# The Heterogeneous Effects of Transportation Infrastructure: Evidence from Sub-Sahara Africa

Remi Jedwab (George Washington University)

Adam Storeygard (Tufts University)

#### **WORK IN PROGRESS**

January 2016

### Research Questions

- How has intercity road upgrading affected city growth in Sub-Saharan Africa?
- What are the implications for current/future road-building efforts?
  - ► Almost 20% of World Bank lending on transport as of 2007, 68% of which on roads.
  - Large fraction of network still unpaved
  - ► Trans-African Highway network as coordinating mechanism: 55,000 km of planned highways (vs. 1,000 km of highways in c. 2012).
    - Abidjan-Lagos Motorway: \$8 billion
    - ► LAPSSET Project in Kenya-Ethiopia-South Sudan: \$22 billion
    - Gauteng-Maputo Development Corridor: \$5 billion

#### What We Do

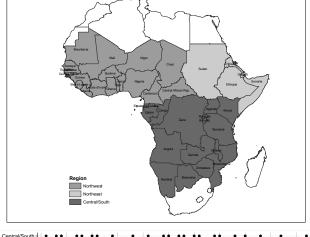
- Build a new panel data set on road surface, city population and market access for 39 Sub-Saharan African countries 1960-2010.
- Estimate the average effects of market access changes (as induced by road surface changes) on city growth.
  - market access is a measure summarizing a city's access to all other cities
  - ▶ a doubling of market access induces a 5–18% increase in city population
  - effect spread up to 30 years after road upgrading
- Also investigate the heterogeneous effects of road changes:
  - Larger cities vs. smaller cities
  - Denser vs. less dense regions
  - Coast vs inland
  - Close to largest city vs. hinterland

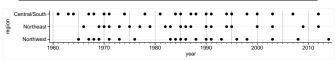
- Highway infrastructure impacts in China, USA, India, Brazil,
- Rail infrastructure impacts in China, USA, India, Ghana, Kenya
- Micro road surface/quality impacts in Sierra Leone (agricultural prices), Indonesia (manufacturing employment), Mexico (household wealth)
- ► Transport and trade costs in Africa variation from other sources:
  - Fuel prices
  - inferred from price changes of very specific goods
- Our contributions:
  - Scale: 39 countries, 6 time slices over 50 years
  - Timing and heterogeneous effects.
  - Not just building highways: paving and improving (gravelling)

#### Outline

- Data
- Estimation
- Results
- Conclusion

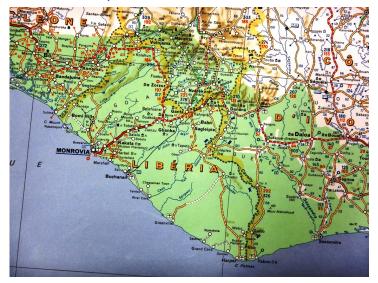
#### Outline


- Data
- Estimation
- Results
- Conclusion


### Data: Roads

#### GIS database of roads:

- Michelin paper road maps for 39 Sub-Saharan African countries from the early 1960s to date. Sources:
  - Government maps
  - Feedback from customers (large network of tire distributors) and correspondents)
- Map  $\approx$  every 3 years, so 833 country-years
- Surface of each road: Highway, Paved, Improved and Dirt (vs. Primary, secondary, tertiary)
- No city streets



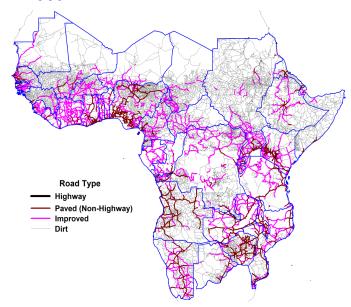




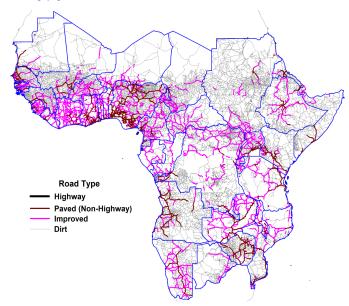


Introduction Data Estimation Conclusion Roads Cities

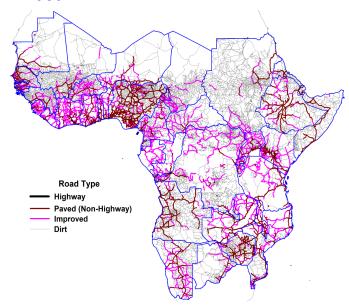
### Michelin Road Map for Liberia in 1965



