In brief

- The importance of urban planning in Pakistan is set to increase over the coming decades as the urban population is set to equal the rural population by 2030. To prepare for this, there needs to be effective urban planning tools to ensure universal service delivery, to control the spread of slums, the minimization of pollution and the control of crime.

- Key bottlenecks to effective urban planning:
 - There exists no integrated picture of socio-economic datasets at the micro-level for urban areas. The various datasets cannot be cross-linked as a common spatial identifier does not exist across and between these.
 - There is great heterogeneity across spatial units being used by different urban government departments. The boundaries of department specific spatial units are far from stable and prone to constant revision.

- The authors recommend that the mohalla (neighbourhood) serve as a common spatial identifier as they are: small in size, can be used across government departments, are easily referred to by citizens and hierarchical in nature. If all datasets use the mohalla as a common spatial identifier, this will allow for an integrated view of data at the micro-level across all socio-economic datasets, and thus, improved policy making.

- The following five principles should guide the identification of neighbourhood divisions:
 - Neighbourhoods will respect Union Council boundaries.
 - Neighbourhoods will be categorized according to land use/land cover types.
 - Neighbourhoods will align with major features on the ground.
 - Neighbourhoods will be small and of roughly equal size.
 - Neighbourhoods will account for citizens’ perceptions of space.
The Importance of Cities & Urban Policy in Pakistan

Approximately 40% of Pakistan’s population resides in urban areas around the country, and the urban population contributes an estimated 75% of the country’s GDP. The importance of cities to the socio-economic growth of the country is only set to rise in the foreseeable future as increasing numbers of Pakistan’s youth migrate from rural areas to cities in search of employment opportunities. Pakistan’s urban population is set to equal its rural population in the year 2030. This calls for effective urban planning tools to ensure universal delivery of basic municipal services, control of the spread of slums, the minimization of pollution and the control of crime and political violence.

Understanding the Bottlenecks to Effective Urban Planning in Pakistan

Missing: An Integrated View of Urban Datasets

Efficient urban policy making depends on access to an integrated picture of socio-economic datasets at the micro-level for urban areas. For instance, a health department official deciding where to locate the next health centre should have simultaneous access to information pertaining to the locations of existing health centers, population figures, access to electricity and access to water and sanitation amongst other socio-economic variables. It is precisely this, however, which is missing. Various socio-economic datasets for urban areas cannot be cross-linked as a common spatial identifier does not exist across and between these. Consequently, there is very little coordination between and data sharing across different urban government departments. This results in poorly targeted and short-sighted policies in the urban centers of the country.

Missing: A Common Spatial Identifier

Effective urban policy making and implementation in Pakistan is impeded by the problem of integrating data containing incompatible spatial references. There is great heterogeneity across spatial units being used by different urban government departments for data collection and reporting in Pakistan. Each individual agency/department has imagined and generated its own divisions of the city as suits its own individual needs. For instance, Lahore Electric Supply Corporation (LESCO) has divided the city of Lahore into 4 circles and a further 163 sub-divisions in order to facilitate its operations. The Excise and Taxation Department has divided the city into two zones and 160 tax circles for tax collection purposes. The Population Census Organization (PCO) has divided Lahore into approximately 5000 census blocks to aid in the collection of census data. Each of these departments has, therefore, indexed its data by a different spatial unit (see Table 1 below).

The problem is aggravated by the fact that the boundaries of these department specific spatial units are far from stable and prone to constant revision. Moreover, there is no common denominator across these: LESCO’s sub-divisions, the Excise and Taxation’s tax circles and the PCO’s census blocks do not arise from, and are not reducible to, the same building blocks. This is commonly known as the ‘Spatial...
Hierarchy Problem’ where the administrative boundaries of each department do not align with one another and therefore do not allow for cross analysis. This limits the scope for data sharing between departments and increases the likelihood of duplication of efforts in data collection, wastage of resources and poorly targeted policies.

Table 1: Diversity of Type and Size of Spatial Units in Use by Urban Government Departments: Lahore

<table>
<thead>
<tr>
<th>Type of Boundary</th>
<th>Department</th>
<th>Spatial Unit</th>
<th>No. of Units</th>
<th>Average Size (pop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative</td>
<td>City District Government Lahore (CDGL)</td>
<td>Town</td>
<td>10</td>
<td>1 million</td>
</tr>
<tr>
<td>Administrative</td>
<td>Police</td>
<td>Police Station</td>
<td>74</td>
<td>135,000</td>
</tr>
<tr>
<td>Political</td>
<td>Punjab Local Government Secretary</td>
<td>Union Council</td>
<td>150</td>
<td>66,000</td>
</tr>
<tr>
<td>Electoral</td>
<td>Election Commission Pakistan</td>
<td>National Assembly Constituencies</td>
<td>13</td>
<td>700,000</td>
</tr>
<tr>
<td>Electoral</td>
<td>Election Commission Pakistan</td>
<td>Provincial Assembly Constituencies</td>
<td>25</td>
<td>400,000</td>
</tr>
<tr>
<td>Statistical</td>
<td>Population Census Organization (PCO)</td>
<td>Census Charges</td>
<td>178</td>
<td>50,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Census Circles</td>
<td>869</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Census Blocks</td>
<td>4931</td>
<td>2,000</td>
</tr>
<tr>
<td>Service</td>
<td>Post Office</td>
<td>Postcodes</td>
<td>43</td>
<td>200,000</td>
</tr>
<tr>
<td>Service</td>
<td>Excise and Taxation</td>
<td>Zones</td>
<td>2</td>
<td>5 million</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tax Circles</td>
<td>160</td>
<td>60,000</td>
</tr>
<tr>
<td>Service</td>
<td>Lahore Electric Supply Company (LESCO)</td>
<td>Circles Sub-divisions</td>
<td>4</td>
<td>2.5 million</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>163</td>
<td>60,000</td>
</tr>
</tbody>
</table>

