The Impact of Seasonal Food and Cash Loans on Smallholder Farmers in Zambia

Research Methods and Results

Kelsey Jack
Assistant Professor of Economics
Tufts University

Tuesday, 22 March 2016
UNZA School of Veterinary Science
Key Objectives

• Introductions
• Research design revisited
• Data collection
• Additional findings
• Discussion throughout!
Sampled Population: Small scale farmers in 175 villages (N=3200)

Year I
- Control group: 58 villages
 - Control Group: N=38
 - Maize loan: N=10
 - Cash loan: N=10

Year II
- Maize loan: 58 villages
 - Control: N=28
 - Maize loan: N=30

- Cash loan: 59 village
 - Control: N=29
 - Cash loan: N=30
Research design: Treatment arms

Two treatment arms:

1. Cash loan
 - Receive: 200 Kwacha in January
 - Pay back: 260 Kwacha or 4 x 50 kg bags of maize in June/July

2. Food loan
 - Receive: 3 x 50 kg bags of maize in January
 - Pay back: 260 Kwacha or 4 x 50 kg bags of maize in June/July
Research design: Designing comparable loan treatment arms

- How do these loans compare?
 - value in January: maize more valuable
 - value in June: repay maize cheaper
 - other considerations: transaction costs

- Choice experiments
 - suggest indifference between the two loan types at the value offered

- Income effect control: sub-sample of control villages received a 60 Kwacha gift
Research design: Additional sub-treatments

Additional “cross cutting” treatments in year 2 only

1. Early announcement
 Half of the treated villages in year 2 were informed about the loan in September; other half had year 1 timing (January)

2. Cash-only repayment
 Half of the treated villages in year 2 were required to repay in cash (informed of this before take up)
Research design: Timing

Share of households reporting food shortages

- September
- October
- November
- December
- January
- February
- March
- April
- May
- June

Crop activities:
- Planting
- Weeding
- Harvest

Loan announced
Repayment collected
Research design: Timing, Year 1

- **Loan announced**
- **Loan repayment**

Share of households reporting food shortages

- **September**
- **October**
- **November**
- **December**
- **January**
- **February**
- **March**
- **April**
- **May**
- **June**

Loan intervention

- **Planting**
- **Weeding**
- **Harvest**
Research design: Timing, Year 2

- Monthly maize drops
 - Planting
 - Weeding
 - Harvest
- Loan announced
 - Repayment collected
- Share of households reporting food shortages:
 - September
 - October
 - November
 - December
 - January
 - February
 - March
 - April
 - May
 - June

- Early loan intervention
- Late loan intervention
- Loan repayment

Bar chart showing the share of households reporting food shortages over the months of the year, with peaks in February and March.
Randomization: why and how

- Impact evaluation is difficult!
 - Farmers who join a program are different from those who do not
 - Conditions change over time

- Random assignment ensures that treatment and control group are – but for the intervention – statistically the same
 - With a large enough sample, compare outcomes and learn the causal impact of the programme
Randomization check

• Compare farmer and village characteristics by treatment
 • Randomization implies that observable characteristics are balanced
 • Assume unobservable characteristics are also balanced
Randomization implementation

Year 1: Randomly assigned villages to control, cash and maize loans, checking for balance on variables measured at baseline

Year 2: Re-assign main treatments, rotating between treatment and control, balancing again on baseline variables + year 1 treatments and year 1 harvest output

Sub-treatments: Cross-randomize sub-treatments, balancing on baseline variables + main treatments in both years

Do all of this via computer code (Stata do-file), using baseline data as an input
Data collection: Timing, Year 1

- Share of households reporting food shortages
- Months: September, October, November, December, January, February, March, April, May, June
- Key phases: Planting, Weeding, Harvest
Data collection: Survey rounds

- **Baseline survey** (N=3141): Pre-planting survey (Oct-Nov) of all eligible households

- **Harvest survey** (N=3031): Harvest season (July-Aug 2014) survey of all eligible households

