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Abstract

Cities are valuable to the extent they bring people (and jobs) together. To what

extent is this value a¤ected by the di¢ culty of commuting from various points in the

city to others? While many factors can a¤ect commuting length, this paper investigates

one determining factor of urban commuting e¢ ciency, previously highlighted by urban

planners but overlooked by economists: city shape. A satellite-derived dataset of night-

time lights is combined with historic maps to retrieve the geometric properties of urban

footprints in India over time. I propose an instrument for urban shape that combines

geography with a mechanical model for city expansion: in essence, cities are predicted

to expand in circles of increasing sizes, and actual city shape is predicted by obstacles

within each circle. With this instrument in hand, I investigate how city shape a¤ects

the location choices of consumers, in a spatial equilibrium framework à la Roback-Rosen.

Cities with more compact shapes are characterized by larger population, lower wages, and

higher housing rents, consistent with compact shape being a consumption amenity. The

implied welfare cost of deteriorating city shape is estimated to be sizeable. I also attempt

to shed light on policy responses to deteriorating shape. The adverse e¤ects of unfavorable

topography appear to be exacerbated by building height restrictions, and mitigated by

road infrastructure.
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1 Introduction

Urban transportation networks perform the key role of connecting people and jobs within cities.

The ease of intra-urban commutes a¤ects the range of jobs and services accessible in a city, and,

potentially, the extent to which the bene�ts from proximity can be realized. Urban mobility

is particularly challenging in the sprawling cities of the developing world, where infrastructure

is often inadequate, and most inhabitants cannot a¤ord individual means of transportation

(Bertaud, 2004; Cervero, 2013). Commuting length is determined, in equilibrium, by the inter-

action of a wide range of factors including residential patterns, infrastructure, and regulation.

This paper attempts to quantify the loss associated to lengthy urban commutes in the context

of India by focusing on one determining factor of urban commuting e¢ ciency, previously high-

lighted by urban planners but overlooked by economists: the spatial layout of cities. All else

being equal, more compact urban geometries are characterized by shorter potential trips and

more cost-e¤ective transport networks, which, in turn, have the potential to a¤ect productivity

and welfare (Bertaud, 2004; Cervero, 2001). In this study, I exploit plausibly exogenous varia-

tion in city shape driven by geographic barriers and assess the welfare loss due to non-compact

shape in a revealed preference Rosen-Roback framework.

India represents a promising setting to study the interactions of urban spatial structures and

mobility. Like most developing countries, India is experiencing fast urban growth1, accompanied

by a signi�cant physical expansion of urban footprints. This provides a unique opportunity to

observe the shapes of cities as they evolve and expand over time. Moreover, unlike most other

developing countries, India is characterized by an unusually large number of highly-populated

cities, lending itself to an econometric approach based on a city-year panel. Limited urban

mobility and lengthy commutes are often cited among the perceived harms of rapid urbanization

(e.g., Mitric and Chatterton, 2005; World Bank, 2013), and providing e¤ective urban public

transit systems has been consistently identi�ed as a key policy recommendation for the near

future (Mc Kinsey, 2013). Sprawl has been linked to a number of potentially distortive land

use regulations, most notably vertical limits in the form of Floor Area Ratios (Bertaud, 2002a;

Bertaud and Brueckner, 2005; Brueckner and Sridhar, 2012; Glaeser, 2011; Sridhar, 2010; World

1According to the 2011 Census, the urban population amounts to 377 million, increasing from 285
million in 2001 and 217 million in 1991, representing respectively between 25 and 31 percent of the
total. It is predicted that another 250 million will join the urban ranks by 2030 (Mc Kinsey, 2010).
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Bank, 2013).2

This paper primarily explores the implications of city shape for the location choices of

consumers across cities, and in particular, how much consumers value the potential commute

lengths implied by di¤erent urban shapes. It is plausible that urban migrants consider the

relative ease of commutes when evaluating the trade-o¤s associated to di¤erent locations. I in-

vestigate this in the framework of spatial equilibrium across cities à la Rosen-Roback, modelling

�compact city shape�, i.e., an urban geometry conducive to shorter potential within-city trips,

as an amenity. A complementary question relates to the interactions of city shape with policy,

viewed both as a co-determinant of urban geometry - as in the case of land use regulations -

and as a tool to counteract the e¤ects of poor geometry on mobility - for instance, through

infrastructural investment.

In terms of methodology, my empirical analysis is conducted mostly at the city-year level,

and is based on an instrumental variables approach. I assemble an original panel dataset,

covering more than 450 Indian cities, which includes detailed information on each city�s spatial

properties and micro-geography, as well as economic outcomes from the Census and other data

sources. In particular, urban footprints are retrieved by combining newly geo-referenced historic

maps (1950) with a satellite-derived dataset of night-time lights (1992-2010). I then compute

several geometric indicators for urban shape, used in urban planning as proxies for the patterns

of within-city trips. I propose an instrument for city shape that combines geography with a

mechanical model for city expansion. The underlying idea is that, as cities expand in space,

they face di¤erent geographic constraints - steep terrain or water bodies - leading to departures

from an ideal circular expansion path. The construction of my instrument requires two steps.

First, I use a mechanical model for city expansion to predict the area that a city should occupy

in a given year; in its simplest version, such a model postulates a common growth rate for all

cities. Second, I consider the largest contiguous patch of developable land within this predicted

radius ("potential footprint") and compute its shape properties. I then proceed to instrument

the shape properties of the actual city footprint in that given year with the shape properties of

the potential footprint. The resulting instrument varies at the city-year level, allowing me to

control for time-invariant city characteristics through city �xed e¤ects. The identi�cation of the

2Another example is given by the Urban Land Ceiling and Regulation Act, which has been claimed
to hinder intra-urban land consolidation and restrict the supply of land available for development
within cities (Sridhar, 2010).
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impact of shape thus relies on comparing geography-driven changes in urban shape, over time,

for each city. This instrument appears to have strong explanatory power, which is not limited

to extremely constrained topographies (e.g., coastal or mountainous cities) in my sample.

With this instrument in hand, I investigate how city shape a¤ects the spatial equilibrium

across cities. My �ndings are broadly consistent with compact city shape being a consumption

amenity. All else being equal, more compact cities grow faster. There is also evidence that

consumers are paying a premium for living in more compact cities, in terms of lower wages and,

possibly, higher housing rents. The negative e¤ects of deteriorating geometry on population

appear to be mitigated by road infrastructure. This suggests that urban transit is indeed the

main channel through which non-compact shape a¤ects consumers, and supports the interpre-

tation of city shape as a shifter of commuting costs. The loss associated with non-compact

shape appears to be substantial: a one-standard deviation deterioration in city shape, corre-

sponding to a 720 meter increase in the average within-city round-trip,3 entails a welfare loss

equivalent to a 5% decrease in income. This is considerably larger than the direct monetary and

opportunity cost associated to lengthier commutes. Less compact cities also appear to attract

fewer low-income immigrants, as captured by the share of slum dwellers.

A question then arises concerning the role of policy: if city shape indeed has welfare impli-

cations, what are possible policy responses to existing geographic constraints? I �nd that more

permissive building height restrictions, in the form of laxer Floor Area Ratios (FARs), result

in cities that are less spread out in space and more compact than their topographies would

predict. This is consistent with one of the most common arguments against restrictive FARs

in India, namely that they cause sprawl by preventing cities from growing vertically (Glaeser,

2011).

This study contributes to the existing literature in a number of directions. First, it sheds

light on the loss associated with lengthy urban commutes and on how this a¤ects the spatial

equilibrium across cities, in the context of a rapidly urbanizing developing country. Second,

it provides evidence on the economic implications of urban geometry, a feature of urban form

that has attracted little attention in economics, but which I �nd to have potentially important

e¤ects through commuting length. The third set of contributions is methodological. I employ

3As a reference, the average city in my sample has an area of 62.6 square km, and an average,
one-way within-city trip of 3.3 km.
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night-time satellite imagery as a new way to map urban expansion over time, following an

approach which has been used in urban remote sensing, but not in economics. Furthermore,

I develop a novel instrument for urban shape based on the interaction between mechanically

predicted city growth and topography.

The remainder of the paper is organized as follows. Section 2 brie�y reviews the existing

literature. Section 3 outlines the conceptual framework. Section 4 documents my data sources

and describes the geometric indicators I employ. Section 5 presents my empirical strategy and

describes in detail how my instrument is constructed. The empirical evidence is presented in

the following two Sections. Section 6 discusses my main results, which pertain to the e¤ects of

city shape on the location choices of consumers. Section 7 provides results on various responses

to city shape, including interactions between topography and policy. Section 8 concludes and

discusses indications for future work.

2 Previous Literature

As pointed out by Van Ommeren and Fosgerau (2009), we know relatively little about the actual

size of commuting costs. Studies in transport economics consider the time value of commuting

(e.g., Small, K., et al., 2005) using stated and revealed preference data on commuter choices

(e.g. whether to pay a toll for congestion-free express travel). A few studies have relied on

the trade-o¤ between house prices or wages and commuting distance, to quantify the marginal

willingness to pay for commuting, in the framework of spatial equilibrium within cities. Zax

(1991) exploits the trade-o¤ between wages and the length of the commute using hedonic

wage models. Tse and Chan (2003) consider housing prices as a function of distances to the

Central Business District (CBD). My approach di¤ers in a number of ways. I consider spatial

equilibrium across, rather than within, cities, thus capturing consumers�valuations of average

commute lengths at the city level. Moreover, I jointly consider wages and housing rents, and I

exploit exogenous variation in the length of potential trips, rather than actual trips.

The economics literature on urban spatial structures has mostly focused on the determinants

of city size and of the population density gradient, typically assuming that cities are circular or

radially symmetric (see Anas et al., 1998, for a review). The implications of city geometry for

transit are left mostly unexplored. The link between city shape and urban mobility has been

highlighted by the urban planning literature. Bertaud (2004) argues that contiguous, compact,
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and predominantly monocentric urban morphologies can improve the welfare of city dwellers

by providing better job access. Cervero (2001) emphasizes how compact, accessible cities are

potentially more productive, through a combination of labor market pooling, savings in trans-

porting inputs, and information spillovers, and shows a correlation between labor productivity

and accessibility in a cross-section of US cities. My work elaborates on these insights, providing

causal evidence of the economic implications of city compactness. Several studies have also

investigated the implications of a polycentric urban structure for the job-housing balance and

observed commutes (e.g., Giuliano and Small, 1993; Gordon et al., 1989). I address the link

between city shape and polycentricity in Section 7.3.

A large empirical literature investigates urban sprawl (see Glaeser and Kahn, 2004), typically

in the US context, suggesting longer commutes as one of the potential costs of sprawl (Bajari

and Kahn, 2004). Some studies identify sprawl with non-contiguous development (Burch�eld

et al., 2006), which is somewhat related to the notion of "compactness" that I investigate. In

most analyses of sprawl, however, the focus is on decentralization and density. On the other

hand, I focus on a di¤erent set of spatial properties of urban footprints: conditional on the

overall amount of land used, I look at geometric properties aimed at proxying the pattern of

within-city trips, and view density as an outcome variable.4

In terms of methodology, my work is related to that of Burch�eld et al. (2006), who also

employ remotely sensed data to track urban areas over time. More speci�cally, they analyze

changes in the extent of sprawl in US cities between 1992 and 1996. The data I employ comes

mostly from night-time, as opposed to day-time, imagery, and covers a longer time span (1992-

2010). Saiz (2011) also looks at geographic constraints to city expansion, by computing the

amount of developable land within 50 km radii from US city centers and relating it to the

elasticity of housing supply. I use the same notion of geographic constraints, but I employ

them in a novel way to construct a time-varying instrument for city shape.

Finally, this paper contributes to a growing literature on road infrastructure and urban

growth in developing countries (Baum-Snow and Turner, 2012; Baum-Snow et al., 2013; Morten

and Oliveira, 2014; Storeygard, 2014). In particular, Morten and Oliveira (2014) also estimate

a model of spatial equilibrium across cities and employ an instrumental variables approach.

4My work is more closely related to that of Bento et al. (2005), who incorporate a measure of
city shape in their investigation of the link between urban form and travel demand. However, their
analysis is based on a cross-section of US cities and does not address the endogeneity of city shape.
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Di¤erently from these studies, I do not look at the impact of roads connecting cities, but

instead focus on urban geometry as a proxy for the trips within cities.

3 Conceptual Framework

In this study, I interpret city shape primarily as a shifter of commuting length: all else being

equal, including city size, a city with a more compact geometry is characterized by shorter

within-city trips.5 It is plausible that consumers incorporate considerations on the relative ease

of commutes when evaluating the trade-o¤s associated with di¤erent locations. This might

be even more relevant in the context of India, in which most migrants to urban areas cannot

a¤ord individual means of transport. A natural starting point in thinking how city shape

a¤ects the location choices of consumers across cities is the framework of spatial equilibrium à

la Rosen-Roback (Rosen 1979; Roback, 1982). The basic underlying idea of this framework is

that consumers and �rms must be indi¤erent across cities, and wages and rents allocate people

and �rms to cities with di¤erent levels of amenities. Although Glaeser (2008) acknowledges

that amenities presumably include also commuting times, I am not aware of studies explicitly

looking at the link between commuting, urban geometry, and the spatial equilibrium across

cities.6 The notion of spatial equilibrium across cities presumes that consumers are choosing

across a number of di¤erent locations. The pattern of migration to urban areas observed in

India is compatible with this element of choice: according to the 2001 Census, about 38 percent

of rural to urban internal migrants move to a location outside their district of origin, supporting

the interpretation that they are e¤ectively choosing a city rather than simply moving to the

closest available urban location.

I draw upon the Roback model in its simplest form (Roback, 1982), following the exposition

of the model by Glaeser (2008). Households consume a composite good C and housing H. They

supply inelastically one unit of labor receiving a city-speci�c wage W . Their utility depends on

5In Section 4.2, I illustrate the geometric indicators I employ to measure compactness, which are
all based on the relative distances between points within a footprint. In Section 6.5, I o¤er evidence
substantiating the claim that city shape matters primarily through urban transit. In Section 8, I
discuss brie�y other possible second-order channels through whih city shape might a¤ect consumers.

6A large empirical literature has employed the Rosen-Roback framework to investigate the value
of amenities. This literature, however, has almost exclusively focused on the US, and has not always
adequately addressed the endogeneity of amenities (Gyourko, Kahn, and Tracy, 1999).
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net income, i.e., labor income minus housing costs, and on a city-speci�c bundle of consumption

amenities �. Their optimization problem reads:

max
C;H

U(C;H; �) s:t: C = W � phH (1)

where ph is the rental price of housing, and

U(C;H; �) = �C1��H�: (2)

In equilibrium, indirect utility V must be equalized across cities, otherwise workers would move:

V (W � phH;H; �) = � (3)

which, given the functional form assumptions, yields the condition:

log(W )� � log(ph) + log(�) = log(�): (4)

The intuition for this condition is that consumers, in equilibrium, pay for amenities through

lower wages (W ) or through higher housing prices (ph)7. The extent to which wages net of

housing costs rise with an amenity is a measure of the extent to which that amenity decreases

utility, relative to the marginal utility of income. Holding indirect utility � constant, di¤erenti-

ating this expression with respect to some exogenous variable S - which could be (instrumented)

city geometry - yields:
@ log(�)

@S
= �

@ log(ph)

@S
� @ log(W )

@S
: (5)

This equation provides a way to evaluate the amenity value of S: the overall impact of S on

utility can be found as the di¤erence between the impact of S on housing prices, multiplied by

the share of housing in consumption, and the impact of S on wages.

