Public Investment, Public Finance, and Growth: the impact of distortionary taxation, recurrent costs, and incomplete appropriability

Christopher Adam and David Bevan University of Oxford and IGC-Tanzania

IGC Africa Growth Forum, Kampala December 12, 2013

#### Outline

- The new IMF Approach to Debt Sustainability
- 2 Distortionary Taxes, Recurrent Costs and Appropriability
- Model and application
- 4 Simulation Results
- **6** Conclusions and Extensions

# The Buffie et al (2012) model of public investment and growth

- IMF model designed to provide a better integration of public investment, debt and growth into standard DSA
- Standard two-sector small open economy model
  - Traded and a non-traded goods
  - Optimizing (saving) household and rationed household
- Non-optimizing government
  - Public infrastructure a pure public good, but...
  - Inefficient public investment (a dollar of investment produces less than a dollar of public capital)

### Model properties

- Real model: no monetary components
- No econometric content: not a forecasting model
- Designed to examine movements in the real exchange rate, crowding-in of private capital by public investment the fiscal adjustments required to maintain balance.
- Model limitations:
  - ▶ the tax instrument is a uniform consumption tax
  - operates as a lump-sum tax
  - little attention is paid to the recurrent cost implications of public investment
- Present paper extends the model to explore the difficulty of managing high recurrent costs when taxation is distortionary and returns to public investment may not be fully appropriable.

## Distortionary taxation and the marginal cost of funds

- Taxation is generally distortionary and exerts a deadweight loss
- Raising a dollar of government revenue imposes more than a dollar of cost of the private sector
  - Recent estimates for SSA LICs suggest typical values of 1.21 for the system as a whole
    - ★ 1.11 for consumption taxes
    - ★ 1.60 for factor taxes.
  - deadweight loss and MCF typically rises with the tax rate
- Example below assumes MCF = 1.25

#### Recurrent costs and appropriability

- Public investment imposes recurrent budgetary costs (in addition to the initial capital costs and/or the ongoing costs of debt servicing)
- Responsibility for capital and recurrent costs typically falls on different parts of government
- A nearly universal consequence has been inadequate O&M:
  - Reduction in the service flow
  - Avoidable acceleration in depreciation and expensive rehabilitation

#### Recurrent costs and appropriability

- Limited appropriability
  - government either cannot, or chooses not, to levy user charges at a level that captures all of the investment's return
- Incomplete appropriability imposes substantial net budgetary costs, even though its social rate of return is high
- Some limited empirical work on what levels of recurrent cost are typical of different types of investment
  - ► can be approximated as proportional to capital cost ( r x capital cost)

## r-coefficients for developing countries

| Fisheries            | 0.08        |
|----------------------|-------------|
| Agriculture          | 0.10        |
| Rural development    | 0.08 - 0.43 |
| Primary schools      | 0.06 - 0.70 |
| Secondary schools    | 0.08 - 0.72 |
| Rural health centres | 0.27- 0.71  |
| Urban health centres | 0.17        |
| District hospitals   | 0.11- 0.30  |
| Buildings            | 0.01        |
| Feeder roads         | 0.06 - 0.14 |
| Paved roads          | 0.03 - 0.07 |

Heller (1991) IMF Handbook of Public Expenditure, 1991

# Fiscal and welfare consequences of incomplete appropriability: an illustration

- If project is fuly appropriable, should be undertaken provided benefit cost ratio (BCR) is greater than one
  - ▶ where cost includes O&M, financing costs, and depreciation
- ullet Now suppose government recovers only a fraction f of gross return
  - Remainder accrues to private sector
  - Existing taxes recover au of this but MCF is 1+ heta

### Fiscal and welfare consequences

Absent fresh taxes, government budget deteriorates unless

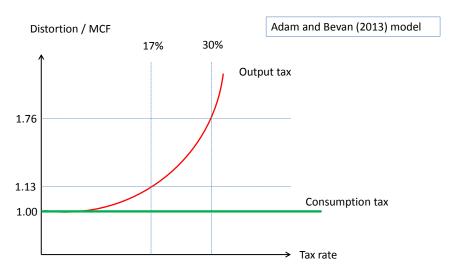
$$BCR \ge 1/[f + \tau(1-f)]$$

 If taxes can be raised, or expenditures reduced elsewhere, project yields social gain provided

$$BCR \ge (1+\theta)/(1+f\theta)$$

 Only if this is positive should project be undertaken, otherwise it inflicts a net burden on private sector.

