# Price Salience and Social Comparisons as Policy Instruments: Evidence from a Field Experiment in Energy Usage

José A. Pellerano<sup>1</sup> Michael K. Price<sup>2</sup> Steven L. Puller<sup>3</sup> Gonzalo E. Sánchez<sup>4</sup>

<sup>1</sup>Universidad Iberoamericana

<sup>2</sup>Georgia State University and NBER

<sup>3</sup>Texas A&M University, NBER, The E2e Project

<sup>4</sup>Escuela Superior Politécnica del Litoral, ESPOL

November 2015

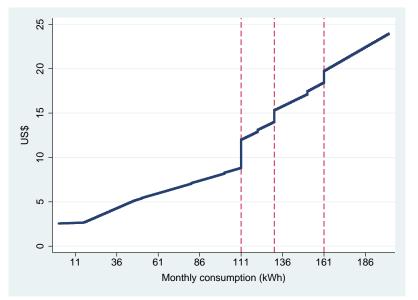
- Many settings have non-linear price incentive schemes
  - Utility tariffs in electricity, gas, water

- Many settings have non-linear price incentive schemes
  - Utility tariffs in electricity, gas, water
- Salience/understanding of non-linearity → behavior
  - Electricity consumption (Kahn & Wolak, 2013)

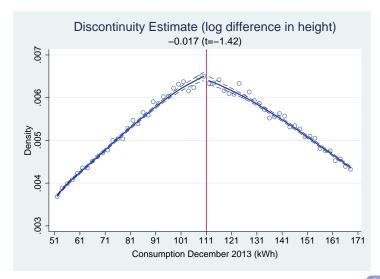
- Many settings have non-linear price incentive schemes
  - Utility tariffs in electricity, gas, water
- Salience/understanding of non-linearity → behavior
  - Electricity consumption (Kahn & Wolak, 2013)
- Social comparisons change energy consumption
  - Schultz et al., 2007; Allcott, 2011; Costa & Kahn, 2013

- Many settings have non-linear price incentive schemes
  - Utility tariffs in electricity, gas, water
- Salience/understanding of non-linearity → behavior
  - Electricity consumption (Kahn & Wolak, 2013)
- Social comparisons change energy consumption
  - Schultz et al., 2007; Allcott, 2011; Costa & Kahn, 2013
- In a common setting, we evaluate the relative strength of two types of information interventions.

# Motivation 2. Subsidized Energy in Developing Countries


# Motivation 2. Subsidized Energy in Developing Countries

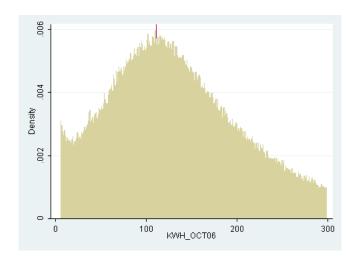
- Electricity (and other fuels) are highly subsidized
  - In Ecuador, cost of electricity subsidies is \$438 million (2% of public sector expenditures)
- Politics makes increasing prices difficult
  - Cost to electricity consumers would increase 27% if subsidies removed
- Can consumption be reduced by non-price means?
  - Reduces emissions
  - Reduces funds allocated to subsidies


### Residential Electricity in Quito

- We partner with the Electric Utility in Quito, Ecuador (EEQ)
- EEQ's tariff has Notches

# **Example of Total Tariff Function in Quito**

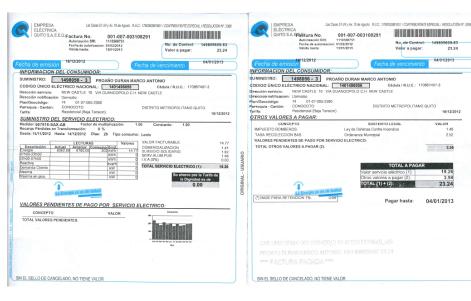



## **Pre-treatment Evidence of No Bunching**



Approach: "McCrary Test"




# Mode in Consumption around 110 existed prior to notch's creation in 2007



## Residential Electricity in Quito

- We partner with the Electric Utility in Quito, Ecuador (EEQ)
- EEQ's tariff has Notches
- Biggest notch (at 111 kwh) does not appear to induce consumption reduction around the notch
- Bill design suggests that salience is a cause

