
Recursive Macroeconomic Theory
Second edition



To our parents, Zabrina, and Carolyn



Recursive Macroeconomic Theory
Second edition

Lars Ljungqvist

Stockholm School of Economics

Thomas J. Sargent

New York University

and

Hoover Institution

The MIT Press

Cambridge, Massachusetts

London, England



c© 2004 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) without permission in writing from the publisher.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Ljungqvist, Lars.
Recursive macroeconomic theory / Lars Ljungqvist, Thomas J. Sargent. – 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-262-12274-X
1. Macroeconomics. 2. Recursive functions. 3. Statics and dynamics

(Social sciences)
I. Sargent, Thomas J. II. Title.
HB172.5 .L59 2004
339’.01’51135–dc22

2004054688
10 9 8 7 6 5 4 3 2 1



Contents

Acknowledgements xvii

Preface to the second edition xviii

Part I: The imperialism of recursive

methods

1. Overview 3

1.1. Warning. 1.2. A common ancestor. 1.3. The savings problem.
1.3.1. Linear quadratic permanent income theory. 1.3.2. Precaution-
ary saving. 1.3.3. Complete markets, insurance, and the distribution of
wealth. 1.3.4. Bewley models. 1.3.5. History dependence in standard
consumption models. 1.3.6. Growth theory. 1.3.7. Limiting results from
dynamic optimal taxation. 1.3.8. Asset pricing. 1.3.9. Multiple assets.
1.4. Recursive methods. 1.4.1. Methodology: dynamic programming
issues a challenge. 1.4.2. Dynamic programming challenged. 1.4.3. Im-
perialistic response of dynamic programming. 1.4.4. History dependence
and “dynamic programming squared”. 1.4.5. Dynamic principal-agent
problems. 1.4.6. More applications.

– v –



vi Contents

Part II: Tools

2. Time Series 29

2.1. Two workhorses. 2.2. Markov chains. 2.2.1. Stationary distribu-
tions. 2.2.2. Asymptotic stationarity. 2.2.3. Expectations. 2.2.4. Fore-
casting functions. 2.2.5. Invariant functions and ergodicity. 2.2.6. Simu-
lating a Markov chain. 2.2.7. The likelihood function. 2.3. Continuous-
state Markov chain. 2.4. Stochastic linear difference equations. 2.4.1.
First and second moments. 2.4.2. Impulse response function. 2.4.3. Pre-
diction and discounting. 2.4.4. Geometric sums of quadratic forms. 2.5.
Population regression. 2.5.1. The spectrum. 2.5.2. Examples. 2.6. Ex-
ample: the LQ permanent income model. 2.6.1. Invariant subspace
approach. 2.7. The term structure of interest rates. 2.7.1. A stochas-
tic discount factor. 2.7.2. The log normal bond pricing model. 2.7.3.
Slope of yield curve depends on serial correlation of logmt+1 . 2.7.4.
Backus and Zin’s stochastic discount factor. 2.7.5. Reverse engineering
a stochastic discount factor. 2.8. Estimation. 2.9. Concluding remarks.
A. A linear difference equation. 2.11. Exercises.

3. Dynamic Programming 85

3.1. Sequential problems. 3.1.1. Three computational methods. 3.1.2.
Cobb-Douglas transition, logarithmic preferences. 3.1.3. Euler equa-
tions. 3.1.4. A sample Euler equation. 3.2. Stochastic control problems.
3.3. Concluding remarks. 3.4. Exercise.

4. Practical Dynamic Programming 95

4.1. The curse of dimensionality. 4.2. Discretization of state space. 4.3.
Discrete-state dynamic programming. 4.4. Application of Howard im-
provement algorithm. 4.5. Numerical implementation. 4.5.1. Modified
policy iteration. 4.6. Sample Bellman equations. 4.6.1. Example 1: cal-
culating expected utility. 4.6.2. Example 2: risk-sensitive preferences.
4.6.3. Example 3: costs of business cycles. 4.7. Polynomial approxi-
mations. 4.7.1. Recommended computational strategy. 4.7.2. Cheby-
shev polynomials. 4.7.3. Algorithm: summary. 4.7.4. Shape-preserving
splines. 4.8. Concluding remarks.



Contents vii

5. Linear Quadratic Dynamic Programming 109

5.1. Introduction. 5.2. The optimal linear regulator problem. 5.2.1.
Value function iteration. 5.2.2. Discounted linear regulator problem.
5.2.3. Policy improvement algorithm. 5.3. The stochastic optimal lin-
ear regulator problem. 5.3.1. Discussion of certainty equivalence. 5.4.
Shadow prices in the linear regulator. 5.4.1. Stability. 5.5. A Lagrangian
formulation. 5.6. The Kalman filter. 5.6.1. Muth’s example. 5.6.2. Jo-
vanovic’s example. 5.7. Concluding remarks. A. Matrix formulas. B.
Linear quadratic approximations. 5.B.1. An example: the stochastic
growth model. 5.B.2. Kydland and Prescott’s method. 5.B.3. Deter-
mination of z̄ . 5.B.4. Log linear approximation. 5.B.5. Trend removal.
5.10. Exercises.

6. Search, Matching, and Unemployment 139

6.1. Introduction. 6.2. Preliminaries. 6.2.1. Nonnegative random vari-
ables. 6.2.2. Mean-preserving spreads. 6.3. McCall’s model of intertem-
poral job search. 6.3.1. Effects of mean preserving spreads. 6.3.2. Allow-
ing quits . 6.3.3. Waiting times. 6.3.4. Firing . 6.4. A lake model. 6.5.
A model of career choice. 6.6. A simple version of Jovanovic’s matching
model. 6.6.1. Recursive formulation and solution. 6.6.2. Endogenous
statistics. 6.7. A longer horizon version of Jovanovic’s model. 6.7.1.
The Bellman equations. 6.8. Concluding remarks. A. More numerical
dynamic programming. 6.A.1. Example 4: search. 6.A.2. Example 5: a
Jovanovic model. 6.10. Exercises.

Part III: Competitive equilibria

and applications

7. Recursive (Partial) Equilibrium 191

7.1. An equilibrium concept. 7.2. Example: adjustment costs. 7.2.1. A
planning problem. 7.3. Recursive competitive equilibrium. 7.4. Markov
perfect equilibrium. 7.4.1. Computation. 7.5. Linear Markov perfect
equilibria. 7.5.1. An example. 7.6. Concluding remarks. 7.7. Exercises.



viii Contents

8. Equilibrium with Complete Markets 208

8.1. Time 0 versus sequential trading. 8.2. The physical setting: pref-
erences and endowments. 8.3. Alternative trading arrangements. 8.3.1.
History dependence. 8.4. Pareto problem. 8.4.1. Time invariance of
Pareto weights. 8.5. Time 0 trading: Arrow-Debreu securities. 8.5.1.
Equilibrium pricing function. 8.5.2. Optimality of equilibrium alloca-
tion. 8.5.3. Equilibrium computation. 8.5.4. Interpretation of trading
arrangement. 8.6. Examples. 8.6.1. Example 1: risk sharing. 8.6.2.
Example 2: no aggregate uncertainty. 8.6.3. Example 3: periodic en-
dowment processes. 8.7. Primer on asset pricing. 8.7.1. Pricing re-
dundant assets. 8.7.2. Riskless consol. 8.7.3. Riskless strips. 8.7.4.
Tail assets. 8.7.5. Pricing one-period returns. 8.8. Sequential trad-
ing: Arrow securities. 8.8.1. Arrow securities. 8.8.2. Insight: wealth
as an endogenous state variable. 8.8.3. Debt limits. 8.8.4. Sequential
trading. 8.8.5. Equivalence of allocations. 8.9. Recursive competitive
equilibrium. 8.9.1. Endowments governed by a Markov process. 8.9.2.
Equilibrium outcomes inherit the Markov property. 8.9.3. Recursive
formulation of optimization and equilibrium. 8.10. j -step pricing ker-
nel. 8.10.1. Arbitrage-free pricing. 8.11. Consumption strips and the
cost of business cycles. 8.11.1. Link to business cycle costs. 8.12. Gaus-
sian asset-pricing model. 8.13. Recursive version of Pareto problem.
8.14. Static models of trade. 8.15. Closed economy model. 8.15.1. Two
countries under autarky. 8.15.2. Welfare measures. 8.16. Two coun-
tries under free trade. 8.16.1. Small country assumption. 8.17. A tariff.
8.17.1. Nash tariff. 8.18. Concluding remarks. 8.19. Exercises.

9. Overlapping Generations Models 264

9.1. Endowments and preferences. 9.2. Time 0 trading. 9.2.1. Example
equilibrium. 9.2.2. Relation to the welfare theorems. 9.2.3. Nonstation-
ary equilibria. 9.2.4. Computing equilibria. 9.3. Sequential trading. 9.4.
Money. 9.4.1. Computing more equilibria. 9.4.2. Equivalence of equilib-
ria. 9.5. Deficit finance. 9.5.1. Steady states and the Laffer curve. 9.6.
Equivalent setups. 9.6.1. The economy. 9.6.2. Growth. 9.7. Optimality
and the existence of monetary equilibria. 9.7.1. Balasko-Shell criterion
for optimality. 9.8. Within-generation heterogeneity. 9.8.1. Nonmon-
etary equilibrium. 9.8.2. Monetary equilibrium. 9.8.3. Nonstationary
equilibria. 9.8.4. The real bills doctrine. 9.9. Gift-giving equilibrium.
9.10. Concluding remarks. 9.11. Exercises.



Contents ix

10. Ricardian Equivalence 312

10.1. Borrowing limits and Ricardian equivalence. 10.2. Infinitely lived
agent economy. 10.2.1. Solution to consumption/savings decision. 10.3.
Government. 10.3.1. Effect on household. 10.4. Linked generations
interpretation. 10.5. Concluding remarks.

11. Fiscal Policies in the Growth Model 323

11.1. Introduction. 11.2. Economy. 11.2.1. Preferences, technology,
information. 11.2.2. Components of a competitive equilibrium. 11.2.3.
Competitive equilibria with distorting taxes. 11.2.4. The household:
no-arbitrage and asset-pricing formulas. 11.2.5. User cost of capital for-
mula. 11.2.6. Firm. 11.3. Computing equilibria. 11.3.1. Inelastic labor
supply. 11.3.2. The equilibrium steady state. 11.3.3. Computing the
equilibrium path with the shooting algorithm. 11.3.4. Other equilib-
rium quantities. 11.3.5. Steady-state R and s/q . 11.3.6. Lump-sum
taxes available. 11.3.7. No lump-sum taxes available. 11.4. A digres-
sion on back-solving. 11.5. Effects of taxes on equilibrium allocations
and prices. 11.6. Transition experiments. 11.7. Linear approximation.
11.7.1. Relationship between the λi ’s. 11.7.2. Once-and-for-all jumps.
11.7.3. Simplification of formulas. 11.7.4. A one-time pulse. 11.7.5.
Convergence rates and anticipation rates. 11.8. Elastic labor supply.
11.8.1. Steady-state calculations. 11.8.2. A digression on accuracy: Eu-
ler equation errors. 11.9. Growth. 11.10. Concluding remarks. A. Log
linear approximations. 11.12. Exercises.

12. Recursive Competitive Equilibria 366

12.1. Endogenous aggregate state variable. 12.2. The stochastic growth
model. 12.3. Lagrangian formulation of the planning problem. 12.4.
Time 0 trading: Arrow-Debreu securities. 12.4.1. Household. 12.4.2.
Firm of type I. 12.4.3. Firm of type II. 12.4.4. Equilibrium prices and
quantities. 12.4.5. Implied wealth dynamics. 12.5. Sequential trading:
Arrow securities. 12.5.1. Household. 12.5.2. Firm of type I. 12.5.3. Firm
of type II. 12.5.4. Equilibrium prices and quantities. 12.5.5. Financing
a type II firm. 12.6. Recursive formulation. 12.6.1. Technology is gov-
erned by a Markov process. 12.6.2. Aggregate state of the economy.
12.7. Recursive formulation of the planning problem. 12.8. Recursive
formulation of sequential trading. 12.8.1. A “Big K , little k” trick.
12.8.2. Price system. 12.8.3. Household problem. 12.8.4. Firm of type
I. 12.8.5. Firm of type II. 12.9. Recursive competitive equilibrium.



x Contents

12.9.1. Equilibrium restrictions across decision rules. 12.9.2. Using the
planning problem. 12.10. Concluding remarks.

13. Asset Pricing 392

13.1. Introduction. 13.2. Asset Euler equations. 13.3. Martingale theo-
ries of consumption and stock prices. 13.4. Equivalent martingale mea-
sure. 13.5. Equilibrium asset pricing . 13.6. Stock prices without bub-
bles. 13.7. Computing asset prices. 13.7.1. Example 1: logarithmic
preferences. 13.7.2. Example 2: a finite-state version. 13.7.3. Exam-
ple 3: asset pricing with growth. 13.8. The term structure of interest
rates. 13.9. State-contingent prices. 13.9.1. Insurance premium. 13.9.2.
Man-made uncertainty. 13.9.3. The Modigliani-Miller theorem. 13.10.
Government debt. 13.10.1. The Ricardian proposition. 13.10.2. No
Ponzi schemes. 13.11. Interpretation of risk-aversion parameter. 13.12.
The equity premium puzzle. 13.13. Market price of risk. 13.14. Hansen-
Jagannathan bounds. 13.14.1. Inner product representation of the pric-
ing kernel. 13.14.2. Classes of stochastic discount factors. 13.14.3. A
Hansen-Jagannathan bound. 13.14.4. The Mehra-Prescott data. 13.15.
Factor models. 13.16. Heterogeneity and incomplete markets. 13.17.
Concluding remarks. 13.18. Exercises.

14. Economic Growth 449

14.1. Introduction. 14.2. The economy. 14.2.1. Balanced growth path.
14.3. Exogenous growth. 14.4. Externality from spillovers. 14.5. All fac-
tors reproducible. 14.5.1. One-sector model. 14.5.2. Two-sector model.
14.6. Research and monopolistic competition. 14.6.1. Monopolistic
competition outcome. 14.6.2. Planner solution. 14.7. Growth in spite
of nonreproducible factors. 14.7.1. “Core” of capital goods produced
without nonreproducible inputs. 14.7.2. Research labor enjoying an ex-
ternality. 14.8. Concluding comments. 14.9. Exercises.

15. Optimal Taxation with Commitment 478

15.1. Introduction. 15.2. A nonstochastic economy. 15.2.1. Govern-
ment. 15.2.2. Households. 15.2.3. Firms. 15.3. The Ramsey problem.
15.4. Zero capital tax. 15.5. Limits to redistribution. 15.6. Primal ap-
proach to the Ramsey problem. 15.6.1. Constructing the Ramsey plan.
15.6.2. Revisiting a zero capital tax. 15.7. Taxation of initial capital.
15.8. Nonzero capital tax due to incomplete taxation. 15.9. A stochas-
tic economy. 15.9.1. Government. 15.9.2. Households. 15.9.3. Firms.



Contents xi

15.10. Indeterminacy of state-contingent debt and capital taxes. 15.11.
The Ramsey plan under uncertainty. 15.12. Ex ante capital tax varies
around zero. 15.12.1. Sketch of the proof of Proposition 2. 15.13. Exam-
ples of labor tax smoothing . 15.13.1. Example 1: gt = g for all t ≥ 0.
15.13.2. Example 2: gt = 0 for t 6= T , and gT > 0. 15.13.3. Example 3:
gt = 0 for t 6= T , and gT is stochastic. 15.14. Lessons for optimal debt
policy. 15.15. Taxation without state-contingent debt. 15.15.1. Future
values of {gt} become deterministic. 15.15.2. Stochastic {gt} but spe-
cial preferences. 15.15.3. Example 3 revisited: gt = 0 for t 6= T , and
gT is stochastic. 15.16. Zero tax on human capital. 15.17. Should all
taxes be zero?. 15.18. Concluding remarks. 15.19. Exercises.

Part IV: The savings problem

and Bewley models

16. Self-Insurance 545

16.1. Introduction. 16.2. The consumer’s environment. 16.3. Non-
stochastic endowment. 16.3.1. An ad hoc borrowing constraint: non-
negative assets. 16.3.2. Example: periodic endowment process. 16.4.
Quadratic preferences. 16.5. Stochastic endowment process: i.i.d. case.
16.6. Stochastic endowment process: general case. 16.7. Economic
intuition. 16.8. Concluding remarks. A. Supermartingale convergence
theorem. 16.10. Exercises.

17. Incomplete Markets Models 566

17.1. Introduction. 17.2. A savings problem. 17.2.1. Wealth-employment
distributions. 17.2.2. Reinterpretation of the distribution λ . 17.2.3. Ex-
ample 1: a pure credit model. 17.2.4. Equilibrium computation. 17.2.5.
Example 2: a model with capital. 17.2.6. Computation of equilibrium.
17.3. Unification and further analysis. 17.4. Digression: the nonstochas-
tic savings problem. 17.5. Borrowing limits: natural and ad hoc. 17.5.1.
A candidate for a single state variable. 17.5.2. Supermartingale conver-
gence again. 17.6. Average assets as a function of r. 17.7. Computed
examples. 17.8. Several Bewley models. 17.8.1. Optimal stationary
allocation. 17.9. A model with capital and private IOUs. 17.10. Pri-
vate IOUs only. 17.10.1. Limitation of what credit can achieve. 17.10.2.
Proximity of r to ρ . 17.10.3. Inside money or free banking interpreta-
tion. 17.10.4. Bewley’s basic model of fiat money. 17.11. A model of



xii Contents

seigniorage. 17.12. Exchange rate indeterminacy. 17.12.1. Interest on
currency. 17.12.2. Explicit interest. 17.12.3. The upper bound on M

p .
17.12.4. A very special case. 17.12.5. Implicit interest through deflation.
17.13. Precautionary savings. 17.14. Models with fluctuating aggregate
variables. 17.14.1. Aiyagari’s model again. 17.14.2. Krusell and Smith’s
extension. 17.15. Concluding remarks. 17.16. Exercises.

Part V: Recursive contracts

18. Dynamic Stackelberg Problems 615

18.1. History dependence. 18.2. The Stackelberg problem. 18.3. Solv-
ing the Stackelberg problem. 18.3.1. Step 1: solve an optimal linear
regulator. 18.3.2. Step 2: use the stabilizing properties of shadow
price Pyt . 18.3.3. Stabilizing solution. 18.3.4. Step 3: convert im-
plementation multipliers. 18.3.5. History-dependent representation of
decision rule. 18.3.6. Digression on determinacy of equilibrium. 18.4.
A large firm with a competitive fringe. 18.4.1. The competitive fringe.
18.4.2. The monopolist’s problem. 18.4.3. Equilibrium representation.
18.4.4. Numerical example. 18.5. Concluding remarks. A. The stabi-
lizing µt = Pyt . B. Matrix linear difference equations. C. Forecasting
formulas. 18.9. Exercises.

19. Insurance Versus Incentives 636

19.1. Insurance with recursive contracts. 19.2. Basic environment. 19.3.
One-sided no commitment. 19.3.1. Self-enforcing contract. 19.3.2. Re-
cursive formulation and solution. 19.3.3. Recursive computation of con-
tract . 19.3.4. Profits. 19.3.5. P (v) is strictly concave and contin-
uously differentiable. 19.3.6. Many households. 19.3.7. An example.
19.4. A Lagrangian method. 19.5. Insurance with asymmetric infor-
mation. 19.5.1. Efficiency implies bs−1 ≥ bs, ws−1 ≤ ws . 19.5.2. Local
upward and downward constraints are enough. 19.5.3. Concavity of
P . 19.5.4. Local downward constraints always bind. 19.5.5. Coinsur-
ance. 19.5.6. P ′(v) is a martingale. 19.5.7. Comparison to model with
commitment problem. 19.5.8. Spreading continuation values. 19.5.9.
Martingale convergence and poverty. 19.5.10. Extension to general
equilibrium. 19.5.11. Comparison with self-insurance. 19.6. Insurance
with unobservable storage. 19.6.1. Feasibility. 19.6.2. Incentive com-
patibility. 19.6.3. Efficient allocation. 19.6.4. The case of two periods



Contents xiii

(T = 2). 19.6.5. Role of the planner. 19.6.6. Decentralization in a
closed economy. 19.7. Concluding remarks. A. Historical development.
19.A.1. Spear and Srivastava. 19.A.2. Timing. 19.A.3. Use of lotteries.
19.9. Exercises.

20. Equilibrium without Commitment 697

20.1. Two-sided lack of commitment. 20.2. A closed system. 20.3.
Recursive formulation. 20.4. Equilibrium consumption. 20.4.1. Con-
sumption dynamics. 20.4.2. Consumption intervals cannot contain each
other. 20.4.3. Endowments are contained in the consumption intervals.
20.4.4. All consumption intervals are nondegenerate (unless autarky is
the only sustainable allocation). 20.5. Pareto frontier and ex ante divi-
sion of the gains. 20.6. Consumption distribution. 20.6.1. Asymptotic
distribution. 20.6.2. Temporary imperfect risk sharing. 20.6.3. Per-
manent imperfect risk sharing. 20.7. Alternative recursive formulation.
20.8. Pareto frontier revisited. 20.8.1. Values are continuous in im-
plicit consumption. 20.8.2. Differentiability of the Pareto frontier. 20.9.
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Preface to the second edition

Recursive Methods

Much of this book is about how to use recursive methods to study macroe-

conomics. Recursive methods are very important in the analysis of dynamic

systems in economics and other sciences. They originated after World War II in

diverse literatures promoted by Wald (sequential analysis), Bellman (dynamic

programming), and Kalman (Kalman filtering).

Dynamics

Dynamics studies sequences of vectors of random variables indexed by time,

called time series. Time series are immense objects, with as many components

as the number of variables times the number of time periods. A dynamic eco-

nomic model characterizes and interprets the mutual covariation of all of these

components in terms of the purposes and opportunities of economic agents.

Agents choose components of the time series in light of their opinions about

other components.

Recursive methods break a dynamic problem into pieces by forming a se-

quence of problems, each one posing a constrained choice between utility today

and utility tomorrow. The idea is to find a way to describe the position of

the system now, where it might be tomorrow, and how agents care now about

where it is tomorrow. Thus, recursive methods study dynamics indirectly by

characterizing a pair of functions: a transition function mapping the state of

the model today into the state tomorrow, and another function mapping the

state into the other endogenous variables of the model. The state is a vector

of variables that characterizes the system’s current position. Time series are

generated from these objects by iterating the transition law.

– xviii –
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Recursive approach

Recursive methods constitute a powerful approach to dynamic economics due

to their described focus on a tradeoff between the current period’s utility and a

continuation value for utility in all future periods. As mentioned, the simplifi-

cation arises from dealing with the evolution of state variables that capture the

consequences of today’s actions and events for all future periods, and in the case

of uncertainty, for all possible realizations in those future periods. This is not

only a powerful approach to characterizing and solving complicated problems,

but it also helps us to develop intuition, conceptualize, and think about dy-

namic economics. Students often find that half of the job in understanding how

a complex economic model works is done once they understand what the set of

state variables is. Thereafter, the students are soon on their way to formulating

optimization problems and transition equations. Only experience from solving

practical problems fully conveys the power of the recursive approach. This book

provides many applications.

Still another reason for learning about the recursive approach is the in-

creased importance of numerical simulations in macroeconomics, and most com-

putational algorithms rely on recursive methods. When such numerical simula-

tions are called for in this book, we give some suggestions for how to proceed

but without saying too much on numerical methods.1

Philosophy

This book mixes tools and sample applications. Our philosophy is to present the

tools with enough technical sophistication for our applications, but little more.

We aim to give readers a taste of the power of the methods and to direct them

to sources where they can learn more.

Macroeconomic dynamics has become an immense field with diverse appli-

cations. We do not pretend to survey the field, only to sample it. We intend our

sample to equip the reader to approach much of the field with confidence. Fortu-

nately for us, there are several good recent books covering parts of the field that

we neglect, for example, Aghion and Howitt (1998), Barro and Sala-i-Martin

(1995), Blanchard and Fischer (1989), Cooley (1995), Farmer (1993), Azariadis

1 Judd (1998) and Miranda and Fackler (2002) provide good treatments of numerical

methods in economics.
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(1993), Romer (1996), Altug and Labadie (1994), Walsh (1998), Cooper (1999),

Adda and Cooper (2003), Pissarides (1990), and Woodford (2000). Stokey, Lu-

cas, and Prescott (1989) and Bertsekas (1976) remain standard references for

recursive methods in macroeconomics. Chapters 6 and Appendix A in this book

revise material appearing in chapter 2 of Sargent (1987b).