Firms in the production sector also choose optimally in which city to locate. Each city is

a competitive economy that produces a single internationally traded good Y; using labor N ,

7This simple model assumes perfect mobility across cities. With migration costs, agents other than
the marginal migrant will not be indi¤erent across locations and will not be fully compensated for
disamenities. This would lead to larger gaps in wages net of housing costs than if labor were perfectly
mobile.
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and a local production amenity A. Their technology also requires traded capital K and a �xed

supply of non-traded capital Z. Firms solve the following pro�t maximization problem:

max
N;K

�
Y (N;K;Z;A)�WN �K

	
(6)

where

Y (N;K;Z;A) = AN�K
Z
1���


: (7)

In equilibrium, �rms earn zero expected pro�ts. Under these functional form assumptions, the

maximization problem for �rms yields the following labor demand condition:

(1� 
) log(W ) = (1� � � 
)(log(Z)� log(N)) + log(A) + �1: (8)

To close the model, we need to specify the construction sector. Developers produce housing H,

using land l and "building height" h. In each location there is a �xed supply of land L, as a

result of land use regulations.8 Denoting with pl the price of land, their maximization problem

reads:

max
H
fphH � C(H)g (9)

where

H = l � h (10)

C(H) = c0h
�l � pll , � > 1: (11)

The construction sector operates optimally, with construction pro�ts equalized across cities. By

combining the housing supply equation, resulting from the developers�maximization problem,

with the housing demand equation, resulting from the consumers� problem, we obtain the

following housing market equilibrium condition:

(� � 1) log(H) = log(ph)� log(c0�)� (� � 1) log(N) + (� � 1) log(L) (12)

8In this framework, the amount of land to be developed is assumed to be given in the short run. It
can be argued that, in reality, this is an endogenous outcome of factors such as quality of regulation, city
growth, and geographic constraints. In my empirical analysis, when city area is explicitly controlled
for, it is instrumented using historic population, thus abstracting from these issues (see Section 5.2,
double-instrument speci�cation).
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Using the three optimality conditions for consumers (4), �rms (8), and (12), this model can

be solved for the three unknowns N , W , and ph, representing, respectively, population, wages,

and housing prices, as functions of the model parameters, and in particular, as functions of the

city-speci�c productivity parameter and consumption amenities. Denoting all constants with

K, this yields the following:

log(N) =
(�(1� �) + �) log(A) + (1� 
)

�
� log(�) + �(� � 1) log(L)

�
�(1� � � 
) + ��(� � 1) +KN (13)

log(W ) =
(� � 1)� log(A)� (1� � � 
)

�
� log(�) + �(� � 1) log(L)

�
�(1� � � 
) + ��(� � 1) +KW (14)

log(ph) =
(� � 1)

�
log(A) + � log(�)� (1� � � 
) log(L)

�
�(1� � � 
) + ��(� � 1) +KP : (15)

These conditions translate into the following predictions:

d log(N)

d log(A)
> 0;

d log(N)

d log(�)
> 0;

d log(N)

d log(L)
> 0 (16)

d log(W )

d log(A)
> 0;

d log(W )

d log(�)
< 0;

d log(W )

d log(L)
< 0 (17)

d log(ph)

d log(A)
> 0;

d log(ph)

d log(�)
> 0;

d log(ph)

d log(L)
< 0: (18)

population, wages, and rents are all increasing functions of the city-speci�c productivity para-

meter. Population and rents are increasing in the amenity parameter as well, whereas wages

are decreasing in it. The intuition is that �rms and consumers have potentially con�icting

location preferences: �rms prefer cities with higher production amenities, whereas consumers

prefer cities with higher consumption amenities. Factor prices �W and ph �are striking the

balance between these con�icting preferences.

Consider now an indicator of urban geometry S, higher values of S denoting "worse" shapes,

in the sense of shapes conducive to longer commute trips. Assume non-compact shape is purely

a consumption disamenity, which decreases consumers�utility, all else being equal, but does

not directly a¤ect �rms�productivity:

@�

@S
< 0;

@A

@S
= 0: (19)
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In this case we should observe the following reduced-form relationships:

dN

dS
< 0;

dW

dS
> 0;

dph
dS

< 0 (20)

A city with poorer shape should have, ceteris paribus, a smaller population, higher wages, and

lower house rents. The intuition is that consumers prefer to live in cities with good shapes,

which drives rents up and bids wages down in these locations. Suppose, instead, that poor city

geometry is both a consumption and a production disamenity, i.e., it depresses both the utility

of consumers and the productivity of �rms:

@�

@S
< 0;

@A

@S
< 0: (21)

This would imply the following:

dN

dS
< 0;

dW

dS
? 0; dph

dS
< 0 (22)

The model�s predictions are similar, except that the e¤ect on wages will be ambiguous. The

reason for the ambiguous sign of dW
dS
is that now both �rms and consumers want to locate in

compact cities. With respect to the previous case, there now is an additional force that tends

to bid wages up in compact cities: competition among �rms for locating in low-S cities. The

net e¤ect on W depends on whether �rms or consumers value low S relatively more (on the

margin). If S is more a consumption than it is a production disamenity, then we should observe
dW
dS
> 0:

To strengthen the exposition of this point, assume now that:

log(A) = �A + �AS (23)

log(�) = �� + ��S: (24)

Plugging (23) and (24) into (13), (14), and (15) yields:

log(N) =
[(�(1� �) + �)�A + (1� 
)���] � S + (1� 
)�(� � 1) log(L)

�(1� � � 
) + ��(� � 1) +KN (25)
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log(W ) =
[(� � 1)��A � (1� � � 
)���] � S � (1� � � 
)�(� � 1) log(L)

�(1� � � 
) + ��(� � 1) +KW (26)

log(ph) =
[(� � 1)�A + (� � 1)���] � S � (1� � � 
)(� � 1) log(L)

�(1� � � 
) + ��(� � 1) +KP : (27)

For ease of exposition, de�ne:

BN =
(�(1� �) + �)�A + (1� 
)���
�(1� � � 
) + ��(� � 1) ; DN =

(1� 
)�(� � 1)
�(1� � � 
) + ��(� � 1) (28)

BW =
(� � 1)��A � (1� � � 
)���
�(1� � � 
) + ��(� � 1) ; DW =

�(1� � � 
)�(� � 1)
�(1� � � 
) + ��(� � 1) (29)

BP =
(� � 1)�A + (� � 1)���
�(1� � � 
) + ��(� � 1) ; DP =

�(1� � � 
)(� � 1)
�(1� � � 
) + ��(� � 1) : (30)

This allows us to rewrite (25); (26); (27) in a more parsimonious form:

log(N) = BNS +DN log(L) +KN (31)

log(W ) = BWS +DW log(L) +KW (32)

log(ph) = BPS +DP log(L) +KP : (33)

Note that (28); (29); (30) imply:

�A = (1� � � 
)BN + (1� 
)BW (34)

�� = �BP �BW : (35)

The welfare impact of a marginal increase in S can be quanti�ed using equation (5), which

states that in equilibrium a marginal change in log(�) needs to be compensated one-to-one by

a change in log(W ) :

@ log(�)

@S
= �� = �

@ log(ph)

@S
� @ log(W )

@S
= �BP �BW : (36)

Parameter �� captures, in log points, the loss from a marginal increase in S. Parameter �A cap-

tures the impact of a marginal increase in S on city-speci�c productivity. Denote with cBN ;dBW ,
and cBP the reduced-form estimates for the impact of S on, respectively, log(N); log(W ); and

log(ph). These estimates, in conjunction with plausible values for parameters �; 
; �, can be
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used to back out �A and ��:

c�A = (1� � � 
)cBN + (1� 
)dBW (37)b�� = �cBP �dBW : (38)

This approach captures the overall net e¤ect of S on the marginal city dweller without ex-

plicitly modelling the mechanism through which S enters the decisions of consumers. In Section

6.2, I provide empirical evidence suggesting that the urban transit channel is indeed involved,

and in the concluding Section, I discuss some alternative, second-order channels through which

city shape might a¤ect consumers.

This simple model does not explicitly address heterogeneity across consumers in tastes and

skills. However, we expect that people will sort themselves into locations based on their prefer-

ences. The estimated di¤erences in wages and rents across cities will thus be an underestimate

of true equalizing di¤erences for those with a strong taste for the amenity of interest, and an

overestimate for those with weak preferences. The empirical evidence presented in Section 6.2

indicates that there might indeed be sorting across cities with di¤erent geometries.

The model could be extended to allow for congestion or agglomeration in consumption (or

production) by adding a new term, a function of city sizeN , to the utility of consumers (or to the

production function of �rms). In particular, if there are congestion externalities in consumption,

the indirect utility of consumers will depend on city size as well. If shape is a consumption

amenity, it will a¤ect the utility of consumers both directly, through ��, and indirectly, through

its e¤ect on city size, captured by @ log(N)
@S

: If more compact cities have have larger populations,

they will also be more congested; this congestion e¤ect, in equilibrium, will tend to reduce the

positive impact of compact shape of utility. When I estimate the consumption amenity value

of compact shape using equation (38), I will be capturing the equilibrium e¤ect of shape, gross

of congestion. If compact shape is a consumption amenity and more compact cities are larger,

then b�� will be a lower bound for ��.
Similarly, in the presence of agglomeration externalities in production, production amenities

will a¤ect productivity both directly, through �A, and indirectly, through
@ log(N)
@S

. If compact

cities have larger populations, this will tend to make them more productive through agglomer-

ation; this e¤ect will amplify the direct productivity impact of compactness. In this case, my

estimate of the production amenity value of compact shape, obtained from equation (37), will
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be an upper bound for �A:9

Reduced-form estimates for BN ; BW ; BP are presented in Sections 6.1 and 6.2, whereas

Section 6.3 provides estimates for parameters �A; ��. The next two Sections present the data

sources and empirical strategy employed in the estimation.

4 Data Sources

I assemble an unbalanced panel of city-years, covering all Indian cities for which a footprint

could be retrieved based on the methodology explained below.

4.1 Urban Footprints

I retrieve the boundaries of urban footprints from two sources. The �rst is the U.S. Army India

and Pakistan Topographic Maps (U.S. Army Map Service, ca. 1950), a series of detailed maps

covering the entire Indian subcontinent at a 1:250,000 scale. These maps consist of individual

topographic sheets, such as that displayed in Figure 1A. I geo-referenced each of these sheets and

manually traced the reported perimeter of urban areas, which are clearly demarcated (Figure

1B).

The second source is derived from the DMSP/OLS Night-time Lights dataset. This dataset

is based on night-time imagery recorded by satellites from the U.S. Air Force Defense Meteo-

rological Satellite Program (DMSP) and reports the recorded intensity of Earth-based lights,

measured by a six-bit number (ranging from 0 to 63). This data is reported for every year

between 1992 and 2010, with a resolution of 30 arc-seconds (approximately 1 square km).

Night-time lights have been employed in economics typically for purposes other than urban

mapping (Henderson, V., et al., 2012). However, the use of the DMSP/OLS dataset for de-

lineating urban areas is quite common in urban remote sensing (Henderson, M., et al., 2003;

Small, C., et al., 2005; Small, C., et al., 2013). The basic methodology is the following: �rst,

I overlap the night-time lights imagery with a point shape�le with the coordinates of Indian

settlement points, taken from the Global Rural-Urban Mapping Project (GRUMP) Settlement

Points dataset (Balk et al., 2006; CIESIN et al., 2011). I then set a luminosity threshold (35 in

9An additional source of exogenous variation in city size would be needed in order to compute the
pure amenity value of compact shape, net of congestion / agglomeration.
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my baseline approach, as explained below) and consider spatially contiguous lighted areas sur-

rounding the city coordinates with luminosity above that threshold. This approach, illustrated

in Figure 2, can be replicated for every year covered by the DMSP/OLS dataset.

The choice of luminosity threshold results in a more or less restrictive de�nition of urban

areas, which will appear larger for lower thresholds.10 To choose luminosity thresholds ap-

propriate for India, I overlap the 2010 night-time lights imagery with available Google Earth

imagery. I �nd that a luminosity threshold of 35 generates the most plausible mapping for

those cities covered by both sources.11 In my full panel (including years 1950 and 1992-2010),

the average city footprint occupies an area of approximately 63 square km.12

Using night-time lights as opposed to alternative satellite-based products, in particular day-

time imagery, is motivated by a number of advantages. Unlike products such as aerial pho-

tographs or high-resolution imagery, night-time lights cover systematically the entire Indian

subcontinent, and not only a selected number of cities. Moreover, they are one of the few

sources that allow us to detect changes in urban areas over time, due to their yearly temporal

frequency. Finally, unlike multi-spectral satellite imagery such as Landsat- or MODIS- based

products, which in principle would be available for di¤erent points in time, night-time lights

do not require any sophisticated manual pre-processing.13 An extensive portion of the urban

remote sensing literature compares the accuracy of this approach in mapping urban areas with

that attainable with alternative satellite-based products, in particular day-time imagery (e.g.,

Henderson, M., et al., 2003; Small, C., et al., 2005). This cross-validation exercise has been

carried out also speci�cally in the context of India by Joshi et al. (2011) and Roychowdhury

et al. (2009). The conclusion of these studies is that none of these sources is error-free, and

10Determining where to place the boundary between urban and rural areas always entails some
degree of arbitrariness, and in the urban remote sensing literature there is no clear consensus on how
to set such threshold. It is nevertheless recommended to validate the chosen threshold by comparing the
DMSP/OLS-based urban mapping with alternative sources, such as high-resolution day-time imagery,
which in the case of India is available only for a small subset of city-years.
11For years covered by both sources (1990, 1995, 2000), my maps also appear consistent with those

from the GRUMP - Urban Extents Grid dataset, which combines night-time lights with administrative
and Census data to produce global urban maps (CIESIN et al., 2011; Balk et al., 2006).
12My results are robust to using alternative luminosity thresholds between 20 and 40. Results are

available upon request.
13Using multi-spectral imagery to map urban areas requires a manual classi�cation process, which

relies extensively on alternative sources, mostly aerial photographs, to cross-validate the spectral
recognition, and is subject to human bias.
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that there is no strong case for preferring day-time over night-time satellite imagery if aerial

photographs are not systematically available for the area to be mapped.

It is well known that urban maps based on night-time lights will tend to in�ate urban

boundaries, due to "blooming" e¤ects (Small, C., et al., 2005).14 This can only partially

be limited by setting high luminosity thresholds. In my panel, urban footprints as reported

for years 1992-2010 thus re�ect a broad de�nition of urban agglomeration, which typically

goes beyond the current administrative boundaries. This contrasts with urban boundaries

reported in the US Army maps, which seem to re�ect a more restrictive de�nition of urban

areas (although no speci�c documentation is available). Throughout my analysis, I include

year �xed e¤ects, which amongst other things control for these di¤erences in data sources, as

well as for di¤erent calibrations of the night-time lights satellites.

By combining the US Army maps (1950s) with yearly maps obtained from the night-time

lights dataset (1992-2010), I thus assemble an unbalanced15 panel of urban footprints. The

criteria for being included in the analysis is to appear as a contiguous lighted shape in the

night-time lights dataset. This appears to leave out only very small settlements. Throughout

my analysis, I instrument all the geometric properties of urban footprints, including both area

and shape. This IV approach addresses problems of non-classical measurement error, which

could a¤ect my data sources - for instance due to the well-known correlation between income

and luminosity.

4.2 Shape Metrics

The indicators of city shape that I employ, based on those in Angel et al. (2009a, 2009b),16 are

used in landscape ecology and urban studies to proxy for the length within-city trips and infer

14DMSP-OLS night-time imagery overestimates the actual extent of lit area on the ground, due to a
combination of coarse spatial resolution, overlap between pixels, and minor geolocation errors (Small
et al., 2005).
15The resulting panel dataset is unbalanced for two reasons: First, some settlements become large

enough to be detectable only later in the panel; Second, some settlements appear as individual cities
for some years in the panel, and then become part of larger urban agglomerations in later years. The
number of cities in the panel ranges from 352 to 457, depending on the year considered.
16I am thankful to Vit Paszto for help with the ArcGis shape metrics routines. I have renamed

some of the shape metrics for ease of exposition.
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travel costs. They are all based on the distribution of points around the polygon�s centroid17

or within the polygon, and are measured in kilometers. Summary statistics for the indicators

below are reported in Table 1.