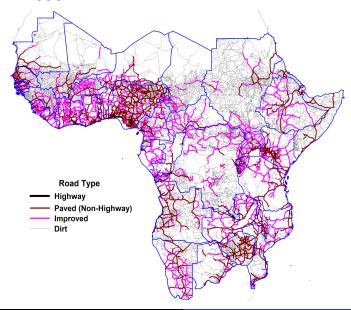

Surfaces aggregated into 4 categories: Highway, Paved, Improved and Dirt


### Four Road Surface Categories

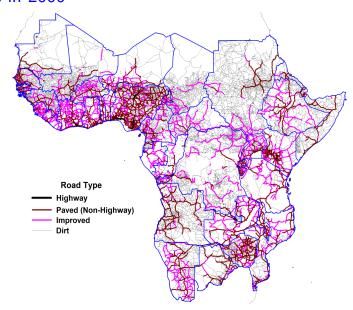



### Roads in 1960

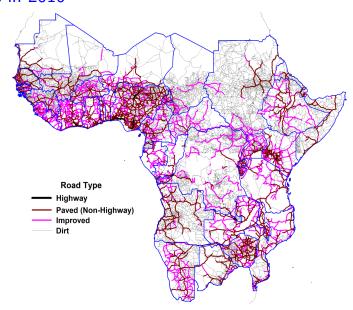



#### Roads in 1970

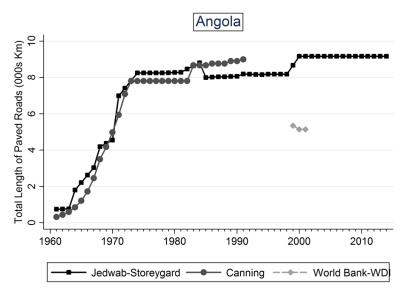


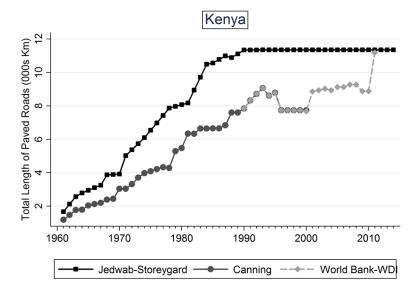

### Roads in 1980



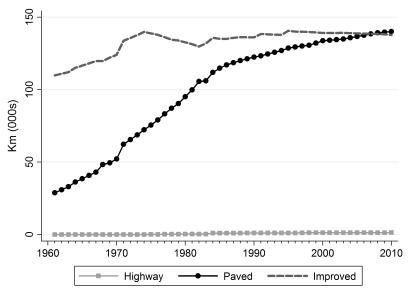

#### Roads in 1990



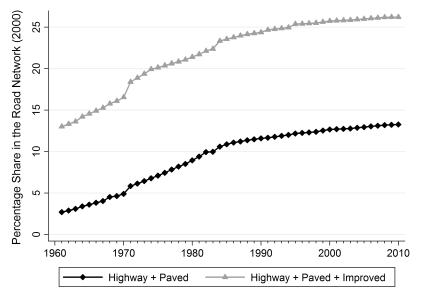

### Roads in 2000




### Roads in 2010



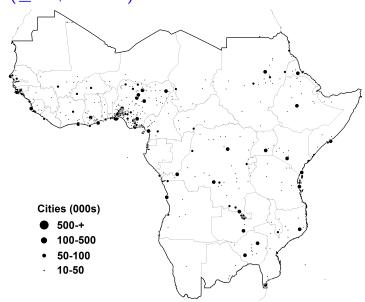

### Road Length: Michelin vs. Canning (2008) vs. World Bank

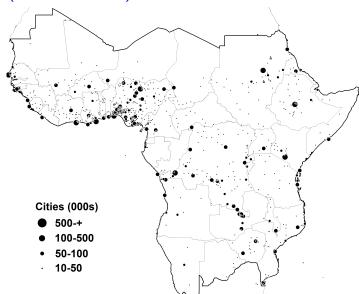


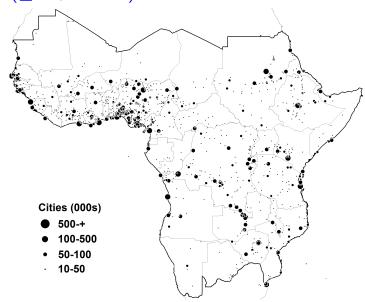


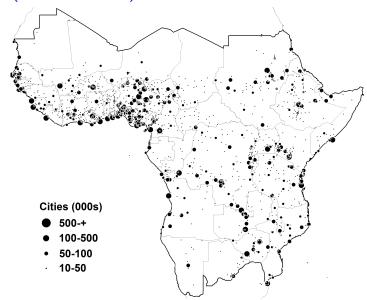

### Road Length in Sub-Saharan Africa (39 Countries)

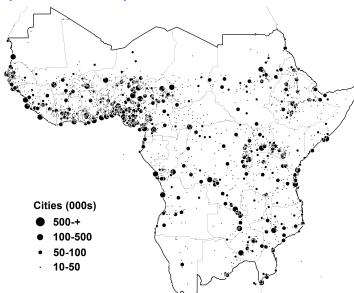


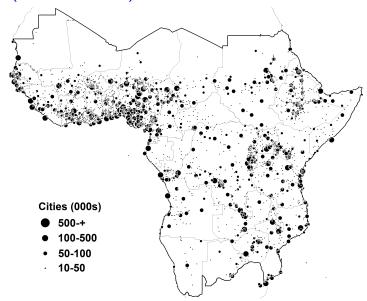