Changes in the second edition

This edition contains seven new chapters and substantial revisions of important

parts of about half of the original chapters. New to this edition are chapters 1,

11, 12, 18, 20, 21, and 23. The new chapters and the revisions cover exciting

new topics. They widen and deepen the message that recursive methods are

pervasive and powerful.

New chapters

Chapter 1 is an overview that discusses themes that unite many of the appar-

ently diverse topics treated in this book. Because it ties together ideas that can

be fully appreciated only after working through the material in the subsequent

chapters, we were ambivalent about whether this chapter should be first or last.

We have chosen to put this last chapter first because it tells our destination. The

chapter emphasizes two ideas: (1) a consumption Euler equation that underlies

many results in the literatures on consumption, asset pricing, and taxation; and

(2) a set of recursive ways to represent contracts and decision rules that are

history-dependent. These two ideas come together in the several chapters on

recursive contracts that form Part V of this edition. In these chapters, con-

tracts or government policies cope with enforcement and information problems

by tampering with continuation utilities in ways that compromise the consump-

tion Euler equation. How the designers of these contracts choose to disrupt the

consumption Euler equation depends on detailed aspects of the environment

that prevent the consumer from reallocating consumption across time in the

way that the basic permanent income model takes for granted. These chapters

on recursive contracts convey results that can help to formulate novel theories

of consumption, investment, asset pricing, wealth dynamics, and taxation.
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Our first edition lacked a self-contained account of the simple optimal

growth model and some of its elementary uses in macroeconomics and pub-

lic finance. Chapter 11 corrects that deficiency. It builds on Hall’s 1971 paper

by using the standard nonstochastic growth model to analyze the effects on equi-

librium outcomes of alternative paths of flat rate taxes on consumption, income

from capital, income from labor, and investment. The chapter provides many

examples designed to familiarize the reader with the covariation of endogenous

variables that are induced by both the transient (feedback) and anticipatory

(feedforward) dynamics that are embedded in the growth model. To expose the

structure of those dynamics, this chapter also describes alternative numerical

methods for approximating equilibria of the growth model with distorting taxes

and for evaluating the accuracy of the approximations.

Chapter 12 uses a stochastic version of the optimal growth model as a ve-

hicle for describing how to construct a recursive competitive equilibrium when

there are endogenous state variables. This chapter echoes a theme that recurs

throughout this edition even more than it did in the first edition, namely, that

discovering a convenient state variable is an art. This chapter extends an idea

of chapter 8, itself an extensively revised version of chapter 7 of the first edi-

tion, namely, that a measure of household wealth is a key state variable both

for achieving a recursive representation of an Arrow-Debreu equilibrium price

system, and also for constructing a sequential equilibrium with trading each

period in one-period Arrow securities. The reader who masters this chapter will

know how to use the concept of a recursive competitive equilibrium and how to

represent Arrow securities when there are endogenous state variables.

Chapter 18 reaps rewards from the powerful computational methods for lin-

ear quadratic dynamic programming that are discussed in chapter 5, a revision

of chapter 4 of the first edition. Our new chapter 18 shows how to formulate and

compute what are known as Stackelberg or Ramsey plans in linear economies.

Ramsey plans assume a timing protocol that allows a Ramsey planner (or gov-

ernment) to commit, i.e., to choose once-and-for-all a complete state contingent

plan of actions. Having the ability to commit allows the Ramsey planner to

exploit the effects of its time t actions on time t + τ actions of private agents

for all τ ≥ 0, where each of the private agents chooses sequentially. At one time,

it was thought that problems of this type were not amenable recursive methods

because they have the Ramsey planner choosing a history-dependent strategy.

Indeed, one of the first rigorous accounts of the time inconsistency of a Ramsey
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plan focused on the failure of the Ramsey planner’s problem to be recursive in

the natural state variables (i.e., capital stocks and information variables). How-

ever, it turns out that the Ramsey planner’s problem is recursive when the state

is augmented by costate variables whose laws of motion are the Euler equations

of private agents (or followers). In linear quadratic environments, this insight

leads to computations that are minor but ingenious modifications of the classic

linear-quadratic dynamic program that we present in chapter 5.

In addition to substantial new material, chapters 19 and 20 contain com-

prehensive revisions and reorganizations of material that had been in chapter

15 of the first edition. Chapter 19 describes three versions of a model in which a

large number of villagers acquire imperfect insurance from a planner or money

lender. The three environments differ in whether there is an enforcement prob-

lem or some type of information problem (unobserved endowments or perhaps

both an unobserved endowments and an unobserved stock of saving). Impor-

tant new material appears throughout this chapter, including an account of a

version of Cole and Kocherlakota’s (2001) model of unobserved private storage.

In this model, the consumer’s access to a private storage technology means that

his consumption Euler inequality is among the implementability constraints that

the contract design must respect. That Euler inequality severely limits the plan-

ner’s ability to manipulate continuation values as a way to manage incentives.

This chapter contains much new material that allows the reader to get inside

the money-lender villager model and to compute optimal recursive contracts by

hand in some cases.

Chapter 20 contains an account of a model that blends aspects of models

of Thomas and Worrall (1988) and Kocherlakota (1996b). Chapter 15 of our

first edition had an account of this model that followed Kocherlakota’s account

closely. In this edition, we have chosen instead to build on Thomas and Worrall’s

work because doing so allows us to avoid some technical difficulties attending

Kocherlakota’s formulation. Chapter 21 uses the theory of recursive contracts to

describe two models of optimal experience-rated unemployment compensation.

After presenting a version of Shavell and Weiss’s (1979) model that was in

chapter 15 of the first edition, it describes a version of Zhao’s (2001) model

of a “lifetime” incentive-insurance arrangement that imparts to unemployment

compensation a feature like a “replacement ratio.”

Chapter 23 contains two applications of recursive contracts to two topics in

international trade. After presenting a revised version of an account of Atkeson’s
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(1991) model of international lending with both information and enforcement

problems, it describes a version of Bond and Park’s (2002) model of gradualism

in trade agreements.

Revisions of other chapters

We have added significant amounts of material to a number of chapters, includ-

ing chapters 2, 8, 15, and 16. Chapter 2 has a better treatment of laws of large

numbers and two extended economic examples (a permanent income model of

consumption and an arbitrage-free model of the term structure) that illustrate

some of the time series techniques introduced in the chapter. Chapter 8 says

much more about how to find a recursive structure within an Arrow-Debreu

pure exchange economy than did its successor. Chapter 16 has an improved

account of the supermartingale convergence theorem and how it underlies pre-

cautionary saving results. Chapter 15 adds an extended treatment of an optimal

taxation problem in an economy in which there are incomplete markets. The

supermartingale convergence theorem plays an important role in the analysis

of this model. Finally, chapter 26 contains additional discussion of models in

which lotteries are used to smooth nonconvexities facing a household and how

such models compare with ones without lotteries.

Ideas

Beyond emphasizing recursive methods, the economics of this book revolves

around several main ideas.

1. The competitive equilibrium model of a dynamic stochastic economy: This

model contains complete markets, meaning that all commodities at different

dates that are contingent on alternative random events can be traded in

a market with a centralized clearing arrangement. In one version of the

model, all trades occur at the beginning of time. In another, trading in

one-period claims occurs sequentially. The model is a foundation for asset-

pricing theory, growth theory, real business cycle theory, and normative

public finance. There is no room for fiat money in the standard competitive

equilibrium model, so we shall have to alter the model to let fiat money in.
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2. A class of incomplete markets models with heterogeneous agents: The mod-

els arbitrarily restrict the types of assets that can be traded, thereby pos-

sibly igniting a precautionary motive for agents to hold those assets. Such

models have been used to study the distribution of wealth and the evolution

of an individual or family’s wealth over time. One model in this class lets

money in.

3. Several models of fiat money: We add a shopping time specification to a

competitive equilibrium model to get a simple vehicle for explaining ten

doctrines of monetary economics. These doctrines depend on the govern-

ment’s intertemporal budget constraint and the demand for fiat money,

aspects that transcend many models. We also use Samuelson’s overlapping

generations model, Bewley’s incomplete markets model, and Townsend’s

turnpike model to perform a variety of policy experiments.

4. Restrictions on government policy implied by the arithmetic of budget sets:

Most of the ten monetary doctrines reflect properties of the government’s

budget constraint. Other important doctrines do too. These doctrines,

known as Modigliani-Miller and Ricardian equivalence theorems, have a

common structure. They embody an equivalence class of government poli-

cies that produce the same allocations. We display the structure of such

theorems with an eye to finding the features whose absence causes them to

fail, letting particular policies matter.

5. Ramsey taxation problem: What is the optimal tax structure when only

distorting taxes are available? The primal approach to taxation recasts

this question as a problem in which the choice variables are allocations

rather than tax rates. Permissible allocations are those that satisfy resource

constraints and implementability constraints, where the latter are budget

constraints in which the consumer and firm first-order conditions are used

to substitute out for prices and tax rates. We study labor and capital

taxation, and examine the optimality of the inflation tax prescribed by the

Friedman rule.

6. Social insurance with private information and enforcement problems: We

use the recursive contracts approach to study a variety of problems in which

a benevolent social insurer must balance providing insurance against provid-

ing proper incentives. Applications include the provision of unemployment
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insurance and the design of loan contracts when the lender has an imperfect

capacity to monitor the borrower.

7. Time consistency and reputational models of macroeconomics: We study

how reputation can substitute for a government’s ability to commit to a

policy. The theory describes multiple systems of expectations about its

behavior to which a government wants to conform. The theory has many

applications, including implementing optimal taxation policies and making

monetary policy in the presence of a temptation to inflate offered by a

Phillips curve.

8. Search theory: Search theory makes some assumptions opposite to ones

in the complete markets competitive equilibrium model. It imagines that

there is no centralized place where exchanges can be made, or that there are

not standardized commodities. Buyers and/or sellers have to devote effort

to search for commodities or work opportunities, which arrive randomly.

We describe the basic McCall search model and various applications. We

also describe some equilibrium versions of the McCall model and compare

them with search models of another type that postulates the existence of a

matching function. A matching function takes job seekers and vacancies as

inputs, and maps them into a number of successful matches.

Theory and evidence

Though this book aims to give the reader the tools to read about applications,

we spend little time on empirical applications. However, the empirical failures

of one model have been a main force prompting development of another model.

Thus, the perceived empirical failures of the standard complete markets general

equilibrium model stimulated the development of the incomplete markets and

recursive contracts models. For example, the complete markets model forms a

standard benchmark model or point of departure for theories and empirical work

on consumption and asset pricing. The complete markets model has these em-

pirical problems: (1) there is too much correlation between individual income

and consumption growth in micro data (e.g., Cochrane, 1991 and Attanasio

and Davis, 1995); (2) the equity premium is larger in the data than is implied

by a representative agent asset-pricing model with reasonable risk-aversion pa-

rameter (e.g., Mehra and Prescott, 1985); and (3) the risk-free interest rate is
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too low relative to the observed aggregate rate of consumption growth (Weil,

1989). While there have been numerous attempts to explain these puzzles by

altering the preferences in the standard complete markets model, there has also

been work that abandons the complete markets assumption and replaces it with

some version of either exogenously or endogenously incomplete markets. The

Bewley models of chapters 16 and 17 are examples of exogenously incomplete

markets. By ruling out complete markets, this model structure helps with em-

pirical problems 1 and 3 above (e.g., see Huggett, 1993), but not much with

problem 2. In chapter 19, we study some models that can be thought of as

having endogenously incomplete markets. They can also explain puzzle 1 men-

tioned earlier in this paragraph; at this time it is not really known how far they

take us toward solving problem 2, though Alvarez and Jermann (1999) report

promise.

Micro foundations

This book is about micro foundations for macroeconomics. Browning, Hansen,

and Heckman (2000) identify two possible justifications for putting microfoun-

dations underneath macroeconomic models. The first is aesthetic and preempir-

ical: models with micro foundations are by construction coherent and explicit.

And because they contain descriptions of agents’ purposes, they allow us to an-

alyze policy interventions using standard methods of welfare economics. Lucas

(1987) gives a distinct second reason: a model with micro foundations broadens

the sources of empirical evidence that can be used to assign numerical values

to the model’s parameters. Lucas endorses Kydland and Prescott’s (1982) pro-

cedure of borrowing parameter values from micro studies. Browning, Hansen,

and Heckman (2000) describe some challenges to Lucas’s recommendation for

an empirical strategy. Most seriously, they point out that in many contexts the

specifications underlying the microeconomic studies cited by a calibrator conflict

with those of the macroeconomic model being “calibrated.” It is typically not

obvious how to transfer parameters from one data set and model specification

to another data set, especially if the theoretical and econometric specification

differs.

Although we take seriously the doubts about Lucas’s justification for mi-

croeconomic foundations that Browning, Hansen and Heckman raise, we remain
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strongly attached to micro foundations. For us, it remains enough to appeal to

the first justification mentioned, the coherence provided by micro foundations

and the virtues that come from having the ability to “see the agents” in the

artificial economy. We see Browning, Hansen, and Heckman as raising many

legitimate questions about empirical strategies for implementing macro models

with micro foundations. We don’t think that the clock will soon be turned back

to a time when macroeconomics was done without micro foundations.

Road map

An economic agent is a pair of objects: a utility function (to be maximized) and

a set of available choices. Chapter 2 has no economic agents, while chapters 3

through 6 and chapter 16 each contain a single agent. The remaining chapters

all have multiple agents, together with an equilibrium concept rendering their

choices coherent.

Chapter 2 describes two basic models of a time series: a Markov chain

and a linear first-order difference equation. In different ways, these models use

the algebra of first-order difference equations to form tractable models of time

series. Each model has its own notion of the state of a system. These time series

models define essential objects in terms of which the choice problems of later

chapters are formed and their solutions are represented.

Chapters 3, 4, and 5 introduce aspects of dynamic programming, includ-

ing numerical dynamic programming. Chapter 3 describes the basic functional

equation of dynamic programming, the Bellman equation, and several of its

properties. Chapter 4 describes some numerical ways for solving dynamic pro-

grams, based on Markov chains. Chapter 5 describes linear quadratic dynamic

programming and some uses and extensions of it, including how to use it to

approximate solutions of problems that are not linear quadratic. This chapter

also describes the Kalman filter, a useful recursive estimation technique that is

mathematically equivalent to the linear quadratic dynamic programming prob-

lem.2 Chapter 6 describes a classic two-action dynamic programming problem,

the McCall search model, as well as Jovanovic’s extension of it, a good exercise

in using the Kalman filter.

2 The equivalence is through duality, in the sense of mathematical programming.
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While single agents appear in chapters 3 through 6, systems with multiple

agents, whose environments and choices must be reconciled through markets,

appear for the first time in chapters 7 and 8. Chapter 7 uses linear quadratic

dynamic programming to introduce two important and related equilibrium con-

cepts: rational expectations equilibrium and Markov perfect equilibrium. Each

of these equilibrium concepts can be viewed as a fixed point in a space of beliefs

about what other agents intend to do; and each is formulated using recursive

methods. Chapter 8 introduces two notions of competitive equilibrium in dy-

namic stochastic pure exchange economies, then applies them to pricing various

consumption streams.

Chapter 9 first introduces the overlapping generations model as a version of

the general competitive model with a peculiar preference pattern. It then goes

on to use a sequential formulation of equilibria to display how the overlapping

generations model can be used to study issues in monetary and fiscal economics,

including Social Security.

Chapter 10 compares an important aspect of an overlapping generations

model with an infinitely lived agent model with a particular kind of incomplete

market structure. This chapter is thus our first encounter with an incomplete

markets model. The chapter analyzes the Ricardian equivalence theorem in two

distinct but isomorphic settings: one a model with infinitely lived agents who

face borrowing constraints, another with overlapping generations of two-period-

lived agents with a bequest motive. We describe situations in which the timing

of taxes does or does not matter, and explain how binding borrowing constraints

in the infinite-lived model correspond to nonoperational bequest motives in the

overlapping generations model.

Chapter 13 studies asset pricing and a host of practical doctrines associated

with asset pricing, including Ricardian equivalence again and Modigliani-Miller

theorems for private and government finance. Chapter 14 is about economic

growth. It describes the basic growth model, and analyzes the key features of

the specification of the technology that allows the model to exhibit balanced

growth.

Chapter 15 studies competitive equilibria distorted by taxes and our first

mechanism design problems, namely, ones that seek to find the optimal temporal

pattern of distorting taxes. In a nonstochastic economy, the most startling

finding is that the optimal tax rate on capital is zero in the long run.
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Chapter 16 is about self-insurance. We study a single agent whose limited

menu of assets gives him an incentive to self-insure by accumulating assets. We

study a special case of what has sometimes been called the “savings problem,”

and analyze in detail the motive for self-insurance and the surprising implications

it has for the agent’s ultimate consumption and asset holdings. The type of agent

studied in this chapter will be a component of the incomplete markets models

to be studied in chapter 14.

Chapter 17 studies incomplete markets economies with heterogeneous agents

and imperfect markets for sharing risks. The models of market incompleteness

in this chapter come from simply ruling out markets in many assets, without

motivating the absence of those asset markets from the physical structure of the

economy. We must wait until chapter 19 for a study of some of the reasons that

such markets may not exist.

The next chapters describe various manifestations of recursive contracts.

Chapter 18 describes how linear quadratic dynamic programming can some-

times be used to compute recursive contracts. Chapter 19 describes models in

the mechanism design tradition, work that starts to provide a foundation for

incomplete assets markets, and that recovers specifications bearing an incom-

plete resemblance to the models of chapter 17. Chapter 19 is about the optimal

provision of social insurance in the presence of information and enforcement

problems. Relative to earlier chapters, chapter 19 escalates the sophistication

with which recursive methods are applied, by utilizing promised values as state

variables. Chapter 20 extends the analysis to a general equilibrium setting and

draws out some implications for asset prices, among other things. Chapter 21

uses recursive contracts to design optimal unemployment insurance and worker

compensation schemes.

Chapter 22 applies some of the same ideas to problems in “reputational

macroeconomics,” using promised values to formulate the notion of credibility.

We study how a reputational mechanism can make policies sustainable even

when the government lacks the commitment technology that was assumed to

exist in the policy analysis of chapter 15. This reputational approach is later

used in chapter 24 to assess whether or not the Friedman rule is a sustainable

policy. Chapter 23 describes a model of gradualism of in trade policy that has

some features in common with the first model of chapter 19.

Chapter 24 switches gears by adding money to a very simple competitive

equilibrium model, in a most superficial way; the excuse for that superficial
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device is that it permits us to present and unify ten more or less well-known

monetary doctrines. Chapter 25 presents a less superficial model of money, the

turnpike model of Townsend, which is basically a special nonstochastic version

of one of the models of chapter 17. The specialization allows us to focus on a

variety of monetary doctrines.

Chapter 26 describes multiple agent models of search and matching. Except

for a section on money in a search model, the focus is on labor markets as a

central application of these theories. To bring out the economic forces at work in

different frameworks, we examine the general equilibrium effects of layoff taxes.

Two appendixes collect various technical results on functional analysis and

linear control and filtering.

Alternative uses of the book

We have used parts of this book to teach both first- and second-year courses in

macroeconomics and monetary economics at the University of Chicago, Stanford

University, New York University, and the Stockholm School of Economics. Here

are some alternative plans for courses:

1. A one-semester first-year course: chapters 2–6, 8, 9, 10, and either chapter

13, 14, or 15.

2. A second-semester first-year course: add chapters 8, 12, 13, 14, 15, parts of

16 and 17, and all of 19.

3. A first course in monetary economics: chapters 9, 22, 23, 24, 25, and the

last section of 26.

4. A second-year macroeconomics course: select from chapters 13–26.

5. A self-contained course about recursive contracts: chapters 18–23.

As an example, Sargent used the following structure for a one-quarter first-

year course at the University of Chicago: for the first and last weeks of the

quarter, students were asked to read the monograph by Lucas (1987). Students

were “prohibited” from reading the monograph in the intervening weeks. During

the middle eight weeks of the quarter, students read material from chapters 6

(about search theory); chapter 8 (about complete markets); chapters 9, 24, and

25 (about models of money); and a little bit of chapters 19, 20, and 21 (on social
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insurance with incentive constraints). The substantive theme of the course was

the issues set out in a nontechnical way by Lucas (1987). However, to understand

Lucas’s arguments, it helps to know the tools and models studied in the middle

weeks of the course. Those weeks also exposed students to a range of alternative

models that could be used to measure Lucas’s arguments against some of the

criticisms made, for example, by Manuelli and Sargent (1988).

Another one-quarter course would assign Lucas’s (1992) article on efficiency

and distribution in the first and last weeks. In the intervening weeks of the

course, assign chapters 16, 17, and 19.

As another example, Ljungqvist used the following material in a four-week

segment on employment/unemployment in first-year macroeconomics at the

Stockholm School of Economics. Labor market issues command a strong in-

terest especially in Europe. Those issues help motivate studying the tools in

chapters 6 and 26 (about search and matching models), and parts of 21 (on the

optimal provision of unemployment compensation). On one level, both chap-

ters 6 and 26 focus on labor markets as a central application of the theories

presented, but on another level, the skills and understanding acquired in these

chapters transcend the specific topic of labor market dynamics. For example,

the thorough practice on formulating and solving dynamic programming prob-

lems in chapter 6 is generally useful to any student of economics, and the models

of chapter 26 are an entry-pass to other heterogeneous-agent models like those

in chapter 17. Further, an excellent way to motivate the study of recursive con-

tracts in chapter 21 is to ask how unemployment compensation should optimally

be provided in the presence of incentive problems.

Matlab programs

Various exercises and examples use Matlab programs. These programs are re-

ferred to in a special index at the end of the book. They can be downloaded via

anonymous ftp from < ftp://zia.stanford.edu/pub/˜sargent/webdocs/matlab> .
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Answers to exercises

We have created a web site with additional exercises and answers to the exercises

in the text. It is at <http://www.stanford.edu/˜sargent> .

Notation

We use the symbol to denote the conclusion of a proof. The editors of this

book requested that where possible, brackets and braces be used in place of

multiple parentheses to denote composite functions. Thus, the reader will often

encounter f [u(c)] to express the composite function f ◦ u .

Brief history of the notion of the state

This book reflects progress economists have made in refining the notion of state

so that more and more problems can be formulated recursively. The art in ap-

plying recursive methods is to find a convenient definition of the state. It is often

not obvious what the state is, or even whether a finite-dimensional state exists

(e.g., maybe the entire infinite history of the system is needed to characterize

its current position). Extending the range of problems susceptible to recursive

methods has been one of the major accomplishments of macroeconomic theory

since 1970. In diverse contexts, this enterprise has been about discovering a

convenient state and constructing a first-order difference equation to describe

its motion. In models equivalent to single-agent control problems, state vari-

ables are either capital stocks or information variables that help predict the

future.3 In single-agent models of optimization in the presence of measurement

errors, the true state vector is latent or “hidden” from the optimizer and the

economist, and needs to be estimated. Here beliefs come to serve as the patent

state. For example, in a Gaussian setting, the mathematical expectation and

covariance matrix of the latent state vector, conditioned on the available history

of observations, serves as the state. In authoring his celebrated filter, Kalman

3 Any available variables that Granger cause variables impinging on the optimizer’s ob-

jective function or constraints enter the state as information variables. See C.W.J. Granger

(1969).
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(1960) showed how an estimator of the hidden state could be constructed re-

cursively by means of a difference equation that uses the current observables

to update the estimator of last period’s hidden state.4 Muth (1960); Lucas

(1972), Kareken, Muench, and Wallace (1973); Jovanovic (1979); and Jovanovic

and Nyarko (1996) all used versions of the Kalman filter to study systems in

which agents make decisions with imperfect observations about the state.

For a while, it seemed that some very important problems in macroeco-

nomics could not be formulated recursively. Kydland and Prescott (1977) ar-

gued that it would be difficult to apply recursive methods to macroeconomic

policy design problems, including two examples about taxation and a Phillips

curve. As Kydland and Prescott formulated them, the problems were not re-

cursive: the fact that the public’s forecasts of the government’s future decisions

influence the public’s current decisions made the government’s problem simul-

taneous, not sequential. But soon Kydland and Prescott (1980) and Hansen,

Epple, and Roberds (1985) proposed a recursive formulation of such problems by

expanding the state of the economy to include a Lagrange multiplier or costate

variable associated with the government’s budget constraint. The costate vari-

able acts as the marginal cost of keeping a promise made earlier by the govern-

ment. Recently, Marcet and Marimon (1999) have extended and formalized a

recursive version of such problems.