### **Electricity Bill**



## Residential Electricity in Quito

- We partner with the Electric Utility in Quito, Ecuador (EEQ)
- EEQ's tariff has Notches
- Biggest notch (at 111 kwh) does not appear to induce consumption reduction around the notch
- Bill design suggests that salience is a cause
- One of our information interventions seeks to make notch salient & measure effect

# **Social Comparisons**

# **Social Comparisons**

- Non-price incentives are used to influence behavior
  - Energy consumption, alcohol and drug use, retirement savings, eating disorders, gambling, voting, tax compliance, recycling...
- Social comparisons are used to encourage conservation
  - Information on private optimum level of consumption
    - Becker (1965)
  - Moral payoff loss of consuming above the social norm
    - Levitt & List (2007)

# **Social Comparisons**

- Non-price incentives are used to influence behavior
  - Energy consumption, alcohol and drug use, retirement savings, eating disorders, gambling, voting, tax compliance, recycling...
- Social comparisons are used to encourage conservation
  - Information on private optimum level of consumption
    - Becker (1965)
  - Moral payoff loss of consuming above the social norm
    - Levitt & List (2007)
- We make salient the typical consumption level for our target population

# **Experimental Design**

# **Experimental Design**

- Information intervention to HHs with historical average consumption between 100 and 125 kWh
- Letters attached to the monthly electric bills in March 2014

# **Experimental Design**

- Information intervention to HHs with historical average consumption between 100 and 125 kWh
- Letters attached to the monthly electric bills in March 2014
- Random assignment of 3 treatments (16k each)
  - 1. Make the 111 kWh price notch salient
  - 2. Make a social comparison (same level as in the notch)
  - 3. Do both
- Control (16k)

Action Shot

SUMINISTRO: XXXXXXX - X

EMPRESA ELÉCTRICA QUITO

Plan/Geocódigo:

#### INFORMACIÓN IMPORTANTE

#### Ahorre Electricidad y Ahorre Dinero

#### Estimado Cliente:

La siguiente información con respecto a su consumo mensual de electricidad durante el año pasado puede ser de su interés.

Su consumo promedio mensual fue aproximadamente: 115 kWh

Un hogar similar al suvo consume en promedio: 110 kWh

Esto significa que durante el año pasado usted consumió aproximadamente 4.5 % más que otros hogares similares. Le exhortamos que haga un uso eficiente de la energía para ahorrar dinero.

Por favor lea con atención los consejos para ahorrar energía que le damos a continuación para que empiece a ahorrar dinero ya! Comparta esta información con los demás miembros del hogar.

- No deje la puerta del refrigerador abierta por mucho tiempo y asegúrese que la puerta cierre herméticamente.
- · No deje el televisor encendido si nadie lo mira.
- · No olvide apagar las luces al salir de una habitación.

¡AHORRE ELECTRICIDAD, AHORRE DINERO!

### **Price Notch Salience Letter**

### IMPORTANT INFORMATION

### Save Electricity and Save Money

Dear Customer:

Electricity in Quito is billed using a progressive pricing system. What this means for you is that there is a large increase in your monthly bill should you consume more than 110 kWh.

We thought that you might be interested in the following information regarding your monthly electricity use over the past year.

### **Price Notch Salience Letter**

### IMPORTANT INFORMATION

### Save Electricity and Save Money

Dear Customer:

Electricity in Quito is billed using a progressive pricing system. What this means for you is that there is a large increase in your monthly bill should you consume more than 110 kWh.

We thought that you might be interested in the following information regarding your monthly electricity use over the past year.

Your average consumption was:

115 kWh

### Price Notch Salience Letter Cont...

This means that you have paid around \$12 a month for the electricity you use (\$144 per year). If you were to reduce your electricity use by 5 kWh per month (around 4% of your average consumption), your bill would be reduced by nearly 47% and would save approximately \$64 per year. We encourage you to use energy wisely to save money.

### Price Notch Salience Letter Cont...

This means that you have paid around \$12 a month for the electricity you use (\$144 per year). If you were to reduce your electricity use by 5 kWh per month (around 4% of your average consumption), your bill would be reduced by nearly 47% and would save approximately \$64 per year. We encourage you to use energy wisely to save money.