(i) The remoteness index is the average distance between all interior points and the centroid.

It can be considered a proxy for the average length of commutes to the urban center.

(ii) The spin index is computed as the average of the squared distances between interior

points and centroid. This is similar to the remoteness index, but gives more weight to the

polygon�s extremities, corresponding to the periphery of the footprint. This index is more

capable of identifying footprints that have "tendril-like" projections, often perceived as an

indicator of sprawl.

(iii) The disconnection index captures the average distance between all pairs of interior

points. It can be considered a proxy for commutes within the city, without restricting one�s

attention to those to or from to the center.

(iv) The range index captures the maximum distance between two points on the shape

perimeter, representing the longest possible commute trip within the city.

All these measures are mechanically correlated with polygon area. In order to separate

the e¤ect of geometry per se from that of city size, it is possible to normalize each of these

indexes, computing a version that is invariant to the area of the polygon. I do so by computing

�rst the radius of the "Equivalent Area Circle" (EAC), namely a circle with an area equal to

that of the polygon. I then normalize the index of interest dividing it by the EAC radius,

obtaining what I de�ne normalized remoteness, normalized spin, etc. One way to interpret

these normalized metrics is as deviations of a polygon�s shape from that of a circle, the shape

that minimizes all the indexes above. An alternative approach is to explicitly control for the

area of the footprint. When I follow this approach, city area is separately instrumented for

(see Section 5.2). Conditional on footprint area, higher values of these indexes indicate longer

within-city trips.

Figure 3 provides a visual example of how these metrics map to the shape of urban footprints.

Among cities with a population over one million, I consider those with respectively the "best"

and the "worst" geometry based on the indicators described above, namely Bengaluru and

Kolkata (formerly known as Bangalore and Calcutta). The �gure reports the footprints of the

17The centroid of a polygon, or center of gravity, is the point that minimizes the sum of squared
Euclidean distances between itself and each vertex.
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two cities as of year 2005, where Bengaluru�s footprint has been rescaled so that they have the

same area. The �gure also reports the above shape metrics computed for these two footprints.

The di¤erence in the remoteness index between Kolkata and (rescaled) Bengaluru is 4.5 km; the

di¤erence in the disconnection index is 6.2 km. The interpretation is the following: If Kolkata

had the same compact shape that Bengaluru has, the average trip to the center would be shorter

by 4.5 km and the average trip within the city would be shorter by 6.2 km. The Indian Ministry

of Urban Development (2008) estimates the average commute speed in million-plus cities to be

of 12 km per hour in 2011, which is predicted to become 9 km by 2021. According to the 2011

estimated speed, the above di¤erences in trip length translate to a di¤erence in commute times

of respectively 22.5 minutes (average trip to the center) and 31 minutes (average within-city

trip). Although this is a very rough calculation, it is nevertheless revealing that city geometry

indeed has potentially sizeable impacts on commute times.

4.3 Geography

Following Saiz (2011), I consider as "undevelopable" terrain that is either occupied by a water

body, or characterized by a slope above 15%. I draw upon the highest resolution sources

available: the Advanced Spaceborne Thermal Emission and Re�ection Radiometer (ASTER)

Global Digital Elevation Model (NASA and METI, 2011), with a resolution of 30 meters, and

the Global MODIS Raster Water Mask (Carroll et al., 2009), with a resolution of 250 meters. I

combine these two raster datasets to classify pixels as "developable" or "undevelopable". Figure

4 illustrates this classi�cation for the Mumbai area.

4.4 Population and Other Census Data

City-level data for India is di¢ cult to obtain (Greenstone and Hanna, forthcoming). The only

systematic source that collects data explicitly at the city level is the Census of India, conducted

every 10 years. I employ population data from Census years 1871-2011. As explained in

Section 5.1, historic population (1871-1941) is used to construct one of the two versions of my

instrument, whereas population drawn from more recent waves (1951, 1991, 2001, and 2011) is

used as an outcome variable.18

18Historic population totals were taken from Mitra (1980). Census data for years 1991 to 2001
were taken from the Census of India electronic format releases. 2011 Census data were retrieved from
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Outcomes other than population are not consistently available for all Census years. I draw

data on urban road length in 1991 from the 1991 Town Directory. In recent Census waves

(1991, 2001, 2011) data on slum population and physical characteristics of houses are available

for a subset of cities.

It is worth pointing out that "footprints", as retrieved from the night-time lights dataset, do

not always have an immediate Census counterpart in terms of town or urban agglomeration, as

they sometimes stretch to include suburbs and towns treated as separate units by the Census.

A paradigmatic example is the Delhi conurbation, which as seen from the satellite expands

well beyond the administrative boundaries of the New Delhi National Capital Region. When

assigning population totals to an urban footprint, I sum the population of all Census settlements

that are located within the footprint, thus computing a "footprint" population total.19

4.5 Wages and Rents

For outcomes other than those available in the Census, I rely on the National Sample Survey

and the Annual Survey of Industries, which provide, at most, district identi�ers. I thus follow

the approach of Greenstone and Hanna (forthcoming): I match cities to districts and use district

urban averages as proxies for city-level averages. It should be noted that the matching is not

always perfect, for a number of reasons. First, it is not always possible to match districts as

reported in these sources to Census districts, and through these to cities, due to redistricting and

inconsistent numbering throughout this period. Second, there are a few cases of large cities that

cut across districts (e.g., Hyderabad). Finally, there are a number of districts which contain

more than one city from my sample. In these cases, I follow several matching approaches:

considering only the main city for that district, and dropping the district entirely. I show

results following both approaches. The matching process introduces considerable noise and

leads to results that are relatively less precise and less robust than those I obtain with city-level

outcomes.

Data on wages are taken from the Annual Survey of Industries (ASI), waves 1990, 1994, 1995,

1997, 1998, 2009, 2010.20 These are repeated cross-sections of plant-level data collected by the

http://www.censusindia.gov.in/DigitalLibrary/Archive_home.aspx.
19In order to assemble a consistent panel of city population totals over the years I also take into

account changes in the de�nitions of "urban agglomerations" and "outgrowths" across Census waves.
20These are all the waves I could access as of June 2014.

18



Ministry of Programme Planning and Implementation of the Government of India. The ASI

covers all registered manufacturing plants in India with more than �fty workers (one hundred

if without power) and a random one-third sample of registered plants with more than ten

workers (twenty if without power) but less than �fty (or one hundred) workers. As mentioned

by Fernandes and Sharma (2012) amongst others, the ASI data are extremely noisy in some

years, which introduces a further source of measurement error. The average individual yearly

wage in this panel amounts to 94 thousand Rs at current prices.

Unfortunately, there is no systematic source of data for property prices in India. I construct

a rough proxy for the rental price of housing drawing upon the National Sample Survey (House-

hold Consumer Expenditure schedule), which asks households about the amount spent on rent.

In the case of owned houses, an imputed �gure is provided. I focus on rounds 62 (2005-2006),

63 (2006-2007), and 64 (2007-2008), since they are the only ones for which the urban data is

representative at the district level and which report total dwelling �oor area as well. I use this

information to construct a measure of rent per square meter. The average yearly total rent paid

in this sample amounts to about 25 thousand Rs., whereas the average yearly rent per square

meter is 603 Rs., at current prices. These �gures are likely to be underestimating the market

rental rate, due to the presence of rent control provisions in most major cities of India (Dek,

2006). To cope with this problem, I also construct an alternative proxy for housing rents which

focuses on the upper half of the distribution of rents per meter, which is less likely to include

observations from rent-controlled housing.

4.6 Other Data

Data on state-level infrastructure is taken from the Ministry of Road Transport and Highways,

Govt. of India and from the Centre for Industrial and Economic Research (CIER)�s Industrial

Databooks.

Data on the current road network is constructed from the maps available on Openstreetmap,21

a collaborative mapping project that provides crowdsourced maps of the world. Openstreetmap

data has been favorably compared with proprietary data sources and is continuously updated.

As such, it re�ects the current state of the street network. I consider the most recent night-time

lights-based map of urban boundaries in my sample - corresponding to 2010 - and overlap it

21http://www.openstreetmap.org/about

19



with the street network map of India, provided by Openstreetmap. Information on the type of

road - whether trunk, residential, secondary etc. - is also provided. Given the collaborative

nature of Openstreetmap, there is a concern that the level of detail of such maps might be

higher in larger cities, or in neighborhoods with more economic activity. Upon visual inspec-

tion, it appears that smaller roads are reported only in relatively bigger cities. To avoid this

source of non-classical measurement error, I exclude small roads and focus on those denoted

as "trunk", "primary", or "secondary". I then compute the total road length by considering

street segments contained within the urban boundary. The average road density in my sample

as of year 2010, obtained by dividing total city road length by footprint area, is 2.4 km per

square km. Given the tendency of night-time lights to overestimate urban boundaries, this

�gure should be considered an underestimate of the actual road density.

Data on the maximum permitted Floor Area Ratios for a small cross-section of Indian cities

(55 cities in my sample) is taken from Sridhar (2010), who collected them from individual

urban local bodies as of the mid-2000s. FARs are expressed as ratios of the total �oor area of

a building over the area of the plot on which it sits. The average FAR in this sample is 2.3, a

very restrictive �gure compared to international standards. For a detailed discussion of FARs

in India, see Sridhar (2010) and Bertaud and Brueckner (2005).

Data on the spatial distribution of employment in year 2005 is derived from the urban Di-

rectories of Establishments, pertaining to the 5th Economic Census. The Economic Census is a

complete enumeration of all productive establishments, with the exception of those involved in

crop production, conducted by the Indian Ministry of Statistics and Programme Implementa-

tion. Town or district identi�ers are not provided to the general public. However, in year 2005,

establishments with more than 10 employees were required to provide an additional "address

slip", containing a complete address of the establishment, year of initial operation, and em-

ployment class. I geo-referenced all the addresses corresponding to cities in my sample through

Google Maps API, retrieving consistent coordinates for approximately 240 thousand establish-

ments in about 190 footprints.22 Although limited by their cross-sectional nature, these data

provide an opportunity to study the spatial distribution of employment within cities, and in

particular to investigate polycentricity.

I use these data to compute the number of employment subcenters in each city, following

22My results are robust to excluding �rms whose address can only be approximately located by
Google maps (available upon request).

20



the two-stage, non-parametric approach described in McMillen (2001). Of the various method-

ologies proposed in the literature, this appears to be the most suitable for my context, given

that it does not require a detailed knowledge of each study area, and it can be fully automated

and replicated for a large number of cities. This procedure identi�es employment subcenters as

locations that have signi�cantly larger employment density than nearby ones, and that have a

signi�cant impact on the overall employment density function in a city. Details can be found

in the Appendix.

5 Empirical Strategy

The objective of my empirical analysis is to estimate the e¤ects of city shape on a number

of city-year level outcomes, most notably population, wages, and rents. My data has the

structure of an unbalanced city-year panel. In every year, I observe the geometric properties

of the footprint of each city, namely footprint area and the di¤erent shape metrics described

above. The goal is to estimate the relationship between shape in a given city-year on a number

of city-year level outcomes, conditional on city and year �xed e¤ects. This strategy exploits

variation in urban shape, which is both cross-sectional and temporal. City and year �xed e¤ects

account for time-invariant city characteristics and for country-level trends in population and

other outcomes. The identi�cation of the impacts of shape thus relies on comparing changes in

urban shape, over time, for each city.23

5.1 Instrumental Variable Construction

A major concern in estimating the relationship between city shape and city-level outcomes is

the endogeneity of urban geometry. The observed spatial structure of a city at a given point

in time is the result of the interaction of local geographic conditions, city growth, and policy.24

Cities that experience faster population growth might be expanding in a more chaotic and

unplanned fashion, generating a "leapfrog" pattern of development, which translates into less

23As discussed below, some of the outcomes analyzed in Section 7 are available only for a cross-
section of cities, in which case the comparison is simply across cities.
24Regulation and infrastructural investment can a¤ect urban shape both directly, through master

plans, and indirectly (Bertaud, 2004). For instance, land use regulations can encourage land con-
solidation, resulting in a more compact, as opposed to fragmented, development pattern. Similarly,
investments in road infrastructure can encourage urban growth along transport corridors.
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compact shapes. At the same time, cities that exhibit faster growth rates might be the object

of more stringent regulations. For instance, restrictive Floor Area Ratios in India have been

motivated by a perceived need to reduce urban densities (Sridhar, 2010). In order to address

this endogeneity problem, I employ an IV approach, constructing an instrument for city shape

which varies at the city-year level.

My instrument is constructed combining geography with a mechanical model for city ex-

pansion in time. The underlying idea is that, as cities expand in space and over time, they hit

di¤erent geographic obstacles that constrain their shapes by preventing expansion in some of

the possible directions. I instrument the actual shape of the observed footprint at a given point

in time with the potential shape the city can have, given the geographic constraints it faces at

that stage of its predicted growth. More speci�cally, I consider the largest contiguous patch of

developable land, i.e., not occupied by a water body nor by steep terrain, within a given pre-

dicted radius around each city. I denote this contiguous patch of developable land as the city�s

"potential footprint". I compute the shape properties of the potential footprint and use this

as an instrument for the corresponding shape properties of the actual urban footprint. What

gives time variation to this instrument is the fact that the predicted radius is time-varying, and

expands over time based on a mechanical model for city expansion. In its simplest form, this

mechanical model postulates a common growth rate for all cities.

The procedure for constructing the instrument is illustrated in Figure 5 for the city of

Mumbai. Recall that I observe the footprint of a city c in year 195125 (from the U.S. Army

Maps) and then in every year t between 1992 and 2010 (from the night-time lights dataset). I

take as a starting point the minimum bounding circle of the 1951 city footprint (Figure 5a). To

construct the instrument for city shape in 1951, I consider the portion of land that lies within

this bounding circle and is developable, i.e., not occupied by water bodies nor steep terrain.

The largest contiguous patch of developable land within this radius is colored in green in Figure

5b and represents what I de�ne as the "potential footprint" of the city of Mumbai in 1951. In

subsequent years t 2 f1992; 1993:::; 2010g I consider concentrically larger radii brc;t around the
historic footprint, and construct corresponding potential footprints lying within these predicted

radii (Figures 5c and 5d).

25The US Army Maps are from the mid-50s, but no speci�c year of publication is provided. For
the purposes of constructing the city-year panel, I am attributing to the footprints observed in these
maps the year 1951, corresponding to the closest Census year.
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To complete the description of the instrument, I need to specify how brc;t is determined. The
projected radius brc;t is obtained by postulating a simple, mechanical model for city expansion
in space. I consider two versions of this model: a "common rate" version, and a "city-speci�c"

one.

Common rate: In this �rst version of the model, the rate of expansion of brc;t is the same
for all cities, and equivalent to the average expansion rate across all cities in the sample. More

formally, the steps involved are the following:

(i) Denoting the area of city c�s actual footprint in year t as areac;t, I pool together the

1951-2010 panel of cities and estimate the following regression:

log(areac;t) = �c + 
t + "c;t (39)

where �c and 
t denote city and year �xed e¤ects. From the regression above, I obtain \areac;t,

the predicted area of city c in year t.