“There is no common denominator across these: LESCO’s sub-divisions, the Excise and Taxation’s tax circles and the PCO’s census blocks do not arise from, and are not reducible to, the same building blocks”

Recommendations

Establishing the Mohalla as the Common Spatial Identifier in Urban Pakistan

As established earlier, if policy makers and planners are to tackle urban management problems holistically, they must have access to an integrated view of socio-economic datasets which in turn is only possible where a common spatial identifier exists across datasets as collected, reported and utilized by various urban government departments. In the rural parts of Pakistan, it is the mauza or revenue village which serves as the unifying thread between datasets (population, education, health and other datasets are indexed by the revenue village). The mauza is a meaningful geographic level at which to aggregate and visualize data as it is

1. Small in size
2. Ubiquitously used across government departments
3. Easily referred to by citizens
4. Hierarchical in nature (primary building block of other administrative divisions).

A *mauza*-equivalent, possessing these four characteristics, is missing in urban Pakistan. It is imperative for policy makers to introduce a basic common zoning scheme for the urban areas of Pakistan that is used in a standardized manner by urban government departments.

Box 1: Why is it the neighbourhood a good spatial unit for the urban areas of Pakistan to be mapped at?

The neighbourhood is ideal because it is:

Small in Size

There is great potential for improved governance and service delivery as neighbourhoods are small in nature thereby supplying a more detailed picture of intra-district inequalities in socioeconomic development, facilitating the formulation of targeted socio-economic policies and efficient use of resources. Neighbourhood divisions will comprise of 5-10,000 people making it a good unit of analysis. The neighbourhood is very small in comparison with the district, town or union council (see Table 1). For instance, while there are only 10 towns in the city of Lahore and 150 Union Councils, the number of neighbourhoods will stand at more than 1000.

Easily Referred to by Citizens

Individuals in urban areas are typically well aware of which neighbourhood they belong to. There is a great familiarity with the mohalla; even more than which Union Council individuals are residing in. The citizen experiences governance i.e. service delivery at the level of the neighbourhood and so policymakers and planners will be better able to identify inadequacies in the delivery of municipal services and respond to these.

Spatial units currently in use by urban government departments are inadequate as they do not meet the criteria outlined above (see Table 1 above). It is the recommendation of this research team that the hitherto unused *mohalla* or *neighbourhood* serve as the common spatial identifier between and across urban government departments. If adopted, such a strategy will mean that all administrative and other divisions will either be reducible to the neighbourhood or aggregate to form a neighbourhood. All urban datasets will resultantly be indexed by neighbourhood making possible an integrated view of data at the micro-level and improved policy making.

This is precisely what occurred in Barcelona, Spain where the city administration was reorganized around the neighbourhood in 2008. The city was divided into 73 neighbourhoods to improve municipal service delivery by providing a more detailed picture of the data at this meaningful geographical level. Boundaries of other units have subsequently taken neighbourhood boundaries into account; For instance, Barcelona’s districts are reducible to the neighbourhood, while census tracts aggregate to form a neighbourhood. The neighbourhood, therefore, acts as a common spatial identifier across datasets and at present a variety of data is aggregated and represented at the neighbourhood level to aid city managers in
decision making.

This IGC funded country project titled “Integrating Urban Datasets: The path to effective socio-economic planning in urban Pakistan” has culminated in the development and testing of a comprehensive methodology specific to dividing and mapping urban Pakistan at the level of the neighbourhood. This strategy has been piloted in the second largest city of the country: Lahore.

Implementation

A time efficient and cost effective methodology has been developed for identifying and/or creating neighbourhood divisions in the urban areas of Pakistan. This process (see Text box 2) is guided by the following five principles

Neighbourhoods will respect Union Council boundaries
UC boundaries are currently used widely across government departments. It is an important administrative boundary set, therefore, that neighbourhoods will not cut across.

Neighbourhoods will be categorized according to Land Use/ Land Cover types
Neighbourhood units will be categorized according to residential, industrial and commercial use. For example, where possible a neighbourhood unit will not comprise of both residential and industrial areas.

Neighbourhoods will align with major features on the ground
Neighbourhoods will not cut across natural barriers such as a streams/ rivers or man-made barriers such as a canals/ major roads and railway lines.