Please read carefully the following savings tips so you can start saving electricity now. Share this information with all the other members of the household.

- Don't leave the refrigerator door open for too long and make sure it closes tightly
- Turn off the television if nobody is watching it
- Don't forget to turn off the lights when leaving a room

# **Social Comparison Letter**

Same Intro...

### **Social Comparison Letter**

Same Intro...

We thought that you might be interested in the following information regarding your monthly electricity use over the past year.

Your average consumption was:

115 kWh

The average household like you consumes:

110 kWh

This means that you have consumed approximately 5% more electricity per month than others like you. We encourage you to use energy wisely to save money.

### **Social Comparison Letter**

Same Intro...

We thought that you might be interested in the following information regarding your monthly electricity use over the past year.

Your average consumption was:

115 kWh

The average household like you consumes:

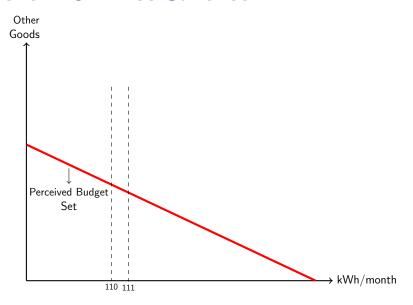
110 kWh

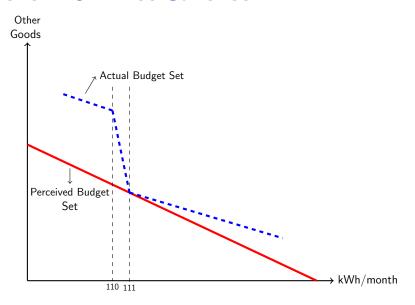
This means that you have consumed approximately 5% more electricity per month than others like you. We encourage you to use energy wisely to save money.

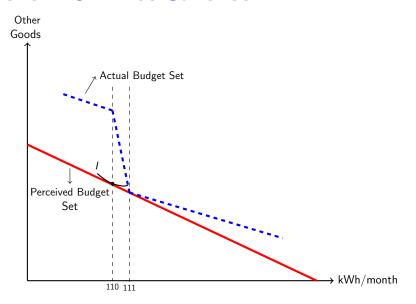
Same Ending...

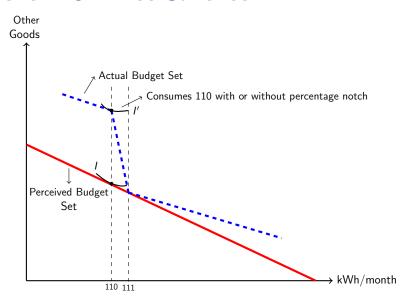
# **Conceptual Framework**

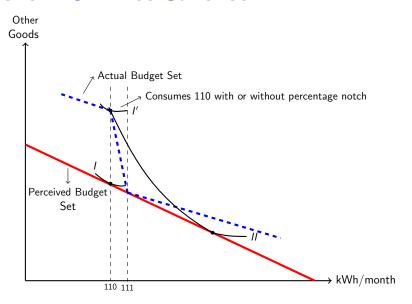
• Information intervention changes (perceived) budget set

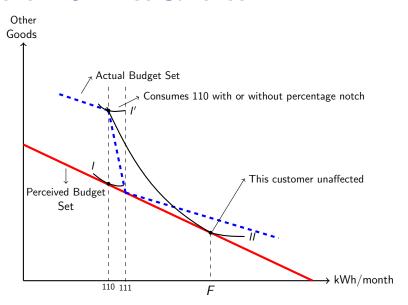

- Information intervention changes (perceived) budget set
  - Prior to treatment: HHs assume tariff is linear with marginal price = average price at 111kwh

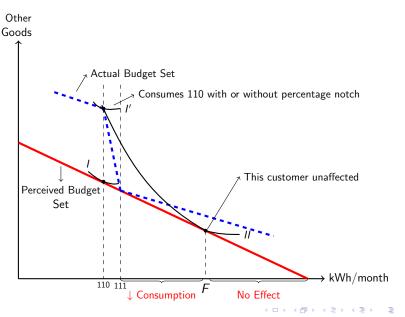

- Information intervention changes (perceived) budget set
  - Prior to treatment: HHs assume tariff is linear with marginal price = average price at 111kwh
  - ullet Price Salience o information that tariff is notched rather than linear

