Production vs Revenue Efficiency With Limited Tax Capacity
Theory and Evidence From Pakistan

Michael Best, Anne Brockmeyer, Henrik Kleven, Johannes Spinnewijn, Mazhar Waseem
London School of Economics

September 2013
Production Efficiency

- **Production Efficiency Theorem** (Diamond & Mirrlees 1971):

 Any second-best optimal tax system maintains production efficiency

- **Important policy implications:**
 - Permits taxes on consumption, wages and profits
 - Precludes taxes on inputs, trade and turnover

- The theorem has been influential in the policy advice given to developing countries
Production Efficiency vs Revenue Efficiency

- Production Efficiency Theorem assumes perfect tax enforcement → This is violated everywhere, but especially in developing countries

- Tax evasion introduces a trade-off between production-efficient vs. revenue-efficient tax instruments

- In the context of firm taxation in Pakistan, our contribution is:
 - Stylized model on the optimal production-revenue efficiency trade-off
 - Quasi-experimental evidence on the importance of evasion
 - Link model & evidence to quantify optimal policy
Quasi-Experimental Setting

- **Minimum Tax in Pakistan**: firms whose profits tax liability falls below a threshold are taxed on turnover
 - The policy is motivated by tax compliance

- **Non-standard kink** where both the tax rate and the tax base change
 - Kink changes real and evasion incentives differentially
 - Facilitates a novel method for estimating tax evasion
 - Empirical strategy is based on a bunching approach

- **Wide applicability** of our approach since such minimum tax schemes are used in many developing countries
Outline

Introduction

Conceptual Framework

Empirical Methodology

Empirical Results
 Bunching Evidence
 Estimating Evasion

Policy Implications
Stylized Framework

- Two decisions for the firm:
 - How much to produce? Produce output y at cost $c(y)$
 - How much to report? Declare cost \hat{c} at (expected) penalty $g(\hat{c} - c(y))$

- Two tax instruments for the government:
 - Tax rate and tax base
 - Tax liability:
 \[T = \tau \times [y - \mu\hat{c}] \]

- Two extreme alternatives:
 - $\mu = 1$: profit tax (narrow base, high rate)
 - $\mu = 0$: turnover tax (broad base, low rate)
Firm Behavior: Real vs Evasion Responses

- Effective tax rate \(\omega = \tau \frac{1-\mu}{1-\tau \mu} \) vs. Evasion incentives \(\rho = \tau \mu \)

\[
\begin{align*}
c'(y) &= 1 - \omega \\
g'(\hat{c} - c(y)) &= \rho
\end{align*}
\]

- Two extremes:
 - **Profit tax** (\(\mu = 1 \)): production efficient (\(\omega = 0 \)), but revenue-inefficient (\(\rho = \tau \pi \))
 - **Turnover tax** (\(\mu = 0 \)): production inefficient (\(\omega = \tau y \)), but revenue-efficient (\(\rho = 0 \))

- Optimal combination of tax rate and base depends on the importance of evasion responses vs. production responses
Outline

Introduction

Conceptual Framework

Empirical Methodology

Empirical Results
 Bunching Evidence
 Estimating Evasion

Policy Implications
(Stylized) Minimum Tax Scheme

- Combination of profit tax ($\mu = 1$) and turnover tax ($\mu = 0$):

 $$T = \max \{ \tau_\pi (y - c); \tau_y y \} \text{ with } \tau_\pi \gg \tau_y$$

- Firms switch between the two taxes depending on profit rate p,

 $$\tau_\pi (y - c) = \tau_y y \iff p \equiv \frac{y - c}{y} = \frac{\tau_y}{\tau_\pi}.$$

- Kink: tax base and marginal tax rate change discontinuously, but tax liability is continuous
Bunching at the Minimum Tax Kink

\[c'(y) = 1 \]
\[g'(\hat{c} - c) = \tau_\pi \]

Density

Profit Rate \((y - \hat{c})/y\)

smooth density under profit tax \(\tau_\pi\)
Bunching at the Minimum Tax Kink

\[c'(y) = 1 - \tau \]
\[g'(\bar{c} - c) = 0 \]

\[c'(y) = 1 \]
\[g'(\bar{c} - c) = \tau \]