A significant breakthrough in the application of recursive methods was

achieved by several researchers including Spear and Srivastava (1987); Thomas

and Worrall (1988); and Abreu, Pearce, and Stacchetti (1990). They discovered

a state variable for recursively formulating an infinitely repeated moral hazard

problem. That problem requires the principal to track a history of outcomes

and to use it to construct statistics for drawing inferences about the agent’s

actions. Problems involving self-enforcement of contracts and a government’s

reputation share this feature. A continuation value promised by the principal

to the agent can summarize the history. Making the promised valued a state

4 In competitive multiple-agent models in the presence of measurement errors, the dimen-

sion of the hidden state threatens to explode because beliefs about beliefs about . . . naturally

appear, a problem studied by Townsend (1983). This threat has been overcome through

thoughtful and economical definitions of the state. For example, one way is to give up on

seeking a purely “autoregressive” recursive structure and to include a moving average piece

in the descriptor of beliefs. See Sargent (1991). Townsend’s equilibria have the property that

prices fully reveal the private information of diversely informed agents.
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variable allows a recursive solution in terms of a function mapping the inherited

promised value and random variables realized today into an action or allocation

today and a promised value for tomorrow. The sequential nature of the solu-

tion allows us to recover history-dependent strategies just as we use a stochastic

difference equation to find a “moving average” representation.5

It is now standard to use a continuation value as a state variable in models

of credibility and dynamic incentives. We shall study several such models in this

book, including ones for optimal unemployment insurance and for designing loan

contracts that must overcome information and enforcement problems.

5 Related ideas are used by Shavell and Weiss (1979); Abreu, Pearce, and Stacchetti (1986,

1990) in repeated games; and Green (1987) and Phelan and Townsend (1991) in dynamic

mechanism design. Andrew Atkeson (1991) extended these ideas to study loans made by

borrowers who cannot tell whether they are making consumption loans or investment loans.



Part I

The imperialism of recursive
methods



Chapter 1
Overview

1.1. Warning

This chapter provides a nontechnical summary of some themes of this book. We

debated whether to put this chapter first or last. A way to use this chapter

is to read it twice, once before reading anything else in the book, then again

after having mastered the techniques presented in the rest of the book. That

second time, this chapter will be easy and enjoyable reading, and it will remind

you of connections that transcend a variety of apparently disparate topics. But

on first reading, this chapter will be difficult, partly because the discussion is

mainly literary and therefore incomplete. Measure what you have learned by

comparing your understandings after those first and second readings. Or just

skip this chapter and read it after the others.

1.2. A common ancestor

Clues in our mitochondrial DNA tell biologists that we humans share a com-

mon ancestor called Eve who lived 200,000 years ago. All of macroeconomics

too seems to have descended from a common source, Irving Fisher’s and Mil-

ton Friedman’s consumption Euler equation, the cornerstone of the permanent

income theory of consumption. Modern macroeconomics records the fruit and

frustration of a long love-hate affair with the permanent income mechanism. As

a way of summarizing some important themes in our book, we briefly chronicle

some of the high and low points of this long affair.

– 3 –
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1.3. The savings problem

A consumer wants to maximize

E0

∞∑

t=0

βtu (ct) (1.3.1)

where β ∈ (0, 1), u is a twice continuously differentiable, increasing, strictly con-

cave utility function, and E0 denotes a mathematical expectation conditioned

on time 0 information. The consumer faces a sequence of budget constraints1

At+1 = Rt+1 (At + yt − ct) (1.3.2)

for t ≥ 0, where At+1 ≥ A is the consumer’s holdings of an asset at the

beginning of period t+1, A is a lower bound on asset holdings, yt is a random

endowment sequence, ct is consumption of a single good, and Rt+1 is the gross

rate of return on the asset between t and t + 1. In the general version of the

problem, both Rt+1 and yt can be random, though special cases of the problem

restrict Rt+1 further. A first-order necessary condition for this problem is

βEtRt+1
u′ (ct+1)

u′ (ct)
≤ 1, = if At+1 > A. (1.3.3)

This Euler inequality recurs as either the cornerstone or the straw man in many

theories contained in this book.

Different modeling choices put (1.3.3) to work in different ways. One can

restrict u, β , the return process Rt+1 , the lower bound on assets A , the in-

come process yt , and the consumption process ct in various ways. By making

alternative choices about restrictions to impose on subsets of these objects,

macroeconomists have constructed theories about consumption, asset prices,

and the distribution of wealth. Alternative versions of equation (1.3.3) also

underlie Chamley’s (1986) and Judd’s (1985b) striking results about eventually

not taxing capital.

1 We use a different notation in chapter 16: At here conforms to −bt in chapter 16.
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1.3.1. Linear quadratic permanent income theory

To obtain a version of the permanent income theory of Friedman (1955) and Hall

(1978), set Rt+1 = R , impose R = β−1 , assume the quadratic utility function

u(ct) = −(ct − γ)2 , and allow consumption ct to be negative. We also allow

{yt} to be an arbitrary stationary process, and dispense with the lower bound

A . The Euler inequality (1.3.3) then implies that consumption is a martingale:

Etct+1 = ct. (1.3.4)

Subject to a boundary condition that2 E0

∑∞
t=0 β

tA2
t < ∞ , equation (1.3.4)

and the budget constraints (1.3.2) can be solved to yield

ct =

[
r

1 + r

]
Et

∞∑

j=0

(
1

1 + r

)j
yt+j +At


 (1.3.5)

where 1 + r = R . Equation (1.3.5) expresses consumption as a fixed marginal

propensity to consume r
1+r that is applied to the sum of human wealth – namely[

Et
∑∞

j=0

(
1

1+r

)j
yt+j

]
– and financial wealth. This equation has the following

notable features: (1) consumption is smoothed on average across time: current

consumption depends only on the expected present value of nonfinancial income;

(2) feature (1) opens the way to Ricardian equivalence: redistributions of lump-

sum taxes over time that leave the expected present value of nonfinancial income

unaltered do not affect consumption; (3) there is certainty equivalence: increases

in the conditional variances of future incomes about their forecast values do not

affect consumption (though they do diminish the consumer’s utility); (4) a by-

product of certainty equivalence is that the marginal propensities to consume

out of financial and nonfinancial wealth are equal.

This theory continues to be a workhorse in much good applied work (see

Ligon (1998) and Blundell and Preston (1999) for recent creative applications).

Chapter 5 describes conditions under which certainty equivalence prevails, while

chapters 2 and 5 also describe the structure of the cross-equation restrictions

2 The motivation for using this boundary condition instead of a lower bound A on asset

holdings is that there is no “natural” lower bound on asset holdings when consumption is

permitted to be negative. Chapters 8 and 17 discuss what are called “natural borrowing

limits,” the lowest possible appropriate values of A in the case that c is nonnegative.
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that the hypothesis of rational expectations imposes and that empirical studies

heavily exploit.

1.3.2. Precautionary saving

A literature on “the savings problem” or “precautionary saving” investigates

the consequences of altering the assumption in the linear quadratic permanent

income theory that u is quadratic, an assumption that makes the marginal util-

ity of consumption become negative for large enough c . Rather than assuming

that u is quadratic, the literature on the savings problem assumes that u is

increasing and strictly concave. This assumption keeps the marginal utility of

consumption above zero. We retain other features of the linear quadratic model

(βR = 1, {yt} is a stationary process), but now impose a borrowing limit

At ≥ a .

With these assumptions, something amazing occurs: Euler inequality (1.3.3)

implies that the marginal utility of consumption is a nonnegative supermartin-

gale.3 That gives the model the striking implication that ct →as +∞ and

At →as +∞ , where →as means almost sure convergence. Consumption and

wealth will fluctuate randomly in response to income fluctuations, but so long

as randomness in income continues, they will drift upward over time without

bound. If randomness eventually expires in the tail of the income process, then

both consumption and income converge. But even a small amount of perpetual

random fluctuations in income is enough to cause consumption and assets to

diverge to +∞ . This response of the optimal consumption plan to randomness

is required by the Euler equation (1.3.3) and is called precautionary savings.

By keeping the marginal utility of consumption positive, precautionary savings

models arrest the certainty equivalence that prevails in the linear quadratic per-

manent income model. Chapter 16 studies the savings problem in depth and

struggles to understand the workings of the powerful martingale convergence

3 See chapter 16. The situation is simplest in the case that the yt process is i.i.d. so

that the value function can be expressed as a function of level yt + At alone: V (A + y) .

Applying the Benveniste-Scheinkman formula from chapter 3 shows that V ′(A + y) = u′(c) ,

which implies that when βR = 1, (1.3.3) becomes EtV
′(At+1 + yt+1) ≤ V ′(At + yt) , which

states that the derivative of the value function is a nonnegative supermartingale. That in turn

implies that A almost surely diverges to +∞ .
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theorem. The supermartingale convergence theorem also plays an important

role in the model insurance with private information in chapter 19.

1.3.3. Complete markets, insurance, and the distribution of wealth

To build a model of the distribution of wealth, we consider a setting with many

consumers. To start, imagine a large number of ex ante identical consumers

with preferences (1.3.1) who are allowed to share their income risk by trading

one-period contingent claims. For simplicity, assume that the saving possibility

represented by the budget constraint (1.3.2) is no longer available4 but that

it is replaced by access to an extensive set of insurance markets. Assume that

household i has an income process yit = gi(st) where st is a state vector gov-

erned by a Markov process with transition density π(s′|s), where s and s′ are

elements of a common state space S . (See chapters 2 and 8 for material about

Markov chains and their uses in equilibrium models.) Each period every house-

hold can trade one-period state-contingent claims to consumption next period.

Let Q(s′|s) be the price of one unit of consumption next period in state s′ when

the state this period is s . When household i has the opportunity to trade such

state-contingent securities, its first-order conditions for maximizing (1.3.1) are

Q (st+1|st) = β
u′
(
cit+1 (st+1)

)

u′
(
cit (st)

) π (st+1|st) . (1.3.6)

Notice that
∫
st+1

Q(st+1|st)dst+1 is the price of a risk-free claim on consumption

one period ahead: it is thus the reciprocal of the gross risk-free interest rate from

R . Therefore, if we sum both sides of (1.3.6) over st+1 , we obtain our standard

consumption Euler condition (1.3.3) at equality.5 Thus, the complete markets

equation (1.3.6) is consistent with our complete markets Euler equation (1.3.3),

but (1.3.6) imposes more. We will exploit this fact extensively in chapter 15.

In a widely studied special case, there is no aggregate risk, so that
∫
i
yit =∫

i gi(st)d i = constant. In that case, it can be shown that the competitive

equilibrium state-contingent prices become

Q (st+1|st) = βπ (st+1|st) . (1.3.7)

4 It can be shown that even if it were available, people would not want to use it.
5 That the asset is risk-free becomes manifested in Rt+1 being a function of st , so that

it is known at t .
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This, in turn, implies that the risk-free gross rate of return R is β−1 . If we sub-

stitute (1.3.7) into (1.3.6), we discover that cit+1(st+1) = cit(st) for all (st+1, st).

Thus, the consumption of consumer i is constant across time and across states

of nature s , so that in equilibrium, all idiosyncratic risk is insured away. Higher

present-value-of-endowment consumers will have permanently higher consump-

tion than lower present-value-of-endowment consumers, so that there is a non-

degenerate cross-section distribution of wealth and consumption. In this model,

the cross-section distributions of wealth and consumption replicate themselves

over time, and furthermore each individual forever occupies the same position

in that distribution.

A model that has the cross-section distribution of wealth and consumption

being time invariant is not a bad approximation to the data. But there is ample

evidence that individual households’ positions within the distribution of wealth

move over time.6 Several models described in this book alter consumers’ trading

opportunities in ways designed to frustrate risk sharing enough to cause individ-

uals’ position in the distribution of wealth to change with luck and enterprise.

One class that emphasizes luck is the set of incomplete markets models started

by Truman Bewley. It eliminates the household’s access to almost all markets

and returns it to the environment of the precautionary savings model.

1.3.4. Bewley models

At first glance, the precautionary savings model with βR = 1 seems like a bad

starting point for building a theory that aspires to explain a situation in which

cross-section distributions of consumption and wealth are constant over time

even as individuals experience random fluctuations within that distribution. A

panel of households described by the precautionary savings model with βR = 1

would have cross-section distributions of wealth and consumption that march

upward and never settle down. What have come to be called Bewley models are

constructed by lowering the interest rate R to allow those cross-section distri-

butions to settle down. Bewley models are arranged so that the cross section

distributions of consumption, wealth, and income are constant over time and

so that the asymptotic stationary distributions of consumption, wealth, and

6 See Dı́az-Giménez, Quadrini and Ŕıos-Rull (1997); Krueger and Perri (2003a, 2003b);

Rodriguez, Dı́az-Giménez, Quadrini and Ŕıos-Rull (2002); and Davies and Shorrocks (2000).
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R

1

E[y]

E[a(R)]

E[a(R)]

Figure 1.3.1: Mean of time series average of household con-

sumption as function of risk-free gross interest rate R .

income for an individual consumer across time equal the corresponding cross-

section distributions across people. A Bewley model can thus be thought of as

starting with a continuum of consumers operating according to the precaution-

ary savings model with βR = 1 and its diverging individual asset process. We

then lower the interest rate enough to make assets converge to a distribution

whose cross-section average clears a market for a risk-free asset. Different ver-

sions of Bewley models are distinguished by what the risk-free asset is. In some

versions it is a consumption loan from one consumer to another; in others it is

fiat money; in others it can be either consumption loans or fiat money; and in

yet others it is claims on physical capital. Chapter 17 studies these alternative

interpretations of the risk-free asset.

As a function of a constant gross interest rate R , Figure 1.3.1 plots the time

series average of asset holdings for an individual consumer. At R = β−1 , the

time series mean of the individual’s assets diverges, so that Ea(R) is infinite. For

R < β−1 , the mean exists. We require that a continuum of ex ante identical but

ex post different consumers share the same time series average Ea(R) and also

that the distribution of a over time for a given agent equals the distribution

of At+1 at a point in time across agents. If the asset in question is a pure

consumption loan, we require as an equilibrium condition that Ea(R) = 0, so
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that borrowing equals lending. If the asset is fiat money, then we require that

Ea(R) = M
p , where M is a fixed stock of fiat money and p is the price level.

Thus, a Bewley model lowers the interest rate R enough to offset the pre-

cautionary savings force that with βR = 1 propels assets upward in the savings

problem. Precautionary saving remains an important force in Bewley models:

an increase in the volatility of income generally pushes the Ea(R) curve to the

right, driving the equilibrium R downward.

1.3.5. History dependence in standard consumption models

Individuals’ positions in the wealth distribution are frozen in the complete mar-

kets model, but not in the Bewley model, reflecting the absence or presence, re-

spectively, of history dependence in equilibrium allocation rules for consumption.

The preceding version of the complete markets model erases history dependence,

while the savings problem model and the Bewley model do not.

History dependence is present in these models in an easy to handle recur-

sive way because the household’s asset level completely encodes the history of

endowment realizations that it has experienced. We want a way of represent-

ing history dependence more generally in contexts where a stock of assets does

not suffice to summarize history. History dependence can be troublesome be-

cause without a convenient low-dimensional state variable to encode history, it

requires that there be a separate decision rule for each date that expresses the

time t decision as a function of the history at time t , an object with a number

of arguments that grows exponentially with t . As analysts, we have a strong

incentive to find a low-dimensional state variable. Fortunately, economists have

made tremendous strides in handling history dependence with recursive meth-

ods that summarize a history with a single number and that permit compact

time-invariant expressions for decision rules. We shall discuss history depen-

dence later in this chapter and will encounter many such examples in chapters

18, 22, 19, and 20.



The savings problem 11

1.3.6. Growth theory

Equation (1.3.3) is also a key ingredient of growth theory (see chapters 11 and

14). In the one-sector growth model, a representative household solves a version

of the savings problem in which the single asset is interpreted as a claim on

the return from a physical capital stock K that enters a constant returns to

scale production function F (K,L), where L is labor input. When returns to

capital are tax free, the theory equates the gross rate of return Rt+1 to the

gross marginal product of capital net of depreciation, namely, Fk,t+1 + (1 − δ),

where Fk(k, t + 1) is the marginal product of capital and δ is a depreciation

rate. Suppose that we add leisure to the utility function, so that we replace

u(c) with the more general one-period utility function U(c, `), where ` is the

household’s leisure. Then the appropriate version of the consumption Euler

condition (1.3.3) at equality becomes

Uc (t) = βUc (t+ 1) [Fk (t+ 1) + (1 − δ)] . (1.3.8)

The constant returns to scale property implies that Fk(K,N) = f ′(k), where

k = K/N and F (K,N) = Nf(K/N). If there exists a steady state in which k

and c are constant over time, then equation (1.3.8) implies that it must satisfy

ρ+ δ = f ′ (k) (1.3.9)

where β−1 ≡ (1 + ρ). The value of k that solves this equation is called the

“augmented Golden rule” steady-state level of the capital-labor ratio. This

celebrated equation shows how technology (in the form of f and δ ) and time

preference (in the form of β ) are the determinants of the steady-state level of

capital when income from capital is not taxed. However, if income from capital

is taxed at the flat rate marginal rate τk,t+1 , then the Euler equation (1.3.8)

becomes modified

Uc (t) = βUc (t+ 1) [Fk (t+ 1) (1 − τk,t+1) + (1 − δ)] . (1.3.10)

If the flat rate tax on capital is constant and if a steady-state k exists, it must

satisfy

ρ+ δ = (1 − τk) f
′ (k) . (1.3.11)

This equation shows how taxing capital diminishes the steady-state capital labor

ratio. See chapter 11 for an extensive analysis of the one-sector growth model
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when the government levies time-varying flat rate taxes on consumption, capital,

and labor, as well as offering an investment tax credit.

1.3.7. Limiting results from dynamic optimal taxation

Equations (1.3.9) and (1.3.11) are central to the dynamic theory of optimal

taxes. Chamley (1986) and Judd (1985b) forced the government to finance

an exogenous stream of government purchases, gave it the capacity to levy

time-varying flat rate taxes on labor and capital at different rates, formulated

an optimal taxation problem (a so-called Ramsey problem), and studied the

possible limiting behavior of the optimal taxes. Two Euler equations play a

decisive role in determining the limiting tax rate on capital in a nonstochastic

economy: the household’s Euler equation (1.3.10), and a similar consumption

Euler equation for the Ramsey planner that takes the form

Wc (t) = βWc (t+ 1) [Fk (t+ 1) + (1 − δ)] (1.3.12)

where

W (ct, `t) = U (ct, `t) + Φ [Uc (t) ct − U` (t) (1 − `t)] (1.3.13)

and where Φ is a Lagrange multiplier on the government’s intertemporal budget

constraint. As Jones, Manuelli, and Rossi (1997) emphasize, if the function

W (c, `) is simply viewed as a peculiar utility function, then what is called the

primal version of the Ramsey problem can be viewed as an ordinary optimal

growth problem with period utility function W instead of U .7

In a Ramsey allocation, taxes must be such that both (1.3.8) and (1.3.12)

always hold, among other equations. Judd and Chamley note the following

implication of the two Euler equations (1.3.8) and (1.3.12). If the government

expenditure sequence converges and if a steady state exists in which ct, `t, kt, τkt

all converge, then it must be true that (1.3.9) holds in addition to (1.3.11).

But both of these conditions can prevail only if τk = 0. Thus, the steady-state

7 Notice that so long as Φ > 0 (which occurs whenever taxes are necessary), the objective

in the primal version of the Ramsey problem disagrees with the preferences of the household

over (c, `) allocations. This conflict is the source of a time-inconsistency problem in the

Ramsey problem with capital.
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properties of two versions of our consumption Euler equation (1.3.3) underlie

Chamley and Judd’s remarkable result that asymptotically it is optimal not to

tax capital.

In stochastic versions of dynamic optimal taxation problems, we shall glean

additional insights from (1.3.3) as embedded in the asset-pricing equations

(1.3.16) and (1.3.18). In optimal taxation problems, the government has the

ability to manipulate asset prices through its influence on the equilibrium con-

sumption allocation that contributes to the stochastic discount factor mt+1,t .

The Ramsey government seeks a way wisely to use its power to revalue its ex-

isting debt by altering state-history prices. To appreciate what the Ramsey

government is doing, it helps to know the theory of asset pricing.

1.3.8. Asset pricing

The dynamic asset pricing theory of Breeden (1979) and Lucas (1978) also starts

with (1.3.3), but alters what is fixed and what is free. The Breedon-Lucas theory

is silent about the endowment process {yt} and sweeps it into the background. It

fixes a function u and a discount factor β , and takes a consumption process {ct}
as given. In particular, assume that ct = g(Xt), where Xt is a Markov process

with transition c.d.f. F (X ′|X). Given these inputs, the theory is assigned the

task of restricting the rate of return on an asset, defined by Lucas as a claim on

the consumption endowment:

Rt+1 =
pt+1 + ct+1

pt

where pt is the price of the asset. The Euler inequality (1.3.3) becomes

Etβ
u′ (ct+1)

u′ (ct)

(
pt+1 + ct+1

pt

)
= 1. (1.3.14)

This equation can be solved for a pricing function pt = p(Xt). In particular, if

we substitute p(Xt) into (1.3.14), we get Lucas’s functional equation for p(X).
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1.3.9. Multiple assets

If the consumer has access to several assets, a version of (1.3.3) holds for each

asset:

Etβ
u′ (ct+1)

u′ (ct)
Rj,t+1 = 1 (1.3.15)

where Rj,t+1 is the gross rate of return on asset j . Given a utility function u , a

discount factor β , and the hypothesis of rational expectations (which allows the

researcher to use empirical projections as counterparts of the theoretical projec-

tions Et ), equations (1.3.15) put extensive restrictions across the moments of

a vector time series for [ct, R1,t+1, . . . , RJ,t+1] . A key finding of the literature

(e.g., Hansen and Singleton, 1983) is that for u ’s with plausible curvature,8

consumption is too smooth for {ct, Rj,t+1} to satisfy equation (1.3.15), where

ct is measured as aggregate consumption.

Lars Hansen and others have elegantly organized this evidence as follows.

Define the stochastic discount factor

mt+1,t = β
u′ (ct+1)

u′ (ct)
(1.3.16)

and write (1.3.15) as

Etmt+1,tRj,t+1 = 1. (1.3.17)

Represent the gross rate of return as

Rj,t+1 =
ot+1

qt

where ot+1 is a one-period payout on the asset and qt is the price of the asset

at time t . Then (1.3.17) can be expressed as

qt = Etmt+1ot+1. (1.3.18)

The structure of (1.3.18) justifies calling mt+1,t a stochastic discount factor: to

determine the price of an asset, multiply the random payoff for each state by

the discount factor for that state, then add over states by taking a conditional

expectation. Applying the definition of a conditional covariance and a Cauchy-

Schwartz inequality to this equation implies

qt
Etmt+1

≥ Etot+1 −
σt (mt+1,t)

Etmt+1,t
σt (ot+1) (1.3.19)

8 Chapter 13 describes Pratt’s (1964) mental experiment for deducing plausible curvature.
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where σt(yt+1) denotes the conditional standard deviation of yt+1 . Setting

ot+1 = 1 in (1.3.18) shows that Etmt+1,t must be the time t price of a risk-free

one-period security. Inequality (1.3.19) bounds the ratio of the price of a risky

security qt to the price of a risk-free security Etmt+1,1 by the right side, which

equals the expected payout on that risky asset minus its conditional standard

deviation σt(ot+1) times a “market price of risk” σt(mt+1,t)/Etmt+1,t . By

using data only on payouts ot+1 and prices qt , inequality (1.3.19) has been

used to estimate the market price of risk without restricting how mt+1,t relates

to consumption. If we take these atheoretical estimates of σt(mt+1,t)/Etmt+1,t

and compare them with the theoretical values of σt(mt+1,t)/Etmt+1,t that we

get with a plausible curvature for u , and by imposing m̂t+1,t = β u
′(ct+1)
u′(ct)

for

aggregate consumption, we find that the theoretical m̂ has far too little volatility

to account for the atheoretical estimates of the conditional coefficient of variation

of mt+1,t . As we discuss extensively in chapter 13, this outcome reflects the fact

that aggregate consumption is too smooth to account for atheoretical estimates

of the market price of risk.