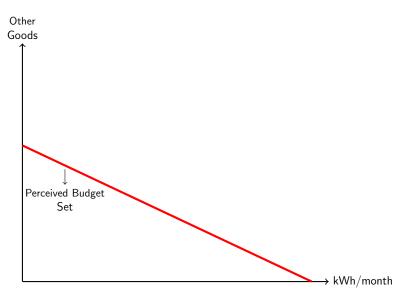

- Information intervention changes (perceived) budget set
  - Prior to treatment: HHs assume tariff is linear with marginal price = average price at 111kwh
  - **Price Salience**  $\rightarrow$  information that tariff is notched rather than linear
  - Social Comparison → adds a linear moral cost of consuming above the norm (Levitt & List, 2007)

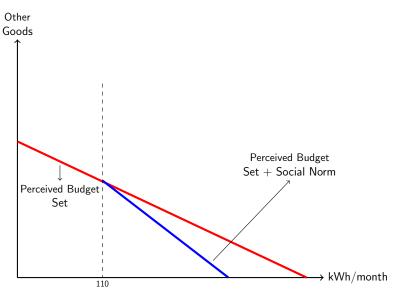

- Information intervention changes (perceived) budget set
  - Prior to treatment: HHs assume tariff is linear with marginal price = average price at 111kwh
  - **Price Salience**  $\rightarrow$  information that tariff is notched rather than linear
  - Social Comparison → adds a linear moral cost of consuming above the norm (Levitt & List, 2007)
- But households face optimization frictions, so "noise" is added to predictions