\(\text{kink} \)

\(\text{smooth density under profit tax } \tau \)

\(\text{Density} \)

\(\text{Profit Rate } (y - \bar{c})/y \)

\(y \downarrow, (\bar{c} - c) \downarrow \)

\(\tau y / \tau \pi \)
Bunching at the Minimum Tax Kink

Density

Profit Rate \(\frac{y - c}{y} \)

\[c'(y) = 1 - \tau y \]
\[g'(c-c) = 0 \]

\[c'(y) = 1 \]
\[g'(c-c) = \tau \]

bunching at minimum tax kink

y \downarrow, (c-c) \downarrow

\(\tau \)

\(\tau_{\pi} \)

Profit Rate \(\frac{y - c}{y} \)
Minimum Tax Kink Ideal for Eliciting Evasion

- **Real output response:**
 - Firms choose real output based on $1 - \omega$
 - At the kink, effective tax rate ω changes from 0 to $\tau_y (\approx 0)$
 \Rightarrow almost no variation and therefore limited real response

- **Evasion response:**
 - Firms choose evasion based on ρ
 - At the kink, ρ changes from $\tau_\pi (\gg 0)$ to 0
 \Rightarrow large variation and therefore large evasion response

- **Bunching at the minimum tax kink identifies (mostly) evasion**
 - Robust to generalizations; output evasion, distortions due to profit tax, other distortions due to turnover tax

Introduction Conceptual Framework Empirical Methodology Empirical Results Policy Implications
Data

- Administrative data from FBR Pakistan
- All corporate tax returns from 2006-2010 (about 15,000 returns per year)
- New electronic data collection system in place for this time period
- In each year, about half of the firms are turnover taxpayers and half of them are profit taxpayers
Variation in Kink

Variation in profit tax rate τ_π across firms:
- High rate of 35%, low rate of 20%
 [depends on incorporation date, turnover, capital, #employees]

Variation in turnover tax rate τ_y over time:
- 2006-07: tax rate of 0.5%
- 2008: turnover tax scheme withdrawn
- 2009: tax rate of 0.5%
- 2010: tax rate of 1%
Outline

Introduction

Conceptual Framework

Empirical Methodology

Empirical Results
 Bunching Evidence
 Estimating Evasion

Policy Implications
Bunching Results

High rate firms

2006/07/09

High rate kink

0.5% turnover tax 35% profit tax

Reported Profit as Percentage of Turnover

Binsize 0.214.

Density

0.02 0.04 0.06 0.08

0 0.04 0.06 0.08

0 0.02 0.04 0.06

-5 0 1.43 2.5 5 10

High rate firms

Bunching Results

High rate firms

2006/07/09

High rate kink

0.5% turnover tax 35% profit tax

Reported Profit as Percentage of Turnover

Binsize 0.214.
Bunching Results

High vs low rate firms

Reported Profit as Percentage of Turnover

2006/07/09

Binsize 0.214.
Bunching Results

Variation across time: 2006/07/09 vs 2008

High rate firms

0.5% turnover tax
35% profit tax

2006/07/09 kink
No kink in 2008

Density

Reported Profit as Percentage of Turnover

Binsize 0.214.
Bunching Results

Variation across time: 2006/07/09 vs 2010

High rate firms

0.5% turnover tax in 2006/07/09
1% turnover tax in 2010
35% profit tax

Density

Binsize 0.204.

Reported Profit as Percentage of Turnover

2006/07/09 kink
2010 kink

Variation across time: 2006/07/09 vs 2010

Heterogeneity
Outline

Introduction

Conceptual Framework

Empirical Methodology

Empirical Results
 - Bunching Evidence
 - Estimating Evasion

Policy Implications
Estimating Evasion

High rate firms – 2006/07/09

Bunching = 4.44 (.1)

Reported Profit as Percentage of Turnover

Low rate firms High rate firms Counterfactual

Polynomial degree 5. Binsize .214

Estimation Details
Estimating Evasion

Bunching = 4.44 (.1)
Without evasion: Output elasticity [e] = 133.3 (4)