There have been two broad types of response to the empirical challenge.

The first retains (1.3.17) but abandons (1.3.16) and instead adopts a statistical

model for mt+1,t . Even without the link that equation (1.3.16) provides to

consumption, equation (1.3.17) imposes restrictions across asset returns and

mt+1,t that can be used to identify the mt+1,t process. Equation (1.3.17)

contains no-arbitrage conditions that restrict the joint behavior of returns. This

has been a fruitful approach in the affine term structure literature (see Backus

and Zin (1993), Piazzesi (2000), and Ang and Piazzesi (2003)).9

Another approach has been to disaggregate and to write the household-i

version of (1.3.3):

βEtRt+1
u′ (ci,t+1)

u′ (cit)
≤ 1, = ifAi,t+1 > Ai. (1.3.20)

If at time t , a subset of households are on the corner, (1.3.20) will hold with

equality only for another subset of households. Households in the second set

price assets.10

9 Affine term structure models generalize earlier models that implemented rational ex-

pectations versions of the expectations theory of the term structure of interest rates. See

Campbell and Shiller (1991), Hansen and Sargent (1991), and Sargent (1979).
10 David Runkle (1991) and Gregory Mankiw and Steven Zeldes (1991) checked (1.3.20)

for subsets of agents.
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Chapter 20 describes a model of Harald Zhang (1997) and Alvarez and Jer-

mann (2000, 2001). The model introduces participation (collateral) constraints

and shocks in a way that makes a changing subset of agents i satisfy (1.3.20).

Zhang and Alvarez and Jermann formulate these models by adding participa-

tion constraints to the recursive formulation of the consumption problem based

on (1.4.7). Next we briefly describe the structure of these models and their

attitude toward our theme equation, the consumption Euler equation (1.3.3).

The idea of Zhang and Alvarez and Jermann was to meet the empirical asset

pricing challenges by disrupting (1.3.3). As we shall see, that requires eliminat-

ing some of the assets that some of the households can trade. These advanced

models exploit a convenient method for representing and manipulating history

dependence.

1.4. Recursive methods

The pervasiveness of the consumption Euler inequality will be a significant sub-

stantive theme of this book. We now turn to a methodological theme, the

imperialism of the recursive method called dynamic programming.

The notion that underlies dynamic programming is a finite-dimensional

object called the state that, from the point of view of current and future payoffs,

completely summarizes the current situation of a decision maker. If an optimum

problem has a low-dimensional state vector, immense simplifications follow. A

recurring theme of modern macroeconomics and of this book is that finding an

appropriate state vector is an art.

To illustrate the idea of the state in a simple setting, return to the savings

problem and assume that the consumer’s endowment process is a time-invariant

function of a state st that follows a Markov process with time-invariant one-

period transition density π(s′|s) and initial density π0(s), so that yt = y(st). To

begin, recall the description (1.3.5) of consumption that prevails in the special

linear quadratic version of the savings problem. Under our present assumption

that yt is a time-invariant function of the Markov state, (1.3.5) and the house-

hold’s budget constraint imply the following representation of the household’s

decision rule:

ct = f (At, st) (1.4.1a)
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At+1 = g (At, st) . (1.4.1b)

Equation (1.4.1a) represents consumption as a time-invariant function of a state

vector (At, st). The Markov component st appears in (1.4.1a) because it con-

tains all of the information that is useful in forecasting future endowments (for

the linear quadratic model, (1.3.5) reveals the household’s incentive to forecast

future incomes), and the asset level At summarizes the individual’s current fi-

nancial wealth. The s component is assumed to be exogenous to the household’s

decisions and has a stochastic motion governed by π(s′|s). But the future path

of A is chosen by the household and is described by (1.4.1b). The system formed

by (1.4.1) and the Markov transition density π(s′|s) is said to be recursive be-

cause it expresses a current decision ct as a function of the state and tells how

to update the state. By iterating (1.4.1b), notice that At+1 can be expressed

as a function of the history [st, st−1, . . . , s0] and A0 . The endogenous state

variable financial wealth thus encodes all payoff-relevant aspects of the history

of the exogenous component of the state st .

Define the value function V (A0, s0) as the optimum value of the savings

problem starting from initial state (A0, s0). The value function V satisfies the

following functional equation, known as a Bellman equation:

V (A, s) = max
c,A′

{u (c) + βE [V (A′, s′) |s]} (1.4.2)

where the maximization is subject to A′ = R(A+y−c) and y = y(s). Associated

with a solution V (A, s) of the Bellman equation is the pair of policy functions

c = f (A, s) (1.4.3a)

A′ = g (A, s) (1.4.3b)

from (1.4.1). The ex ante value (i.e., the value of (1.3.1) before s0 is drawn)

of the savings problem is then

v (A0) =
∑

s

V (A0, s)π0 (s) . (1.4.4)

We shall make ample use of the ex ante value function.
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1.4.1. Methodology: dynamic programming issues a challenge

Dynamic programming is now recognized as a powerful method for studying

private agents’ decisions and also the decisions of a government that wants to

design an optimal policy in the face of constraints imposed on it by private

agents’ best responses to that government policy. But it has taken a long time

for the power of dynamic programming to be realized for government policy

design problems.

Dynamic programming had been applied since the late 1950s to design gov-

ernment decision rules to control an economy whose transition laws included

rules that described the decisions of private agents. In 1976 Robert E. Lucas,

Jr., published his now famous critique of dynamic-programming-based econo-

metric policy evaluation procedures. The heart of Lucas’s critique was the

implication for government policy evaluation of a basic property that pertains

to any optimal decision rule for private agents with a form (1.4.3) that attains

a Bellman equation like (1.4.2). The property is that the optimal decision rules

(f, g) depend on the transition density π(s′|s) for the exogenous component of

the state s . As a consequence, any widely understood government policy that

alters the law of motion for a state variable like s that appears in private agents’

decision rules should alter those private decision rules. (In the applications that

Lucas had in mind, the s in private agents’ decision problems included variables

useful for predicting tax rates, the money supply, and the aggregate price level.)

Therefore, Lucas asserted that econometric policy evaluation procedures that

assumed that private agents’ decision rules are fixed in the face of alterations in

government policy are flawed.11 Most econometric policy evaluation procedures

at the time were vulnerable to Lucas’s criticism. To construct valid policy eval-

uation procedures, Lucas advocated building new models that would attribute

rational expectations to decision makers.12 Lucas’s discussant Robert Gordon

implied that after that ambitious task had been accomplished, we could then

use dynamic programming to compute optimal policies, i.e., to solve Ramsey

problems.

11 They were flawed because they assumed “no response” when they should have assumed

“best response” of private agents’ decision rules to government decision rules.
12 That is, he wanted private decision rules to solve dynamic programming problems with

the correct transition density π for s .
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1.4.2. Dynamic programming challenged

But Edward C. Prescott’s 1977 paper entitled “Should Control Theory Be Used

for Economic Stabilization?” asserted that Gordon was too optimistic. Prescott

claimed that in his 1977 JPE paper with Kydland he had proved that was it

was “logically impossible” to use dynamic programming to find optimal govern-

ment policies in settings where private traders face genuinely dynamic problems.

Prescott said that dynamic programming was inapplicable to government policy

design problems because the structure of the best response of current private

decisions to future government policies prevents the government policy design

problem from being recursive (a manifestation of the time inconsistency of op-

timal government plans). The optimal government plan would therefore require

a government commitment technology, and the government policy must take

the form of a sequence of history-dependent decision rules that could not be

expressed as a function of natural state variables.

1.4.3. Imperialistic response of dynamic programming

Much of the subsequent history of macroeconomics belies Prescott’s claim of

“logical impossibility.” More and more problems that smart people like Prescott

in 1977 thought could not be attacked with dynamic programming can now be

solved with dynamic programming. Prescott didn’t put it this way, but now we

would: in 1977 we lacked a way to handle history dependence within a dynamic

programming framework. Finding a recursive way to handle history dependence

is a major achievement of the past 25 years and an important methodological

theme of this book that opens the way to a variety of important applications.

We shall encounter important traces of the fascinating history of this topic

in various chapters. Important contributors to the task of overcoming Prescott’s

challenge seemed to work in isolation from one another, being unaware of the

complementary approaches being followed elsewhere. Important contributors

included Shavell and Weiss (1979); Kydland and Prescott (1980); Miller and

Salmon (1985); Pearlman, Currie and Levine (1985); Pearlman (1992), and

Hansen, Epple, and Roberds (1985). These researchers achieved truly indepen-

dent discoveries of the same important idea.

As we discuss in detail in chapter 18, one important approach amounted

to putting a government costate vector on the costate equations of the private
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decision makers, then proceeding as usual to use optimal control for the govern-

ment’s problem. (A costate equation is a version of an Euler equation.) Solved

forward, the costate equation depicts the dependence of private decisions on

forecasts of future government policies that Prescott was worried about. The

key idea in this approach was to formulate the government’s problem by taking

the costate equations of the private sector as additional constraints on the gov-

ernment’s problem. These amount to promise-keeping constraints (they are cast

in terms of derivatives of value functions, not value functions themselves, be-

cause costate vectors are gradients of value functions). After adding the costate

equations of the private sector (the “followers”) to the transition law of the gov-

ernment (the “leader”), one could then solve the government’s problem by using

dynamic programming as usual. One simply writes down a Bellman equation

for the government planner taking the private sector costate variables as pseudo-

state variables. Then it is almost business as usual (Gordon was correct!). We

say “almost” because after the Bellman equation is solved, there is one more

step: to pick the initial value of the private sector’s costate. To maximize the

government’s criterion, this initial condition should be set to zero because ini-

tially there are no promises to keep. The government’s optimal decision is a

function of the natural state variable and the costate variables. The date t

costate variables encode history and record the “cost” to the government at t of

confirming the private sector’s prior expectations about the government’s time

t decisions, expectations that were embedded in the private sector’s decisions

before t . The solution is time inconsistent (the government would always like

to reinitialize the time t multiplier to zero and thereby discard past promises,

but that is ruled out by the assumption that the government is committed to

follow the optimal plan). See chapter 18 for many technical details, computer

programs, and an application.
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1.4.4. History dependence and “dynamic programming squared”

Rather than pursue the “costate on the costate” approach further, we now turn

to a closely related approach that we illustrate in a dynamic contract design

problem. While superficially different from the government policy design prob-

lem, the contract problem has many features in common with it. What is again

needed is a recursive way to encode history dependence. Rather than use costate

variables, we move up a derivative and work with promised values. This leads

to value functions appearing inside value functions or “dynamic programming

squared.”

Define the history st of the Markov state by st = [st, st−1, . . . , s0] and let

πt(s
t) be the density over histories induced by π, π0 . Define a consumption

allocation rule as a sequence of functions, the time component of which maps st

into a choice of time t consumption, ct = σt(s
t), for t ≥ 0. Let c = {σt(st)}∞t=0 .

Define the (ex ante) value associated with an allocation rule as

v (c) =

∞∑

t=0

∑

st

βtu
(
σt
(
st
))
πt
(
st
)
. (1.4.5)

For each possible realization of the period zero state s0 , there is a continuation

history st|s0 . The observation that a continuation history is itself a complete

history is our first hint that a recursive formulation is possible.13 For each

possible realization of the first period s0 , a consumption allocation rule implies

a one-period continuation consumption rule c|s0 . A continuation consumption

rule is itself a consumption rule that maps histories into time series of consump-

tion. The one-period continuation history treats the time t + 1 component of

the original history evaluated at s0 as the time t component of the continuation

history. The period t consumption of the one-period continuation consumption

allocation conforms to the time t+ 1 component of original consumption allo-

cation evaluated at s0 . The time and state separability of (1.4.5) then allow us

to represent v(c) recursively as

v (c) =
∑

s0

[u (c0 (s0)) + βv (c|s0)]π0 (s0) , (1.4.6)

where v(c|s0) is the value of the continuation allocation. We call v(c|s0) the

continuation value. In a special case that successive components of st are i.i.d.

13 See chapters 8 and 22 for discussions of the recursive structure of histories.
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and have a discrete distribution, we can write (1.4.6) as

v =
∑

s

[u (cs) + βws] Πs, (1.4.7)

where Πs = Prob(yt = ys) and [y1 < y2 · · · < yS ] is a grid on which the endow-

ment resides, cs is consumption in state s given v , and ws is the continuation

value in state s given v . Here we use v in (1.4.7) to denote what was v(c) in

(1.4.6) and ws to denote what was v(c|s) in (1.4.6).

So far this has all been for an arbitrary consumption plan. Evidently, the

ex ante value v attained by an optimal consumption program must satisfy

v = max
{cs,ws}S

s=1

∑

s

[u (cs) + βws] Πs (1.4.8)

where the maximization is subject to constraints that summarize the individual’s

opportunities to trade current state-contingent consumption cs against future

state-contingent continuation values ws . In these problems, the value of v is an

outcome that depends, in the savings problem for example, on the household’s

initial level of assets. In fact, for the savings problem with i.i.d. endowment

shocks, the outcome is that v is a monotone function of A . This monotonicity

allows the following remarkable representation. After solving for the optimal

plan, use the monotone transformation to let v replace A as a state variable

and represent the optimal decision rule in the form

cs = f (v, s) (1.4.9a)

ws = g (v, s) . (1.4.9b)

The promised value v (a forward-looking variable if there ever was one)

is also the variable that functions as an index of history in (1.4.9). Equation

(1.4.9b) reminds us that v is a “backward looking” variable that registers the

cumulative impact of past states st . The definition of v as a promised value,

for example in (1.4.8), tells us that v is also a forward-looking variable that

encodes expectations (promises) about future consumption.
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1.4.5. Dynamic principal-agent problems

The right side of (1.4.8) tells the terms on which the household is willing to trade

current utility for continuation utility. Models that confront enforcement and

information problems use the trade-off identified by (1.4.8) to design intertem-

poral consumption plans that optimally balance risk sharing and intertemporal

consumption smoothing against the need to offer correct incentives. Next we

turn to such models.

We remove the household from the market and hand it over to a planner

or principal who offers the household a contract that the planner designs to

deliver an ex ante promised value v subject to enforcement or information con-

straints.14 Now v becomes a state variable that occurs in the planner’s value

function. We assume that the only way the household can transfer his endow-

ment over time is to deal with the planner. The saving or borrowing technology

(1.3.2) is no longer available to the agent, though it might be to the planner.

We continue to consider the i.i.d. case mentioned above. Let P (v) be the ex

ante optimal value of the planner’s problem. The presence of a value function

(for the agents) as an argument of the value function of the principal causes us

sometimes to speak of “dynamic programming squared.” The planner “earns”

yt− ct from the agent at time t by commandeering the agent’s endowment but

returning consumption ct . The value function P (v) for a planner who must

deliver promised value v satisfies

P (v) = max
{cs,ws}S

s=1

[ys − cs + βP (ws)] Πs, (1.4.10)

where the maximization is subject to the promise-keeping constraint (1.4.7) and

some other constraints that depend on details of the problem, as we indicate

shortly. The other constraints are context-specific incentive-compatibility con-

straints and describe the best response of the agent to the arrangement offered

by the principal. Condition (1.4.7) is a promise-keeping constraint. The planner

is constrained to provide a vector of {cs, ws}Ss=1 that delivers the value v .

We briefly describe two types of contract design problems and the con-

straints that confront the planner because of the opportunities that the envi-

ronment grants the agent.

To model the problem of enforcement without an information problem, as-

sume that while the planner can observe yt each period, the household always

14 Here we are sticking close to two models of Thomas and Worrall (1988, 1990).
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has the option of consuming its endowment yt and receiving an ex ante con-

tinuation value vaut with which to enter the next period, where vaut is the

ex ante value the consumer receives by always consuming his endowment. The

consumer’s freedom to walk away induces the planner to structure the insurance

contract so that it is never in the household’s interest to defect from the contract

(the contract must be “self-enforcing”). A self-enforcing contract requires that

the following participation constraints be satisfied:

u (cs) + βws ≥ u (ys) + βvaut ∀s. (1.4.11)

A self-enforcing contract provides imperfect insurance when occasionally some of

these participation constraints are binding. When they are binding, the planner

sacrifices consumption smoothing in the interest of providing incentives for the

contract to be self-enforcing.

An alternative specification eliminates the enforcement problem by assum-

ing that once the household enters the contract, it does not have the option to

walk away. A planner wants to supply insurance to the household in the most

efficient way, but now the planner cannot observe the household’s endowment.

The planner must trust the household to report its endowment. It is assumed

that the household will truthfully report its endowment only if it wants to. This

leads the planner to add to the promise-keeping constraint (1.4.7) the following

truth-telling constraints:

u (cs) + βws ≥ u (ys − yτ + cτ ) + βwτ ∀ (s, τ) , (1.4.12)

where constraint (1.4.12) pertains to a situation when the household’s true en-

dowment is ys but the household considers to falsely report that the endowment

instead is yτ . The left and right sides of (1.4.12) are the utility of telling the

truth and lying, respectively. If the household (falsely) reports yτ , the planner

awards the household a net transfer cτ − yτ and a continuation value wτ . If

(1.4.12) holds for all τ , the household will always choose to report the true

state s .

As we shall see in chapters 19 and 20, the planner elicits truthful reporting

by manipulating how continuation values vary with the reported state. House-

holds that report a low income today might receive a transfer today, but they

suffer an adverse consequence by getting a diminished continuation value start-

ing tomorrow. The planner structures this menu of choices so that only low-

endowment households, those that badly want a transfer today, are willing to
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accept the diminished continuation value that is the consequence of reporting

that low income today.

At this point, a supermartingale convergence theorem raises its ugly head

again. But this time it propels consumption and continuation utility downward .

The super martingale result leads to what some people have termed the “im-

miseration” property of models in which dynamic contracts are used to deliver

incentives to reveal information.

To enhance our appreciation for the immiseration result, we now touch on

another aspect of macroeconomic’s love-hate affair with the Euler inequality

(1.3.3). In both of the incentive models just described, one with an enforce-

ment problem, the other with an information problem, it is important that the

household not have access to a good risk-free investment technology like that

represented in the constraint (1.3.2) that makes (1.3.3) the appropriate first-

order condition in the savings problem. Indeed, especially in the model with

limited information, the planner makes ample use of his ability to reallocate

consumption intertemporally in ways that can violate (1.3.2) in order to elicit

accurate information from the household. In chapter 19, we shall follow Cole

and Kocherlakota (2001) by allowing the household to save (but not to dissave)

a risk-free asset that bears fixed gross interest rate R = β−1 . The Euler inequal-

ity comes back into play and alters the character of the insurance arrangement

so that outcomes resemble ones that occur in a Bewley model, provided that

the debt limit in the Bewley model is chosen appropriately.

1.4.6. More applications

We shall study many more applications of dynamic programming and dynamic

programming squared, including models of search in labor markets, reputation

and credible public policy, gradualism in trade policy, unemployment insurance,

and monetary economies. It is time to get to work seriously studying the math-

ematical and economic tools that we need to approach these exciting topics. Let

us begin.



Part II

Tools



Chapter 2
Time Series

2.1. Two workhorses

This chapter describes two tractable models of time series: Markov chains and

first-order stochastic linear difference equations. These models are organizing

devices that put particular restrictions on a sequence of random vectors. They

are useful because they describe a time series with parsimony. In later chapters,

we shall make two uses each of Markov chains and stochastic linear difference

equations: (1) to represent the exogenous information flows impinging on an

agent or an economy, and (2) to represent an optimum or equilibrium outcome

of agents’ decision making. The Markov chain and the first-order stochastic

linear difference both use a sharp notion of a state vector. A state vector sum-

marizes the information about the current position of a system that is relevant

for determining its future. The Markov chain and the stochastic linear difference

equation will be useful tools for studying dynamic optimization problems.

2.2. Markov chains

A stochastic process is a sequence of random vectors. For us, the sequence

will be ordered by a time index, taken to be the integers in this book. So we

study discrete time models. We study a discrete-state stochastic process with

the following property:

Markov Property: A stochastic process {xt} is said to have the Markov

property if for all k ≥ 1 and all t ,

Prob (xt+1|xt, xt−1, . . . , xt−k) = Prob (xt+1|xt) .

We assume the Markov property and characterize the process by a Markov

chain. A time-invariant Markov chain is defined by a triple of objects, namely,

– 29 –
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an n-dimensional state space consisting of vectors ei, i = 1, . . . , n , where ei is

an n × 1 unit vector whose ith entry is 1 and all other entries are zero; an

n× n transition matrix P , which records the probabilities of moving from one

value of the state to another in one period; and an (n× 1) vector π0 whose ith

element is the probability of being in state i at time 0: π0i = Prob(x0 = ei).

The elements of matrix P are

Pij = Prob (xt+1 = ej|xt = ei) .

For these interpretations to be valid, the matrix P and the vector π must satisfy

the following assumption:

Assumption M:
a. For i = 1, . . . , n , the matrix P satisfies

n∑

j=1

Pij = 1. (2.2.1)

b. The vector π0 satisfies
n∑

i=1

π0i = 1.

A matrix P that satisfies property (2.2.1) is called a stochastic matrix. A

stochastic matrix defines the probabilities of moving from each value of the state

to any other in one period. The probability of moving from one value of the

state to any other in two periods is determined by P 2 because

Prob (xt+2 = ej |xt = ei)

=

n∑

h=1

Prob (xt+2 = ej |xt+1 = eh) Prob (xt+1 = eh|xt = ei)

=

n∑

h=1

PihPhj = P
(2)
ij ,

where P
(2)
ij is the i, j element of P 2 . Let P

(k)
i,j denote the i, j element of P k .

By iterating on the preceding equation, we discover that

Prob (xt+k = ej |xt = ei) = P
(k)
ij .
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The unconditional probability distributions of xt are determined by

π′
1 = Prob (x1) = π′

0P

π′
2 = Prob (x2) = π′

0P
2

...

π′
k = Prob (xk) = π′

0P
k,

where π′
t = Prob(xt) is the (1× n) vector whose ith element is Prob(xt = ei).

2.2.1. Stationary distributions

Unconditional probability distributions evolve according to

π′
t+1 = π′

tP. (2.2.2)

An unconditional distribution is called stationary or invariant if it satisfies

πt+1 = πt,

that is, if the unconditional distribution remains unaltered with the passage of

time. From the law of motion (2.2.2) for unconditional distributions, a station-

ary distribution must satisfy

π′ = π′P (2.2.3)

or

π′ (I − P ) = 0.

Transposing both sides of this equation gives

(I − P ′)π = 0, (2.2.4)

which determines π as an eigenvector (normalized to satisfy
∑n

i=1 πi = 1)

associated with a unit eigenvalue of P ′ .

The fact that P is a stochastic matrix (i.e., it has nonnegative elements

and satisfies
∑
j Pij = 1 for all i) guarantees that P has at least one unit

eigenvalue, and that there is at least one eigenvector π that satisfies equation

(2.2.4). This stationary distribution may not be unique because P can have a

repeated unit eigenvalue.
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Example 1. A Markov chain

P =




1 0 0

.2 .5 .3

0 0 1




has two unit eigenvalues with associated stationary distributions π′ = [ 1 0 0 ]

and π′ = [ 0 0 1 ] . Here states 1 and 3 are both absorbing states. Further-

more, any initial distribution that puts zero probability on state 2 is a stationary

distribution. See exercises 2.10 and 2.11 .

Example 2. A Markov chain

P =



.7 .3 0

0 .5 .5

0 .9 .1




has one unit eigenvalue with associated stationary distribution π′ = [ 0 .6429 .3571 ].

Here states 2 and 3 form an absorbing subset of the state space.

2.2.2. Asymptotic stationarity

We often ask the following question about a Markov process: for an arbitrary

initial distribution π0 , do the unconditional distributions πt approach a sta-

tionary distribution

lim
t→∞

πt = π∞,

where π∞ solves equation (2.2.4)? If the answer is yes, then does the limit

distribution π∞ depend on the initial distribution π0 ? If the limit π∞ is inde-

pendent of the initial distribution π0 , we say that the process is asymptotically

stationary with a unique invariant distribution. We call a solution π∞ a sta-

tionary distribution or an invariant distribution of P .