#### Some numbers


- When does a project induce a budget deficit and when is this still worthwhile?
  - ▶ Baseline tax ratio  $\tau = 0.18$ ; and MCF = 1.25

| Appropriability $(f)$ | Minimum benefit-cost ratio: |                      |  |  |  |
|-----------------------|-----------------------------|----------------------|--|--|--|
|                       | to avoid deficit            | for welfare increase |  |  |  |
| 0.00                  | 5.56                        | 1.25                 |  |  |  |
| 0.10                  | 3.82                        | 1.22                 |  |  |  |
| 0.25                  | 2.60                        | 1.18                 |  |  |  |
| 0.50                  | 1.69                        | 1.11                 |  |  |  |
| 0.75                  | 1.26                        | 1.05                 |  |  |  |
| 0.90                  | 1.09                        | 1.02                 |  |  |  |

## Modifying Buffie et al (2012)

- Introduce a distortionary tax on output
  - (equivalent to an equal tax on profits and wages)
  - ► Calibrated to 17% of GDP
  - ► Raises (approximately) the same revenue a uniform tax of 20% on consumption
- Introduce recurrent cost obligations on government
  - r-coefficient = 0.05 (low end of Heller's estimates) spread equally between Operations and Maintenance
  - Government may seek to 'economize' on either or both
- Partial cost-recovery on recurrent O&M costs as well as depreciation and debt service

## Figure 1: model-based MCF schedule



#### Model calibration and experiments

- Core experiment: 50% increase in public investment (from 6% to 9% of GDP)
  - Subject to inefficiency in capital formation and possible inefficiency in O&M
- Fiscal reform experiments:
  - Improved efficiency of O&M
  - ► Tax reform: 'revenue neutral' replacement of output tax with consumption tax
- Other parameters similar to Buffie et al (2012)

## Distortionary Taxation and Deficient O&M

**Table 1**: Initial conditions relative to undistorted baseline.

|                        | Consumption Tax |      |      |      | Output Tax |      |      |      |  |
|------------------------|-----------------|------|------|------|------------|------|------|------|--|
| Initial tax rate       | 20%             |      |      |      | 17%        |      |      |      |  |
| Maintenance efficiency | 1.0             | 0.8  | 1.0  | 0.8  | 1.0        | 8.0  | 1.0  | 8.0  |  |
| Operations efficiency  | 1.0             | 1.0  | 0.8  | 0.8  | 1.0        | 1.0  | 0.8  | 8.0  |  |
| GDP                    | 100             | 92.9 | 89.2 | 82.9 | 80.9       | 75.1 | 72.1 | 67.0 |  |
| Capital in T-sector    | 100             | 92.0 | 87.8 | 80.8 | 63.8       | 58.7 | 56.0 | 51.5 |  |
| Capital in NT-sector   | 100             | 92.7 | 88.9 | 82.5 | 66.1       | 61.2 | 58.7 | 54.4 |  |
| Public capital         | 100             | 80.5 | 71.4 | 57.5 | 80.9       | 65.1 | 57.7 | 46.4 |  |
| Product real wage      | 1.0             | 0.93 | 0.89 | 0.83 | 0.67       | 0.62 | 0.60 | 0.55 |  |
| O&M costs (% GDP)      | 2.8%            | 2.2% | 2.5% | 1.9% | 2.9%       | 2.2% | 2.6% | 2.0% |  |

## Comparative effects of tax-financed public investment

**Table 2:** Changes relative to initial steady state.

| · · · · · · · · · · · · · · · · · · · | Consumption Tax |      |       |      | Output Tax |      |      |       |
|---------------------------------------|-----------------|------|-------|------|------------|------|------|-------|
| Initial tax rate                      | 20%             |      |       | 17%  |            |      |      |       |
| Maintenance efficiency                | 1.0             | 0.8  | 1.0   | 0.8  | 1.0        | 0.8  | 1.0  | 0.8   |
| Operations efficiency                 | 1.0             | 1.0  | 0.8   | 0.8  | 1.0        | 1.0  | 8.0  | 0.8   |
| GDP growth [%]                        | 14.6            | 14.6 | 14.6  | 14.6 | 12.5       | 12.9 | 12.7 | 13.0  |
| Crowding in [%]                       | 1.8             | 2.0  | 2.2   | 2.5  | 1.0        | 1.2  | 1.2  | 1.5   |
| Consumption growth [%]                | 10.3            | 10.6 | 10.4  | 10.7 | 8.5        | 9.1  | 8.7  | 9.3   |
| Real wage growth[%]                   | 15.0            | 15.1 | 14.6  | 14.5 | 10.4       | 11.3 | 10.0 | 10.9  |
| Real Exchange Rate[%, 1]              | -2.2            | -2.3 | - 2.3 | -2.3 | -1.6       | -1.8 | -1.7 | - 1.9 |
| O&M growth[%age points]               | 0.82            | 0.64 | 0.75  | 0.57 | 0.93       | 0.71 | 0.83 | 0.63  |
| Final cons. tax rate                  | 23.1            | 22.7 | 23.0  | 22.6 | -          | -    | =    | -     |
| Final output tax rate                 | -               | -    | -     | -    | 19.0       | 18.7 | 18.9 | 18.6  |