(ii) I compute crc;t as the radius of a circle with area \areac;t:
crc;t =r\areac;t

�
: (40)

City-speci�c: In this alternative version of the model for city expansion, I make the rate of

expansion of brc;t vary across cities, depending on their historic (1871 - 1951) population growth
rates. In particular, brc;t answers the following question: if the city�s population continued to
grow as it did between 1871 and 1951 and population density remained constant at its 1951

level, what would be the area occupied by the city in year t? More formally, the steps involved

are the following:

(i) I project log-linearly the 1871-1951 population of city c (from the Census) in all subse-

quent years, obtaining the projected population [popc;t , for t 2 f1992; 1993:::; 2010g :
(ii) Denoting the actual - not projected - population of city c in year t as popc;t, I pool

together the 1951-2010 panel of cities and run the following regression:

log(areac;t) = � � log([popc;t) + � � log
�
popc;1950
areac;1950

�
+ 
t + "c;t (41)

from which I obtain an alternative version of \areac;t, and corresponding crc;t = q \areac;t
�
:
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The interpretation of the circle with radius crc;t from �gures 5c and 5d is thus the following:

this is the area the city would occupy if it continued to grow as in 1871-1951, if its density

remained the same as in 1951, and if the city could expand freely and symmetrically in all

directions, in a fashion that optimizes the length of within-city trips.

This instrument seeks to isolate the variation in urban geometry induced by geography,

excluding the variation which results from policy or other endogenous choices. Although re-

sorting to geography arguably helps to address issues of policy endogeneity, there is nevertheless

a concern that geography a¤ects location choices directly, for instance, through the inherent

amenity (or disamenity) value of water bodies, and not only through the constraints it posits

on urban form. These concerns are mitigated by two features of my instrument. First, it is not

purely cross-sectional but has time variation. This allows me to control, in the speci�cation

below, for time-invariant e¤ects of geography through city �xed e¤ects. Second, it captures

a very speci�c feature of geography: whether it allows for compact development or not. My

instrument is not based on the generic presence of topographic constraints, nor on the share

of constrained over developable terrain. Rather, it measures the geometry of available land. In

one of the robustness checks described below, I show that my results are unchanged when I

exclude mountain and coastal cities, which would be the two most obvious examples of cities

where geography might have a speci�c (dis)amenity value.

5.2 Estimating Equations

Consider a generic shape metric S - which could be any of the indexes discussed in Section 4.2.

Denote with Sc;t the shape metric computed for the actual footprint observed for city c in year

t, and with fSc;t the shape metric computed for the potential footprint of city c in year t, namely
the largest contiguous patch of developable land within the predicted radius crc;t:
Double-Instrument Speci�cation

Consider outcome variable Y 2 (N;W; pH) and let areac;t be the area of the urban footprint.
The empirical counterparts of equations (31)-(33), augmented with city and year �xed e¤ects,

take the following form:

log(Yc;t) = a � Sc;t + b � log(areac;t) + �c + �t + �c;t (42)
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This equation contains two endogenous regressors: Sc;t and log(areac;t). These are instrumented

using respectively fSc;t and log([popc;t) - the same projected historic population used in the city-
speci�c model for urban expansion, step i, described above.

This results in the following two �rst-stage equations:

Sc;t = � � fSc;t + � � log([popc;t) + !c + 't + �c;t (43)

and

log(areac;t) = � � fSc;t + � � log([popc;t) + �c + 
t + "c;t: (44)

The counterpart of log(areac;t) in the conceptual framework is log(L), where L is the amount

of land which regulators allow to be developed in each period. It is plausible that regulators set

this amount based on projections of past city growth, which rationalizes the use of projected

historic population as an instrument.

One advantage of this approach is that it allows me to analyze the e¤ects of shape and

area considered separately - recall that the non-normalized shape metrics are mechanically

correlated with footprint size. However, a drawback of this strategy is that it requires not

only an instrument for shape, but also one for area. Moreover, there is a concern that historic

population might be correlated with current outcomes, leading to possible violations of the

exclusion restrictions. This motivates me to employ, as my benchmark, an alternative, more

parsimonious speci�cation, that does not explicitly include city area in the regression, and

therefore does not require including projected historic population among the instruments.

Single-Instrument Speci�cation

When focusing on population as an outcome variable, a natural way to do this is to nor-

malize both the dependent and independent variables by city area, considering respectively

the normalized shape metric - see Section 4.2 - and population density. This results in the

following, more parsimonious single-instrument speci�cation: de�ne population density26 as

dc;t =
popc;t
areac;t

26Note that this does not coincide with population density as de�ned by the Census, which re�ects
adiministrative boundaries.
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and denote the normalized version of shape metric S with nS. The estimating equation becomes

dc;t = a � nSc;t + �c + �t + �c;t (45)

which contains endogenous regressor nSc;t. I instrument nSc;t with]nSc;t, namely the normalized

shape metric computed for the potential footprint. The corresponding �rst-stage equation is

nSc;t = � �]nSc;t + �c + 
t + "c;t: (46)

The same approach can be followed for other outcome variables representing quantities -

such as road length. Although it does not allow the e¤ects of shape and area to be separately

identi�ed, this approach is less demanding. In particular, it does not require using projected

historic population. My preferred approach is thus to employ the single-instrument speci�ca-

tion, constructing the shape instrument using the "common rate" model for city expansion (see

Section 5.1).

While population and road density are meaningful outcomes per se, it does not seem as

natural to normalize factor prices - wages and rents - by city area. For these other outcome

variables, the more parsimonious alternative to the double-instrument speci�cation takes the

following form:

log(Yc;t) = a � Sc;t + �c + �t + �c;t (47)

where Y 2 (W; pH). This equation does not explicitly control for city area, other than through
city and year �xed e¤ects. Again, the endogenous regressor Sc;t is instrumented using fSc;t,
resulting in the following �rst-stage equation:

Sc;t = � � fSc;t + !c + 't + �c;t: (48)

All of the speci�cations discussed above include year and city �xed e¤ects.27 Although

27This approach relies on comparing changes in shape that the same city undergoes over time. The
implicit underliying assumption is a "parallel trends" one, which would be violated if outcomes in cities
with di¤erent geometries followed di¤erential trends. To mitigate this concern, in one of my robustness
checks (Appendix Tables 1 and 2), I augment the speci�cations above with year �xed e¤ects interacted
with the city�s initial shape at the beginning of the panel.
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the bulk of my analysis, presented in Section 6, relies on both cross-sectional and temporal

variation, a limited number of outcomes, analyzed in Section 7, are available only for a cross-

section of cities. In these cases, I resort to cross-sectional versions of equations (42) to (48).

In all speci�cations I employ robust standard errors clustered at the city level, to account for

arbitrary serial correlation over time in cities.

6 Empirical Results: Amenity Value of City Shape

In this Section, I address empirically the question of how city shape a¤ects the spatial equi-

librium across cities. The predictions of the conceptual framework suggest that, if city shape

is valued as a consumption amenity by consumers, cities with longer trip patterns should be

characterized by lower population, higher wages and lower rents.

6.1 First Stage

[Insert Table 2]

Table 2 presents results from estimating the �rst-stage relationship between city shape and

the geography-based instrument described in Section 5.1. Each observation is a city-year.

Panels, A, B, C, and D each correspond to one of the four shape metrics discussed in Section

4.2: respectively, remoteness, spin, disconnection, and range.28 Higher values of these indexes

represent less compact shapes. Summary statistics are reported in Table 1. Column 1 reports

the �rst-stage for normalized shape (eq. (46)), which is the explanatory variable used in the

single-instrument speci�cation. Recall that normalized shape is an area-invariant measure of

shape obtained when normalizing a given shape metric by footprint radius. In this speci�cation,

the construction of the potential footprint is based on the common rate model for city expansion,

outlined in Section 5.1.29 Columns 2 and 3 report the �rst stage estimates for footprint shape

(eq. (43)) and area (eq. (44)), which are relevant for the double-instrument speci�cation. The

28Recall that remoteness (panel A) is the average length of trips to the centroid; spin (panel B) is
the average squared length of trips to the centroid; disconnection (panel C) is the average length of
within-city trips; range (panel D) is the maximum length of within-city trips.
29The normalized shape instrument can, in principle, be constructed also using the city-speci�c

model for urban expansion (see Section 5.1). Results of the corresponding �rst-stage are not reported
in the table for brevity, but are qualitatively similar to those in column 3 and are available upon
request.
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dependent variables are city shape, measured in km, and log city area, in square km. The

corresponding instruments are the shape of the potential footprint and log projected historic

population, as described in Section 5.2. The construction of the potential footprint is based on

the city-speci�c model for city expansion discussed in Section 5.1.

Let us consider �rst Table 2A, which focuses on the remoteness index. As discussed in

Section 4.2, this index captures the length of the average trip to the footprint�s centroid, and

can be considered a proxy for the average commute to the CBD. The remoteness of the potential

footprint is a highly signi�cant predictor of the remoteness index computed for the actual

footprint, both in the normalized (column 1) and non-normalized version (column 2). Similarly,

in column 3, projected historic population predicts footprint area. Column 3 reveals another

interesting pattern: the area of the actual footprint is positively a¤ected by the remoteness

of the potential footprint. While this partly re�ects the mechanical correlation between shape

metric and footprint area, it also suggests that cities which are surrounded by topographic

obstacles tend to expand more in space. An interpretation of this result is that the presence of

topographic constraints induces a "leapfrog" development pattern, which is typically more land-

consuming. It could also re�ect an inherent di¢ culty in planning land-e¢ cient development in

constrained contexts, which could result in less parsimonious land use patterns. The results for

the remaining shape indicators, reported in panels B, C, and D, are qualitatively similar.

6.2 Population

[Insert Table 3]

My main results on population and city shape are reported in Table 3. As in Table 2, each

observation is a city-year and each panel corresponds to a di¤erent shape metric.

Column 1 reports the IV results from estimating the single-instrument speci�cation (equation

(45)), which links population density, measured in thousand inhabitants per square km, to

(instrumented) normalized shape. The corresponding �rst stage is reported in column 1 of

Table 2. Column 2 reports the IV results from estimating the double-instrument speci�cation

(equation (42)), which links population to city area and shape, separately instrumented for.

The corresponding �rst stage is reported in columns 2 and 3 of Table 2. Column 3 reports the

corresponding OLS estimates.
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Recall that normalized shape metrics capture the departure of a city�s shape from an ideal

circular shape and are invariant to city area, higher values implying longer trips. The IV

estimates of the single-instrument speci�cation indicate that less compact cities are associated

with a decline in population density. The magnitudes of this e¤ect are best understood in terms

of standardized coe¢ cients. Consider the remoteness index (panel A), representing the length,

in km, of the average trip to the footprint�s centroid. A one-standard deviation increase in

normalized remoteness (0.06) is associated with a decline in population density of 0.9 standard

deviations.

Interestingly, the OLS relationship between population and shape, conditional on area (col-

umn 3) appears to be positive due to an equilibrium correlation between city size and bad

geometry: larger cities are typically also less compact. This arises from the fact that an ex-

panding city has a tendency to deteriorate in shape. The intuition for this is the following: a

new city typically arises in a relatively favorable geographic location; as it expands in space,

however, it inevitably reaches areas with less favorable geography. Once shape is instrumented

by geography (column 2), less compact cities are associated with a decrease in population,

conditional on (instrumented) area, city, and year �xed e¤ects. To understand the magnitudes

of this e¤ect, consider that a one-standard deviation increase in normalized remoteness (0.06),

for the average-sized city (which has radius 4.5 km), corresponds to roughly 0.26 km. Holding

constant city area, this 0.26 km increase in the average trip to the centroid is associated with an

approximate 3% decline in population. The results obtained with the double-instrument spec-

i�cation, together with the �rst-stage estimates in Table 2, indicate that the observed decline

in population density (Table 3, column 1) is driven both by a decrease in population (Table 3,

column 2) and by an increase in footprint area (Table 2, column 3).

The results for the remaining shape indicators, reported in panels B, C, and D, are qual-

itatively similar. The fact that these indexes are mechanically correlated with one another

prevents me from including them all in the same speci�cation. However, a comparison of the

magnitudes of the IV coe¢ cients of di¤erent shape metrics on population suggests that the

most salient spatial properties are remoteness (Table 3A) and disconnection (Table 3C), which

capture, respectively, the average trip length to the centroid and the average trip length within

the footprint. This is plausible, since these two indexes are those which more closely proxy for

urban commute patterns. Non-compactenss in the periphery, captured by the spin index (Table

3B), appears to have a precise zero e¤ect on population in the double-instrument speci�cation,
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whereas the e¤ect of the range index (Table 3D), capturing the longest possible trip within the

footprint, is signi�cant but small in magnitude. For brevity, in the rest of my analysis I will

mostly focus on the disconnection index, which measures the average within-city trip, without

restring one�s attention to trips leading to the centroid. This index is the most general indicator

for within-city commutes, and seems suitable to capture trip patters in polycentric as well as

monocentric cities. Unless otherwise speci�ed, in the rest of the tables "shape" will indicate

the disconnection index.

[Insert Table 4]

As a robustness check, in Table 4, I re-estimate the double-instrument speci�cation, exclud-

ing from the sample cities with severely constrained topographies, namely those located on the

coast or in high-altitude areas. Such cities make up about 9 % of cities in my sample. Out of

457 cities in the initial year of the panel (1951), those located on the coast and in mountainous

areas are respectively 24 and 17. Both the �rst-stage (columns 1, 2, 4, and 5) and the IV

estimates of the e¤ect of shape on population (columns 3 and 6) are minimally a¤ected by

excluding these cities. This shows that my instrument has explanatory power also in cities

without extreme topographic constraints,30 and that my IV results are not driven by a very

speci�c subset of compliers.

Another robustness check is provided in Appendix Table 1. I re-estimate the IV impact

of shape on density and population (columns 1 and 2 from Table 3C), including year �xed

e¤ects interacted with each city�s shape at the beginning of the panel. This more conservative

speci�cation allows cities with di¤erent initial geometries to follow di¤erent time trends. Results

are qualitatively similar to those obtained in Table 3. This mitigates the concern that diverging

trends across cities with di¤erent geometries might be confounding the results.

6.3 Wages and Rents

The results presented thus far suggest that consumers are a¤ected by city shape in their location

choices and that they dislike non-compact shapes. A natural question then arises as to whether

we can put a price on "good shape". As discussed in Section 3, the Rosen-Roback model

30Recall that my instrument - the shape of the "potential" footprint - is not based on the severity
of topographic constraints nor on the total share of land lost to such constraints, but is mostly driven
by the relative position of constrained pixels.
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provides a framework for doing so, by showing how urban amenities are capitalized in wages

and rents. In particular, the model predicts that cities with better consumption amenities

should be characterized by higher rents and lower wages.

Results on wages and rents are reported in Tables 5 and 6 respectively. As I discuss in Section

4.5, the measures of wages and rents that I employ are subject to signi�cant measurement

error. Both are urban district-level averages, derived respectively from the Annual Survey of

Industries and the National Sample Survey Consumer Expenditure Schedule. The matching

between cities and districts is not one-to-one. In particular, there are numerous instances of

districts that include more than one city. I cope with these cases following three di¤erent

approaches: (i) ignore the issue and keep in the sample all cities; (ii) drop from the sample

districts with more than one city, thus restricting my sample to cities that have a one-to-one

correspondence with districts; (iii) include in the sample only the largest city in each district.

Tables 5 and 6 report estimation results obtained from all three approaches.

[Insert Table 5]

In Table 5, I report the OLS and IV relationship between average wages and city shape. The

dependent variable is the log urban average of individual yearly wages in the city�s district, in

thousand 2014 Rupees. Columns 1, 4, and 7 report the IV results from estimating the single-

instrument speci�cation (equation (47)), that does not explicitly control for city area. Columns

2, 5, and 8 report the IV results from estimating the double-instrument speci�cation (equation

(42)), which is conditional on instrumented city area. The construction of the potential footprint

is based on the common rate model for city expansion in columns 1, 4, 7, and on the city-speci�c

one in columns 2, 5, 8 �see Section 5.1.

