terrain characteristics and soil properties) do not seem to matter in 

terms of predicting homogeneous clusters: instead, all predictors are climatic variables, 

highlighting the importance of global warming for these outcomes in Mozambique. 

• Finally, highlighting the predictive power of this model, the (weighted) frequency of food 

insecurity (55%) if essentially identical to the unconditional probability of being food insecure 

(shown in figure 1). 
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Figure 3 Surrogate model 
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4.2 Characterising food insecurity 

The surrogate model created 11 groups (corresponding to the final leaf nodes), characterized in 

terms of differences in expected food consumption score (our outcome of interest) and its set of 

predictors, selected among a larger set that includes both natural capital and climatic variables. 

Figure 4 shows the distribution of these groups across the territory, with purple colours showing 

lower predicted food consumption scores (higher food insecurity) and green to yellow colours 

showing higher food consumption scores. There are some geographic groupings of the different 

cohorts. For the most part, households in the higher groups (higher FCS) are located in the centre-

west of the country, and households in lower groups (lower FCS) are located in the centre-east of 

the country. We also present the data in Figure 5, Figure 6 and Figure 7 by the splits in temperature 

that are observed at the top of Figure 4. 

Table 3 presents the average characteristics of the households in each cohort. These results suggest 

the following comments. Firstly, and as expected, our model does a fairly good job at tracking 

average diet quality: average predicted FCS closely resembles observed values of this indicator. 

However, its performance is lower when focusing on predicting food insecurity (ie, FCS<=35), 

particularly in those cohorts that are, on average predicted to be better-off (ie, cohorts 6 to 11). 

Future work may re-examine this feature of the analysis by explicitly modelling food insecurity 

(an indicator variable) as the outcome of this model instead of FCS (a continuous variable).  

Secondly, households in different cohorts do not seem substantively different in terms of 

demographic characteristics, including dependency ratio and, to a lesser degree, number of adults 

(as proxy for access to labor). However, they do seem to make different use of migration as a 

livelihood strategy, which differs significantly between cohorts and seems mostly associated with 

lower average FCS, suggesting its use as a coping strategy.  

Thirdly, and reflecting the sampling criteria of the IAI2012, households do not differ in terms of 

access to land (all households have less than 3 hectares of land, regardless of their cohort). Future 

work may want to explore the performance of larger farms, making using of their oversampling in 

the most recent wave of the IAI. They do differ, however, in their use of land, most significantly 

in the importance of the area devoted to pasture. These differences are not mimicked in the 

importance of ownership of cattle: the data suggests that some the better-off cohort associated with 

higher temperatures at the start of the production season (>29C) may be better characterized by 
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intensive cattle production, given their large ownership of cattle (>5 animals) and almost no land 

devoted to pasture or fallow.  

Finally, the exposure of different cohorts to natural hazards and shocks is also different: while the 

prevalence of fires (and also pests and damages by wildlife, not shown in table 3 for simplicity) is 

fairly similar across the entire sample, the same is not true for floods and droughts. Although these 

shocks may partially reflect their membership in specific cohorts (themselves defined on the basis 

of climatic variables), future work may explore the importance of such extreme events in 

explaining (in)security. 

A more complete characterization of the household’s vulnerability to food insecurity requires more 

than an analysis of average outcomes including, as made clear by equation (4), a characterization 

of conditional variance. We can then combine the first two moments of the distribution of FCS to 

quantify vulnerability (equation (5)). Figure 8 and Figure 9 present the results of this analysis for 

all households and for each of the 11 groups, respectively, where the  y-axis is the percentage of 

observations in the sample/group and the x-axis represents the probability that the household will 

fall below the food insecurity line. As Figure 9 makes clear, there are different distributions of 

vulnerability to food insecurity for each group that reflect more than differences in mean FCS.  
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Figure 4 Household cohort, by location (Note: exact locations masked for this figure)
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Figure 5 Household cohort, by location (Note: exact locations 

masked for this figure): filtered for households where the 

average temperature for November is <= 29 and > 25 degrees 

Celsius 

 
Figure 6 Household cohort, by location (Note: exact locations 

masked for this figure): filtered for households where the 

average temperature for November is < 25 degrees Celsius 
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Figure 7 Household cohort, by location (Note: exact locations 

masked for this figure): filtered for households where the 

average temperature for November is > 29 degrees Celsius
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Table 3 Average characteristics of households in different cohorts 
Variable                                                   Cluster -> 1 2 3 4 5 6 7 8 9 10 11 

Mean Food consumption score       

30.03  

      

32.50  33.04  

          

35.46  

          

36.58  

          

39.33  

          

38.58  

          

38.88  

          

40.34  

          

41.32  

          