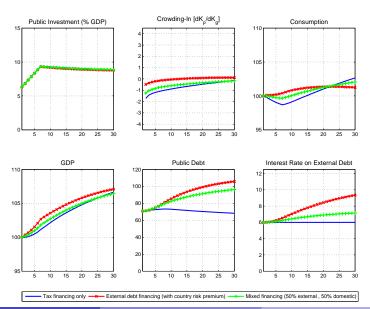
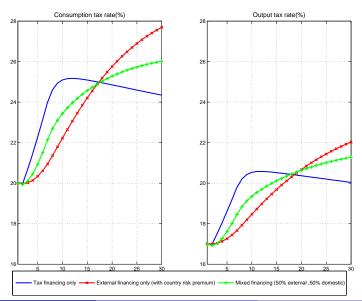

#### Fiscal reforms

TABLE 3: Fiscal reforms.


|                                                       | 0&M  | Reforms | Tax Reform |       |  |
|-------------------------------------------------------|------|---------|------------|-------|--|
| Final maintenance efficiency $(\gamma_{m{mo}}=0.8)$   | 1.0  | 1.0     | 0.8        | 1.0   |  |
| Final operations efficiency $(\gamma_{m{p}m{o}}=0.8)$ | 1.0  | 1.0     | 0.8        | 1.0   |  |
| Final cost recovery (% of O&M costs)                  | 0.00 | 0.50    | 0.00       | 0.50  |  |
| Real GDP growth[1]                                    | 14.6 | 16.1    | 29.2       | 46.1  |  |
| Real consumption[1]                                   | 14.4 | 15.7    | 23.9       | 40.1  |  |
| Investment crowding-in                                | 2.6  | 3.2     | _          | 17.2  |  |
| Real exchange rate                                    | -2.8 | - 3.3   | -10.3      | -12.3 |  |
| Effective public capital[1]                           | 44.2 | 44.3    | 0.00       | 44.2  |  |
| Final product wage (initial $= 0.55$ )                | 0.65 | 0.67    | 1.0        | 1.15  |  |
| Final O&M cost (% GDP, initial = $2.01\%$ )           | 2.5  | 2.5     | 1.5        | 1.9   |  |
| Final output tax rate (%)                             | 15.5 | 14.0    | _          | -     |  |
| Final consumption tax rate (%)                        | -    | =       | 16.5       | 14.2  |  |

Note: [1] Percentage change between steady states.

# Figure 2: Debt Financing (output tax)



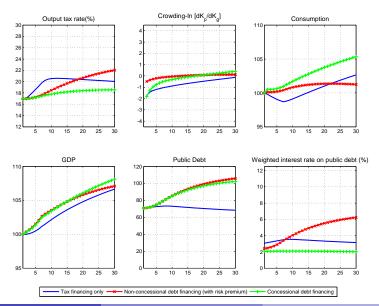
## Figure 3: Public debt and tax-smoothing



### Tax ceilings and public investment

- There may exist 'hard' constraints to tax adjustment, either administrative and political, that render otherwise feasible public investment strategies infeasible
- We explore how lack of fiscal flexibility interacts with alternative debt financing
- Blending concessional financing may help to navigate fiscal inflexibility.

## Tax ceilings and public investment


TABLE 6: Feasible public investment with tax ceiling.

Baseline settings as Table 1, columns (4) and (8); public investment increased by 3% of GDP

Domestic interest rate 10%; external interest rate  $6\% + \theta(dc/y)$ 

|                                                    | Coi   | nsumption | Tax   | Output Tax |       |       |
|----------------------------------------------------|-------|-----------|-------|------------|-------|-------|
| Domestic debt (share of investment surge)          | 0%    | 0%        | 50%   | 0%         | 0%    | 50%   |
| Non-concessional debt (share of investment surge)  | 0%    | 100%      | 50%   | 0%         | 100%  | 50%   |
| Tax ceiling                                        | 24.0% | 24.0%     | 24.0% | 20.4%      | 20.4% | 20.4% |
| Maximum unconstrained consumption tax rate         | 25.5% | 28.6%     | 26.1% |            |       |       |
| Maximum unconstrained output tax rate              |       |           |       | 20.8%      | 24.1% | 22.2% |
| Financeable share of investment (no cost recovery) | 81%   | 53%       | 47%   | 98%        | 60%   | 45%   |
| Financeable share (50% cost recovery on O&M)       | 87%   | 57%       | 54%   | 109%       | 66%   | 56%   |

# Figure 4: Concessional financing (output tax)



#### Conclusions and extensions

- We explore the impact on 'new' DSA analysis of two staples of public finance theory
  - Taxation inflicts deadweight losses
  - Public investment entails ongoing budgetary costs of O&M
- Implications are material and point to important areas for reform
- To take this further requires much better information on scale of r-coefficients and the costs of deficient O&M expenditures