These estimates indicate that less compact shapes, as captured by higher values of the dis-

connection index, are associated with higher wages both in the OLS and in the IV. This pattern

is consistent across di¤erent speci�cations and city-district matching approaches. Appendix Ta-

ble 2, panel A, shows that these results are also robust to including year �xed e¤ects interacted

by initial shape. This positive estimated impact is compatible with the interpretation that con-

sumers are paying a premium, in terms of foregone wages, in order to live in cities with better

shapes. Moreover, it suggests that city shape is more a consumption than it is a production

amenity. When city area is explicitly included in the regression, the reduced-form relationship

between area and wages is negative, as predicted by the conceptual framework (condition (17)
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in Section 3).

[Insert Table 6]

Tables 6 reports the same set of speci�cations for house rents. In panel A, the dependent

variable considered is the log of yearly housing rent per square meter, in 2014 Rupees, averaged

throughout all urban households in the district. In panel B, the dependent variable is analogous,

but constructed averaging only the upper half of the distribution of urban housing rents in each

district. This addresses the concern that reported rents are a downward-biased estimate of

market rents due to rent control policies. These estimates appear noisy or only borderline

signi�cant, with p values between 0.10 and 0.15. However, a consistent pattern emerges: the

impact of disconnected shape on rents is negative in the IV and close to zero, or possibly

positive, in the OLS. Appendix Table 2, panel B, shows that these results are qualitatively

similar including year �xed e¤ects interacted by initial shape. This is consistent with the

interpretation that consumers are paying a premium in terms of higher housing rents in order

to live in cities with better shapes. The reduced-form relationship between city area and rents

is also negative, consistent with the conceptual framework (condition (18) in Section 3).

6.4 Interpreting Estimates through the Lens of the Model

Tables 3, 5, and 6 provide estimates for the reduced-form relationship between city shape and,

respectively, log population, wages, and rents, conditional on city area. Although results for

wages and rents should be interpreted with caution due to the data limitations discussed above,

the signs of the estimated coe¢ cients are consistent with the interpretation that consumers view

compact shape as an amenity. In this sub-section, I use these reduced-form estimates to back out

the implied welfare loss associated with poor city geometry, according to the model outlined in

Section 3. I focus here on the disconnection index, representing the average potential commute

within the footprint. All monetary values are expressed in 2014 Rupees.

Recall that a one-unit increase in shape metric S has a welfare e¤ect equivalent to a decrease

in income of �� log points, which, as derived in Section 3 (eq. (38)), can be estimated as

b�� = �cBP �dBW
where � is the share of consumption spent on housing.
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My most conservative point estimates for dBW and cBP , from the double-instrument speci�-

cation as estimated in Tables 5 and 6A respectively, amount to 0:038 and �0:518. To calibrate
�, I compute the share of household expenditure devoted to housing for urban households,

according to the NSS Household Consumer Expenditure Survey data in my sample - this �gure

amounts to 0:16. The implied b�� is �0:14. Recall that a one standard deviation increase in
disconnection for the average-sized city is about 360 meters. Interpreting this as commuting

length, an interpretation substantiated by the evidence in Section 6.5, this suggests that an in-

crease in one-way commutes of 360 meters entails a welfare loss equivalent to a 0:05 log points

decrease in income.

It is interesting to compare this �gure with the actual cost of an extra 360 meters in one�s

daily one-way commute, under di¤erent commuting options. Postulating one round-trip per

day (720 meters), 5 days per week, this amounts to 225 extra km per year. To compute the

time-cost component of commuting, I estimate hourly wages by dividing the average yearly wage

in my sample (93; 950 Rs.) by 312 yearly working days and 7 daily working hours, obtaining

a �gure of 43 Rs. per hour. Assuming that trips take place on foot, at a speed of 4:5 km per

hour, a one-standard deviation deterioration in shape amounts to 50 extra commute hours per

year, which is equivalent to 2:3% of the yearly wage. This �gure is roughly 45% of the welfare

cost I estimate. Assuming instead that trips occur by car, postulating a speed of 25 km per

hour, a fuel e¢ ciency of 5 liters per 100 km, and fuel prices of 77 Rs. per liter,31 the direct

cost of increased commute length amounts to 1:3% of the yearly wage, or roughly one quarter

of the welfare cost estimated above.

The estimated welfare loss from longer commutes appears to be large, relative to the imme-

diate time and monetary costs of commuting. This is consistent with the interpretation that

commuting is perceived as a particularly burdensome activity. The behavioral literature has

come to similar conclusions, albeit in the context of developed countries. Stutzer and Frey

(2008) �nd a large and robust negative relation between commuting time and subjective well-

being, using German data. They estimate that individuals commuting 23 minutes one way

would have to earn 19 percent more per month, on average, in order to be fully compensated.

Based on diary-based surveys, designed to measure individuals�emotional experiences and time

31These �gures are based respectively on: Ministry of Urban Development, 2008; U.S. Energy In-
formation Administration, 2014; http://www.shell.com/ind/products-services/on-the-road/fuels/fuel-
pricing.html accessed in August 2014.
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use, Kahneman et al. (2004) �nd that commuting is the daily activity that generates the lowest

level of "positive a¤ect", as well as a relatively high level of "negative a¤ect". These �ndings

are also consistent with the literature on commuting stress and its impact on psycho-physical

health (see Novaco and Gonzalez, 2009, for a review).

To complete the exercise, let us now consider the e¤ect of city shape S on �rms. The signs

of the reduced-form estimates for BW ; BN ; and BP are, in principle, compatible with city shape

being a production amenity or disamenity. The e¤ect of S on productivity is pinned down by

equation (37) from Section 3:

c�A = (1� � � 
)cBN + (1� 
)dBW
where parameters � and 
 represent the shares of labor and tradeable capital in the production

function postulated in equation (7). My most conservative point estimates for cBN and dBW
are �0:098 and 0:038, from Tables 3C and 5 respectively. Setting � to 0:4 and 
 to 0:3, the

implied c�A is �0:003, which indicates a productivity loss of about 0:001 log points for a one
standard deviation deterioration in city disconnection. These estimates appear very small, and

somewhat sensitive to the calibration of parameters � and 
. Overall, they suggest that city

shape is not a¤ecting �rms�productivity, and that the cost of disconnected shape is borne

mostly by consumers. It is possible that �rms optimize against poor urban shape, in a way

that consumers cannot.32

6.5 Channels and Heterogeneous E¤ects

The results presented so far provide evidence that consumers have a preference for more com-

pact cities. In this Section, I seek to shed light on the mechanisms through which city shape

a¤ects consumers, and on the categories of consumers who are a¤ected the most by poor urban

geometry.

Infrastructure

If transit times are indeed the main channel through which urban shape matters, road

infrastructure should mitigate the adverse e¤ects of poor geometry. By the same argument, all

32Section 7.3 investigates how �rms respond to city shape in their location choices within cities, by
looking at the spatial disitribution of employment.
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else being equal, consumers with individual means of transport should be less a¤ected by city

shape.

[Insert Table 7]

In Table 7, I attempt to investigate these issues interacting city shape with a number of

indicators for infrastructure. For ease of interpretation, I focus on the single-instrument speci-

�cation (eq. (45)), which links normalized shape to population density, measured in thousand

inhabitants per square km. For brevity, I report only IV estimates, using both the common

rate and the city-speci�c model for city expansion. The shape indicators considered are the

disconnection (Panel A) and range index (Panel B). Recall that these two indexes represent,

respectively, the average and maximum length of within-city trips. While disconnection is a

general indicator for city shape, the range index appears to be more suitable to capture longer,

cross-city trips, which might be more likely to require motorized means of transportation.

This exercise is subject to a number of caveats. An obvious identi�cation challenge lies in the

fact that infrastructure is not exogenous, but rather jointly determined with urban shape. This

issue is investigated explicitly in Section 7.2, in which I present some results on current road

infrastructure and city shape. In Table 7, I partly address the endogeneity of city infrastructure

by employing state-level proxies. Another concern is that the e¤ect of infrastructure might be

confounded by di¤erential trends across cities with di¤erent incomes. To mitigate this problem,

I also consider a speci�cation which includes a time-varying proxy for city income: year �xed

e¤ects interacted with the number of banks in 1981, as reported in the 1981 Census Town

Directory for a subset of cities.

In columns 1, 2, and 3, instrumented normalized shape is interacted with the number of

motor vehicles in the state in 1989-1990, drawn from CIER (1990). In columns 4, 5, and

6, I interact shape with urban road density in 1981, as reported by the 1981 Census Town

Directory; this is the �rst year in which the Census provides this �gure. To cope with the

potential endogeneity of this variable, in columns 7, 8, and 9, I consider instead state urban

road density in 1991, provided by the Ministry of Transport and Highways.

Although the level of statistical signi�cance varies, the coe¢ cients of all three interaction

terms are positive. In particular, the interaction between city shape and urban road density is

highly signi�cant across speci�cations and shape indicators (columns 4, 5, and 6). The interac-

tion between shape and motor vehicles availability appears to be signi�cant when considering
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the range index, which captures longer, cross-city trips. Overall, this can be interpreted as sug-

gestive evidence that infrastructure mitigates the negative e¤ects of poor geometry. Estimates

are qualitatively similar when I include year �xed e¤ects interacted with number of banks, as

a time-varying proxy for city income. This suggests that the interaction terms are capturing

indeed the role of infrastructure, and not simply di¤erential trends across cities with di¤erent

incomes.

Housing Quality

[Insert Table 8 ]

A complementary question relates to who bears the cost of poor city geometry. Emphasizing

the link between city shape, transit, and poverty, Bertaud (2004) claims that compact cities are,

in principle, more favorable to the poor because they reduce distance, particularly in countries

where they cannot a¤ord individual means of transportation or where the large size of the

city precludes walking as a means of getting to jobs. At the same time, however, if compact

cities are also more expensive, this would tend to reduce the housing �oor space the poor can

a¤ord (Bertaud, 2004). In Table 8, I investigate the link between poverty and city shape by

looking at two - admittedly very rough - proxies for city income: the total and the fraction

of slum dwellers and a principal component wealth index based on physical characteristics of

houses, including roof, wall, and �oor material as well as the availability of running water and

a toilet. This information is provided in the Census for a limited number of cities and years.

As in previous tables, I provide IV estimates obtained with both the single- and the double-

instrument speci�cation, as well as OLS estimates for the double-instrument speci�cation. I

�nd that cities with less compact shapes have overall fewer slum dwellers, both in absolute

terms and relative to total population. Moreover, less compact cities are characterized by

houses of marginally better quality. In principle, this could arise from higher equilibrium rents

in compact cities, which could be forcing more people into substandard housing. A more

interesting interpretation, however, is that poorer migrants sort into cities with more compact

shapes, possibly because of their lack of individual means of transport and consequent higher

sensitivity to commute lengths. It is plausible that the marginal migrant to urban India would

start out as slum dweller, which substantiates the sorting hypothesis.
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7 Empirical Results: Endogenous Responses to City Shape

The evidence presented so far indicates that city shape a¤ects the spatial equilibrium across

cities, and, in particular, that deteriorating urban geometry entails welfare losses for consumers.

The next question concerns the role of policy: given that most cities cannot expand radially

due to their topographies, what kind of land use regulations, if any, and infrastructural invest-

ments best accommodate city growth? This section provides some evidence on the interactions

between topography, city shape, and policy.33

7.1 Floor Area Ratios

I start by considering the most controversial among land use regulations currently in place in

urban India: Floor Area Ratios (FAR). As explained in Section 4.6, FARs are restrictions on

building height expressed in terms of the maximum allowed ratio of a building�s �oor area over

the area of the plot on which it sits. Higher values allow for taller buildings. Previous work has

linked the restrictive FARs in place in Indian cities to suburbanization and sprawl (Sridhar,

2010), as measured by administrative data sources. Bertaud and Brueckner (2005) analyze the

welfare impact of FARs in the context of a monocentric city model, estimating that restrictive

FARs in Bengaluru carry a welfare cost ranging between 1.5 and 4.5%.

Information on FAR values across Indian cities is very hard to obtain. My data on FARs is

drawn from Sridhar (2010), who collects a cross-section of the maximum allowed FAR levels as

of the mid-2000s, for about 50 cities,34 disaggregating by residential and non-residential FAR.

Based on discussions with urban local bodies and developers, it appears that FARs are very

resilient, and have rarely been updated. While the data collected by Sridhar re�ects FARs as

they were in the mid-2000s, they are likely to be a reasonable proxy for FAR values in place

throughout the sample period.

[Insert Table 9]

33Due to data availability constraints, part of the analyses carried out in this section are based
on comparatively small samples and/or rely on cross-sectional variation only. These results should
therefore be interpreted cautiously.
34Sridhar (2010) collectes data for about 100 cities, but many of those cities are part of larger urban

agglomerations, and do not have appear as individual footprints in my panel. Moreover, some are too
small to be detected by night-time lights. This reduces the e¤ective number of observations which I
can use in my panel to 55. My analysis is thus subject to signi�cant power limitations.
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In Table 9, panel A, I explore the interaction between topography and FARs in determining

city shape and area. The three �rst-stage equations presented in Table 2 are reproposed here,

augmented with an interaction between each instrument and FAR levels. Each observation is

a city-year. In columns 1, 2, and 3, I consider the average of residential and non-residential

FARs, whereas in columns 4, 5, and 6, I focus on residential FARs.

The main coe¢ cients of interest are the interaction terms. The interaction between potential

shape and FARs in columns 1 and 4 is negative, and signi�cant in column 1, indicating that

cities with higher FARs have a more compact shape than their topography would predict. The

interaction between projected population and FARs appears to have a negative impact on city

area (columns 3 and 6), indicating that laxer FARs cause cities to expand less in space than their

projected growth would imply. This is in line with the results obtained by Sridhar (2010), who

�nds a cross-sectional correlation between restrictive FARs and sprawl using administrative, as

opposed to remotely-sensed, data. This interaction term has a negative impact on city shape

as well (columns 2 and 5), suggesting that higher FARs can also slow down the deterioration

in city shape that city growth entails. Overall, this seems to suggest that if growing and/or

potentially constrained cities are allowed to build vertically, they will do so, rather than expand

horizontally and face topographic obstacles.

In Table 9, panel B, I investigate the impact of FARs interacted with city shape on popu-

lation and density. Again, each observation is a city-year. The speci�cations proposed here are

equivalent to those in Table 3, augmented with interactions between the explanatory variables

and FARs. The corresponding interacted �rst-stage equations are proposed in panel A. Results

are mixed, possibly due to small sample size. However, the results from the interacted version

of the double-instrument speci�cation (columns 2 and 5) suggest that laxer FARs mitigate the

negative impact of non-compactness on population: the interaction between instrumented shape

and FARs is positive, and signi�cant in the case of residential FARs. An interpretation for this

result is that long potential commutes matter less in cites which allow taller buildings, since

this allows more consumers to live in central locations. This result, however, is not con�rmed

in the single-instrument speci�cation (columns 1 and 4).

My next question relates to the determinants of FARs; in particular, whether urban form

considerations appear to be incorporated by policy makers in setting FARs. Panel C of Table 9

provides an attempt to investigate this issue, by regressing FAR values on urban form indicators
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- shape and area - as measured in year 2005. The estimating equations are cross-sectional

versions of equations (47) and (42), with FARs as a dependent variable. Each observation is a

city in year 2005. Subject to the limitations of cross-sectional inference and small sample size,

these results seem to indicate that larger cities have more restrictive FARs, both in the IV and

in the OLS. This is consistent with one of the stated objectives of FARs: curbing densities in

growing cities. At the same time, however, the coe¢ cient on shape is positive, both in the IV

and in the OLS. This could either indicate a deliberate willingness of policy makers to allow

for taller buildings in areas with constrained topographies, or might re�ect a historical legacy

of taller architecture in more constrained cities.35

7.2 Road Infrastructure

Next, I turn to another type of policy response to city shape: road infrastructure. In Section

6.3 I provide some suggestive evidence that infrastructure might mitigate the adverse e¤ects

of poor shape. In this sub-section, I am interested in the complementary question of whether

current road infrastructure responds to city shape, and whether denser road networks are com-

pensating for longer potential trips in less compact cities. Although the Census provides urban

road density for a subset of cities and years, this data appears to be based on administrative

boundaries, which are seldom updated. Instead, I compute the total length of the current road

network as it appears on the maps available on Openstreetmap, overlapping the street net-

work with my night-time lights-based urban footprint boundaries. More details can be found

in Section 4.6. In Table 10, I investigate the cross-sectional relationship between current road

network and city shape, measured in 2010 - the most recent year in my sample.