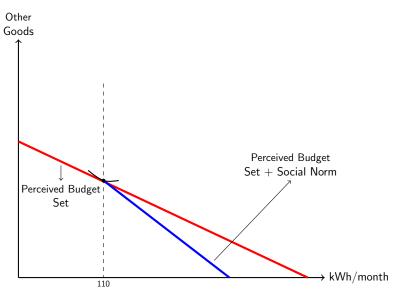

### **Above 110: Price Salience**

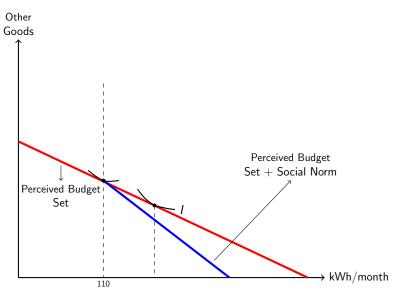


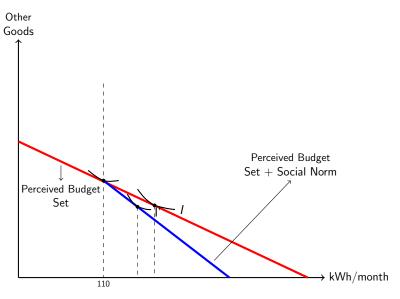



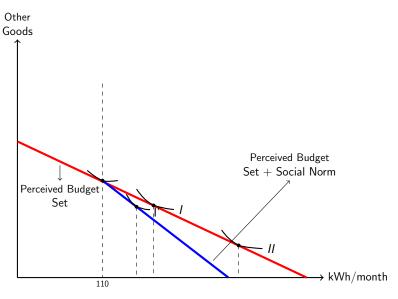



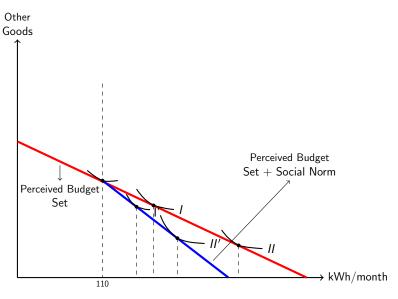





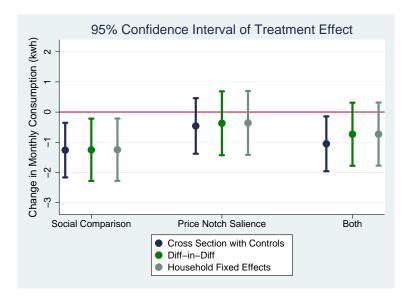




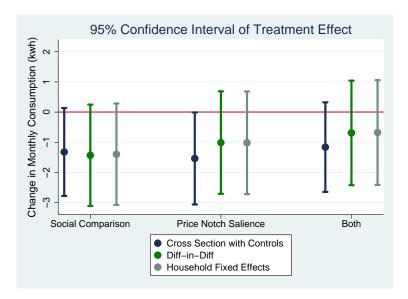





## **Results**


#### Results

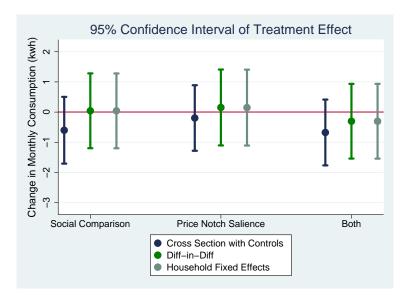
- We study 3 post-treatment months (April-June 2014)
  - Data: household-level monthly consumption
  - Split results by whether historically "Above" or "Below" 110
- One time treatment so decay likely
- We interpret as the effect of a one-time (low-cost) information intervention



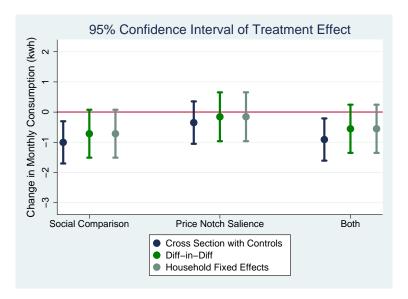



## ATE Estimates - Above 110




## ATE Estimates - 111-115



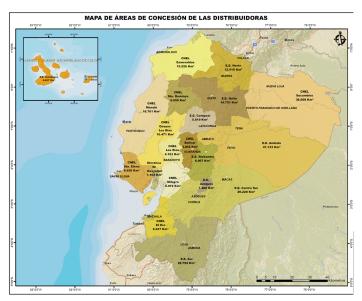

### ATE Estimates - 116-125



#### ATE Estimates - Below 110



#### **ATE Estimates - Above & Below**



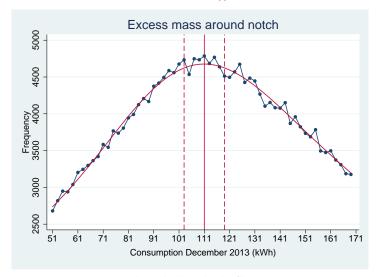

## **Summary**

- Social comparison treatment reduces consumption:
  - 1.0% reduction in 3 months after treatment
  - Compare to 2% effects of (longer-term) OPOWER Home Energy Reports
  - $\bullet$  Equivalent to turning off 60 Watt bulb for  $\approx$  half hour per day
  - Effect similar for those "just above" and "far above" the benchmark comparison (with precision caveats)
  - Social comparisons may have "wider range"
- Price notch saliency may have effect for those "just above" but overall effect for those above 100 is zero/small
- Suggests that incentive to conserve is "linear in distance to comparison" for Social Comparison, but "non-linear" for Price Notch
- No boomerang for households below 110

## **Thanks**

## **Electricity Distribution in Ecuador**




## **Electricity Use by Households around Notch**

| End Use           | Average Usage |
|-------------------|---------------|
| Refrigerator      | 39.8          |
| Appliances        | 12.8          |
| Television        | 12.7          |
| Lighting          | 9.4           |
| Washing Machine   | 8.0           |
| Water Heater      | 8.0           |
| Iron              | 6.6           |
| Cooking           | 4.0           |
| Music Electronics | 2.8           |
| Heating           | 0.7           |
|                   |               |

Source: ENERINTER Asesoría Energética Internacional, 2012.

Data for EEQ Households with Monthly Avg Usage between 99 and 110kWh

## Pre-treatment evidence #2: effect of notch



Approach: "Excess bunching?"