We state these concepts formally in the following definition:

Definition: Let π∞ be a unique vector that satisfies (I −P ′)π∞ = 0. If for

all initial distributions π0 it is true that P t′π0 converges to the same π∞ , we

say that the Markov chain is asymptotically stationary with a unique invariant

distribution.

The following theorems can be used to show that a Markov chain is asymp-

totically stationary.
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Theorem 1: Let P be a stochastic matrix with Pij > 0 ∀(i, j). Then P has

a unique stationary distribution, and the process is asymptotically stationary.

Theorem 2: Let P be a stochastic matrix for which Pnij > 0 ∀(i, j) for some

value of n ≥ 1. Then P has a unique stationary distribution, and the process

is asymptotically stationary.

The conditions of theorem 1 (and 2) state that from any state there is a positive

probability of moving to any other state in one (or n) steps.

2.2.3. Expectations

Let y be an n×1 vector of real numbers and define yt = y′xt , so that yt = yi if

xt = ei . From the conditional and unconditional probability distributions that

we have listed, it follows that the unconditional expectations of yt for t ≥ 0 are

determined by Eyt = (π′
0P

t)y . Conditional expectations are determined by

E (yt+1|xt = ei) =
∑

j

Pijyj = (Py)i (2.2.5)

E (yt+2|xt = ei) =
∑

k

P
(2)
ik yk =

(
P 2y

)
i

(2.2.6)

and so on, where P
(2)
ik denotes the (i, k) element of P 2 . Notice that

E [E (yt+2|xt+1 = ej) |xt = ei] =
∑

j

Pij
∑

k

Pjkyk

=
∑

k



∑

j

PijPjk


 yk =

∑

k

P
(2)
ik yk = E (yt+2|xt = ei) .

Connecting the first and last terms in this string of equalities yields E[E(yt+2|xt+1)|xt] =

E[yt+2|xt] . This is an example of the “law of iterated expectations.” The law of

iterated expectations states that for any random variable z and two information

sets J, I with J ⊂ I , E[E(z|I)|J ] = E(z|J). As another example of the law of

iterated expectations, notice that

Ey1 =
∑

j

π1,jyj = π′
1y = (π′

0P ) y = π′
0 (Py)
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and that

E [E (y1|x0 = ei)] =
∑

i

π0,i

∑

j

Pijyj =
∑

j

(
∑

i

π0,iPij

)
yj = π′

1y = Ey1.

2.2.4. Forecasting functions

There are powerful formulas for forecasting functions of a Markov process.

Again, let y be an n × 1 vector and consider the random variable yt = y′xt .

Then

E [yt+k|xt = ei] =
(
P ky

)
i

where (P ky)i denotes the ith row of P ky . Stacking all n rows together, we

express this as

E [yt+k|xt] = P ky. (2.2.7)

We also have
∞∑

k=0

βkE [yt+k|xt = ei] =
[
(I − βP )

−1
y
]

i
,

where β ∈ (0, 1) guarantees existence of (I − βP )−1 = (I + βP + β2P 2 + · · · ).
One-step-ahead forecasts of a sufficiently rich set of random variables char-

acterize a Markov chain. In particular, one-step-ahead conditional expectations

of n independent functions (i.e., n linearly independent vectors h1, . . . , hn )

uniquely determine the transition matrix P . Thus, let E[hk,t+1|xt = ei] =

(Phk)i . We can collect the conditional expectations of hk for all initial states

i in an n × 1 vector E[hk,t+1|xt] = Phk . We can then collect conditional ex-

pectations for the n independent vectors h1, . . . , hn as Ph = J where h =

[h1 h2 . . . hn ] and J is the n× n matrix consisting of all conditional ex-

pectations of all n vectors h1, . . . , hn . If we know h and J , we can determine

P from P = Jh−1 .
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2.2.5. Invariant functions and ergodicity

Let P, π be a stationary n-state Markov chain with the state space X = [ei, i =

1, . . . , n] . An n × 1 vector y defines a random variable yt = y′xt . Thus, a

random variable is another term for “function of the underlying Markov state.”

The following is a useful precursor to a law of large numbers:

Theorem 2.2.1. Let y define a random variable as a function of an underlying

state x , where x is governed by a stationary Markov chain (P, π) . Then

1

T

T∑

t=1

yt → E [y∞|x0] (2.2.8)

with probability 1 .

Here E[y∞|x0] is the expectation of ys for s very large, conditional on

the initial state. We want more than this. In particular, we would like to

be able to replace E[y∞|x0] with the constant unconditional mean E[yt] =

E[y0] associated with the stationary distribution. To get this requires that we

strengthen what is assumed about P by using the following concepts. First, we

use

Definition 2.2.1. A random variable yt = y′xt is said to be invariant if

yt = y0, t ≥ 0, for any realization of xt, t ≥ 0.

Thus, a random variable y is invariant (or “an invariant function of the state”)

if it remains constant while the underlying state xt moves through the state

space X .

For a finite-state Markov chain, the following theorem gives a convenient

way to characterize invariant functions of the state.

Theorem 2.2.2. Let P, π be a stationary Markov chain. If

E [yt+1|xt] = yt (2.2.9)

then the random variable yt = y′xt is invariant.

Proof. By using the law of iterated expectations, notice that

E (yt+1 − yt)
2 = E

[
E
(
y2
t+1 − 2yt+1yt + y2

t

)
|xt
]

= E
[
Ey2

t+1|xt − 2E (yt+1|xt) yt + Ey2
t |xt

]

= Ey2
t+1 − 2Ey2

t + Ey2
t

= 0
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where the middle term on the right side of the second line uses that E[yt|xt] =

yt , the middle term on the right side of the third line uses the hypothesis (2.2.9),

and the third line uses the hypothesis that π is a stationary distribution. In a

finite Markov chain, if E(yt+1 − yt)
2 = 0, then yt+1 = yt for all yt+1, yt that

occur with positive probability under the stationary distribution.

As we shall have reason to study in chapters 16 and 17, any (not necessarily

stationary) stochastic process yt that satisfies (2.2.9) is said to be a martingale.

Theorem 2.2.2 tells us that a martingale that is a function of a finite-state

stationary Markov state xt must be constant over time. This result is a special

case of the martingale convergence theorem that underlies some remarkable

results about savings to be studied in chapter 16.1

Equation (2.2.9) can be expressed as Py = y or

(P − I) y = 0, (2.2.10)

which states that an invariant function of the state is a (right) eigenvector of P

associated with a unit eigenvalue.

Definition 2.2.2. Let (P, π) be a stationary Markov chain. The chain is said

to be ergodic if the only invariant functions y are constant with probability 1,

i.e., yi = yj for all i, j with πi > 0, πj > 0.

A law of large numbers for Markov chains is:

Theorem 2.2.3. Let y define a random variable on a stationary and ergodic

Markov chain (P, π) . Then

1

T

T∑

t=1

yt → E [y0] (2.2.11)

with probability 1 .

This theorem tells us that the time series average converges to the popula-

tion mean of the stationary distribution.

1 Theorem 2.2.2 tells us that a stationary martingale process has so little freedom to

move that it has to be constant forever, not just eventually, as asserted by the martingale

convergence theorem.
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Three examples illustrate these concepts.

Example 1. A chain with transition matrix P =

[
0 1

1 0

]
has a unique invariant

distribution π = [ .5 .5 ]
′
and the invariant functions are [α α ]

′
for any scalar

α . Therefore, the process is ergodic and Theorem 2.2.3 applies.

Example 2. A chain with transition matrix P =

[
1 0

0 1

]
has a continuum of

stationary distributions γ

[
1

0

]
+ (1 − γ)

[
0

1

]
for any γ ∈ [0, 1] and invariant

functions

[
0

α

]
and

[
α

0

]
for any α . Therefore, the process is not ergodic. The

conclusion (2.2.11) of Theorem 2.2.3 does not hold for many of the station-

ary distributions associated with P , but Theorem 2.2.1 does hold. Conclusion

(2.2.11) does hold for one particular choice of stationary distribution.

Example 3. A chain with transition matrix P =



.8 .2 0

.1 .9 0

0 0 1


 has a continuum

of stationary distributions γ [ 1
3

2
3 0 ]

′
+(1−γ) [ 0 0 1 ]

′
and invariant func-

tions α [ 1 1 0 ]′ and α [ 0 0 1 ]′ for any scalar α . The conclusion (2.2.11)

of Theorem 2.2.3 does not hold for many of the stationary distributions associ-

ated with P , but Theorem 2.2.1 does hold. But again, conclusion (2.2.11) does

hold for one particular choice of stationary distribution.

2.2.6. Simulating a Markov chain

It is easy to simulate a Markov chain using a random number generator. The

Matlab program markov.m does the job. We’ll use this program in some later

chapters.2

2 An index in the back of the book lists Matlab programs.
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2.2.7. The likelihood function

Let P be an n × n stochastic matrix with states 1, 2, . . . , n . Let π0 be an

n × 1 vector with nonnegative elements summing to 1, with π0,i being the

probability that the state is i at time 0. Let it index the state at time

t . The Markov property implies that the probability of drawing the path

(x0, x1, . . . , xT−1, xT ) = (ei0 , ei1 , . . . , eiT−1 , eiT ) is

L ≡ Prob
(
xiT , xiT−1 , . . . , xi1 , xi0

)

= PiT−1,iT PiT−2,iT−1 · · ·Pi0,i1π0,i0 .
(2.2.12)

The probability L is called the likelihood. It is a function of both the sample

realization x0, . . . , xT and the parameters of the stochastic matrix P . For a

sample x0, x1, . . . , xT , let nij be the number of times that there occurs a one-

period transition from state i to state j . Then the likelihood function can be

written

L = π0,i0

∏

i

∏

j

P
nij

i,j ,

a multinomial distribution.

Formula (2.2.12) has two uses. A first, which we shall encounter often, is to

describe the probability of alternative histories of a Markov chain. In chapter 8,

we shall use this formula to study prices and allocations in competitive equilibria.

A second use is for estimating the parameters of a model whose solution

is a Markov chain. Maximum likelihood estimation for free parameters θ of a

Markov process works as follows. Let the transition matrix P and the initial

distribution π0 be functions P (θ), π0(θ) of a vector of free parameters θ . Given

a sample {xt}Tt=0 , regard the likelihood function as a function of the parameters

θ . As the estimator of θ , choose the value that maximizes the likelihood function

L .
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2.3. Continuous-state Markov chain

In chapter 8 we shall use a somewhat different notation to express the same ideas.

This alternative notation can accommodate either discrete- or continuous-state

Markov chains. We shall let S denote the state space with typical element s ∈ S .

The transition density is π(s′|s) = Prob(st+1 = s′|st = s) and the initial density

is π0(s) = Prob(s0 = s). For all s ∈ S, π(s′|s) ≥ 0 and
∫
s′ π(s′|s)ds′ = 1; also∫

s
π0(s)ds = 1.3 Corresponding to (2.2.12), the likelihood function or density

over the history st = [st, st−1, . . . , s0] is

π
(
st
)

= π (st|st−1) · · ·π (s1|s0)π0 (s0) . (2.3.1)

For t ≥ 1, the time t unconditional distributions evolve according to

πt (st) =

∫

st−1

π (st|st−1)πt−1 (st−1) d st−1.

A stationary or invariant distribution satisfies

π∞ (s′) =

∫

s

π (s′|s)π∞ (s) d s,

which is the counterpart to (2.2.3).

Paralleling our discussion of finite-state Markov chains, we can say that the

function φ(s) is invariant if
∫
φ (s′)π (s′|s) ds′ = φ (s) .

A stationary continuous-state Markov process is said to be ergodic if the only

invariant functions p(s′) are constant with probability 1 according to the sta-

tionary distribution π∞ . A law of large numbers for Markov processes states:

Theorem 2.3.1. Let y(s) be a random variable, a measurable function of

s , and let (π(s′|s), π0(s)) be a stationary and ergodic continuous-state Markov

process. Assume that E|y| < +∞ . Then

1

T

T∑

t=1

yt → Ey =

∫
y (s) π0 (s) ds

with probability 1 with respect to the distribution π0 .

3 Thus, when S is discrete, π(sj |si) corresponds to Psi,sj in our earlier notation.
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2.4. Stochastic linear difference equations

The first-order linear vector stochastic difference equation is a useful example

of a continuous-state Markov process. Here we could use xt ∈ IRn rather

than st to denote the time t state and specify that the initial distribution

π0(x0) is Gaussian with mean µ0 and covariance matrix Σ0 , and that the

transition density π(x′|x) is Gaussian with mean Aox and covariance CC′ . This

specification pins down the joint distribution of the stochastic process {xt}∞t=0

via formula (2.3.1). The joint distribution determines all of the moments of the

process that exist.

This specification can be represented in terms of the first-order stochastic

linear difference equation

xt+1 = Aoxt + Cwt+1 (2.4.1)

for t = 0, 1, . . ., where xt is an n×1 state vector, x0 is a given initial condition,

Ao is an n × n matrix, C is an n ×m matrix, and wt+1 is an m × 1 vector

satisfying the following:

Assumption A1: wt+1 is an i.i.d. process satisfying wt+1 ∼ N (0, I).

We can weaken the Gaussian assumption A1. To focus only on first and

second moments of the x process, it is sufficient to make the weaker assumption:

Assumption A2: wt+1 is an m× 1 random vector satisfying:

Ewt+1|Jt = 0 (2.4.2a)

Ewt+1w
′
t+1|Jt = I, (2.4.2b)

where Jt = [wt · · · w1 x0 ] is the information set at t , and E[ · |Jt] de-

notes the conditional expectation. We impose no distributional assumptions

beyond (2.4.2). A sequence {wt+1} satisfying equation (2.4.2a) is said to be a

martingale difference sequence adapted to Jt . A sequence {zt+1} that satisfies

E[zt+1|Jt] = zt is said to be a martingale adapted to Jt .

An even weaker assumption is

Assumption A3: wt+1 is a process satisfying

Ewt+1 = 0
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for all t and

Ewtw
′
t−j =

{
I, if j = 0;

0, if j 6= 0.

A process satisfying assumption A3 is said to be a vector “white noise.”4

Assumption A1 or A2 implies assumption A3 but not vice versa. Assump-

tion A1 implies assumption A2 but not vice versa. Assumption A3 is sufficient

to justify the formulas that we report below for second moments. We shall often

append an observation equation yt = Gxt to equation (2.4.1) and deal with the

augmented system

xt+1 = Aoxt + Cwt+1 (2.4.3a)

yt = Gxt. (2.4.3b)

Here yt is a vector of variables observed at t , which may include only some

linear combinations of xt . The system (2.4.3) is often called a linear state-

space system.

Example 1. Scalar second-order autoregression: Assume that zt and wt are

scalar processes and that

zt+1 = α+ ρ1zt + ρ2zt−1 + wt+1.

Represent this relationship as the system



zt+1

zt

1


 =



ρ1 ρ2 α

1 0 0

0 0 1






zt

zt−1

1


+




1

0

0


wt+1

zt = [ 1 0 0 ]




zt

zt−1

1





which has form (2.4.3).

Example 2. First-order scalar mixed moving average and autoregression: Let

zt+1 = ρzt + wt+1 + γwt.

4 Note that (2.4.2a) allows the distribution of wt+1 conditional on Jt to be heteroskedastic.
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Express this relationship as

[
zt+1

wt+1

]
=

[
ρ γ

0 0

] [
zt

wt

]
+

[
1

1

]
wt+1

zt = [ 1 0 ]

[
zt

wt

]
.

Example 3. Vector autoregression: Let zt be an n×1 vector of random variables.

We define a vector autoregression by a stochastic difference equation

zt+1 =

4∑

j=1

Ajzt+1−j + Cywt+1, (2.4.4)

where wt+1 is an n×1 martingale difference sequence satisfying equation (2.4.2)

with x′0 = [ z0 z−1 z−2 z−3 ] and Aj is an n×n matrix for each j . We can

map equation (2.4.4) into equation (2.4.1) as follows:




zt+1

zt

zt−1

zt−2


 =




A1 A2 A3 A4

I 0 0 0

0 I 0 0

0 0 I 0







zt

zt−1

zt−2

zt−3


+




Cy

0

0

0


wt+1. (2.4.5)

Define Ao as the state transition matrix in equation (2.4.5). Assume that Ao

has all of its eigenvalues bounded in modulus below unity. Then equation (2.4.4)

can be initialized so that zt is covariance stationary, a term we now define.

2.4.1. First and second moments

We can use equation (2.4.1) to deduce the first and second moments of the

sequence of random vectors {xt}∞t=0 . A sequence of random vectors is called a

stochastic process .

Definition: A stochastic process {xt} is said to be covariance stationary

if it satisfies the following two properties: (a) the mean is independent of time,

Ext = Ex0 for all t , and (b) the sequence of autocovariance matrices E(xt+j −
Ext+j)(xt − Ext)

′ depends on the separation between dates j = 0,±1,±2, . . .,

but not on t .

We use
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Definition 2.4.1. A square real valued matrix A is said to be stable if all of

its eigenvalues have real parts that are strictly less than unity.

We shall often find it useful to assume that (2.4.3) takes the special form

[
x1,t+1

x2,t+1

]
=

[
1 0

0 Ã

] [
x1,t

x2t

]
+

[
0

C̃

]
wt+1 (2.4.6)

where Ã is a stable matrix. That Ã is a stable matrix implies that the only

solution of (Ã−I)µ2 = 0 is µ2 = 0 (i.e., 1 is not an eigenvalue of Ã). It follows

that the matrix A =

[
1 0

0 Ã

]
on the right side of (2.4.6) has one eigenvector

associated with a single unit eigenvalue: (A − I)

[
µ1

µ2

]
= 0 implies µ1 is an

arbitrary scalar and µ2 = 0. The first equation of (2.4.6) implies that x1,t+1 =

x1,0 for all t ≥ 0. Picking the initial condition x1,0 pins down a particular

eigenvector

[
x1,0

0

]
of A . As we shall see soon, this eigenvector is our candidate

for the unconditional mean of x that makes the process covariance stationary.

We will make an assumption that guarantees that there exists an initial

condition (Ex0, E(x − Ex0)(x − Ex0)
′) that makes the xt process covariance

stationary. Either of the following conditions works:

Condition A1: All of the eigenvalues of A in (2.4.3) are strictly less than

1 in modulus.

Condition A2: The state-space representation takes the special form (2.4.6)

and all of the eigenvalues of Ã are strictly less than 1 in modulus.

To discover the first and second moments of the xt process, we regard the

initial condition x0 as being drawn from a distribution with mean µ0 = Ex0

and covariance Σ0 = E(x−Ex0)(x−Ex0)
′ . We shall deduce starting values for

the mean and covariance that make the process covariance stationary, though

our formulas are also useful for describing what happens when we start from

some initial conditions that generate transient behavior that stops the process

from being covariance stationary.

Taking mathematical expectations on both sides of equation (2.4.1) gives

µt+1 = Aoµt (2.4.7)
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where µt = Ext . We will assume that all of the eigenvalues of Ao are strictly

less than unity in modulus, except possibly for one that is affiliated with the

constant terms in the various equations. Then xt possesses a stationary mean

defined to satisfy µt+1 = µt , which from equation (2.4.7) evidently satisfies

(I −Ao)µ = 0, (2.4.8)

which characterizes the mean µ as an eigenvector associated with the single unit

eigenvalue of Ao . Notice that

xt+1 − µt+1 = Ao (xt − µt) + Cwt+1. (2.4.9)

Also, the fact that the remaining eigenvalues of Ao are less than unity in mod-

ulus implies that starting from any µ0 , µt → µ .5

From equation (2.4.9) we can compute that the stationary variance matrix

satisfies

E (xt+1 − µ) (xt+1 − µ)
′
= AoE (xt − µ) (xt − µ)

′
A′
o + CC′

or

Cx (0) ≡ E (xt − µ) (xt − µ)
′
= AoCx (0)A′

o + CC′. (2.4.10)

By virtue of (2.4.1) and (2.4.7), note that

(xt+j − µt+j) = Ajo (xt − µt) + Cwt+j + · · · +Aj−1
o Cwt+1.

Postmultiplying both sides by (xt−µt)′ and taking expectations shows that the

autocovariance sequence satisfies

Cx (j) ≡ E (xt+j − µ) (xt − µ)
′
= AjoCx (0) . (2.4.11)

5 To see this point, assume that the eigenvalues of Ao are distinct, and use the repre-

sentation Ao = PΛP−1 where Λ is a diagonal matrix of the eigenvalues of Ao , arranged

in descending order of magnitude, and P is a matrix composed of the corresponding eigen-

vectors. Then equation (2.4.7) can be represented as µ∗t+1 = Λµ∗t , where µ∗t ≡ P−1µt ,

which implies that µ∗t = Λtµ∗0 . When all eigenvalues but the first are less than unity, Λt

converges to a matrix of zeros except for the (1, 1) element, and µ∗t converges to a vector of

zeros except for the first element, which stays at µ∗0,1 , its initial value, which equals 1 , to

capture the constant. Then µt = Pµ∗t converges to P1µ
∗
0,1 = P1 , where P1 is the eigenvector

corresponding to the unit eigenvalue.
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The autocovariance sequence is also called the autocovariogram. Equation (2.4.10)

is a discrete Lyapunov equation in the n × n matrix Cx(0). It can be solved

with the Matlab program doublej.m. Once it is solved, the remaining second

moments Cx(j) can be deduced from equation (2.4.11).6

Suppose that yt = Gxt . Then µyt = Eyt = Gµt and

E (yt+j − µyt+j) (yt − µyt)
′
= GCx (j)G′, (2.4.12)

for j = 0, 1, . . .. Equations (2.4.12) are matrix versions of the so-called Yule-

Walker equations, according to which the autocovariogram for a stochastic pro-

cess governed by a stochastic linear difference equation obeys the nonstochastic

version of that difference equation.

2.4.2. Impulse response function

Suppose that the eigenvalues of Ao not associated with the constant are bounded

above in modulus by unity. Using the lag operator L defined by Lxt+1 ≡ xt ,

express equation (2.4.1) as

(I −AoL)xt+1 = Cwt+1. (2.4.13)

Recall the Neumann expansion (I − AoL)−1 = (I + AoL + A2
oL

2 + · · · ) and

apply (I −AoL)−1 to both sides of equation (2.4.13) to get

xt+1 =

∞∑

j=0

AjoCwt+1−j , (2.4.14)

which is the solution of equation (2.4.1) assuming that equation (2.4.1) has

been operating for the infinite past before t = 0. Alternatively, iterate equation

(2.4.1) forward from t = 0 to get

xt = Atox0 +

t−1∑

j=0

AjoCwt−j (2.4.15)

Evidently,

yt = GAtox0 +G

t−1∑

j=0

AjoCwt−j , (2.4.16)

6 Notice that Cx(−j) = Cx(j)′ .
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Equations (2.4.14), (2.4.15), and (2.4.16) are alternative versions of a moving

average representation. Viewed as a function of lag j , hj = AjoC or h̃j = GAjoC

is called the impulse response function. The moving average representation and

the associated impulse response function show how xt+1 or yt+j is affected by

lagged values of the shocks, the wt+1 ’s. Thus, the contribution of a shock wt−j

to xt is AjoC .7

2.4.3. Prediction and discounting

From equation (2.4.1) we can compute the useful prediction formulas

Etxt+j = Ajoxt (2.4.17)

for j ≥ 1, where Et(·) denotes the mathematical expectation conditioned on

xt = (xt, xt−1, . . . , x0). Let yt = Gxt , and suppose that we want to compute

Et
∑∞

j=0 β
jyt+j . Evidently,

Et

∞∑

j=0

βjyt+j = G (I − βAo)
−1 xt, (2.4.18)

provided that the eigenvalues of βAo are less than unity in modulus. Equation

(2.4.18) tells us how to compute an expected discounted sum, where the discount

factor β is constant.

7 The Matlab programs dimpulse.m and impulse.m compute impulse response functions.
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2.4.4. Geometric sums of quadratic forms

In some applications, we want to calculate

αt = Et

∞∑

j=0

βjx′t+jY xt+j

where xt obeys the stochastic difference equation (2.4.1) and Y is an n × n

matrix. To get a formula for αt , we use a guess-and-verify method. We guess

that αt can be written in the form

αt = x′tνxt + σ, (2.4.19)

where ν is an (n × n) matrix and σ is a scalar. The definition of αt and the

guess (2.4.19) imply

αt = x′tY xt + βEt
(
x′t+1νxt+1 + σ

)

= x′tY xt + βEt
[
(Aoxt + Cwt+1)

′
ν (Aoxt + Cwt+1) + σ

]

= x′t (Y + βA′
oνAo) xt + β trace (νCC′) + βσ.