[Insert Table 10]

Each observation in Table 10 is a city in year 2010. Results are reported for the disconnection

(columns 1 to 3) and range index (column 4 to 6). Recall that these two indexes represent

respectively the average and maximum length of within-city trips. While disconnection is a

general indicator for city shape, the range index might be more suitable to capture cross-

city trips, possibly requiring highways. Panel A considers total road length, whereas panel B

35Discussions with urban local bodies and developers suggest that FARs re�ect, to some extent, the
traditional architectural style of di¤erent cities.
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considers road length per capita. Columns 1 and 4 report the IV results from estimating a cross-

sectional version of the single-instrument speci�cation (equation (45)). Columns 2 and 5 report

the IV results from estimating a cross-sectional version of the double-instrument speci�cation

(equation (42)).

These results are somewhat mixed and not always consistent across speci�cations. However,

the general pattern discernible from the IV results seems to be the following: non-compact

cities have a road network that is less dense in absolute terms, but road density per person

which is not statistically di¤erent from that of compact cities.36

7.3 Polycentricity

After having considered possible policy responses to deteriorating shape, in this section I con-

sider a private kind of response: �rms�location choices within cities. As cities grow into larger

and more disconnected footprints, resulting in lengthy commutes to the historic core, busi-

nesses might choose to locate further apart from each other, and/or possibly form new business

districts elsewhere.37 I attempt to shed light on this hypothesis by analyzing the spatial dis-

tribution of productive establishments listed in the Urban Directories of the 2005 Economic

Census. This data source is described in greater detail in Section 4.6. The literature has pro-

posed a number of methodologies to detect employment sub-centers within cities. I employ the

two-stage, non-parametric approach developed by McMillen (2001), detailed in the Appendix.

This procedure appears to be the most suitable for my context, given that it does not require

a detailed knowledge of each study area, and it can be fully automated and replicated for a

large number of cities. Employment subcenters are identi�ed as locations that have signi�-

cantly larger employment density than nearby ones and that have a signi�cant impact on the

36The OLS coe¢ cients display the opposite pattern: more disconnected cities have a denser road
network in absolute, but not in per capita terms. This could be generated by the correlation between
city size and non-compactness, discussed in Section 6.1. Growing cities are typically less compact, and
also tend to have better infrastructure. The observed pattern can be due to the fact that the spurious
correlation between non-compactness and population is stronger than that between non-compactness
and infrastructure - possibly because in rapidly expanding cities, infrastructure responds to population
growth with a delay.
37The literature on polycentricity and endogenous subcenter formation is reviewed, amongst others,

by Anas et al. (1998), McMillen and Smith (2003), and Agarwal et al. (2012). Such models emphasize
the �rms�trade-o¤ between a centripetal agglomeration force and the lower wages that accompany
shorter commutes in peripheral locations.
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overall employment density function in a city. I compute the number of employment subcen-

ters for each city in year 2005. This �gure ranges from 1, for cities that appear to be purely

monocentric, to 9, in large cities such as Delhi and Mumbai.38

[Insert Table 11]

In Table 11, I estimate the relationship between number of employment centers, city area,

and shape, in a cross-section of footprints observed in 2005. Results are reported for the

disconnection (columns 1 to 3) and remoteness index (columns 4 to 6). Recall that these two

indexes represent, respectively, the average length of within-city trips, and the average length

of trips leading to the footprint centroid. The latter index proxies for the commutes that would

be prevalent if the city were predominantly monocentric. Columns 1 and 4 report the IV results

from estimating a cross-sectional version of the single-instrument speci�cation (equation (45)).

The dependent variable is the number of subcenters per square km. Columns 2 and 5 report

the IV results from estimating a cross-sectional version of the double-instrument speci�cation

(equation (42)). The dependent variable is the log number of employment subcenters. Columns

3 and 6 report the same speci�cation, estimated by OLS.

Consistent with most theories of endogenous subcenter formation, and with the results

obtained in the US context by McMillen and Smith (2003), larger cities tend to be have more

employment subcenters (columns 2 and 5). Interestingly, conditional on city area, less compact

cities do not appear to be more polycentric: if anything, longer trips induce a reduction in the

number of subcenters. These results suggest that �rms prefer to cluster centrally, and pay higher

wages to compensate their employees for the longer commutes they face. This is in line with

the �nding that more disconnected cities are characterized by higher wages (Section 6.3). More

generally, this �rm location pattern is consistent with the large welfare losses that poor shape

is found to have on consumers (Section 6.4): if employment were as dispersed as population,

actual commute trips should be relatively short, regardless of shape, and poor geometry would

have negligible e¤ects.

38For the purposes of implementing the subcenter detection procedure, the CBD is de�ned as the
centroid of the 1950 footprint. Results are robust to de�ning the CBD as the current centroid (available
upon request).
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8 Conclusion

In this paper, I use geography-driven variation in city shape to investigate the implications

of intra-urban commute length for consumers, in the context of India. I �nd that poor urban

connectivity has sizeable welfare costs, and that city compactness a¤ects the spatial equilibrium

across cities. Urban mobility thus impacts not only the quality of life in cities, but also in�uences

rural to urban migration patterns, by a¤ecting city choice.

As India prepares to accommodate an unprecedented urban growth in the next decades,

the challenges posed by urban expansion are gaining increasing importance in India�s policy

discourse. On the one hand, the policy debate has focused on the perceived harms of haphaz-

ardous urban expansion, including limited urban mobility and lengthy commutes (World Bank,

2013). On the other, there is a growing concern that existing policies, in particular urban

land use regulations, might directly or indirectly contribute to distorting urban form (Glaeser,

2011; Sridhar, 2010; World Bank, 2013). My �ndings can inform this policy debate on both

fronts. Although this study focuses on geographic obstacles, which are given, in order to gain

identi�cation, there is a wide range of policy options to improve urban mobility and prevent

the deterioration in connectivity that fast city growth entails. Urban mobility can be enhanced

through direct interventions in the transportation sector, such as investments in infrastructure

and public transit. Indeed, I �nd evidence that road infrastructure might mitigate the impact

of disconnected city shape. My study also suggests that urban connectivity can be indirectly

improved through another channel: promoting more compact development. This can be en-

couraged through master plans and land use regulations. Bertaud (2002a) reviews a number

of urban planning practices and land use regulations, currently in place in Indian cities, that

tend to �push�urban development towards the periphery.39 I �nd that restrictive Floor Area

Ratios, the most controversial of such regulations, result in less compact footprints, suggesting

that city shape can indeed be a¤ected by regulation and is not purely driven by geography.

This paper leaves a number of open questions for future research. First, my approach

captures the overall e¤ects of urban geometry, measured at the city level, but does not explicitly

39Besides Floor Area Ratios, examples include: the Urban Land Ceiling Act, which has been claimed
to hinder intra-urban land consolidation; rent control provisions, which prevent redevelopment and
renovation of older buildings; regulations hindering the conversion of land from one use to another;
and, more, generally, complex regulations and restrictions in central cities, as opposed to relative
freedom outside the administrative boundaries of cities.
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address the implications of geometry for the spatial equilibrium within cities. Although my

empirical analysis highlights that more compact cities are generally preferred by the average

consumer, it does not answer the question of who bears the costs of disconnected geometry

within each city. More detailed, geo-referenced data at the sub-city level might help shed light

on these issues. More work is also required to understand the response of �rms to city shape.

City shape has the potential to a¤ect �rms both directly, by increasing transportation costs,

and indirectly, by distorting their location choices. These e¤ects are likely to be heterogeneous

across sectors, which would raise the complementary question of whether �rms in di¤erent

sectors sort into cities with di¤erent geometries.

Finally, it would be interesting to investigate other potential channels through which city

shape a¤ects consumers, besides commuting patterns. Throughout this project, I interpret

city geometry mainly as a shifter of commuting costs, and I employ shape metrics speci�cally

constructed to capture the implications of shape for transit. However, there could be other,

second-order channels through which city shape might have economically-relevant e¤ects. First,

as noted by Bertaud (2002b), geometry a¤ects not only transportation but all kinds of urban

utilities delivered through spatial networks, including those collecting and distributing elec-

tricity, water, and sewerage.40 Second, the same topographic obstacles that make cities "dis-

connected" from an urban transit perspective, might also act as boundaries, promoting the

separation of a city in di¤erent, disconnected neighborhoods and/or administrative units. This

could have implications both in terms of political economy and segregation.41 Again, more

disaggregated data at the sub-city level will be required to investigate these rami�cations.

40The optimal layout of such networks is founded on di¤erent engineering theories than those that
found transport, and di¤erent shape indicators would be required to capture these aspects of shape.
However, there might still be interactions with the shape metrics used in my analysis.
41Previous research, although in very di¤erent contexts, suggests this might be the case: for instance,

Hoxby (2000) �nds that the number of school districts in US cities is predicted by the number of natural
barriers. Ananat (2011) �nds that US cities subdivided by railroads into a larger number of physically
de�ned neighborhoods became more segregated.
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Appendix

Nonparametric Employment Subcenter Identi�cation (McMillen, 2001)

In order to compute the number of employment subcenters in each city, I employ the two-stage,

non-parametric approach described in McMillen (2001). This procedure identi�es employment

subcenters as locations that have signi�cantly larger employment density than nearby ones, and

that have a signi�cant impact on the overall employment density function in a city.

The procedure outlined below is performed separately for each city in the 2005 sample.

As units of observation within each city, I consider grid cells of 0.01 degree latitude by 0.01

degree longitude, with an area of approximately one square km. While this is arbitrary, this

approach is not particularly sensitive to the size of the unit considered. I calculate a proxy

for employment density in each cell, by considering establishments located in that cell and

summing their reported number of employees.42 In order to de�ne the CBD using a uniform

criterion for all cities, I consider the centroid of the 1950 footprint. Results are similar using

the 2005 centroid as an alternative de�nition.

In the �rst stage of this procedure, �candidate�subcenters are identi�ed as those grid cells

with signi�cant positive residuals in a smoothed employment density function. Let yi be the

log employment density in grid cell i; denote with xNi its distance north from the CBD, and

with xEi its distance east. Denoting the error term with "i, I estimate:

yi = f(x
N
i ; x

E
i ) + "i (A1)

using locally weighted regression, employing a tricube kernel and a 50% window size. This

�exible speci�cation allows for local variations in the density gradient, which are likely to occur

in cities with topographic obstacles. Denoting with byi the estimate of y for cell i, and withb�i the corresponding standard error, candidate subcenters are grid cells such that (yi � byi)=b�i > 1:96.
The second stage of the procedure selects those locations, among candidate subcenters, that

have signi�cant explanatory power in a semiparametric employment density function estimation.

42The Directory of Establishments provides establishment-level employment only by broad cate-
gories, indicating whether the number of employees falls in the 10-50, 51-100, or 101-500 range, or is
larger than 500. In order to assign an employment �gure to each establishment, I consider the lower
bound of the category.
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Let Dij be the distance between cell i and candidate subcenter j, and denote with DCBDi the

distance between cell i and the CBD. With S candidate subcenters, denoting the error term

with ui, the semi-parametric regression takes the following form:

yi = g(DCBDi) +
SX
j=1

�1j(Dji)
�1 + �2j(�Dji) + ui (A2)

In the speci�cation above, employment density depends non-parametrically on the distance

to the CBD, and parametrically on subcenter proximity, measured both in levels and in inverse

form. This parametric speci�cation allows us to conduct convenient hypothesis tests on the

coe¢ cients of interest �1j and �
2
j . (A2) is estimated omitting cells i corresponding to one of the

candidate subcenters or to the CBD. I approximate g() using cubic splines.

If j is indeed an employment subcenter, the variables (Dj)
�1and/or (�Dj) should have

a positive and statistically signi�cant impact on employment density y. One concern with

estimating (A2) is that, with a large number of candidate subcenters, the distance variables

Dij can be highly multicollinear. To cope with this problem, a stepwise procedure is used

to select which subcenter distance variables to include in the regression. In the �rst step,

all distance variables are included. At each step, the variable corresponding to the lowest t

statistic is dropped from the regression, and the process is repeated until all subcenter distance

variables in the regression have a positive coe¢ cient, signi�cant at the 20% level. The �nal list

of subcenters includes the sites with positive coe¢ cients on either (Dj)
�1 or (�Dj):
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Table 1: Descriptive Statistics

Obs. Mean St.Dev. Min Max

Area, km
2

6276 62.63 173.45 0.26 3986.02

Remoteness, km 6276 2.42 2.22 0.20 27.43

Spin, km
2

6276 12.83 39.79 0.05 930.23

Disconnection, km 6276 3.30 3.05 0.27 38.21

Range, km 6276 9.38 9.11 0.86 121.12

Norm. remoteness 6276 0.71 0.06 0.67 2.10

Norm. spin 6276 0.59 0.18 0.50 6.81

Norm. disconnection 6276 0.97 0.08 0.91 2.42

Norm. range 6276 2.74 0.35 2.16 7.17

City population 1440 422869 1434022 5822 22085130

City population density (per km
2
) 1440 15011 19124 432 239179

Avg. yearly wage, thousand 2014 Rs. 2009 93.95 66.44 13.04 838.55

Avg. yearly rent per m
2
, 2014 Rs. 895 603.27 324.81 104.52 3821.59
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(1) (2) (3)

OLS OLS OLS

Norm. shape of actual 

footprint

Shape of actual     

footprint, km

Log area of actual 

footprint, km
2

Norm. shape of potential footprint 0.0413***

(0.0141)

Shape of potential footprint, km 0.352*** 0.0562***

(0.0924) (0.0191)

Log projected historic population 0.390** 0.488***

(0.160) (0.102)

Observations 6,276 6,276 6,276

Norm. shape of potential footprint 0.0249**

(0.0103)

Shape of potential footprint, km 0.585*** -7.43e-05

(0.213) (0.000760)

Log projected historic population 2.470 0.571***

(2.456) (0.101)

Observations 6,276 6,276 6,276

Norm. shape of potential footprint 0.0663***

(0.0241)

Shape of potential footprint, km 1.392*** 0.152***

(0.229) (0.0457)

Log projected historic population -1.180*** 0.307***

(0.271) (0.117)

Observations 6,276 6,276 6,276

Norm. shape of potential footprint 0.0754**

(0.0344)

Shape of potential footprint, km 1.935*** 0.0641***

(0.357) (0.0212)

Log projected historic population -4.199*** 0.310***

(0.977) (0.117)

Observations 6,276 6,276 6,276

Model for common rate city-specific city-specific

City FE YES YES YES

Year FE YES YES YES

A. Shape Metric: Remoteness

B. Shape Metric: Spin

C. Shape Metric: Disconnection

D. Shape Metric: Range

Notes: this table reports estimates of the first-stage relationship between city shape and area, and the instruments discussed in Section 5.1. Each observation is a

city-year. Columns (1), (2), (3) report the results from estimating respectively equations (46), (43), (44). The dependent variables are normalized shape

(dimensionless), shape, in km, and log area, in km
2
, of the actual city footprint. The corresponding instruments are: normalized shape of the potential footprint,

shape of the potential footprint, in km, and log projected historic population. The construction of the potential footprint is based on a common rate model for city

expansion in columns (1) and (2), and on a city-specific one in column (3) - see Section 5.1. Shape is measured by different indexes in different panels.