45.54  

predicted food consumption score       

30.77  

          

32.82  

          

33.40  

          

35.30  

          

36.32  

          

38.83  

          

39.00  

          

38.98  

          

39.89  

          

42.73  

          

44.80  

proportion of households food insecure              

0.71  

            

0.66  

            

0.63  

            

0.57  

            

0.55  

            

0.49  

            

0.48  

            

0.47  

            

0.41  

            

0.43  

            

0.34  

predicted proportion of households food insecure              

0.85  

            

0.72  

            

0.69  

            

0.51  

            

0.45  

            

0.26  

            

0.29  

            

0.30  

            

0.24  

            

0.14  

            

0.07  

Proportion of households where household head has 

above high school education 

            

0.00  

            

0.01  

            

0.00  

            

0.00  

            

0.00  

            

0.03  

            

0.01  

            

0.01  

            

0.01  

            

0.01  

            

0.02  

Proportion of households where household head is a 

farmer 

            

0.81  

            

0.69  

            

0.89  

            

0.81  

            

0.76  

            

0.54  

            

0.74  

            

0.78  

            

0.80  

            

0.82  

            

0.63  

Proportion of households where household head is 

absent for 3+ months 

            

0.07  

            

0.06  

            

0.02  

            

0.08  

            

0.04  

            

0.09  

            

0.07  

            

0.03  

            

0.02  

            

0.03  

            

0.04  

Number of adults             

2.08  

            

2.96  

            

2.20  

            

2.72  

            

2.32  

            

2.82  

            

2.40  

            

2.51  

            

2.42  

            

2.51  

            

2.85  

Dependency ratio             

1.42  

            

1.30  

            

1.36  

            

1.46  

            

1.27  

            

1.19  

            

1.35  

            

1.32  

            

1.40  

            

1.43  

            

1.26  

Migrants              

0.18  

            

0.24  

            

0.05  

            

0.31  

            

0.13  

            

0.24  

            

0.25  

            

0.10  

            

0.05  

            

0.09  

            

0.18  

land (ha)             

1.79  

            

2.88  

            

2.30  

            

2.76  

            

1.83  

            

2.03  

            

1.91  

            

2.02  

            

2.25  

            

2.01  

            

2.41  

crops (ha)             

1.63  

            

2.51  

            

1.88  

            

2.49  

            

1.68  

            

1.51  

            

1.67  

            

1.82  

            

2.09  

            

1.97  

            

1.91  

fallow (ha)             

0.13  

            

0.30  

            

0.13  

            

0.23  

            

0.11  

            

0.44  

            

0.17  

            

0.15  

            

0.14  

            

0.05  

            

0.22  

pasture (ha)             

0.02  

            

0.96  

            

0.07  

            

0.25  

            

0.27  

            

1.77  

            

0.15  

            

0.01  

            

0.02  

            

0.01  

            

0.07  

 cattle              

0.03  

            

4.08  

            

0.60  

            

3.93  

            

0.99  

            

3.16  

            

0.58  

            

0.47  

            

0.65  

            

5.44  

            

1.04  

 fire              

0.15  

            

0.10  

            

0.08  

            

0.10  

            

0.10  

            

0.11  

            

0.09  

            

0.10  

            

0.11  

            

0.04  

            

0.10  

 drought              

0.45  

            

0.37  

            

0.18  

            

0.47  

            

0.45  

            

0.48  

            

0.58  

            

0.21  

            

0.23  

            

0.49  

            

0.42  

 floods              

0.33  

            

0.33  

            

0.16  

            

0.22  

            

0.10  

            

0.23  

            

0.06  

            

0.21  

            

0.10  

            

0.18  

            

0.10  



Climate change and food insecurity in rural Mozambique  21 

 

   

 

Figure 8 Probability of food insecurity 

 
Figure 9 Probability of food insecurity by group 

 
NB: using <36 as threshold 
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4.3 Predicting food insecurity under different climate change scenarios 

 

Predicting future food insecurity based on climate scenarios is a relatively straightforward 

exercise: it requires substituting our climatic variables in equation 5 with the respective values 

under different scenarios (see the discussion in section 2.1.2.2 on SSP 1-2.6, SSP 2-4.5 and SSP 

5-8.5) and using the decision tree (figure 4) to determine their (potentially, new) group. We use 

our random forest model to predict the changes in the FCS under different climate scenarios, and 

under two possibility set of livelihood strategies: first, when the set of livelihood strategies adopted 

by households in the warmest locations (cluster 10, in Table 3) is not present (and, consequently, 

the negative relation between temperature at the start of the main agricultural season and diet 

quality is monotonic), which we label as “adaptation: restricted” in the table below; and when 

those activities are feasible (and the relation between temperature and diet quality is nonlinear, as 

presented in Figure 4), which we label below as “adaptation: unrestricted”.  