### Percentage Share in the Road Network (39 Countries)





#### Data: Cities


#### GIS database of cities:


- ▶ Population of localities ever above 10,000 inh. for the same 39 countries in 1960, 1970, 1980, 1990, 2000 and 2010
- Proxy for local economic development in the absence of other data (no land prices, no systematic rural populations before c. 1990, no night lights before 1992).
- ► Sources: Africapolis I and II for 33 countries + Population Census data for 6 countries (similar methodology)











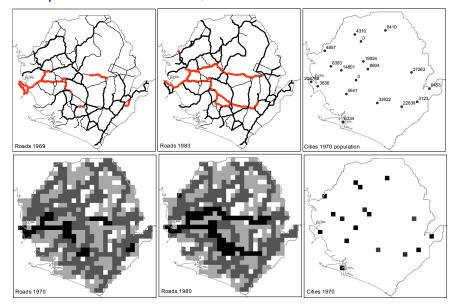



#### Outline

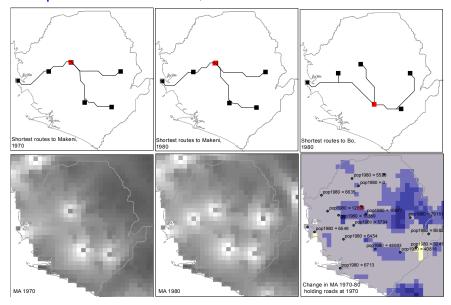
- Data
- Estimation
- Results
- Conclusion

### Unit of analysis

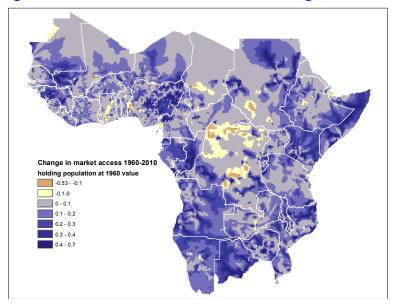
- Grid squares: 0.1x0.1 degree (~11x11 km; computational constraints)
- Select the best (lowest-cost) road in the cell
- Sum of city populations within cell (98 of 2,879 populated cells have multiple cities)