Remoteness (panel A) is the average length of trips to the centroid. Spin (panel B) is the average squared length of trips to the centroid. Disconnection (panel C)

is the average length of within-city trips. Range (panel D) is the maximum length of within-city trips. City shape and area are calculated from maps constructed

from the DMSP/OLS Night-time Lights dataset (1992-2010) and U.S. Army maps (1951). Estimation is by OLS. All specifications include city and year fixed

effects. Standard errors are clustered at the city level.*** p<0.01,** p<0.05,* p<0.1. 

Table 2: First Stage
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(1) (2) (3)

IV IV OLS

Population density Log population Log population

Norm. shape of actual footprint -311.8***

(92.18)

Shape of actual footprint, km -0.137** 0.0338***

(0.0550) (0.0112)

Log area of actual footprint, km
2

0.785*** 0.167***

(0.182) (0.0318)

Observations 1,440 1,440 1,440

Norm. shape of actual footprint -110.9***

(37.62)

Shape of actual footprint, km -0.00101 0.000887***

(0.000657) (0.000288)

Log area of actual footprint, km
2

0.547*** 0.197***

(0.101) (0.0290)

Observations 1,440 1,440 1,440

Norm. shape of actual footprint -254.6***

(80.01)

Shape of actual footprint, km -0.0991** 0.0249***

(0.0386) (0.00817)

Log area of actual footprint, km
2

0.782*** 0.167***

(0.176) (0.0318)

Observations 1,440 1,440 1,440

Norm. shape of actual footprint -84.14***

(27.70)

Shape of actual footprint, km -0.0284*** 0.00763***

(0.0110) (0.00236)

Log area of actual footprint, km
2

0.746*** 0.171***

(0.164) (0.0305)

Observations 1,440 1,440 1,440

Model for common rate city-specific

City FE YES YES YES

Year FE YES YES YES

Table 3: Impact of City Shape on Population

A. Shape Metric: Remoteness

B. Shape Metric: Spin

C. Shape Metric: Disconnection

D. Shape Metric: Range

Notes: this table reports estimates of the relationship between city shape and population. Each observation is a city-year. Column (1) reports the results from estimating

equation (45) (single-instrument specification). The dependent variable is population density, in thousands of inhabitants per km
2
. The explanatory variable is normalized

shape (dimensionless). Column (2) reports the results from estimating equation (42) (double-instrument specification). The dependent variable is log city population. The

explanatory variables are log city area, in km
2
, and city shape, in km. In columns (1) and (2), estimation is by IV. The instruments are discussed in Section 5.2, and the

corresponding first-stage estimates are reported in Table 2. The construction of the potential footprint is based on a common rate model for city expansion in columns (1)

and (2), and on a city-specific one in column (3) - see Section 5.1. Column (3) reports the same specification as column (2), estimated by OLS. Shape is measured by

different indexes in different panels. Remoteness (panel A) is the average length of trips to the centroid. Spin (panel B) is the average squared length of trips to the centroid.

Disconnection (panel C) is the average length of within-city trips. Range (panel D) is the maximum length of within-city trips. City shape and area are calculated from maps

constructed from the DMSP/OLS Night-time Lights dataset (1992-2010) and U.S. Army maps (1951). Population is drawn from the Census of India (1951, 1991, 2001,

2011). All specifications include city and year fixed effects. Standard errors are clustered at the city level.*** p<0.01,** p<0.05,* p<0.1. 
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(1) (2) (3) (4) (5) (6)

FS(1) FS(2) IV FS(1) FS(2) IV

Shape of actual 

footprint, km

Log area of actual 

footprint, km
2

Log population Shape of actual 

footprint, km

Log area of actual 

footprint, km
2

Log population

Shape of potential 

footprint, km 1.365*** 0.155*** 1.376*** 0.158***

(0.228) (0.0462) (0.233) (0.0488)

Log projected historic 

population -1.201*** 0.278** -1.213*** 0.294**

(0.267) (0.118) (0.276) (0.123)

Shape of actual     

footprint, km -0.100** -0.109**

(0.0414) (0.0428)

Log area of actual 

footprint, km
2

0.776*** 0.796***

(0.190) (0.185)

Observations 6,006 6,006 1,373 5,996 5,996 1,385

Cities 433 433 433 440 440 440

Sample excludes coastal cities coastal cities coastal cities mountainous cities mountainous cities mountainous cities

City FE YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

Notes: this table presents a robustness check to Tables 2 and 3, excluding cities with “extreme” topographies from the sample. Each observation is a city-year. Columns (1), (2) and (4), (5) are equivalent to columns (3), (4)

in Table 1. They report OLS estimates of the first-stage relationship between city shape and area and the instruments discussed in Section 5.1. Columns (3) and (6) are equivalent to column (2) in Table 3, and report IV

estimates of the impact of shape on log city population. Shape is captured by the disconnection index, which measures the average length of trips within the city footprint, in km. The construction of the potential footprint is

based on a city-specific model for city expansion – see Section 5.1. Columns (1) to (3) exclude from the sample cities located within 5 km from the coast. Columns (4) to (6) exclude from the sample cities with an elevation

above 600 m. City shape and area are calculated from maps constructed from the DMSP/OLS Night-time Lights dataset (1992-2010) and U.S. Army maps (1951). Population is drawn from the Census of India (1951, 1991,

2001, 2011). Elevation is from the ASTER dataset. All specifications include city and year fixed effects. Standard errors are clustered at the city level. *** p<0.01,** p<0.05,* p<0.1. 

Table 4: First Stage and Impact of City Shape on Population, Robustness to Excluding Cities with Extreme Topographies
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

IV IV OLS IV IV OLS IV IV OLS

Shape of actual 

footprint, km 0.109*** 0.0381 0.0538*** 0.0996*** 0.0626 0.0586*** 0.112*** 0.0600* 0.0512***

(0.0275) (0.0386) (0.0172) (0.0336) (0.0536) (0.0150) (0.0300) (0.0360) (0.0181)

Log area of actual 

footprint, km
2 -0.409 -0.0478 -0.167 -0.00936 -0.337 -0.0308

(0.390) (0.0356) (0.465) (0.0516) (0.392) (0.0478)

Observations 2,009 2,009 2,009 1,075 1,075 1,075 1,517 1,517 1,517

Model for common rate city-specific common rate city-specific common rate city-specific

City FE YES YES YES YES YES YES YES YES YES

Year FE YES YES YES YES YES YES YES YES YES

Table 5: Impact of City Shape on Wages

Notes: this table reports estimates of relationship between city shape and average wages. Each observation is a city-year. The dependent variable is the log urban average of individual yearly wages in the city’s district, in thousand 2014

Rupees. The explanatory variables are city shape, in km, and log city area, in km
2
. Columns (1), (4), (7) report the results from estimating equation (47) (single-instrument specification) by IV. Columns (2), (5), (8) report the results from

estimating equation (42) (double-instrument specification) by IV. Instruments are described in Section 5.2. Columns (3), (6), (9) report the same specification, estimated by OLS. The construction of the potential footprint is based on a

common rate model for city expansion in columns (1), (4) and (7), and on a city-specific one in columns (2), (5), (8) – see Section 5.1. In columns (4), (5), (6) the sample is restricted to districts containing only one city. In columns (7), (8),

(9), the sample is restricted to cities that are either the only ones or the top ones in their respective districts. Shape is captured by the disconnection index, which measures the average length of trips within the city footprint, in km. City

shape and area are calculated from maps constructed from the DMSP/OLS Night-time Lights dataset (1992-2010). Wages are from the Annual Survey of Industries, waves 1990, 1994, 1995, 1997, 1998, 2009, 2010. All specifications

include city and year fixed effects. Standard errors are clustered at the city level. *** p<0.01,** p<0.05,* p<0.1. 

Dependent variable: log wage

All districts Only districts with one city Only top city per district
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

IV IV OLS IV IV OLS IV IV OLS

Shape of actual 

footprint, km
-0.303 -0.596 0.00204 -0.636 -0.518* -0.00857 -0.198 -0.684 0.0107

(0.758) (0.396) (0.0505) (1.661) (0.285) (0.0736) (0.806) (0.538) (0.0516)

Log area of actual 

footprint, km
2 -1.529 -0.0176 -0.919 -0.0632 -1.407 -0.0355

(1.409) (0.0847) (0.870) (0.108) (1.582) (0.0962)

Observations 895 895 895 476 476 476 711 711 711

Shape of actual 

footprint, km
-0.274 -0.675 -0.00526 -0.595 -0.594* -0.00736 -0.143 -0.790 0.00685

(0.752) (0.432) (0.0577) (1.626) (0.324) (0.0825) (0.780) (0.604) (0.0590)

Log area of actual 

footprint, km
2 -1.649 -0.00333 -1.040 -0.0485 -1.586 -0.0141

(1.542) (0.0976) (0.990) (0.125) (1.786) (0.110)

Observations 895 895 895 476 476 476 711 711 711

Model for common rate city-specific common rate city-specific common rate city-specific

City FE YES YES YES YES YES YES YES YES YES

Year FE YES YES YES YES YES YES YES YES YES

Notes: this table reports estimates of relationship between city shape and average housing rents. Each observation is a city-year. In panel A, the dependent variable is the log urban average of housing rent per m
2

in the city’s district, in

2014 Rupees. In panel B the dependent variable is analogous, but the average is calculated considering only the top 50% of the district’s distribution of rents per m
2
. The explanatory variables are city shape, in km, and log city area, in

km
2
. Columns (1), (4), (7) report the results from estimating equation (47) (single-instrument specification) by IV. Columns (2), (5), (8) report the results from estimating equation (42) (double-instrument specification) by IV. Instruments

are described in Section 5.2. Columns (3), (6), (9) report the same specification, estimated by OLS. The construction of the potential footprint is based on a common rate model for city expansion in columns (1), (4) and (7), and on a city-

specific one in columns (2), (5), (8) – see Section 5.1. In columns (4), (5), (6), the sample is restricted to districts containing only one city. In columns (7), (8), (9) the sample is restricted to cities that are either the only ones or the top

ones in their respective districts. Shape is captured by the disconnection index, which measures the average length of trips within the city footprint, in km. City shape and area are calculated from maps constructed from the DMSP/OLS

Night-time Lights dataset (1992-2010). Housing rents are from the NSS Household Consumer Expenditure Survey, rounds 62 (2005-2006), 63 (2006-2007) and 64 (2007-2008). All specifications include city and year fixed effects.

Standard errors are clustered at the city level. *** p<0.01,** p<0.05,* p<0.1. 

B. Dependent variable: log yearly rent per square meter, upper 50%

Table 6: Impact of City Shape on Housing Rents

All districts Only districts with one city Only top city per district

A. Dependent variable: log yearly rent per square meter
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

IV IV IV IV IV IV IV IV IV

Norm. shape -303.1** -286.2* -177.2** -327.6*** -306.2*** -204.8*** -275.6*** -254.3*** -136.3***

(154.0) (149.4) (78.11) (103.8) (98.46) (54.16) (93.29) (89.68) (45.02)

Norm. shape  x                                        

state motor vehicles, 1990 0.000117 0.000113 0.000138

(0.000416) (0.000394) (0.000189)

Norm. shape  x                              

urban road density, 1981 1.955** 1.848** 1.485***

(0.827) (0.779) (0.451)

Norm. shape  x                                        

state urban road density, 1991 3.15e-06 0.000138 0.000638**

(0.000339) (0.000319) (0.000315)

Observations 1,140 1,140 1,140 1,205 1,205 1,205 1,199 1,199 1,199

Norm. shape -119.8** -113.8** -59.04*** -97.25*** -91.21*** -54.40*** -84.00*** -78.69*** -35.86***

(48.61) (48.52) (18.15) (33.05) (31.33) (13.49) (28.86) (28.23) (9.572)

Norm. shape  x                                        

state motor vehicles, 1990 0.000200** 0.000196* 0.000101**

(9.88e-05) (0.000102) (4.18e-05)

Norm. shape  x                              

urban road density, 1981 0.513** 0.487** 0.397***

(0.255) (0.240) (0.126)

Norm. shape  x                                        

state urban road density, 1991 2.75e-05 6.33e-05 0.000259**

(0.000132) (0.000125) (0.000108)

Observations 1,140 1,140 1,140 1,205 1,205 1,205 1,199 1,199 1,199

Model for common rate common rate city-specific common rate common rate city-specific common rate common rate city-specific

City FE YES YES YES YES YES YES YES YES YES

Year FE YES YES YES YES YES YES YES YES YES

Year FE x Banks in 1981 NO YES YES NO YES YES NO YES YES

Table 7: Interactions of City Shape with Infrastructure

Dependent variable: population density

A. Shape Metric: Disconnection

B. Shape Metric: Range

Notes: this table investigates the impact of shape, interacted with infrastructure, on population. Each observation is a city-year. All columns report IV estimates of a specification similar to equation (45) (single-instrument specification), 

augmented with an interaction between normalized shape and different infrastructure proxies. The dependent variable is population density, in thousands of inhabitants per km
2
. The construction of the potential footprint is based on a 

common rate model for city expansion in columns (1), (2), (4), (5), (7), (8) and on a city-specific one in columns (3), (6) and (9) – see Section 5.1. The shape metrics considered are normalized disconnection in Panel A, and normalized 

range in Panel B. Disconnection is the average length of within-city trips. Range is the maximum length of within-city trips. In columns (1) , (2) and (3), normalized shape is interacted with the number of motor vehicles in the state in 

1989-1990 (source: Industrial Data Book 2002-03). In columns (4), (5) and (6) normalized shape is interacted with urban road density in the city, as reported in the 1981 Census. In columns (7), (8), and (9), normalized shape is 

interacted with state urban road density in year 1991 (source: Ministry of Road Transport and Highways). City shape and area are calculated from maps constructed from the DMSP/OLS Night-time Lights dataset (1992-2010) and U.S. 

Army maps (1951). Population is drawn from the Census of India (1951, 1991, 2001, 2011). All specifications include city and year fixed effects. Specifications in columns (2), (3), (5), (6), (8) and (9) also include year fixed effects 

interacted with the number of banks in 1981. Standard errors are clustered at the city level. *** p<0.01,** p<0.05,* p<0.1. 
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

IV IV OLS IV IV OLS IV IV OLS

Shape  of actual 

footprint, km -0.0431 -0.134** -0.0353** -0.0501*** -0.113** -0.0498*** 0.174* 0.195* -0.00698

(0.0437) (0.0540) (0.0167) (0.0185) (0.0561) (0.0169) (0.0940) (0.118) (0.0312)

Log area of actual 

footprint, km
2

0.592 0.134 0.264 0.0501 0.438 0.141

(0.492) (0.0829) (0.633) (0.0938) (1.483) (0.120)

Observations 1,067 1,067 1,067 1,067 1,067 1,067 822 822 822

Model for common rate city-specific common rate city-specific common rate city-specific

City FE YES YES YES YES YES YES YES YES YES

Year FE YES YES YES YES YES YES YES YES YES

Table 8: Impact of City Shape on Housing Quality

Notes: this table reports estimates of relationship between city shape and proxies for housing quality. Each observation is a city-year. Columns (1), (4), (7) report the results from estimating equation (47) (single-instrument

specification) by IV. Columns (2), (5), (8) report the results from estimating equation (42) (double-instrument specification) by IV. Columns (3), (6), (9) report the same specification, estimated by OLS. The explanatory variables

are shape, in km, and log city area, in km
2
. Instruments are described in Section 5.2. The construction of the potential footprint is based on a common rate model for city expansion in columns (1), (4), and (7), and on a city-

specific one in columns (2), (5), (8) – see Section 5.1. The dependent variables are the following: log slum population in the city (columns (1), (2), (3)), log of the share of slum to total population in the city (columns (4), (5), (6)),

and a housing quality principal component index (columns (7), (8), (9)). Data on slums is drawn from the 1991, 2001, and 2011 Census. The housing quality index is the city-year average of a principal component index based on

the following characteristics of Census houses: roof, wall, and floor material, availability of running water and toilet in-premise. The source is the 2001 and 2011 Census. Shape is captured by the disconnection index, which

measures the average length of trips within the city footprint, in km. City shape and area are calculated from maps constructed from the DMSP/OLS Night-time Lights dataset (1992-2010). All specifications include city and year

fixed effects. Standard errors are clustered at the city level. *** p<0.01,** p<0.05,* p<0.1. 