## **Envelope Stuffing**





## Sample balanced across treatments

Pre-treatment: Average monthly consumption in 2013 (kWh)

| Group                | Count  | Average | Median | Standard<br>Deviation |
|----------------------|--------|---------|--------|-----------------------|
| Control              | 15,875 | 112.39  | 112    | 7.23                  |
| Social Comparison    | 15,854 | 112.34  | 112    | 7.22                  |
| Price Notch Salience | 15,860 | 112.39  | 112    | 7.23                  |
| Both                 | 15,853 | 112.36  | 112    | 7.19                  |





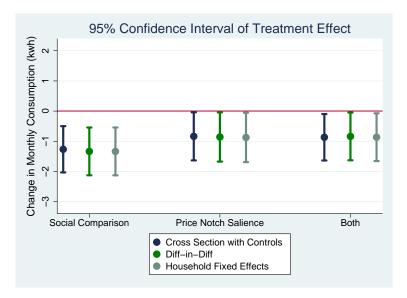
## Sample balanced across treatments

#### Pre-treatment: Average monthly consumption in 2013 (kWh)

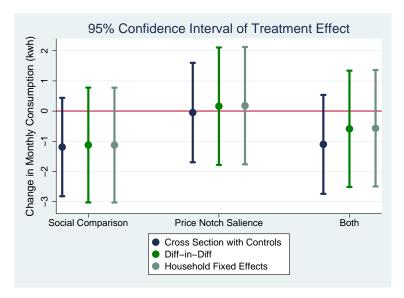
|                                            | Difference | Standard Error | t-statistic | p-value | 95% CI |       |
|--------------------------------------------|------------|----------------|-------------|---------|--------|-------|
| Social Comparison vs. Control              | -0.054     | 0.081          | -0.66       | 0.508   | -0.212 | 0.105 |
| Price Notch Salience vs. Control           | -0.002     | 0.081          | -0.02       | 0.982   | -0.161 | 0.157 |
| Both vs. Control                           | -0.034     | 0.081          | -0.43       | 0.671   | -0.193 | 0.124 |
| Price Notch Salience vs. Social Comparison | 0.052      | 0.081          | 0.64        | 0.523   | -0.107 | 0.211 |
| Both vs. Social Comparison                 | 0.019      | 0.081          | 0.24        | 0.813   | -0.140 | 0.178 |
| Both vs. Price Notch Salience              | -0.033     | 0.081          | -0.40       | 0.687   | -0.192 | 0.126 |






### ATE Estimates - Above 110 Pre-Treatment

| Dependent Variable: Monthly Consumption (kWh)                                    |                                 |                              |                              |                                |                            |                             |                              |
|----------------------------------------------------------------------------------|---------------------------------|------------------------------|------------------------------|--------------------------------|----------------------------|-----------------------------|------------------------------|
|                                                                                  | Cross Section (April-June 2014) |                              |                              | Panel (January 2013-June 2014) |                            |                             |                              |
|                                                                                  |                                 |                              |                              |                                | Diff-in-Diff               | Fixed                       | Effects                      |
|                                                                                  | (1)                             | (2)                          | (3)                          | (4)                            | (5)                        | (6)                         | (7)                          |
| Social Comparison                                                                | -1.362**<br>(0.599)             | -1.317**<br>(0.597)          | -1.247***<br>(0.461)         | -1.259***<br>(0.461)           | -1.250**<br>(0.527)        | -1.245**<br>(0.527)         | -1.245**<br>(0.527)          |
| Price Notch Salience                                                             | -0.378<br>(0.612)               | -0.375<br>(0.609)            | -0.426<br>(0.469)            | -0.459<br>(0.469)              | -0.369<br>(0.539)          | -0.359<br>(0.540)           | -0.359<br>(0.540)            |
| Both                                                                             | -0.760<br>(0.607)               | -0.695<br>(0.604)            | -1.064**<br>(0.464)          | -1.049**<br>(0.463)            | -0.733<br>(0.532)          | -0.729<br>(0.533)           | -0.729<br>(0.533)            |
| Month-by-year FE<br>Avg Q 2013<br>Q 1-2/2014 4-6/2013<br>Route FE<br>Houshold FE | Yes<br>No<br>No<br>No<br>No     | Yes<br>Yes<br>No<br>No<br>No | Yes<br>No<br>Yes<br>No<br>No | Yes<br>No<br>Yes<br>Yes<br>No  | No<br>No<br>No<br>No<br>No | No<br>No<br>No<br>No<br>Yes | Yes<br>No<br>No<br>No<br>Yes |
| Observations                                                                     | 110,242                         | 110,242                      | 110,242                      | 110,242                        | 661,599                    | 661,599                     | 661,599                      |