Neighbourhoods will be small and of roughly equal size
The neighbourhood units will be small and of roughly equal size. Improved urban policy making and better urban management will only be possible where policy makers are able to visualize data at the micro-level. The UC is inadequate precisely because it is too large (with an average population of 60,000). In comparing the socio-economic development of one UC with another, therefore, it is likely that resources will be misdirected as intra-inequalities within a UC will be masked to a great extent. Our intuition is that the city be divided into neighbourhoods of approximately 10,000 persons each.

Neighbourhoods will account for citizens’ perceptions of space
The neighbourhood based zoning of the city will take into consideration the historical identity of different quarters of the city, though this can be difficult to capture. This stage requires fieldwork and consulting with locals in order to understand where one neighbourhood ends and another begins. In practice, this is a difficult criterion to meet as a certain level of consensus amongst residents as to the constitution of neighbourhood boundaries is required. While some overlap is likely, it is possible that perceptions of neighbourhood boundaries vary with gender, age and race amongst other factors. However, empirically, we have found that if most of
the divisions are based on prominent features, such as major roads or water bodies, then they rarely cut across neighborhoods. Hence, in Step 3, it is important to divide UCs along major features.

Box 2: Process of Mapping Urban Area at the Level of the Neighbourhood

Step 1: Overlay Union Council boundary on Google Maps (see Fig. 1)

Step 2: Categorize area falling within UC boundary according to land use/cover type: residential, industrial, commercial, green spaces (see Fig. 2)

Step 3: Mark major roads visible on Google Earth satellite imagery within UC boundary (see Fig. 3)

Step 4: Using available population figures for the UC in question arrive at appropriate number of neighbourhood units for UC area (e.g. if UC population is 50,000, divide area into 5-10 neighbourhood units of 5,000-10,000 persons each). Mark neighbourhood units on satellite imagery while honouring UC boundary, land use/cover type and major road markings (see Fig. 4)

Step 5: Verify that neighbourhood units are in line with citizens and residents perceptions of neighbourhood boundaries. Re-adjust neighbourhood boundaries where they undermine the historical identity of the area (see Fig. 5)

“The neighbourhood based zoning of the city will take into consideration the historical identity of different quarters of the city, though this can be difficult to capture.”
“Neighbourhoods will not cut across natural barriers such as a streams/rivers or man-made barriers such as a canals/ major roads and railway lines”
“UC boundaries are currently used widely across government departments. It is an important administrative boundary set, therefore, that neighbourhoods will not cut across.”

Step Forward

“The methodology outlined above has been tested in the second largest urban centre of Pakistan: Lahore. More than 130 Union Councils of Lahore were divided into more than 1100 sub-units using this methodology (see Figure below). The results have been presented to officials at the Urban Unit, Government of Punjab who have fully the merits of the mohalla or neighbourhood as the common spatial identifier between and across urban government departments and are eager to undertake the mapping of another important urban centre of the country: Sialkot in the
same manner. Once the necessary field visits are conducted and the methodology verified, findings will be disseminated to policy makers, urban planners and urban government department officials to push for the adoption of the neighbourhood as the universal building block of other administrative divisions of the urban areas of Pakistan. Urban mapping at the level of the neighbourhood and the integration of urban datasets using this spatial unit holds great promise for improving future urban policy making and implementation.

“Urban mapping at the level of the neighbourhood and the integration of urban datasets using this spatial unit holds great promise for improving future urban policy making and implementation”
References

About the authors

Sohaib Khan earned his PhD degree in Computer Science in 2002 from University of Central Florida, Orlando, specializing in computer vision. He was the recipient of two graduate merit fellowships from University of Central Florida and the Hillman Award for excellence in PhD research. Currently, he is holding the position of Associate Professor at Lahore University of Management Sciences, Pakistan. He is an Associate Editor of Machine Vision and Applications journal, and served on the committees of IEEE Workshop on Motion and Video Computing, British Machine Vision Conference and Workshop on Frontiers of Information Technology.

Amal Aslam is Project Manager at Pakistan Microfinance Network.

Maria Zubair obtained her PhD in Sociology from the University of Reading, which focussed on second-generation Pakistani Muslims’ varied constructions and negotiations of ethnicity, religion, identity, integration and belonging within the context of experiencing British higher education. Maria has worked in an ESRC-funded New Dynamics of Ageing study exploring meanings, perceptions and experiences of family, caring and ageing among South Asians growing older in Britain and in an NIHR-funded research project investigating the explanatory models for memory problems and dementia within South Asian communities in Britain.

Ali Rehan is the CEO of Groopic Inc. He was formally a Research Associate at the Lahore University of Management Sciences.
The International Growth Centre (IGC) aims to promote sustainable growth in developing countries by providing demand-led policy advice based on frontier research.

Find out more about our work on our website
www.theigc.org

For media or communications enquiries, please contact
mail@theigc.org

Follow us on Twitter
@the_igc

International Growth Centre,
London School of Economic and Political Science,
Houghton Street,
London WC2A 2AE