### Sample

- ► Full sample: 5,906 city-years for 2,127 cities (>10,000 in at least two years)
  - **2010**: 2,119
  - **2000**: 1,514
  - ▶ 1990: 1,094
  - **1**980: 746
  - **▶** 1970: 433
  - ▶ 4,725 city-years for 2,126 cities when including two lags


### **Defining Market Access**

- We care about the effect of roads beyond the cities they pass through
- First cut: how many people can I reach within a two hour journey from e..g Central London?
- ▶ How many more can I reach if I build a new road or rail?
- ▶ Market access generalizes this for concentric rings of travel time:
  - weighted sum of all people outside the city
  - weights are inversely proportional to travel time (far places count less)
- Building/improving roads increases market access by reducing travel time
- Building roads to bigger cities increases market access more
- We don't consider congestion (lack of data, conceptual issues)


### Example for Sierra Leone, 1970-1980



### Example for Sierra Leone, 1970-1980



### Change in market access due to road changes, 1960-2010



## Problems with determining causal impacts of road building on city population using market access

- Reverse causality
  - Governments may build roads to places they expect to grow rapidly in the future
  - High growth misattributed to roads (overestimation)
  - Governments may build roads to places they expect to lag
    - Low growth misattributed to roads (underestimation)
- ▶ All cities in a region may grow rapidly together for a reason unrelated to roads
  - e..g. a local resource boom drives growth in my city and my neighbors
  - Neighbors' population increases my market access
  - But I don't grow because of my neighbors' growth
- Our indicator of market access may be badly measured

### Proposed solutions

- Control for any national-level shocks that might be driving road building and city growth in a given decade (country-year fixed effects)
  - e.g. coups
- Control for smoothly varying spatial shocks (year-specific spatial poynomials)
  - e.g. climate
- Control for lagged population
  - mean reversion
- Use restricted variation in market access change (instrumental variable)
  - Only changes due to roads, not population
  - only changes to roads "far" away (more than 50 km; more than 100 km; outside country) from the city in question
  - valid if these "far" away roads are built for reasons unrelated to the city in question

### Outline

- Data
- Estimation
- Results
- Conclusion

- Naive effect of a 100% change in market access:  $\approx 1\%$  1.5% per decade for three decades (total 30-year effect: 3-4%).
- ▶ Better identified effect:  $\approx$  5–18% over 30 years.
- Concentrated in first two decades (i.e. decade of construction) and following decade)
- No measurable effect in fourth decade.

### Comparison to literature

- Somewhat smaller than railroads in the 19th century US using similar method (Donaldson & Hornbeck 2015):  $\approx$ 20–35%.
- Other contexts are too

#### Contextual differences:

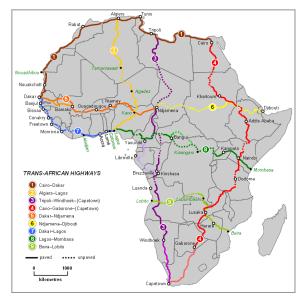
- ▶ Not a transportation revolution like in the 19th century US. Railroads already existed in Africa before roads (and poor roads existed before good roads).
- Migration costs likely higher at least for large distances.
- Context of lower economic growth.

### Heterogeneous Effects?

- Heterogenous effects? Focusing on space right now.
- ▶ We classify the cities into two groups depending on:
  - High vs. low initial city size
  - High vs. low initial market access
  - Near vs. far from coast, borders, largest cities etc.

and see if the effect of a same change in road market access varies across the two groups.

This will allow us to test various existing theories in trade and urban economics.


### Heterogeneous Effects?

- No consistent robust effects for any of them
- Instruments get weaker.
- Still work in progress

#### Conclusion

- Study the effects of road construction and market access on city population growth in Sub-Saharan Africa in 1960-2010.
- New panel data set on road surface and city population for 39 African countries every ten years in 1960-2010.
- $\blacktriangleright$  Average effect of a 100% change in market access  $\approx$  5-18%. Effect concentrated in first 3 decades.
- Still exploring the heterogeneous spatial and temporal effects of the same road investments.

### Effects of Possible Future Highway Networks?