Robust standard errors clustered at the household level. \*\*\* p<0.01, \*\* p<0.05, \* p<0.1



## ATE Estimates - Above 110, Low Var HHs



## ATE Estimates - Above 110, High Var HHs



## **ATE Estimates - Cross 110**

|                        | Above 110 – treatment moves below | Below 110 – treatment moves above |
|------------------------|-----------------------------------|-----------------------------------|
| Social Comparison      | 0.020***<br>(0.006)               | -0.006<br>(0.007)                 |
| Price Notch Salience   | 0.010*<br>(0.006)                 | -0.012*<br>(0.007)                |
| Both                   | 0.012**<br>(0.006)                | -0.005<br>(0.007)                 |
| Constant               | 0.407***<br>(0.006)               | 0.367***<br>(0.007)               |
| Number of observations | 110,586                           | 75,912                            |

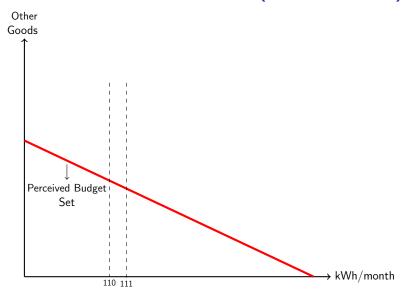
Robust standard errors clustered at the household level.

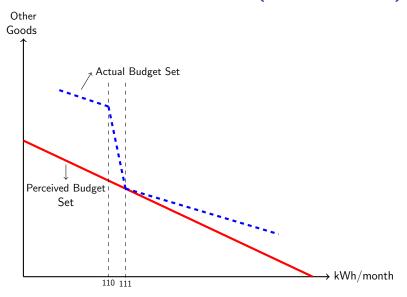
<sup>\*\*\*</sup> p<0.01, \*\* p<0.05, \* p<0.1

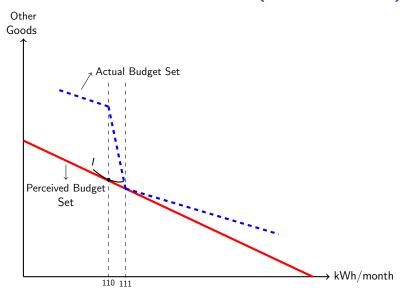
• Information intervention changes (perceived) budget set

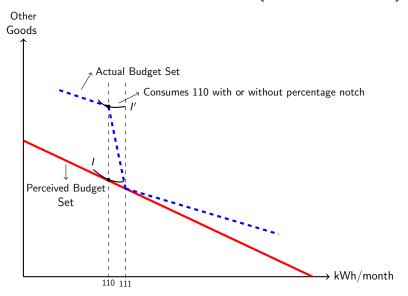
- Information intervention changes (perceived) budget set
  - Initially consider utility maximization with no optimization frictions

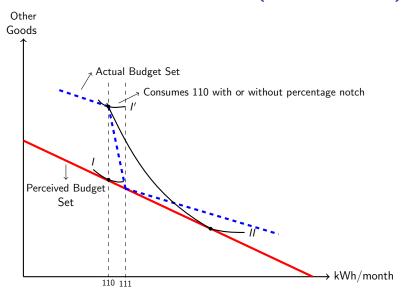
- Information intervention changes (perceived) budget set
  - Initially consider utility maximization with no optimization frictions
  - Prior to treatment: HHs assume tariff is linear with marginal price = average price at 111kwh

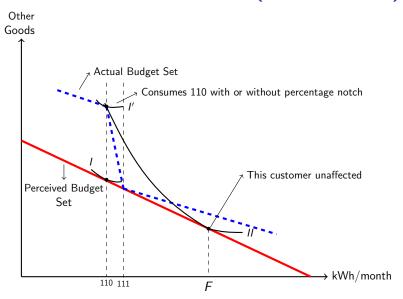

- Information intervention changes (perceived) budget set
  - Initially consider utility maximization with no optimization frictions
  - Prior to treatment: HHs assume tariff is linear with marginal price = average price at 111kwh
  - Price Salience  $\rightarrow$  information that tariff is notched rather than linear