It follows that ν and σ satisfy

ν = Y + βA′
oνAo

σ = βσ + β trace νCC′.
(2.4.20)

The first equation of (2.4.20) is a discrete Lyapunov equation in the square

matrix ν and can be solved by using one of several algorithms.8 After ν has

been computed, the second equation can be solved for the scalar σ .

We mention two important applications of formulas (2.4.19) and (2.4.20).

8 The Matlab control toolkit has a program called dlyap.m that works when all of the

eigenvalues of Ao are strictly less than unity; the program called doublej.m works even when

there is a unit eigenvalue associated with the constant.
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2.4.4.1. Asset pricing

Let yt be governed be governed by the state-space system (2.4.3). In addition,

assume that there is a scalar random process zt given by

zt = Hxt.

Regard the process yt as a payout or dividend from an asset, and regard βtzt

as a stochastic discount factor. The price of a perpetual claim on the stream of

payouts is

αt = Et

∞∑

j=0

(
βjzt+j

)
yt+j . (2.4.21)

To compute αt , we simply set Y = H ′G in (2.4.19) and (2.4.20). In this

application, the term σ functions as a risk premium; it is zero when C = 0.

2.4.4.2. Evaluation of dynamic criterion

Let a state xt be governed by

xt+1 = Axt +But + Cwt+1 (2.4.22)

where ut is a control vector that is set by a decision maker according to a fixed

rule

ut = −F0xt. (2.4.23)

Substituting (2.4.23) into (2.4.22) gives (2.4.1) where Ao = A−BF0 . We want

to compute the value function

v (x0) = −E0

∞∑

t=0

βt [x′tRxt + u′tQut]

for fixed matrices R and Q , fixed decision rule F0 in (2.4.23), Ao = A−BF0 ,

and arbitrary initial condition x0 . Formulas (2.4.19) and (2.4.20) apply with

Y = R+ F ′
0QF0 and Ao = A−BF0 . Express the solution as

v (x0) = −x′0Px0 − σ. (2.4.24)

Now consider the following one-period problem. Suppose that we must use

decision rule F0 from time 1 onward, so that the value at time 1 on starting

from state x1 is

v (x1) = −x′1Px1 − σ. (2.4.25)
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Taking ut = −F0xt as given for t ≥ 1, what is the best choice of u0 ? This

leads to the optimum problem:

max
u0

−{x′0Rx0 +u′0Qu0 +βE (Ax0 +Bu0 + Cw1)
′
P (Ax0 +Bu0 + Cw1)+βσ}.

(2.4.26)

The first-order conditions for this problem can be rearranged to attain

u0 = −F1x0 (2.4.27)

where

F1 = β (Q+ βB′PB)
−1
B′PA. (2.4.28)

For convenience, we state the formula for P :

P = R+ F ′
0QF0 + β (A−BF0)

′ P (A−BF0) . (2.4.29)

Given F0 , formula (2.4.29) determines the matrix P in the value function that

describes the expected discounted value of the sum of payoffs from sticking for-

ever with this decision rule. Given P , formula (2.4.29) gives the best zero-period

decision rule u0 = −F1x0 if you are permitted only a one-period deviation from

the rule ut = −F0xt . If F1 6= F0 , we say that decision maker would accept the

opportunity to deviate from F0 for one period.

It is tempting to iterate on (2.4.28) and (2.4.29) as follows to seek a decision

rule from which a decision maker would not want to deviate for one period: (1)

given an F0 , find P ; (2) reset F equal to the F1 found in step 1, then use

(2.4.29) to compute a new P ; (3) return to step 1 and iterate to convergence.

This leads to the two equations

Fj+1 = β (Q+ βB′PjB)
−1
B′PjA

Pj+1 = R+ F ′
jQFj + β (A−BFj)

′ Pj+1 (A−BFj)
(2.4.30)

which are to be initialized from an arbitrary F0 that ensures that
√
β(A−BF0)

is a stable matrix. After this process has converged, one cannot find a value-

increasing one-period deviation from the limiting decision rule ut = −F∞xt .
9

As we shall see in chapter 4, this is an excellent algorithm for solving a

dynamic programming problem. It is called a Howard improvement algorithm.

9 It turns out that if you don’t want to deviate for one period, then you would never want

to deviate, so that the limiting rule is optimal.
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2.5. Population regression

This section explains the notion of a regression equation. Suppose that we have

a state-space system (2.4.3) with initial conditions that make it covariance sta-

tionary. We can use the preceding formulas to compute the second moments of

any pair of random variables. These moments let us compute a linear regres-

sion. Thus, let X be a 1 × N vector of random variables somehow selected

from the stochastic process {yt} governed by the system (2.4.3). For example,

let N = 2×m , where yt is an m× 1 vector, and take X = [ y′t y′t−1 ] for any

t ≥ 1. Let Y be any scalar random variable selected from the m× 1 stochastic

process {yt} . For example, take Y = yt+1,1 for the same t used to define X ,

where yt+1,1 is the first component of yt+1 .

We consider the following least-squares approximation problem: find an

N × 1 vector of real numbers β that attain

min
β
E (Y −Xβ)2 . (2.5.1)

Here Xβ is being used to estimate Y, and we want the value of β that minimizes

the expected squared error. The first-order necessary condition for minimizing

E(Y −Xβ)2 with respect to β is

EX ′ (Y −Xβ) = 0, (2.5.2)

which can be rearranged as EX ′Y = EX ′Xβ or10

β = [E (X ′X)]
−1

(EX ′Y ) . (2.5.3)

By using the formulas (2.4.8), (2.4.10), (2.4.11), and (2.4.12), we can

compute EX ′X and EX ′Y for whatever selection of X and Y we choose. The

condition (2.5.2) is called the least-squares normal equation. It states that the

projection error Y −Xβ is orthogonal to X . Therefore, we can represent Y as

Y = Xβ + ε (2.5.4)

where EX ′ε = 0. Equation (2.5.4) is called a regression equation, and Xβ is

called the least-squares projection of Y on X or the least-squares regression of

10 That EX′X is nonnegative semidefinite implies that the second-order conditions for a

minimum of condition (2.5.1) are satisfied.
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Figure 2.5.1: Impulse response, spectrum, covariogram, and

sample path of process (1 − .9L)yt = wt .

Y on X . The vector β is called the population least-squares regression vector.

The law of large numbers for continuous-state Markov processes, Theorem 2.3.1

states conditions that guarantee that sample moments converge to population

moments, that is, 1
S

∑S
s=1X

′
sXs → EX ′X and 1

S

∑S
s=1X

′
sYs → EX ′Y . Under

those conditions, sample least-squares estimates converge to β .

There are as many such regressions as there are ways of selecting Y,X .

We have shown how a model (e.g., a triple Ao, C,G , together with an initial

distribution for x0 ) restricts a regression. Going backward, that is, telling what

a given regression tells about a model, is more difficult. Often the regression

tells little about the model. The likelihood function encodes what a given data

set says about the model.
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Figure 2.5.2: Impulse response, spectrum, covariogram, and

sample path of process (1 − .8L4)yt = wt .

2.5.1. The spectrum

For a covariance stationary stochastic process, all second moments can be en-

coded in a complex-valued matrix called the spectral density matrix. The auto-

covariance sequence for the process determines the spectral density. Conversely,

the spectral density can be used to determine the autocovariance sequence.

Under the assumption that Ao is a stable matrix,11 the state xt converges

to a unique covariance stationary probability distribution as t approaches infin-

ity. The spectral density matrix of this covariance stationary distribution Sx(ω)

is defined to be the Fourier transform of the covariogram of xt :

Sx (ω) ≡
∞∑

τ=−∞

Cx (τ) e−iωτ . (2.5.5)

For the system (2.4.1), the spectral density of the stationary distribution is

given by the formula

Sx (ω) =
[
I −Aoe

−iω
]−1

CC′
[
I −A′

oe
+iω
]−1

, ∀ω ∈ [−π, π] . (2.5.6)

11 It is sufficient that the only eigenvalue of Ao not strictly less than unity in modulus is

that associated with the constant, which implies that Ao and C fit together in a way that

validates (2.5.6).
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Figure 2.5.3: Impulse response, spectrum, covariogram, and

sample path of process (1 − 1.3L+ .7L2)yt = wt .

The spectral density contains all of the information about the covariances. They

can be recovered from Sx(ω) by the Fourier inversion formula12

Cx (τ) = (1/2π)

∫ π

−π

Sx (ω) e+iωτdω.

Setting τ = 0 in the inversion formula gives

Cx (0) = (1/2π)

∫ π

−π

Sx (ω)dω,

which shows that the spectral density decomposes covariance across frequen-

cies.13 A formula used in the process of generalized method of moments (GMM)

estimation emerges by setting ω = 0 in equation (2.5.5), which gives

Sx (0) ≡
∞∑

τ=−∞

Cx (τ) .

12 Spectral densities for continuous-time systems are discussed by Kwakernaak and Sivan

(1972). For an elementary discussion of discrete-time systems, see Sargent (1987a). Also see

Sargent (1987a, chap. 11) for definitions of the spectral density function and methods of

evaluating this integral.
13 More interestingly, the spectral density achieves a decomposition of covariance into com-

ponents that are orthogonal across frequencies.
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Figure 2.5.4: Impulse response, spectrum, covariogram, and

sample path of process (1 − .98L)yt = (1 − .7L)wt .

2.5.2. Examples

To give some practice in reading spectral densities, we used the Matlab program

bigshow2.m to generate Figures 2.5.1, 2.5.2, 2.5.3, and 2.5.4 The program takes

as an input a univariate process of the form

a (L) yt = b (L)wt,

where wt is a univariate martingale difference sequence with unit variance,

where a(L) = 1−a2L−a3L
2−· · ·−anLn−1 and b(L) = b1+b2L+ · · ·+bnLn−1 ,

and where we require that a(z) = 0 imply that |z| > 1. The program computes

and displays a realization of the process, the impulse response function from

w to y , and the spectrum of y . By using this program, a reader can teach

himself to read spectra and impulse response functions. Figure 2.5.1 is for the

pure autoregressive process with a(L) = 1 − .9L, b = 1. The spectrum sweeps

downward in what C.W.J. Granger (1966) called the “typical spectral shape”

for an economic time series. Figure 2.5.2 sets a = 1 − .8L4, b = 1. This is

a process with a strong seasonal component. That the spectrum peaks at π
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and π/2 is a telltale sign of a strong seasonal component. Figure 2.5.3 sets

a = 1− 1.3L+ .7L2, b = 1. This is a process that has a spectral peak and cycles

in its covariogram.14 Figure 2.5.4 sets a = 1 − .98L, b = 1 − .7L . This is a

version of a process studied by Muth (1960). After the first lag, the impulse

response declines as .99j , where j is the lag length.

2.6. Example: the LQ permanent income model

To illustrate several of the key ideas of this chapter, this section describes the

linear quadratic savings problem whose solution is a rational expectations ver-

sion of the permanent income model of Friedman (1956) and Hall (1978). We

use this model as a vehicle for illustrating impulse response functions, alterna-

tive notions of the state, the idea of cointegration, and an invariant subspace

method.

The LQ permanent income model is a modification (and not quite a special

case, for reasons that will be apparent later) of the following “savings problem”

to be studied in chapter 16. A consumer has preferences over consumption

streams that are ordered by the utility functional

E0

∞∑

t=0

βtu (ct) (2.6.1)

where Et is the mathematical expectation conditioned on the consumer’s time

t information, ct is time t consumption, u(c) is a strictly concave one-period

utility function, and β ∈ (0, 1) is a discount factor. The consumer maximizes

(2.6.1) by choosing a consumption, borrowing plan {ct, bt+1}∞t=0 subject to the

sequence of budget constraints

ct + bt = R−1bt+1 + yt (2.6.2)

where yt is an exogenous stationary endowment process, R is a constant gross

risk-free interest rate, bt is one-period risk-free debt maturing at t , and b0 is a

given initial condition. We shall assume that R−1 = β . For example, we might

14 See Sargent (1987a) for a more extended discussion.
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assume that the endowment process has the state-space representation

zt+1 = A22zt + C2wt+1 (2.6.3a)

yt = Uyzt (2.6.3b)

where wt+1 is an i.i.d. process with mean zero and identify contemporaneous

covariance matrix, A22 is a matrix the modulus of whose maximum eigenvalue

is less than unity, and Uy is a selection vector that identifies y with a partic-

ular linear combination of the zt . We impose the following condition on the

consumption, borrowing plan:

E0

∞∑

t=0

βtb2t < +∞. (2.6.4)

This condition suffices to rule out Ponzi schemes. The state vector confronting

the household at t is [ bt zt ]
′
, where bt is his one-period debt that falls due

at the beginning of period t and zt contains all variables useful for forecasting

his future endowment. We impose this condition to rule out an always-borrow

scheme that would allow the household to enjoy bliss consumption forever. The

rationale for imposing this condition is to make the solution of the problem

resemble more closely the solution of problems to be studied in chapter 16 that

impose nonnegativity on the consumption path. The first-order condition for

maximizing (2.6.1) subject to (2.6.2) is15

Etu
′ (ct+1) = u′ (ct) . (2.6.5)

For the rest of this section we assume the quadratic utility function u(ct) =

−.5(ct − γ)2 , where γ is a bliss level of consumption. Then (2.6.5) implies

Etct+1 = ct. (2.6.6)

Along with the quadratic utility specification, we allow consumption ct to be

negative.16

15 We shall study how to derive this first-order condition in detail in later chapters.
16 That ct can be negative explains why we impose condition (2.6.4) instead of an upper

bound on the level of borrowing, such as the natural borrowing limit of chapters 8, 16, and

17.
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To deduce the optimal decision rule, we have to solve the system of differ-

ence equations formed by (2.6.2) and (2.6.6) subject to the boundary condition

(2.6.4). To accomplish this, solve (2.6.2) forward to get

bt =

∞∑

j=0

βj (yt+j − ct+j) . (2.6.7)

Take conditional expectations on both sides and use (2.6.6) and the law of

iterated expectations to deduce

bt =

∞∑

j=0

βjEtyt+j −
1

1 − β
ct (2.6.8)

or

ct = (1 − β)




∞∑

j=0

βjEtyt+j − bt


 . (2.6.9)

If we define the net rate of interest r by β = 1
1+r , we can also express this

equation as

ct =
r

1 + r




∞∑

j=0

βjEtyt+j − bt



 . (2.6.10)

Equation (2.6.9) or (2.6.10) expresses consumption as equaling economic in-

come, namely, a constant marginal propensity consume or interest factor r
1+r

times the sum of nonfinancial wealth
∑∞

j=0 β
jEtyt+j and financial wealth −bt .

Notice that (2.6.9) or (2.6.10) represents ct as a function of the state [bt, zt]

confronting the household, where from (2.6.3) zt contains the information useful

for forecasting the endowment process that enters the conditional expectation

Et .

A revealing way of understanding the solution is to show that after the

optimal decision rule has been obtained, there is a point of view that allows us

to regard the state as being ct together with zt and to regard bt as an outcome.

Following Hall (1978), this is a sharp way to summarize the implication of the

LQ permanent income theory. We now proceed to transform the state vector in

this way.

To represent the solution for bt , substitute (2.6.9) into (2.6.2) and after

rearranging obtain

bt+1 = bt +
(
β−1 − 1

) ∞∑

j=0

βjEtyt+j − β−1yt. (2.6.11)
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Next, shift (2.6.9) forward one period and eliminate bt+1 by using (2.6.2)

to obtain

ct+1 = (1 − β)
∞∑

j=0

Et+1β
jyt+j+1 − (1 − β)

[
β−1 (ct + bt − yt)

]
.

If we add and subtract β−1(1 − β)
∑∞

j=0 β
jEtyt+j from the right side of the

preceding equation and rearrange, we obtain

ct+1 = ct + (1 − β)

∞∑

j=0

βj (Et+1yt+j+1 − Etyt+j+1) . (2.6.12)

The right side is the time t+ 1 innovation to the expected present value of

the endowment process y . Suppose that the endowment process has the moving

average representation17

yt+1 = d (L)wt+1 (2.6.13)

where wt+1 is an i.i.d. vector process with Ewt+1 = 0 and contemporaneous

covariance matrix Ewt+1w
′
t+1 = I , d(L) =

∑∞
j=0 djL

j , where L is the lag

operator, and the household has an information set wt = [wt, wt−1, . . . , ] at

time t . Then notice that

yt+j − Etyt+j = d0wt+j + d1wt+j−1 + · · · + dj−1wt+1.

It follows that

Et+1yt+j − Etyt+j = dj−1wt+1. (2.6.14)

Using (2.6.14) in (2.6.12) gives

ct+1 − ct = (1 − β) d (β)wt+1. (2.6.15)

The object d(β) is the present value of the moving average coefficients in the

representation for the endowment process yt .

After all of this work, we can represent the optimal decision rule for ct, bt+1

in the form of the two equations (2.6.12) and (2.6.8), which we repeat here for

convenience:

ct+1 = ct + (1 − β)

∞∑

j=0

βj (Et+1yt+j+1 − Etyt+j+1) (2.6.16)

bt =

∞∑

j=0

βjEtyt+j −
1

1 − β
ct. (2.6.17)

17 Representation (2.6.3) implies that d(L) = Uy(I − A22L)−1C2 .
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Recalling the form of the endowment process (2.6.3), we can compute

Et

∞∑

j=0

βjzt+j = (I − βA22)
−1
zt

Et+1

∞∑

j=0

βjzt+j+1 = (I − βA22)
−1
zt+1

Et

∞∑

j=0

βjzt+j+1 = (I − βA22)
−1
A22zt.

Substituting these formulas into (2.6.16) and (2.6.17) and using (2.6.3a) gives

the following representation for the consumer’s optimum decision rule:

ct+1 = ct + (1 − β)Uy (I − βA22)
−1
C2wt+1 (2.6.18a)

bt = Uy (I − βA22)
−1
zt −

1

1 − β
ct (2.6.18b)

yt = Uyzt (2.6.18c)

zt+1 = A22zt + C2wt+1 (2.6.18d)

Representation (2.6.18) reveals several things about the optimal decision

rule. (1) The state consists of the endogenous part ct and the exogenous part

zt . These contain all of the relevant information for forecasting future c, y, b .

Notice that financial assets bt have disappeared as a component of the state be-

cause they are properly encoded in ct . (2) According to (2.6.18), consumption

is a random walk with innovation (1− β)d(β)wt+1 as implied also by (2.6.15).

This outcome confirms that the Euler equation (2.6.6) is built into the solution.

That consumption is a random walk of course implies that it does not possess

an asymptotic stationary distribution, at least so long as zt exhibits perpet-

ual random fluctuations, as it will generally under (2.6.3).18 This feature is

inherited partly from the assumption that βR = 1. (3) The impulse response

function of ct is a box: for all j ≥ 1, the response of ct+j to an increase in

the innovation wt+1 is (1 − β)d(β) = (1 − β)Uy(I − βA22)
−1C2 . (4) Solution

(2.6.18) reveals that the joint process ct, bt possesses the property that Granger

and Engle (1987) called cointegration. In particular, both ct and bt are non-

stationary because they have unit roots (see representation (2.6.11) for bt ), but

18 The failure of consumption to converge will also occur in chapter 16 when we drop

quadratic utility and assume that consumption must be nonnegative.
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there is a linear combination of ct, bt that is stationary provided that zt is sta-

tionary. From (2.6.17), the linear combination is (1 − β)bt + ct . Accordingly,

Granger and Engle would call [ (1 − β) 1 ] a cointegrating vector that, when

applied to the nonstationary vector process [ bt ct ]
′ , yields a process that is

asymptotically stationary. Equation (2.6.8) can be arranged to take the form

(1 − β) bt + ct = Et

∞∑

j=0

βjyt+j , (2.6.19)

which asserts that the cointegrating residual on the left side equals the condi-

tional expectation of the geometric sum of future incomes on the right.19

2.6.1. Invariant subspace approach

We can glean additional insights about the structure of the optimal decision rule

by solving the decision problem in a mechanical but quite revealing way that

easily generalizes to a host of problems, as we shall see later in chapter 5. We

can represent the system consisting of the Euler equation (2.6.6), the budget

constraint (2.6.2), and the description of the endowment process (2.6.3) as




β 0 0

0 I 0

0 0 1








bt+1

zt+1

ct+1



 =




1 −Uy 1

0 A22 0

0 0 1








bt

zt

ct



+




0

C2

C1



wt+1 (2.6.20)

where C1 is an undetermined coefficient. Premultiply both sides by the inverse

of the matrix on the left and write



bt+1

zt+1

ct+1


 = Ã



bt

zt

ct


+ C̃wt+1. (2.6.21)

We want to find solutions of (2.6.21) that satisfy the no-explosion condition

(2.6.4). We can do this by using machinery from chapter 5. The key idea

is to discover what part of the vector [ bt zt ct ]
′

is truly a state from the

view of the decision maker, being inherited from the past, and what part is a

19 See Campbell and Shiller (1988) and Lettau and Ludvigson (2001, 2004) for interesting

applications of related ideas.
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costate or jump variable that can adjust at t . For our problem bt, zt are truly

components of the state, but ct is free to adjust. The theory determines ct

at t as a function of the true state variables [bt, zt] . A powerful approach to

determining this function is the following so-called invariant subspace method

of chapter 5. Obtain the eigenvector decomposition of Ã :

Ã = V ΛV −1

where Λ is a diagonal matrix consisting of the eigenvalues of Ã and V is a

matrix of the associated eigenvectors. Let V −1 ≡
[
V 11 V 12

V 21 V 22

]
. Then applying

formula (5.5.11) of chapter 5 implies that if (2.6.4) is to hold, then the jump

variable ct must satisfy

ct = −
(
V 22

)−1
V 21

[
bt

zt

]
. (2.6.22)

Formula (2.6.22) gives the unique value of ct that ensures that (2.6.4) is sat-

isfied, or in other words, that the state remains in the “stabilizing subspace.”

Notice that the variables on the right side of (2.6.22) conform with those called

for by (2.6.10): −bt is there as a measure of financial wealth, and zt is there

because it includes all variables that are useful for forecasting the future endow-

ments that occur in (2.6.10).

2.7. The term structure of interest rates

Asset prices encode investors’ expectations about future payoffs. If we suppose

that investors form their expectations using versions of our optimal forecasting

formulas, we acquire a theory of asset prices. Here we use the term structure of

interest rates as an example.
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2.7.1. A stochastic discount factor

Let’s start with just a little background in the theory of asset pricing. To begin

with the simplest case, let {dt}∞t=0 be a stream of dividends. Let pt be the price

of a claim on what remains of the dividend stream from date t + 1 on. The

standard asset-pricing model under certainty asserts that

pt =

∞∑

j=1

(
j∏

s=1

mt+s

)
dt+j (2.7.1)

where mt+1 is a one-period factor for discounting dividends between t and t+1

and
∏j
s=1mt+j is a j -period factor for discounting dividends between t+j and

t . A simple model assumes a constant discount factor ms = β , which makes

(2.7.1) become

pt =
∞∑

j=1

βjdt+j .

In chapter 13, we shall study generalizations of (2.7.1) that take the form

pt = Et

∞∑

j=1

(
j∏

s=1

mt+s

)
dt+j (2.7.2)

where mt+1 is a one-period stochastic discount factor for converting a time t+1

payoff into a time t value, and Et is a mathematical expectation conditioned

on time t information. In this section, we use a version of formula (2.7.2)

to illustrate the power of our formulas for solving linear stochastic difference

equations.

We specify a dividend process in a special way that is designed to make

pt be the price of an n-period risk-free pure discount nominal bond: dt+n =

1, dt+j = 0 for j 6= n , where for a nominal bond, “1” means one dollar. In this

case, we add a subscript n to help us remember the period for the bond, and

(2.7.2) becomes

pnt = Et

(
n∏

s=1

mt+s

)
. (2.7.3)

We define the yield ynt on an n-period bond by pnt = exp(−nynt) or

ynt = −n−1 log pnt. (2.7.4)
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Thus, yields are linear in the logs of the corresponding bond prices. Bond yields

are Gaussian when bond prices are log normal (i.e., the log of bond prices are

Gaussian) and this will be the outcome if we specify that the log of the discount

factor mt+1 follows a Gaussian process.

