Experimental Evidence on the Demand for and Costs of Rural Electrification

November 2015
Catherine Wolfram, UC Berkeley
with Ken Lee and Ted Miguel

Rural Electrification Authority (REA) transformers

In our experiment, we provided households in <u>randomly selected</u> transformer communities with an opportunity to connect to the national grid at a subsidized price.

The experiment generated random variation in:

- 1. Effective connection price (at the community-level)
- 2. Number of households connecting to the grid at the same time from each community

We define "under grid" households

Legend

- (T) Transformer & 600 meter radius
- Households (scaled by household size)
- Businesses
- Public facilities (e.g. schools, health)
- Electrified households
- Electrified businesses
- <u>A</u> Electrified public facilities

Note that the price of a connection is ~\$400.

Source: Lee et al. (2015).

Other under-grid households in Africa

Source: Center for Global Development (CGD).

Step 1: IPA distributes subsidies to households

Step 2: REA extends national grid to households

Step 3: IPA provides "ready boards"

Step 4: Kenya Power installs prepaid meters

Figure 6—Experimental estimates of the welfare implications of rural electrification

Figure 7—Timeline of the rural electrification process

Figure 8—Discrepancies in costs and poles, by contractor