High rate firms − 2006/07/09

Bunching = 4.44 (.1)
Without evasion: Output elasticity [e] = 133.3 (4)

Reported Profit as Percentage of Turnover

Polynomial degree 5. Binsize .214

Low rate firms High rate firms Counterfactual
Estimating Evasion

High rate firms – 2006/07/09

Bunching = 4.44 (.1)
Without evasion: Output elasticity [e] = 133.3 (4)
With evasion: Evasion rate change = 66.7% (2.0) [e=0]
 = 66.2% (2.0) [e=1]
 = 64.2% (2.0) [e=5]

Reported Profit as Percentage of Turnover

Polynomial degree 5. Binsize .214

Low rate firms High rate firms Counterfactual
Outline

Introduction

Conceptual Framework

Empirical Methodology

Empirical Results
 Bunching Evidence
 Estimating Evasion

Policy Implications
Policy Implications

- Large loss of revenues under profit tax due to evasion by incorporated firms
 - our estimates suggest that two thirds of profit tax revenues are foregone
 - returns to better tax enforcement seem high

- Clear trade-off between raising the rate or raising the base
 - our estimates are sufficient to characterize this trade-off
 - due to the large evasion response, a profit tax base is suboptimal when taxed at 35 percent
 - further increase in the tax base is desirable when decreasing the tax rate

- Caveat: Welfare analysis is partial
Trade-off: Tax Rate vs. Tax Base

\[\begin{align*}
 t & = 0.005 \\
 p & = 0.35
\end{align*} \]
Conclusion

- Robustness of tax policy results in context of developing countries is underexplored
- Use quasi-experimental variation & admin data to analyze behavioral responses to minimum tax
- Large evasion responses we estimate for Pakistan justify deviations from a production-efficient profit tax
Empirical Methodology

- Estimate counterfactual density following Chetty et al (2011):

\[d_j = \sum_{l=0}^{q} \beta_l (z_j)^l + \sum_{k=z_L}^{z_U} \gamma_k \cdot 1[z_j = k] + v_j. \]

- Estimate excess mass:

\[b = \frac{\sum_{k=z_L}^{z_U} \hat{\gamma}_k}{\sum_{k=z_L}^{z_U} \hat{d}_k / N_k} \]

- Excess mass indicates the profit rate change \(\Delta p \) for marginal buncher.
Heterogeneity in evasion rates

Theory predicts more evasion among firms that are

- small in number of employees (Kleven et al, 2009):
 - Collusive evasion is more sustainable in a small group
 - Proxy for firm size: salary payments, turnover

- less dependent on financial intermediation (Gordon & Li, 2009)
 - Access to formal credit creates a paper trail
 - Proxy for credit needs: interest payments (scaled by turnover)

- selling to final consumers (e.g, Pomeranz, 2013)
 - Paper trail is lacking for transactions with final consumers
 - Compare “retailers” and “non-retailers”
Heterogeneity – by salary over turnover

High rate firms, 2006/07/09

Binsize 0.214.

Density

Reported Profit as Percentage of Turnover

Below median Above median

Binsize 0.214.

Below median Above median
Heterogeneity

- By turnover

High rate firms, 2006/07/09

Reported Profit as Percentage of Turnover

Binsize 0.214.
Heterogeneity

Heterogeneity – by interest payments over turnover

High rate firms, 2006/07/09

Binsize 0.214.

Reported Profit as Percentage of Turnover

Below median Above median

Binsize 0.214.
Heterogeneity

Heterogeneity – by sector

High rate firms, 2006/07/09

Reported Profit as Percentage of Turnover

Retailers Non-retailers

Binsize 0.214.

Back
Robustness of Identification

- **Distortionary profit tax**
 - if ω is positive under profit tax, minimum tax may increase real incentives
 - \Rightarrow firms under minimum tax *move away* from the threshold

- **Distortionary output tax**
 - low τ_y introduces small distortion for individual firm, not necessarily for the economy as a whole (e.g., cascading)
 - \Rightarrow general equilibrium effects *do not affect bunching*

- **Output evasion**
 - if firms can underreport output, lower rate under minimum tax decreases output evasion
 - \Rightarrow bunching identifies *differential* evasion