2.7.2. The log normal bond pricing model

Here is the log normal bond pricing model. A one-period stochastic discount

factor at t is mt+1 and an n-period stochastic discount factor at t is mt+1mt+2

· · ·mt+n .20 The logarithm of the one-period stochastic discount factor follows

the stochastic process

logmt+1 = −δ − ezzt+1 (2.7.5a)

zt+1 = Azzt + Czwt+1 (2.7.5b)

where wt+1 is an i.i.d. Gaussian random vector with Ewt+1 = 0, Ewt+1w
′
t+1 =

I , and Az is an m×m matrix all of whose eigenvalues are bounded by unity in

modulus. Soon we shall describe the process for the log of the nominal stochastic

discount factor that Backus and Zin (1994) used to emulate the term structure

of nominal interest rates in the United States during the post-World War II

period. At time t , an n-period risk-free nominal bond promises to pay one

dollar for sure in period t+n . According to (2.7.3), the price at t of this bond

is the conditional expectation of the product of the n-period stochastic discount

factor times the unit payout.21 Applying (2.7.4) to (2.7.3) gives

ynt = −n−1 logEt [mt+1 · · ·mt+n] . (2.7.6)

To evaluate the right side of (2.7.6), we use the following property of log

normal distributions:

20 Some authors use the notation mt+j,t to denote a j -period stochastic discount factor at

time t . The transformation between that notation and ours is mt+1,t = mt+1, . . . ,mt+j,t =

mt+1 · · ·mt+j .
21 That is, the price of the bond is the price of the payouts times their quantities added

across states via the expectation operator.
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Log Normal Distribution: If logmt+1 ∼ N (µ, σ2) (i.e., logmt+1 is

Gaussian with mean µ and variance σ2 ), then

logEmt+1 = µ+
σ2

2
. (2.7.7)

Applying this property to the conditional distribution of mt+1 induced by

(2.7.5) gives

logEtmt+1 = −δ − ezAzzt +
ezCzCz

′ez
′

2
. (2.7.8)

By iterating on (2.7.5), we can obtain the following expression that is useful for

characterizing the conditional distribution of log(mt+1 · · ·mt+n):

− (log (mt+1) + · · · log (mt+n)) = nδ + ez
(
Az +Az

2 + · · ·Azn
)
zt

+ ezCzwt+n + ez [Cz +AzCz ]wt+n−1

+ · · · + ez
[
Cz +AzCz + · · · +Az

n−1Cz
]
wt+1

(2.7.9)

The distribution of logmt+1+· · · logmt+n conditional on zt is thus N (µnt, σ
2
n),

where22

µnt = − [nδ + ez (Az + · · ·Azn) zt] (2.7.10a)

σ2
1 = ezCzCz

′ez
′ (2.7.10b)

σ2
n = σ2

n−1 + ez
[
I + · · · +Az

n−1
]
CzCz

′
[
I + · · · +Az

n−1
]′
ez

′ (2.7.10c)

where the recursion (2.7.10c) holds for n ≥ 2. Notice that the conditional

means µnt vary over time but that the conditional covariances σ2
n are constant

over time.23 Applying (2.7.6) and formula (2.7.7) for the log of the expectation

of a log normally distributed random variable gives the following formula for

bond yields:

ynt =

(
δ − σ2

n

2 × n

)
+ n−1ez (Az + · · · +Az

n) zt. (2.7.11)

22 For the purpose of programming these formulas, it is useful to note that (I +Az + · · ·+

Azn−1) = (I −Az)−1(I −Azn) .
23 The celebrated affine term structure model generalizes the log normal model by allowing

σ2
n to depend on time by feeding back on parts of the state vector. See Ang and Piazzesi

(2003) for recent estimates of an affine term structure model.
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The vector yt = [ y1t y2t · · · ynt ]
′

is called the term structure of nomi-

nal interest rates at time t . A specification known as the expectations theory of

the term structure resembles but differs from (2.7.11). The expectations theory

asserts that n-period yields are averages of expected future values of one-period

yields, which translates to

ynt = δ + n−1ez (Az + · · · +Az
n) zt (2.7.12)

because evidently the conditional expectation Ety1t+j = δ + ezA
j
zzt . The ex-

pectations theory (2.7.12) can be viewed as an approximation to the log normal

yield model (2.7.11) that neglects the contributions of the variance terms σ2
n to

the constant terms.

Returning to the log normal bond pricing model, we evidently have the

following compact state-space representation for the term structure of interest

rates and its dependence on the law of motion for the stochastic discount factor:

Xt+1 = AoXt + Cwt+1 (2.7.13a)

Yt ≡
[

yt

logmt

]
= GXt (2.7.13b)

where

Xt =

[
1

zt

]
Ao =

[
1 0

0 Az

]
C =

[
0

Cz

]

and

G =




δ − σ2
1

2 ezAz

δ − σ2
2

2×2 2−1ez
(
Az +Az

2
)

...
...

δ − σ2
n

2×n n−1ez (Az + · · · +Az
n)

−δ −ez



.
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2.7.3. Slope of yield curve depends on serial correlation of logmt+1

From (2.7.13), it follows immediately that the unconditional mean of the term

structure is

Ey′t = [ δ − σ2
1 · · · δ − σ2

n

2×n ]
′
,

so that the term structure on average rises with horizon only if σ2
j /j falls as

j increases. By interpreting our formulas for the σ2
j ’s, it is possible to show

that a term structure that on average rises with maturity implies that the log

of the stochastic discount factor is negatively serially correlated. Thus, it can

be verified from (2.7.9) that the term σ2
j in (2.7.10) and (2.7.11) satisfies

σ2
j = vart (logmt+1 + · · · + logmt+j)

where vart denotes a variance conditioned on time t information zt . Notice,

for example, that

vart (logmt+1 + logmt+2) = vart (logmt+1) + vart (logmt+2)

+ 2covt (logmt+1, logmt+2)
(2.7.14)

where covt is a conditional covariance. It can then be established that σ2
1 >

σ2
2

2

can occur only if covt(logmt+1, logmt+2) < 0. Thus, a yield curve that is

upward sloping on average reveals that the log of the stochastic discount factor

is negatively serially correlated. (See the spectrum of the log stochastic discount

factor in Figure 2.7.5.)

2.7.4. Backus and Zin’s stochastic discount factor

For a specification of Az , Cz, δ for which the eigenvalues of Az are all less than

unity, we can use the formulas presented above to compute moments of the

stationary distribution EYt , as well as the autocovariance function CovY (τ)

and the impulse response function given in (2.4.15) or (2.4.16). For the term

structure of nominal U.S. interest rates over much of the post-World War II

period, Backus and Zin (1994) provide us with an empirically plausible speci-

fication of Az , Cz, ez . In particular, they specify that logmt+1 is a stationary

autoregressive moving average process

−φ (L) logmt+1 = φ (1) δ + θ (L)σwt+1
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where wt+1 is a scalar Gaussian white noise with Ew2
t+1 = 1 and

φ (L) = 1 − φ1L− φ2L
2 (2.7.15a)

θ (L) = 1 + θ1L+ θ2L
2 + θ3L

3. (2.7.15b)

Backus and Zin specified parameter values that imply that all of the zeros of

both φ(L) and θ(L) exceed unity in modulus,24 a condition that ensures that

the eigenvalues of Ao are all less than unity in modulus. Backus and Zin’s

specification can be captured by setting

zt = [ logmt logmt−1 wt wt−1 wt−2 ]

and

Az =




φ1 φ2 θ1σ θ2σ θ3σ

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0




and Cz = [σ 0 1 0 0 ]
′

where σ > 0 is the standard deviation of the

innovation to logmt+1 and ez = [ 1 0 0 0 0 ] .

2.7.5. Reverse engineering a stochastic discount factor

Backus and Zin use time series data on yt together with the restrictions im-

plied by the log normal bond pricing model to deduce implications about the

stochastic discount factor mt+1 . They call this procedure “reverse engineering

the yield curve,” but what they really do is use time series observations on the

yield curve to reverse engineer a stochastic discount factor . They used the gen-

eralized method of moments to estimate (some people say “calibrate”) the fol-

lowing values for monthly United States nominal interest rates on pure discount

bonds: δ = .528, σ = 1.023, θ(L) = 1 − 1.031448L+ .073011L2 + .000322L3 ,

φ(L) = 1−1.031253L+.073191L2 . Why do Backus and Zin carry along so many

digits? To explain why, first notice that with these particular values θ(L)
φ(L) ≈ 1,

so that the log of the stochastic discount factor is well approximated by an i.i.d.

process:

− logmt+1 ≈ δ + σwt+1.

24 A complex variable z0 is said to be a zero of φ(z) if φ(z0) = 0.
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This means that fluctuations in the log stochastic discount factor are difficult

to predict. Backus and Zin argue convincingly that to match observed features

that are summarized by estimated first and second moments of the nominal term

structure yt process and for yields on other risky assets for the United States

after World War II, it is important that θ(L), φ(L) have two properties: (a) first,

θ(L) ≈ φ(L), so that the stochastic discount factor is a volatile variable whose

fluctuations are difficult to predict variable; and (b) nevertheless that θ(L) 6=
φ(L), so that the stochastic discount factor has subtle predictable components.

Feature (a) is needed to match observed prices of risky securities, as we shall

discuss in chapter 13. In particular, observations on returns on risky securities

can be used to calculate a so-called market price of risk that in theory should

equal σt(mt+1)
Etmt+1

, where σt denotes a conditional standard deviation and Et a

conditional mean, conditioned on time t information. Empirical estimates of the

stochastic discount factor from the yield curve and other asset returns suggest a

value of the market price of risk that is relatively large, in a sense that we explore

in depth in chapter 13. A high volatility of mt+1 delivers a high market price of

risk. Backus and Zin use feature (b) to match the shape of the yield curve over

time. Backus and Zin’s estimates of φ(L), θ(L) imply term structure outcomes

that display both features (a) and (b). For their values of θ(L), φ(L), σ , Figures

2.7.1–2.7.5 show various aspects of the theoretical yield curve. Figure 2.7.1

shows the theoretical value of the mean term structure of interest rates, which

we have calculated by applying our formula for µY = GµX to (2.7.13). The

theoretical value of the yield curve is on average upward sloping, as is true

also in the data. For yields of durations j = 1, 3, 6, 12, 24, 36, 48, 60, 120, 360,

where duration is measured in months , Figure 2.7.2 shows the impulse response

of yjt to a shock wt+1 in the log of the stochastic discount factor. We use

formula (2.4.16) to compute this impulse response function. In Figure 2.7.2,

bigger impulse response functions are associated with shorter horizons. The

shape of the impulse response function for the short rate differs from the others:

it is the only one with a humped shape. Figures 2.7.3 and 2.7.4 show the

impulse response function of the log of the stochastic discount factor. Figure

2.7.3 confirms that logmt+1 is approximately i.i.d. (the impulse response occurs

mostly at zero lag), but Figure 2.7.4 shows the impulse response coefficients for

lags of 1 and greater and confirms that the stochastic discount factor is not

quite i.i.d. Since the initial response is a large negative number, these small

positive responses for positive lags impart negative serial correlation to the log
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stochastic discount factor. As noted above and as stressed by Backus and Zin

(1992), negative serial correlation of the stochastic discount factor is needed to

account for a yield curve that is upward sloping on average.
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Figure 2.7.1: Mean term structure of interest rates with

Backus-Zin stochastic discount factor (months on horizontal

axis).
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Figure 2.7.2: Impulse response of yields ynt to innovation

in stochastic discount factor. Bigger responses are for shorter

maturity yields.
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Figure 2.7.3: Impulse response of log of stochastic discount

factor.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3 log s.d.f. after 0

Figure 2.7.4: Impulse response of log stochastic discount

factor from lag 1 on.

Figure 2.7.5 applies the Matlab program bigshow2 to Backus and Zin’s

specified values of (σ, δ, θ(L), φ(L)). The panel on the upper left is the im-

pulse response again. The panel on the lower left shows the covariogram, which

as expected is very close to that for an i.i.d. process. The spectrum of the

log stochastic discount factor is not completely flat and so reveals that the log

stochastic discount factor is serially correlated. (Remember that the spectrum

for a serially uncorrelated process, a white noise, is perfectly flat.) That the
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Figure 2.7.5: bigshow2 for Backus and Zin’s log stochastic

discount factor.

spectrum is generally rising as frequency increases from ω = 0 to ω = π in-

dicates that the log stochastic discount factor is negatively serially correlated.

But the negative serial correlation is subtle, so that the realization plotted in

the panel on the lower right is difficult to distinguish from a white noise.

2.8. Estimation

We have shown how to map the matrices Ao, C into all of the second moments

of the stationary distribution of the stochastic process {xt} . Linear economic

models typically give Ao, C as functions of a set of deeper parameters θ . We

shall give examples of some such models in chapters 4 and 5. Those theories

and the formulas of this chapter give us a mapping from θ to these theoreti-

cal moments of the {xt} process. That mapping is an important ingredient of

econometric methods designed to estimate a wide class of linear rational expec-

tations models (see Hansen and Sargent, 1980, 1981). Briefly, these methods use

the following procedures for matching observations with theory. To simplify, we

shall assume that in any period t that an observation is available, observations

are available on the entire state xt . As discussed in the following paragraphs,
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the details are more complicated if only a subset or a noisy signal of the state

is observed, though the basic principles remain the same.

Given a sample of observations for {xt}Tt=0 ≡ xt, t = 0, . . . , T , the likelihood

function is defined as the joint probability distribution f(xT , xT−1, . . . , x0). The

likelihood function can be factored using

f (xT , . . . , x0) = f (xT |xT−1, . . . , x0) f (xT−1|xT−2, . . . , x0) · · ·
f (x1|x0) f (x0) ,

(2.8.1)

where in each case f denotes an appropriate probability distribution. For sys-

tem (2.4.1), Sf(xt+1|xt, . . . , x0) = f(xt+1|xt), which follows from the Markov

property possessed by equation (2.4.1). Then the likelihood function has the

recursive form

f (xT , . . . , x0) = f (xT |xT−1) f (xT−1|xT−2) · · · f (x1|x0) f (x0) . (2.8.2)

If we assume that the wt ’s are Gaussian, then the conditional distribution

f(xt+1|xt) is Gaussian with mean Aoxt and covariance matrix CC′ . Thus,

under the Gaussian distribution, the log of the conditional density of xt+1 be-

comes

log f (xt+1|xt) = −.5 log (2π) − .5 det (CC′)

− .5 (xt+1 −Aoxt)
′
(CC′)

−1
(xt+1 −Aoxt)

(2.8.3)

Given an assumption about the distribution of the initial condition x0 , equations

(2.8.2) and (2.8.3) can be used to form the likelihood function of a sample of

observations on {xt}Tt=0 . One computes maximum likelihood estimates by using

a hill-climbing algorithm to maximize the likelihood function with respect to the

free parameters Ao, C .

When observations of only a subset of the components of xt are available,

we need to go beyond the likelihood function for {xt} . One approach uses

filtering methods to build up the likelihood function for the subset of observed

variables.25 We describe the Kalman filter in chapter 5 and Appendix B (see

Technical Appendixes).26

25 See Hamilton (1994).
26 See Hansen (1982); Eichenbaum (1991); Christiano and Eichenbaum (1992); Burnside,

Eichenbaum, and Rebelo (1993); and Burnside and Eichenbaum (1996a, 1996b) for alternative

estimation strategies.
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2.9. Concluding remarks

In addition to giving us tools for thinking about time series, the Markov chain

and the stochastic linear difference equation have each introduced us to the

notion of the state vector as a description of the present position of a system.27

Subsequent chapters use both Markov chains and stochastic linear difference

equations. In the next chapter we study decision problems in which the goal

is optimally to manage the evolution of a state vector that can be partially

controlled.

A. A linear difference equation

This appendix describes the solution of a linear first-order scalar difference equa-

tion. First, let |λ| < 1, and let {ut}∞t=−∞ be a bounded sequence of scalar real

numbers. Then

(1 − λL) yt = ut, ∀t (2.A.1)

has the solution

yt = (1 − λL)
−1
ut + kλt (2.A.2)

for any real number k . You can verify this fact by applying (1 − λL) to both

sides of equation (2.A.2) and noting that (1 − λL)λt = 0. To pin down k we

need one condition imposed from outside (e.g., an initial or terminal condition)

on the path of y .

Now let |λ| > 1. Rewrite equation (2.A.1) as

yt−1 = λ−1yt − λ−1ut, ∀t (2.A.3)

or (
1 − λ−1L−1

)
yt = −λ−1ut+1. (2.A.4)

A solution is

yt = −λ−1

(
1

1 − λ−1L−1

)
ut+1 + kλt (2.A.5)

27 See Quah (1990) and Blundell and Preston (1998) for applications of some of the tools

of this chapter and of chapter 5 to studying some puzzles associated with a permanent income

model.
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for any k . To verify that this is a solution, check the consequences of operating

on both sides of equation (2.A.5) by (1 − λL) and compare to (2.A.1).

Solution (2.A.2) exists for |λ| < 1 because the distributed lag in u con-

verges. Solution (2.A.5) exists when |λ| > 1 because the distributed lead in u

converges. When |λ| > 1, the distributed lag in u in (2.A.2) may diverge, so

that a solution of this form does not exist. The distributed lead in u in (2.A.5)

need not converge when |λ| < 1.

Exercises

Exercise 2.1 Consider the Markov chain (P, π0) =

([
.9 .1
.3 .7

]
,

[
.5
.5

])
, and a

random variable yt = yxt where y =

[
1

5

]
. Compute the likelihood of the

following three histories for yt for t = 0, 1, . . . , 4:

a. 1, 5, 1, 5, 1.

b. 1, 1, 1, 1, 1.

c. 5, 5, 5, 5, 5.

Exercise 2.2 Consider a two-state Markov chain. Consider a random variable

yt = yxt where y =

[
1

5

]
. It is known that E(yt+1|xt) =

[
1.8

3.4

]
and that

E(y2
t+1|xt) =

[
5.8

15.4

]
. Find a transition matrix consistent with these conditional

expectations. Is this transition matrix unique (i.e., can you find another one that

is consistent with these conditional expectations)?

Exercise 2.3 Consumption is governed by an n-state Markov chain P, π0

where P is a stochastic matrix and π0 is an initial probability distribution.

Consumption takes one of the values in the n× 1 vector c . A consumer ranks

stochastic processes of consumption t = 0, 1 . . . according to

E

∞∑

t=0

βtu (ct)
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where E is the mathematical expectation and u(c) = c1−γ

1−γ for some parameter

γ ≥ 1. Let ui = u(ci). Let vi = E[
∑∞

t=0 β
tu(ct)|x0 = ei] and V = Ev , where

β ∈ (0, 1) is a discount factor.

a. Let u and v be the n × 1 vectors whose ith components are ui and vi ,

respectively. Verify the following formulas for v and V : v = (I − βP )−1u, and

V =
∑
i π0,ivi .

b. Consider the following two Markov processes:

Process 1: π0 =

[
.5

.5

]
, P =

[
1 0

0 1

]
.

Process 2: π0 =

[
.5

.5

]
, P =

[
.5 .5

.5 .5

]
.

For both Markov processes, c =

[
1

5

]
.

Assume that γ = 2.5, β = .95. Compute the unconditional discounted expected

utility V for each of these processes. Which of the two processes does the

consumer prefer? Redo the calculations for γ = 4. Now which process does the

consumer prefer?

c. An econometrician observes a sample of 10 observations of consumption rates

for our consumer. He knows that one of the two preceding Markov processes

generates the data, but he does not know which one. He assigns equal “prior

probability” to the two chains. Suppose that the 10 successive observations on

consumption are as follows: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1. Compute the likelihood of

this sample under process 1 and under process 2. Denote the likelihood function

Prob(data|Modeli), i = 1, 2.

d. Suppose that the econometrician uses Bayes’ law to revise his initial proba-

bility estimates for the two models, where in this context Bayes’ law states:

Prob (Mi) |data =
(Prob (data)|Mi) · Prob (Mi)∑
j Prob (data)|Mj · Prob (Mj)

where Mi denotes model i . The denominator of this expression is the un-

conditional probability of the data. After observing the data sample, what

probabilities does the econometrician place on the two possible models?

e. Repeat the calculation in part d, but now assume that the data sample is

1, 5, 5, 1, 5, 5, 1, 5, 1, 5.
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Exercise 2.4 Consider the univariate stochastic process

yt+1 = α+

4∑

j=1

ρjyt+1−j + cwt+1

where wt+1 is a scalar martingale difference sequence adapted to

Jt = [wt, . . . , w1, y0, y−1, y−2, y−3] , α = µ(1−∑j ρj) and the ρj ’s are such that

the matrix

A =




ρ1 ρ2 ρ3 ρ4 α

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1




has all of its eigenvalues in modulus bounded below unity.

a. Show how to map this process into a first-order linear stochastic difference

equation.

b. For each of the following examples, if possible, assume that the initial con-

ditions are such that yt is covariance stationary. For each case, state the ap-

propriate initial conditions. Then compute the covariance stationary mean and

variance of yt assuming the following parameter sets of parameter values:

i. ρ = [ 1.2 −.3 0 0 ], µ = 10, c = 1.

ii. ρ = [ 1.2 −.3 0 0 ] , µ = 10, c = 2.

iii. ρ = [ .9 0 0 0 ], µ = 5, c = 1.

iv. ρ = [ .2 0 0 .5 ], µ = 5, c = 1.

v. ρ = [ .8 .3 0 0 ] , µ = 5, c = 1.

Hint 1: The Matlab program doublej.m, in particular, the command

X=doublej(A,C*C’) computes the solution of the matrix equation A′XA +

C′C = X . This program can be downloaded from

< ftp://zia.stanford.edu/pub/˜sargent/webdocs/matlab> .

Hint 2: The mean vector is the eigenvector of A associated with a unit eigen-

value, scaled so that the mean of unity in the state vector is unity.

c. For each case in part b, compute the hj ’s in Etyt+5 = γ0 +
∑3
j=0 hjyt−j .
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d. For each case in part b, compute the h̃j ’s in Et
∑∞

k=0 .95kyt+k =
∑3

j=0 h̃jyt−j .

e. For each case in part b, compute the autocovariance E(yt − µy)(yt−k − µy)

for the three values k = 1, 5, 10.

Exercise 2.5 A consumer’s rate of consumption follows the stochastic process

(1)

ct+1 = αc +

2∑

j=1

ρjct−j+1 +

2∑

j=1

δjzt+1−j + ψ1w1,t+1

zt+1 =

2∑

j=1

γjct−j+1 +

2∑

j=1

φjzt−j+1 + ψ2w2,t+1

where wt+1 is a 2 × 1 martingale difference sequence, adapted to

Jt = [wt . . . w1 c0 c−1 z0 z−1 ] , with contemporaneous covariance ma-

trix Ewt+1w
′
t+1|Jt = I , and the coefficients ρj , δj , γj , φj are such that the

matrix

A =




ρ1 ρ2 δ1 δ2 αc

1 0 0 0 0

γ1 γ2 φ1 φ2 0

0 0 1 0 0

0 0 0 0 1




has eigenvalues bounded strictly below unity in modulus.

The consumer evaluates consumption streams according to

(2) V0 = E0

∞∑

t=0

.95tu (ct) ,

where the one-period utility function is

(3) u (ct) = −.5 (ct − 60)
2
.

a. Find a formula for V0 in terms of the parameters of the one-period utility

function (3) and the stochastic process for consumption.

b. Compute V0 for the following two sets of parameter values:

i. ρ = [ .8 −.3 ] , αc = 1, δ = [ .2 0 ] , γ = [ 0 0 ] , φ = [ .7 −.2 ], ψ1 = ψ2 =

1.

ii. Same as for part i except now ψ1 = 2, ψ2 = 1.
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Hint: Remember doublej.m.

Exercise 2.6 Consider the stochastic process {ct, zt} defined by equations

(1) in exercise 2.5 . Assume the parameter values described in part b, item

i. If possible, assume the initial conditions are such that {ct, zt} is covariance

stationary.

a. Compute the initial mean and covariance matrix that make the process

covariance stationary.

b. For the initial conditions in part a, compute numerical values of the following

population linear regression:

ct+2 = α0 + α1zt + α2zt−4 + wt

where Ewt [ 1 zt zt−4 ] = [ 0 0 0 ].