Log slum population shareLog slum population Housing  index
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(1) (2) (3) (4) (5) (6)

OLS OLS OLS OLS OLS OLS

Norm. shape of 

actual footprint

Shape              

of actual 

footprint, km

Log area          

of actual 

footprint, km
2

Norm. shape 

of actual 

footprint

Shape                      

of actual 

footprint, km

Log area                     

of actual 

footprint, km
2

Norm. shape of potential footprint 0.435*** 0.337***

(0.123) (0.117)

-0.0908** -0.0571

(0.0452) (0.0371)

Log projected historic population 2.998 1.984** 1.322 1.086*

(2.758) (0.795) (1.841) (0.647)

-1.958* -0.686** -1.315* -0.342

(1.023) (0.319) (0.779) (0.270)

Shape of potential footprint, km 0.156 -0.186 0.235 0.0928

(1.182) (0.233) -0.671 (0.187)

0.665 0.135 0.617** 0.0244

(0.487) (0.106) (0.279) (0.0810)

Observations 1,183 1,183 1,183 1,183 1,183 1,183

Model for common rate city-specific city-specific common rate city-specific city-specific

IV IV OLS IV IV OLS

Population 

Density
Log population Log population

Population 

Density
Log population Log population

Shape of actual footprint, km -0.0979 0.0509 -0.271** 0.0283

(0.124) (0.0312) (0.122) (0.0285)

0.00290 -0.0160 0.0688* -0.00767

(0.0472) (0.0129) (0.0371) (0.0103)

Log area of actual footprint, km
2

0.683** 0.0109 0.828*** -0.0443

(0.338) (0.128) (0.308) (0.103)

0.0995 0.0665 0.00166 0.0981***

(0.116) (0.0471) (0.0886) (0.0368)

Norm. shape of actual footprint -97.49 -85.46

(102.5) (108.1)

-10.91 -16.89

(43.88) (45.12)

Observations 252 252 252 252 252 252

Model for common rate city-specific common rate city-specific

FAR average average average residential residential residential

City FE YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

Norm. shape of actual footprint                             

x FAR

Notes: each observation is a city-year. Panel A of this table reports estimates of the first-stage relationship between Floor Area Ratios, city shape, and area. Columns (1), (2), (3) and

(4), (5), (6), panel A, report the same specifications reported in Table 2, with the addition of interactions between each instrument and FARs. Panel B reports estimates of the

relationship between Floor Area Ratios, shape, and population. Columns (1), (2), (3) and (4), (5), (6), panel B, report the same specifications reported in Table 3, with the addition of

interactions between each explanatory variable and FARs. FARs are drawn from Sridhar (2010) and correspond to the maximum allowed Floor Area Ratios in each city as of the mid-

2000s. FARs are expressed as ratios of the total floor area of a building over the area of the plot on which it sits. Columns (1), (2), (3) consider the average of residential and non-

residential FARs, while columns (4), (5), (6) only consider residential FARs. Shape is captured by the disconnection index, which measures the average length of trips within the city

footprint, in km. City shape and area are calculated from maps constructed from the DMSP/OLS Night-time Lights dataset (1992-2010) and U.S. Army maps (1951). Population is

from the Census (1951, 1991, 2001, 2011). Population density is measured in thousands of inhabitants per km
2
. All specifications include city and year fixed effects. Standard errors

are clustered at the city level. *** p<0.01,** p<0.05,* p<0.1. 

Table 9: Urban Form and Floor Area Ratios

B. Impact of city shape and FARs on population

A. First-stage impact of FARs on city shape

Shape of potential footprint, km                        

x FAR

Log projected historic population         

x FAR

Norm. shape of potential footprint                                  

x FAR

Shape of actual footprint, km                                     

x FAR

Log area of actual footprint, km
2                               

x FAR
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(1) (2) (3) (4) (5) (6)

IV IV OLS IV IV OLS

Shape of actual footprint, km 0.000290 0.0508 0.021 0.00515 0.0715* 0.0439**

(0.00741) (0.0409) (0.0140) (0.00914) (0.0401) (0.0199)

Log area of actual footprint, km
2

-0.190 -0.105* -0.280 -0.177**

(0.179) (0.0540) (0.176) (0.0876)

Observations 55 55 55 55 55 55

Model for common rate city-specific common rate city-specific

Notes: This table investigates the cross-sectional relationship between city shape, city area, and Floor Area Ratios as of year 2005. Each observation is a city in year 2005.

Columns (1) and (4) estimate a cross-sectional version of equation (47) (single-instrument specification), with log FARs as a dependent variable, estimated by IV. Columns (2) and

(5) estimate a cross-sectional version of equation (42) (double-instrument specification), with log FARs as a dependent variable, estimated by IV. Columns (3) and (6) present the

same specification, estimated by OLS. FARs are drawn from Sridhar (2010) and correspond to the maximum allowed Floor Area Ratios in each city as of the mid-2000s. FARs are

expressed as ratios of the total floor area of a building over the area of the plot on which it sits. Columns (1), (2), (3) consider the average of residential and non-residential FARs,

while columns (4), (5), (6) only consider residential FARs. Shape is captured by the disconnection index, which measures the average length of trips within the city footprint, in km.

City shape and area are calculated from maps constructed from the DMSP/OLS Night-time Lights dataset, in year 2005. Standard errors are clustered at the city level. ***

p<0.01,** p<0.05,* p<0.1. 

Avg. FAR Residential FAR

Table 9 (continued): Urban Form and Floor Area Ratios

C. FARs Determinants, 2005
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(1) (2) (3) (4) (5) (6)

IV IV OLS IV IV OLS

Road density, km/km
2 Log road length, km Log road length, km Road density, km/km

2 Log road length, km Log road length, km

Norm. shape of actual footprint 9.131 -3.563

(16.44) (3.816)

Shape of actual footprint, km -0.0769* 0.0231** -0.0237** 0.00655**

(0.0429) (0.0111) (0.0109) (0.00320)

Log area of actual footprint, km
2

1.292*** 0.861*** 1.279*** 0.871***

(0.147) (0.0415) (0.115) (0.0379)

Observations 429 429 429 429 429 429

Road density                           

per capita

Log road length      per 

capita

Log road length                      

per capita

Road density                            

per capita

Log road length                      

per capita

Log road length                       

per capita

Norm. shape of actual footprint -0.0377 -0.0152

(0.0785) (0.0211)

Shape of actual footprint, km 0.0403 -0.0677*** 0.00753 -0.0190***

(0.0467) (0.0149) (0.0111) (0.00427)

Log area of actual footprint, km
2

-0.201 0.346*** -0.143 0.317***

(0.178) (0.0597) (0.138) (0.0547)

Observations 429 429 429 429 429 429

Model for common rate city-specific common rate city-specific

Shape metric disconnection disconnection disconnection range range range

Notes: This table estimates the cross-sectional relationship between city shape, city area, and road network as of year 2010. Panel A considers total road length and panel B considers road length per capita. Each observation is a city in

year 2010. Columns (1) and (4) estimate a cross-sectional version of equation (45) (single-instrument specification), estimated by IV. In columns (1), (4), panel A, the dependent variable is road density in the footprint, in km per km
2
. In

columns (1), (4), panel B, the dependent variable is road density per capita, in in km per km
2

per thousand inhabitants. Columns (2) and (5) estimate a cross-sectional version of equation (42) (double-instrument specification), estimated

by IV. Columns (3) and (6) present the same specification, estimated by OLS. In columns (2), (3), (5), (6), panel A, the dependent variable is log road length in the footprint, in km. In columns (2), (3), (5), (6), panel B, the dependent

variable is log road length per capita in the footprint, in km per thousand inhabitants. The construction of the potential footprint is based on a city-specific model for city expansion in columns (1) and (4), and on a common rate one in

columns (2) and (5) – see Section 5.1. Road length is computed based on current (2014) Openstreetmap maps of Indian cities, focusing on roads denoted as “trunk”, “primary”, or “secondary”. Disconnection is the average length of

trips within the city footprint, in km. Range is the longest possible within-footprint trip, in km. City shape and area are calculated from maps constructed from the DMSP/OLS Night-time Lights dataset, in year 2010. Standard errors are

clustered at the city level. *** p<0.01,** p<0.05,* p<0.1. 

A. Total Roads

B. Roads per capita

Table 10: Impact of City Shape on Road Network, 2010
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(1) (2) (3) (4) (5) (6)

IV IV OLS IV IV OLS

Subcenters /km
2 Log subcenters Log subcenters Subcenters /km

2 Log subcenters Log subcenters

Norm. shape of actual footprint -0.371 -0.563

(0.507) (2.632)

Shape of actual footprint, km -0.0639* -0.0579*** -0.0860 -0.0808***

(0.0379) (0.0154) (0.0763) (0.0214)

Log area of actual footprint, km
2

0.611*** 0.571*** 0.608*** 0.574***

(0.125) (0.0568) (0.165) (0.0575)

Observations 188 188 188 188 188 188

Model for common rate city-specific common rate city-specific

Shape metric disconnection disconnection disconnection remoteness remoteness remoteness

Table 11: Impact of City Shape on the Number of Employment Subcenters, 2005

Notes: This table investigates the cross-sectional relationship between city shape, city area, and the number of employment subcenters in year 2005. Each observation is a city in year 2005. The dependent

variables are the number of subcenters per km
2

(columns (1) and (4)), and the log number of employment subcenters (columns (2), (3), (5), (6)). Columns (1) and (4) estimate a cross-sectional version of

equation (45) (single-instrument specification), estimated by IV. Columns (2) and (5) estimate a cross-sectional version of equation (42) (double-instrument specification), estimated by IV. Columns (3) and (6)

present the same specification, estimated by OLS. The construction of the potential footprint is based on a common rate model for city expansion in columns (1) and (4), and on a city-specific one in in columns

(2) and (5) – see Section 5.1. The shape metrics considered are the disconnection index (columns (1), (2), (3)) and remoteness index (columns (4), (5), (6)). Disconnection is the average length of trips within

the city footprint, in km. Remoteness is the average length of trips to the centroid, in km. The procedure used to determine the number of subcenters in each city is drawn from McMillen (2001) and detailed in

the Appendix. Data on the spatial distribution of employment is derived from the urban Directories of Establishments, from the 2005 Economic Census. City shape and area is calculated from maps constructed

from the DMSP/OLS Night-time Lights dataset, in year 2005. 
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(1) (2)

IV IV

Population density Log population

Norm. shape of actual footprint -348.5***

(118.0)

Shape of actual footprint, km -0.194***

(0.0596)

Log area of actual footprint, km
2

0.973***

(0.222)

Observations 1,440 1,440

Model for common rate city-specific

City FE YES YES

Year FE YES YES

Initial shape x year FE YES YES

Appendix Table 1: Impact of Shape on Population, Robustness to Initial Shape x Year Fixed Effects

Notes: this table presents a robustness check to Table 3, augmenting the specification with year fixed effects interacted with initial shape. Each observation is

a city-year. Columns (1) and (2) are equivalent to columns (1) and (2) in Table 3. Column (1) reports IV estimates of the relationship between normalized city

shape and population density, in thousand inhabitants per km
2
. Column (2) reports IV estimates of the relationship between city shape and area, and log

pulation. Shape is captured by the disconnection index, which measures the average length of trips within the city footprint, in km. The construction of the

potential footprint is based on a common rate model for city expansion in column (1) and on a city-specific one in column (2) – see Section 5.1. City shape

and area are calculated from maps constructed from the DMSP/OLS Night-time Lights dataset (1992-2010) and U.S. Army maps (1951). Population is drawn

from the Census of India (1951, 1991, 2001, 2011). All specifications include city and year fixed effects, as well as year fixed effects interacted with the city’s

disconnection index measured in the initial year of the panel (1951). Standard errors are clustered at the city level. *** p<0.01,** p<0.05,* p<0.1. 
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(1) (2) (3) (4) (5) (6)

IV IV IV IV IV IV

Shape of actual footprint, km 0.0989*** 0.0116 0.108** 0.0393 0.102*** 0.0381

(0.0272) (0.0420) (0.0421) (0.0768) (0.0298) (0.0386)

Log area of actual footprint, km
2 -0.358 -0.164 -0.274

(0.395) (0.465) (0.379)

Observations 2,009 2,009 1,075 1,075 1,517 1,517

Shape of actual footprint, km -0.634 -0.739+ -1.815 -0.670* -0.454 -0.839

(1.732) (0.487) (6.682) (0.359) (1.799) (0.664)

Log area of actual footprint, km
2 -1.301 -0.619 -1.092

(1.355) (0.807) (1.444)
Observations 895 895 476 476 711 711

Model for common rate city-specific common rate city-specific common rate city-specific

City FE YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

Initial shape x year FE YES YES YES YES YES YES

Appendix Table 2: Impact of Shape on Wages and Rents, Robustness to Initial Shape x Year Fixed Effects

All districts Only districts with one city Only top city per district

A. Dependent variable: log wage

Notes: this table presents a robustness check to Tables 5 and 6, augmenting the specifications with year fixed effects interacted with initial shape. Each observation is a city-year. In panel A the

dependent variable is the log urban average of individual yearly wages in the city’s district, in thousand 2014 Rupees. In panel B the dependent variable is the log urban average of housing

rents per m
2

in the city’s district, in 2014 Rupees. Columns (1), (3), (5) report the results from estimating equation (47) (single-instrument specification) by IV. Columns (2), (4), (6) report the

results from estimating equation (42) (double-instrument specification) by IV. Instruments are described in Section 5.2. The construction of the potential footprint is based on a common rate

model for city expansion in columns (1), (3), (5), and on a city-specific one in columns (2), (4), (6) – see Section 5.1. In columns (3), (4), the sample is restricted to districts containing only one

city. In columns (5), (6), the sample is restricted to cities that are either the only ones or the top ones in their respective districts. Shape is captured by the disconnection index, which measures

the average length of trips within the city footprint, in km. City shape and area are calculated from maps constructed from the DMSP/OLS Night-time Lights dataset (1992-2010). Wages are

from the Annual Survey of Industries, waves 1990, 1994, 1995, 1997, 1998, 2009, 2010. Housing rents are from the NSS Household Consumer Expenditure Survey, rounds 62 (2005-2006), 63

(2006-2007) and 64 (2007-2008). All specifications include city and year fixed effects, as well as year fixed effects interacted with the city’s disconnection index measured in the initial year of the 

panel (1951). Standard errors are clustered at the city level. *** p<0.01,** p<0.05,* p<0.1. 

B. Dependent variable: log yearly rent per square meter
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Figure 1:  

 U.S. Army India and Pakistan Topographic Maps  

64 

Figure 1B 

Figure 1A 



Figure 2 

 DMS/OLS nighttime lights, year 1992, luminosity threshold : 40. 
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Figure 3 

Shape metrics: an example 
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Kolkata 

 
Bengaluru 

Shape metric     Normalized 
 

  Normalized 

remoteness, km 
 

14.8 0.99 
 

10.3 0.69 

spin, km
2
 

 
288.4 1.29 

 
120.9 0.54 

disconnection, km 
 

20.2 1.35 
 

14 0.94 

range, km 
 

62.5 4.18 
 

36.6 2.45 

 



Figure 4 

 Developable vs. constrained land 
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Figure 5 

Instrument construction 
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Figure 5a 

Figure 5b 



Figure 5 

Instrument construction 
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Figure 5c 

Figure 5d 