 

Table 4: Simulating the effect of global warming on food security, under different adaptation 

possibilities 

 

 Adaptation: 

restricted 

  Adaptation: 

unrestricted 

  

scenario 2050 2070 2090 2050 2070 2090 

SSP 1-2.6 34.52 

(4.47) 

38.24  

(2.58) 

36.57 

(3.73) 
35.64 

(4.91) 
41.73 

(1.75) 
41.36 

(2.47) 

SSP 2-4.5 37.97 

(2.70) 

37.16 

(3.63) 

38.96 

(1.74) 
41.29 

(2.60) 
41.87 

(1.66) 
40.83 

(1.87) 

SSP 5-8.5 34.52 

(4.18) 

34.93 

(3.86) 

36.29 

(3.81) 
41.81 

(1.71) 

42.67 

(0.98) 
42.67 

(0.98) 

 

The conclusions from this analysis are relatively straightforward. Firstly, if the set of livelihood 

activities currently practiced by households in warmer locations (>29C, cluster 10 in Table 3) is 

not available, the dismal levels of household food security in rural Mozambique observed in the 

IAI2012 are expected to remain unchanged. However, their variability is expected to be smaller. 

Secondly, if adaptation is unrestricted, changes associated with global warming would lead to 

improvements in diet quality and associated reduction in food insecurity. 

This result is perhaps unexpected and the analysis of the surrogate model enables us to understand 

what is driving these changes in FCS (and the changes in vulnerability profiles): for the most part, 

these changes reflect the fact that, on the basis of the data of IAI2012, higher temperatures (ie, 
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>29C in the first two months of the main production season) predict higher average FCS in cluster 

10 (in table 3). Implicit in this “movement” is the assumption that adaptation costs in terms of 

switching between groups are not prohibitive. As argued above, the analysis of table 3 suggests 

that this assumption may be fairly plausible in some cases but likely too strong in others (eg, when 

it requires a switch to what is an apparent focus on intensive cattle production, as practiced by 

households in warmer areas).  

 

5. Conclusion 

 

This report provides a first attempt at quantifying the effect of global warming on vulnerability to 

food insecurity in rural Mozambique. It combines detailed household data with a wide array of 

environmental datasets to characterize the plausibly heterogeneous relation between household 

wellbeing and the environment, which is quantified using machine learning techniques (regression 

forests and associated surrogate models). Two main conclusions emerge: firstly, that vulnerability 

to food insecurity in rural Mozambique among smallholders is high (as expected) but 

heterogeneous. This heterogeneity seems to reflect position in the territory and, to a smaller extent, 

difference in production decisions. Secondly, the impacts of global warming on vulnerability to 

food insecurity will, ultimately, depend on whether adaptation is feasible given the set of 

constraints faced by rural households. The analysis of the relation between food security and local 

environment based on the IAI2012 suggests that there is some scope for adaptation to higher 

temperatures. 

These results, and in particular the perhaps unexpected prediction of reductions in vulnerability to 

food insecurity, require further analysis. Most immediately, and as already noticed, this conclusion 

assumes that adaptation costs to changes in rainfall and temperature patterns are minimal. This is 

obviously incorrect, but suggests an important role for policy in minimizing those costs, and where 

in the territory they may matter most.  

Proceeding with the policy implications, it is important to notice that we analyzed the impact of 

climate change on diet quality, as a summary measure of household wellbeing. However, this focus 

ignores the multiplicity of livelihood strategies (crops grown, animals raised, investment in other 

livelihood strategies such as temporary migration) that underly this outcome. A necessary next 

step in the definition of policies that facilitate adaptation to climate change is to dig deeper into 

those choices. The IAI provides enough detail for that future analysis. 
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Finally, it is important to notice that the strength of this result may reflects two important 

limitations of our analysis. The first is that we rely only on one wave of the IAI. Although large 

cross-sections (such as IAI2012) are typically seen as adequate to estimate vulnerability in past 

work that we follow, that same literature also makes the obvious point that variability in time can 

only strengthen the conclusions of this type of analysis. Extending the analysis to the IAI2020 is 

an obvious next step in this analysis. The second limitation, that again may reflect the fact that we 

only use one cross-section of household data, is that shocks (drought, floods, etc) do not show up 

as important determinants of heterogeneity in household wellbeing. To the extent that this result 

may reflect the environmental conditions in the period of household data collection (and the fact 

that the frequency of these shocks seems to fairly homogeneous across groups), it may also 

underestimate the impact of climate change (and associated increased frequency of these shocks) 

on our results.  
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