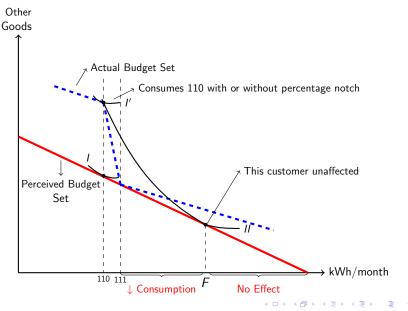

# Conceptual Framework: HHs Historically Above 110


- Information intervention changes (perceived) budget set
  - Initially consider utility maximization with no optimization frictions
  - Prior to treatment: HHs assume tariff is linear with marginal price = average price at 111kwh
  - Price Salience  $\rightarrow$  information that tariff is notched rather than linear
  - Social Comparison  $\rightarrow$  adds a linear moral cost of consuming above the norm (Levitt & List, 2007)

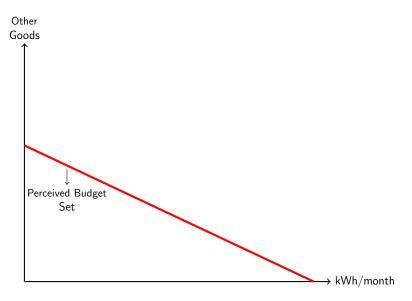

# Conceptual Framework: HHs Historically Above 110

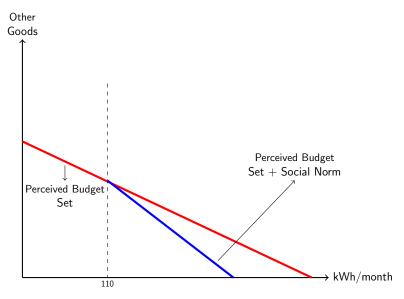

- Information intervention changes (perceived) budget set
  - Initially consider utility maximization with no optimization frictions
  - Prior to treatment: HHs assume tariff is linear with marginal price = average price at 111kwh
  - Price Salience  $\rightarrow$  information that tariff is notched rather than linear
  - Social Comparison  $\rightarrow$  adds a linear moral cost of consuming above the norm (Levitt & List, 2007)
- Add ex post optimization frictions

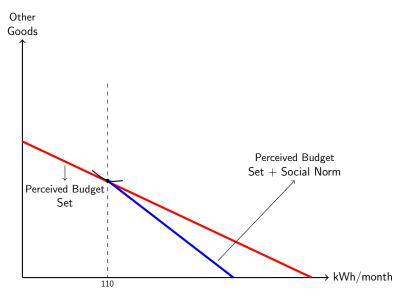


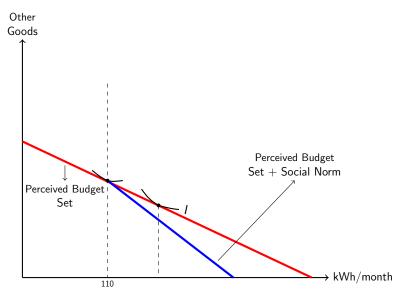





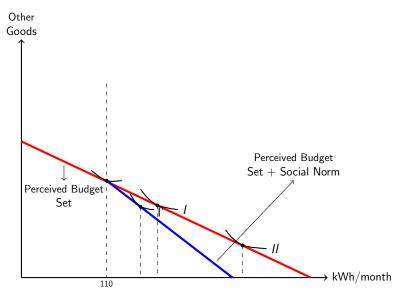



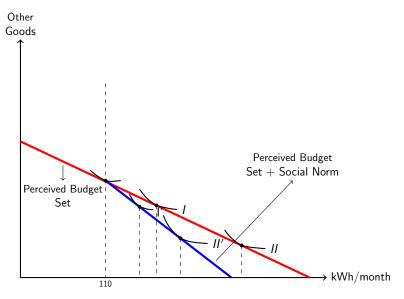





- Predictions:
  - "Just Above" will reduce consumption to the notch
  - "Far Above" unaffected
- .... but consumers cannot fully optimize
  - Cannot perfectly monitor consumption daily
  - Meter read cycle can be +/- a day
- Adds "noise" to these predictions














- Predictions:
  - "Just Above" and "Far Above" will reduce consumption
  - Shift density of consumption to the left
  - Optimization frictions add "noise" to prediction (as with Price Salience)