- **Endline survey** (N=3005): Harvest season (July-Aug 2015) survey of all eligible households

- **Midline survey** (N=1193): Hungry season (Feb-Mar) survey of a random 1/3 sample of households

- **Labor survey** Rotating sample (Mar 2014-Aug 2015); ~14 households/day

- **Employer survey** Rotating sample (Mar 2014-Aug 2015); ~10 employers/week
Data collection: Survey sampling

• Main surveys: Baseline, Harvest and Endline surveys censused all households

• Midline survey and Labor survey round 3 randomly sampled 7 households from all villages during lean season

• Other labor survey rounds also randomly sampled 7 households per village but with incomplete coverage
Data collection: Survey procedures

- Data collection via smartphone
 - Program survey into handheld device
 - Allows for
 - Real time data checking
 - Prepapulation of fields based on earlier survey rounds (e.g. household roster)
 - Population of later fields based responses earlier in same survey
 - Data collection to detect cheating (timestamps, GPS coordinates)
Results: Additional findings

Output effect driven partly by farmers cultivating less area than planned
- An effect that is decreased by the loan treatment
Results: Additional findings

<table>
<thead>
<tr>
<th>Daily wage:</th>
<th>Individual</th>
<th>Village median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any loan treatment</td>
<td>1.990*</td>
<td>2.102*</td>
</tr>
<tr>
<td></td>
<td>(1.098)</td>
<td>(1.150)</td>
</tr>
<tr>
<td>By treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash</td>
<td>1.920</td>
<td>2.557*</td>
</tr>
<tr>
<td></td>
<td>(1.493)</td>
<td>(1.538)</td>
</tr>
<tr>
<td>Maize</td>
<td>2.063</td>
<td>1.628</td>
</tr>
<tr>
<td></td>
<td>(1.282)</td>
<td>(1.341)</td>
</tr>
<tr>
<td>Cash loan = maize loan (p-val)</td>
<td>0.200</td>
<td>0.098</td>
</tr>
<tr>
<td>Baseline mean</td>
<td>15.621</td>
<td></td>
</tr>
</tbody>
</table>

Wages increase in treatment villages by around K2 or 12.8%
Results: Additional findings

Sub-treatments:

• Early notification:
 • No significant impact on main outcomes
 • Possibly because it was implemented only in year 2

• Cash-only repayment
 • Similar uptake and repayment rates
 • Much more cost-effective
Measurement: Self-reporting bias

- Main outcome measures are collected by survey → self-reported
 - Concern: If treatment households are more inclined to give favorable responses, then result might just be self-reporting bias, not real results
 - Investigating the concern:
 1. Collect data on a “social desirability index” and compare across treatment and control groups
 2. Collect objective agricultural output data and test whether it is better correlated with self-reported outcomes in treatment vs control groups
Measurement: Self-reporting bias

<table>
<thead>
<tr>
<th></th>
<th>A. Social desirability bias</th>
<th>B. Self-reported maize yields</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Labor survey</td>
<td>Year 1</td>
</tr>
<tr>
<td>Any loan treatment</td>
<td>-0.041</td>
<td>-31.009</td>
</tr>
<tr>
<td></td>
<td>(0.143)</td>
<td>(123.080)</td>
</tr>
<tr>
<td>Control group mean</td>
<td>21.639</td>
<td>0.775**</td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.384)</td>
</tr>
<tr>
<td>Loan treatment x</td>
<td></td>
<td>0.150</td>
</tr>
<tr>
<td>Objective measure</td>
<td></td>
<td>(0.623)</td>
</tr>
<tr>
<td>Control group mean</td>
<td>563.367</td>
<td>563.367</td>
</tr>
</tbody>
</table>
Future research questions

1. What are the returns to capital at different points during the agricultural season?
 - Do farmers benefit more if they receive a loan at planting, during the hungry season or at harvest?
 - For relatively small loans, each point during the season has clear up-side

2. What other approaches might effectively smooth seasonal variability?
 - Would savings accounts or better storage be a cheaper and equally effective solution? What about crop diversification?