Exercise 2.7 Get the Matlab programs bigshow2.m and freq.m from

< ftp://zia.stanford.edu/pub/˜sargent/webdocs/matlab> . Use bigshow2 to com-

pute and display a simulation of length 80, an impulse response function, and

a spectrum for each of the following scalar stochastic processes yt . In each of

the following, wt is a scalar martingale difference sequence adapted to its own

history and the initial values of lagged y ’s.

a. yt = wt .

b. yt = (1 + .5L)wt .

c. yt = (1 + .5L+ .4L2)wt .

d. (1 − .999L)yt = (1 − .4L)wt .

e. (1 − .8L)yt = (1 + .5L+ .4L2)wt .

f. (1 + .8L)yt = wt .

g. yt = (1 − .6L)wt .

Study the output and look for patterns. When you are done, you will be well

on your way to knowing how to read spectral densities.

Exercise 2.8 This exercise deals with Cagan’s money demand under rational

expectations. A version of Cagan’s (1956) demand function for money is

(1) mt − pt = −α (pt+1 − pt) , α > 0, t ≥ 0,
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where mt is the log of the nominal money supply and pt is the price level at t .

Equation (1) states that the demand for real balances varies inversely with the

expected rate of inflation, (pt+1 − pt). There is no uncertainty, so the expected

inflation rate equals the actual one. The money supply obeys the difference

equation

(2) (1 − L) (1 − ρL)ms
t = 0

subject to initial condition for ms
−1,m

s
−2 . In equilibrium,

(3) mt ≡ ms
t ∀t ≥ 0

(i.e., the demand for money equals the supply). For now assume that

(4) |ρα/ (1 + α) | < 1.

An equilibrium is a {pt}∞t=0 that satisfies equations (1), (2), and (3) for all t .

a. Find an expression an equilibrium pt of the form

(5) pt =
n∑

j=0

wjmt−j + ft.

Please tell how to get formulas for the wj for all j and the ft for all t .

b. How many equilibria are there?

c. Is there an equilibrium with ft = 0 for all t?

d. Briefly tell where, if anywhere, condition (4) plays a role in your answer to

part a.

e. For the parameter values α = 1, ρ = 1, compute and display all the equilibria.

Exercise 2.9 The n× 1 state vector of an economy is governed by the linear

stochastic difference equation

(1) xt+1 = Axt + Ctwt+1

where Ct is a possibly time-varying matrix (known at t) and wt+1 is an m× 1

martingale difference sequence adapted to its own history with Ewt+1w
′
t+1|Jt =

I , where Jt = [wt . . . w1 x0 ] . A scalar one-period payoff pt+1 is given by

(2) pt+1 = Pxt+1
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The stochastic discount factor for this economy is a scalar mt+1 that obeys

(3) mt+1 =
Mxt+1

Mxt
.

Finally, the price at time t of the one-period payoff is given by qt = ft(xt),

where ft is some possibly time-varying function of the state. That mt+1 is a

stochastic discount factor means that

(4) E (mt+1pt+1|Jt) = qt.

a. Compute ft(xt), describing in detail how it depends on A and Ct .

b. Suppose that an econometrician has a time series data set

Xt = [ zt mt+1 pt+1 qt ] , for t = 1, . . . , T , where zt is a strict subset of the

variables in the state xt . Assume that investors in the economy see xt even

though the econometrician sees only a subset zt of xt . Briefly describe a way

to use these data to test implication (4). (Possibly but perhaps not useful hint:

recall the law of iterated expectations.)

Exercise 2.10 Let P be a transition matrix for a Markov chain. Suppose that

P ′ has two distinct eigenvectors π1, π2 corresponding to unit eigenvalues of P ′ .

Prove for any α ∈ [0, 1] that απ1 + (1− α)π2 is an invariant distribution of P .

Exercise 2.11 Consider a Markov chain with transition matrix

P =




1 0 0

.2 .5 .3

0 0 1





with initial distribution π0 = [π1,0 π2,0 π3,0 ]
′
. Let πt = [π1t π2t π3t ]

′
be

the distribution over states at time t . Prove that for t > 0

π1t = π1,0 + .2

(
1 − .5t

1 − .5

)
π2,0

π2t = .5tπ2,0

π3t = π3,0 + .3

(
1 − .5t

1 − .5

)
π2,0.

Exercise 2.12 Let P be a transition matrix for a Markov chain. For t =

1, 2, . . ., prove that the j th column of P t is the distribution across states at t

when the initial distribution is πj,0 = 1, πi,0 = 0∀i 6= j .
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Exercise 2.13 A household has preferences over consumption processes {ct}∞t=0

that are ordered by

−.5
∞∑

t=0

βt
[
(ct − 30)

2
+ .000001b2t

]
(2.6)

where β = .95. The household chooses a consumption, borrowing plan to

maximize (2.6) subject to the sequence of budget constraints

ct + bt = βbt+1 + yt (2.7)

for t ≥ 0, where b0 is an initial condition, β−1 is the one-period gross risk-free

interest rate, bt is the household’s one-period debt that is due in period t , and

yt is its labor income, which obeys the second-order autoregressive process

(
1 − ρ1L− ρ2L

2
)
yt+1 = (1 − ρ1 − ρ2) 5 + .05wt+1 (2.8)

where ρ1 = 1.3, ρ2 = −.4.

a. Define the state of the household at t as xt = [ 1 bt yt yt−1 ]′ and the

control as ut = (ct − 30). Then express the transition law facing the household

in the form (2.4.22). Compute the eigenvalues of A . Compute the zeros of the

characteristic polynomial (1−ρ1z−ρ2z
2) and compare them with the eigenvalues

of A . (Hint: To compute the zeros in Matlab, set a = [ .4 −1.3 1 ] and call

roots(a). The zeros of (1−ρ1z−ρ2z
2) equal the reciprocals of the eigenvalues

of the associated A .)

b. Write a Matlab program that uses the Howard improvement algorithm

(2.4.30) to compute the household’s optimal decision rule for ut = ct − 30.

Tell how many iterations it takes for this to converge (also tell your convergence

criterion).

c. Use the household’s optimal decision rule to compute the law of motion for

xt under the optimal decision rule in the form

xt+1 = (A−BF ∗)xt + Cwt+1,

where ut = −F ∗xt is the optimal decision rule. Using Matlab, compute the

impulse response function of [ ct bt ]
′ to wt+1 . Compare these with the theo-

retical expressions (2.6.18).
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Exercise 2.14 Consider a Markov chain with transition matrix

P =




.5 .5 0 0

.1 .9 0 0

0 0 .9 .1

0 0 0 1




with state space X = {ei, i = 1, . . . , 4} where ei is the ith unit vector. A

random variable yt is a function yt = [ 1 2 3 4 ]xt of the underlying state.

a. Find all stationary distributions of the Markov chain.

b. Is the Markov chain ergodic?

c. Compute all possible limiting values of the sample mean 1
T

∑T−1
t=0 yt as T →

∞ .

Exercise 2.15 Suppose that a scalar is related to a scalar white noise wt with

variance 1 by yt = h(L)wt where h(L) =
∑∞

j=0 L
jhj and

∑∞
j=0 h

2
j < +∞ .

Then a special case of formula (2.5.6) coupled with the observer equation yt =

Gxt implies that the spectrum of y is given by

Sy (ω) = h (exp (−iω))h (exp (iω)) = |h (exp (−iω)) |2

where h(exp(−iω)) =
∑∞
j=0 hj exp(−iωj).

In a famous paper, Slutsky investigated the consequences of applying the fol-

lowing filter to white noise: h(L) = (1 + L)n(1 − L)m (i.e., the convolution of

n two-period moving averages with m difference operators). Compute and plot

the spectrum of y for ω ∈ [−π, π] for the following choices of m,n :

a. m = 10, n = 10.

b. m = 10, n = 40.

c. m = 40, n = 10.

d. m = 120, n = 30.

e. Comment on these results.

Hint: Notice that h(exp(−iω)) = (1 + exp(−iω))n(1 − exp(−iω))m .

Exercise 2.16 Consider an n-state Markov chain with state space X = {ei, i =

1, . . . , n} where ei is the ith unit vector. Consider the indicator variable Iit =



Exercises 83

eixt which equals 1 if xt = ei and 0 otherwise. Suppose that the chain has a

unique stationary distribution and that it is ergodic. Let π be the stationary

distribution.

a. Verify that EIit = πi .

b. Prove that

1

T

T−1∑

t=0

Iit = πi

as T → ∞ with probability one with respect to the stationary distribution π .

Exercise 2.17 Lake model

A worker can be in one of two states, state 1 (unemployed) or state 2 (employed).

At the beginning of each period, a previously unemployed worker has probability

λ =
∫ B
w̄ dF (w) of becoming employed. Here w̄ is his reservation wage and F (w)

is the c.d.f. of a wage offer distribution. We assume that F (0) = 0, F (B) = 1.

At the beginning of each period an unemployed worker draws one and only one

wage offer from F . Successive draws from F are i.i.d. The worker’s decision rule

is to accept the job if w ≥ w̄ , and otherwise to reject it and remain unemployed

one more period. Assume that w is such that λ ∈ (0, 1). At the beginning of

each period, a previously employed worker is fired with probability δ ∈ (0, 1).

Newly fired workers must remain unemployed for one period before drawing a

new wage offer.

a. Let the state space be X = {ei, i = 1, 2} where ei is the ith unit vector.

Describe the Markov chain on X that is induced by the description above.

Compute all stationary distributions of the chain. Is the chain ergodic?

b. Suppose that λ = .05, δ = .25. Compute a stationary distribution. Compute

the fraction of his life that an infinitely lived worker would spend unemployed.

c. Drawing the initial state from the stationary distribution, compute the joint

distribution gij = Prob(xt = ei, xt−1 = ej) for i = 1, 2, j = 1, 2.

d. Define an indicator function by letting Iij,t = 1 if xt = ei, xt−1 = ej at time

t , and 0 otherwise. Compute

lim
T→∞

1

T

T∑

t=1

Iij,t
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for all four i, j combinations.

e. Building on your results in part d, construct method of moment estimators

of λ and δ . Assuming that you know the wage offer distribution F , construct

a method of moments estimator of the reservation wage w̄ .

f. Compute maximum likelihood estimators of λ and δ .

g. Compare the estimators you derived in parts e and f.

h. Extra credit. Compute the asymptotic covariance matrix of the maximum

likelihood estimators of λ and δ .

Exercise 2.18 Random walk

A Markov chain has state space X = {ei, i = 1, . . . , 4} where ei is the unit

vector and transition matrix

P =




1 0 0 0

.5 0 .5 0

0 .5 0 .5

0 0 0 1


 .

A random variable yt = yxt is defined by y = [ 1 2 3 4 ].

a. Find all stationary distributions of this Markov chain.

b. Is this chain ergodic? Compute invariant functions of P .

c. Compute E[yt+1|xt] for xt = ei, i = 1, . . . , 4.

d. Compare your answer to part (c) with (2.2.9). Is yt = y′xt invariant? If

not, what hypothesis of Theorem 2.2.2 is violated?

d. The stochastic process yt = y′xt is evidently a bounded martingale. Verify

that yt converges almost surely to a constant. To what constant(s) does it

converge?



Chapter 3
Dynamic Programming

This chapter introduces basic ideas and methods of dynamic programming.1 It

sets out the basic elements of a recursive optimization problem, describes the

functional equation (the Bellman equation), presents three methods for solving

the Bellman equation, and gives the Benveniste-Scheinkman formula for the

derivative of the optimal value function. Let’s dive in.

3.1. Sequential problems

Let β ∈ (0, 1) be a discount factor. We want to choose an infinite sequence of

“controls” {ut}∞t=0 to maximize

∞∑

t=0

βtr (xt, ut) , (3.1.1)

subject to xt+1 = g(xt, ut), with x0 given. We assume that r(xt, ut) is a

concave function and that the set {(xt+1, xt) : xt+1 ≤ g(xt, ut), ut ∈ Rk} is con-

vex and compact. Dynamic programming seeks a time-invariant policy function

h mapping the state xt into the control ut , such that the sequence {us}∞s=0

generated by iterating the two functions

ut = h (xt)

xt+1 = g (xt, ut) ,
(3.1.2)

starting from initial condition x0 at t = 0, solves the original problem. A

solution in the form of equations (3.1.2) is said to be recursive. To find the

policy function h we need to know another function V (x) that expresses the

optimal value of the original problem, starting from an arbitrary initial condition

x ∈ X . This is called the value function. In particular, define

V (x0) = max
{us}∞

s=0

∞∑

t=0

βtr (xt, ut) , (3.1.3)

1 This chapter aims to the reader to start using the methods quickly. We hope to promote

demand for further and more rigorous study of the subject. In particular see Bertsekas (1976),

Bertsekas and Shreve (1978), Stokey and Lucas (with Prescott) (1989), Bellman (1957), and

Chow (1981). This chapter covers much of the same material as Sargent (1987b, chapter 1).

– 85 –
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where again the maximization is subject to xt+1 = g(xt, ut), with x0 given. Of

course, we cannot possibly expect to know V (x0) until after we have solved the

problem, but let’s proceed on faith. If we knew V (x0), then the policy function

h could be computed by solving for each x ∈ X the problem

max
u

{r (x, u) + βV (x̃)}, (3.1.4)

where the maximization is subject to x̃ = g(x, u) with x given, and x̃ denotes

the state next period. Thus, we have exchanged the original problem of finding

an infinite sequence of controls that maximizes expression (3.1.1) for the prob-

lem of finding the optimal value function V (x) and a function h that solves

the continuum of maximum problems (3.1.4)—one maximum problem for each

value of x . This exchange doesn’t look like progress, but we shall see that it

often is.

Our task has become jointly to solve for V (x), h(x), which are linked by

the Bellman equation

V (x) = max
u

{r (x, u) + βV [g (x, u)]}. (3.1.5)

The maximizer of the right side of equation (3.1.5) is a policy function h(x)

that satisfies

V (x) = r [x, h (x)] + βV {g [x, h (x)]}. (3.1.6)

Equation (3.1.5) or (3.1.6) is a functional equation to be solved for the pair of

unknown functions V (x), h(x).

Methods for solving the Bellman equation are based on mathematical struc-

tures that vary in their details depending on the precise nature of the functions

r and g .2 All of these structures contain versions of the following four findings.

Under various particular assumptions about r and g , it turns out that

2 There are alternative sets of conditions that make the maximization (3.1.4) well behaved.

One set of conditions is as follows: (1) r is concave and bounded, and (2) the constraint set

generated by g is convex and compact, that is, the set of {(xt+1, xt) : xt+1 ≤ g(xt, ut)} for

admissible ut is convex and compact. See Stokey, Lucas, and Prescott (1989) and Bertsekas

(1976) for further details of convergence results. See Benveniste and Scheinkman (1979) and

Stokey, Lucas, and Prescott (1989) for the results on differentiability of the value function. In

Appendix A (see Technical Appendixes), we describe the mathematics for one standard set of

assumptions about (r, g) . In chapter 5, we describe it for another set of assumptions about

(r, g) .
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1. The functional equation (3.1.5) has a unique strictly concave solution.

2. This solution is approached in the limit as j → ∞ by iterations on

Vj+1 (x) = max
u

{r (x, u) + βVj (x̃)}, (3.1.7)

subject to x̃ = g(x, u), x given, starting from any bounded and continuous

initial V0 .

3. There is a unique and time-invariant optimal policy of the form ut = h(xt),

where h is chosen to maximize the right side of (3.1.5).3

4. Off corners, the limiting value function V is differentiable with

V ′ (x) =
∂r

∂x
[x, h (x)] + β

∂g

∂x
[x, h (x)]V ′{g [x, h (x)]}. (3.1.8)

This is a version of a formula of Benveniste and Scheinkman (1979). We

often encounter settings in which the transition law can be formulated so

that the state x does not appear in it, so that ∂g
∂x = 0, which makes

equation (3.1.8) become

V ′ (x) =
∂r

∂x
[x, h (x)] . (3.1.9)

At this point, we describe three broad computational strategies that apply

in various contexts.

3 The time invariance of the policy function ut = h(xt) is very convenient econometrically,

because we can impose a single decision rule for all periods. This lets us pool data across

periods to estimate the free parameters of the return and transition functions that underlie

the decision rule.
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3.1.1. Three computational methods

There are three main types of computational methods for solving dynamic pro-

grams. All aim to solve the functional equation (3.1.4).

Value function iteration. The first method proceeds by constructing a

sequence of value functions and associated policy functions. The sequence is

created by iterating on the following equation, starting from V0 = 0, and con-

tinuing until Vj has converged:4

Vj+1 (x) = max
u

{r (x, u) + βVj (x̃)}, (3.1.10)

subject to x̃ = g(x, u), x given.5 This method is called value function iteration

or iterating on the Bellman equation.

Guess and verify. A second method involves guessing and verifying a solution

V to equation (3.1.5). This method relies on the uniqueness of the solution to

the equation, but because it relies on luck in making a good guess, it is not

generally available.

Howard’s improvement algorithm. A third method, known as policy

function iteration or Howard’s improvement algorithm, consists of the following

steps:

1. Pick a feasible policy, u = h0(x), and compute the value associated with

operating forever with that policy:

Vhj
(x) =

∞∑

t=0

βtr [xt, hj (xt)] ,

where xt+1 = g[xt, hj(xt)] , with j = 0.

2. Generate a new policy u = hj+1(x) that solves the two-period problem

max
u

{r (x, u) + βVhj
[g (x, u)]},

for each x .

4 See Appendix A on functional analysis (see Technical Appendixes) for what it means for

a sequence of functions to converge.
5 A proof of the uniform convergence of iterations on equation (3.1.10) is contained in

Appendix A on functional analysis (see Technical Appendixes).
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3. Iterate over j to convergence on steps 1 and 2.

In Appendix A (see Technical Appendixes), we describe some conditions

under which the improvement algorithm converges to the solution of Bellman’s

equation. The method often converges faster than does value function iteration

(e.g., see exercise 3.1 at the end of this chapter).6 The policy improvement

algorithm is also a building block for the methods for studying government

policy to be described in chapter 22.

Each of these methods has its uses. Each is easier said than done, because

it is typically impossible analytically to compute even one iteration on equa-

tion (3.1.10). This fact thrusts us into the domain of computational methods

for approximating solutions: pencil and paper are insufficient. The following

chapter describes some computational methods that can be used for problems

that cannot be solved by hand. Here we shall describe the first of two special

types of problems for which analytical solutions can be obtained. It involves

Cobb-Douglas constraints and logarithmic preferences. Later, in chapter 5, we

shall describe a specification with linear constraints and quadratic preferences.

For that special case, many analytic results are available. These two classes

have been important in economics as sources of examples and as inspirations for

approximations.

3.1.2. Cobb-Douglas transition, logarithmic preferences

Brock and Mirman (1972) used the following optimal growth example.7 A

planner chooses sequences {ct, kt+1}∞t=0 to maximize

∞∑

t=0

βt ln (ct)

subject to a given value for k0 and a transition law

kt+1 + ct = Akαt , (3.1.11)

where A > 0, α ∈ (0, 1), β ∈ (0, 1).

6 The speed of the policy improvement algorithm is linked to its being an implementation

of Newton’s method, which converges quadratically while iteration on the Bellman equation

converges at a linear rate. See chapter 4 and Appendix A (see Technical Appendixes).
7 See also Levhari and Srinivasan (1969).
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This problem can be solved “by hand,” using any of our three methods. We

begin with iteration on the Bellman equation. Start with v0(k) = 0, and solve

the one-period problem: choose c to maximize ln(c) subject to c + k̃ = Akα.

The solution is evidently to set c = Akα, k̃ = 0, which produces an optimized

value v1(k) = lnA + α ln k . At the second step, we find c = 1
1+βαAk

α, k̃ =
βα

1+βαAk
α, v2(k) = ln A

1+αβ + β lnA + αβ ln αβA
1+αβ + α(1 + αβ) ln k . Continuing,

and using the algebra of geometric series, gives the limiting policy functions

c = (1−βα)Akα, k̃ = βαAkα , and the value function v(k) = (1−β)−1{ln[A(1−
βα)] + βα

1−βα ln(Aβα)} + α
1−βα ln k .

Here is how the guess-and-verify method applies to this problem. Since we

already know the answer, we’ll guess a function of the correct form, but leave

its coefficients undetermined.8 Thus, we make the guess

v (k) = E + F ln k, (3.1.12)

where E and F are undetermined constants. The left and right sides of equation

(3.1.12) must agree for all values of k . For this guess, the first-order necessary

condition for the maximum problem on the right side of equation (3.1.10) implies

the following formula for the optimal policy k̃ = h(k), where k̃ is next period’s

value and k is this period’s value of the capital stock:

k̃ =
βF

1 + βF
Akα. (3.1.13)

Substitute equation (3.1.13) into the Bellman equation and equate the result

to the right side of equation (3.1.12). Solving the resulting equation for E and

F gives F = α/(1 − αβ) and E = (1 − β)−1[lnA(1 − αβ) + βα
1−αβ lnAβα]. It

follows that

k̃ = βαAkα. (3.1.14)

Note that the term F = α/(1 − αβ) can be interpreted as a geometric sum

α[1 + αβ + (αβ)2 + . . .] .

Equation (3.1.14) shows that the optimal policy is to have capital move

according to the difference equation kt+1 = Aβαkαt , or ln kt+1 = lnAβα +

α ln kt . That α is less than 1 implies that kt converges as t approaches infinity

for any positive initial value k0 . The stationary point is given by the solution

of k∞ = Aβαkα∞ , or kα−1
∞ = (Aβα)−1 .

8 This is called the method of undetermined coefficients.
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3.1.3. Euler equations

In many problems, there is no unique way of defining states and controls, and

several alternative definitions lead to the same solution of the problem. Some-

times the states and controls can be defined in such a way that xt does not

appear in the transition equation, so that ∂gt/∂xt ≡ 0. In this case, the first-

order condition for the problem on the right side of the Bellman equation in

conjunction with the Benveniste-Scheinkman formula implies

∂rt
∂ut

(xt, ut) +
∂gt
∂ut

(ut) ·
∂rt+1 (xt+1, ut+1)

∂xt+1
= 0, xt+1 = gt (ut) .

The first equation is called an Euler equation. Under circumstances in which

the second equation can be inverted to yield ut as a function of xt+1 , using the

second equation to eliminate ut from the first equation produces a second-order

difference equation in xt , since eliminating ut+1 brings in xt+2 .

3.1.4. A sample Euler equation

As an example of an Euler equation, consider the Ramsey problem of choosing

{ct, kt+1}∞t=0 to maximize
∑∞
t=0 β

tu(ct) subject to ct + kt+1 = f(kt), where k0

is given and the one-period utility function satisfies u′(c) > 0, u′′(c) < 0, limct↘0

u′(ct) = ∞ , and where f ′(k) > 0, f ′′(k) < 0. Let the state be k and the control

be k′ , where k′ denotes next period’s value of k . Substitute c = f(k)− k′ into

the utility function and express the Bellman equation as

v (k) = max
k̃

{u
[
f (k) − k̃

]
+ βv

(
k̃
)
}. (3.1.15)

Application of the Benveniste-Scheinkman formula gives

v′ (k) = u′
[
f (k) − k̃

]
f ′ (k) . (3.1.16)

Notice that the first-order condition for the maximum problem on the right

side of equation (3.1.15) is −u′[f(k) − k̃] + βv′(k̃) = 0, which, using equation

(3.1.16), gives

u′
[
f (k) − k̃

]
= βu′

[
f
(
k̃
)
− k̂
]
f ′ (k′) , (3.1.17)
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where k̂ denotes the two-period-ahead value of k . Equation (3.1.17) can be

expressed as

1 = β
u′ (ct+1)

u′ (ct)
f ′ (kt+1) ,

an Euler equation that is exploited extensively in the theories of finance, growth,

and real business cycles.

3.2. Stochastic control problems

We now consider a modification of problem (3.1.1) to permit uncertainty. Es-

sentially, we add some well-placed shocks to the previous nonstochastic prob-

lem. So long as the shocks are either independently and identically distributed

or Markov, straightforward modifications of the method for handling the non-

stochastic problem will work.

Thus, we modify the transition equation and consider the problem of max-

imizing

E0

∞∑

t=0

βtr (xt, ut) , 0 < β < 1, (3.2.1)

subject to

xt+1 = g (xt, ut, εt+1) , (3.2.2)

with x0 known and given at t = 0, where εt is a sequence of independently

and identically distributed random variables with cumulative probability distri-

bution function prob{εt ≤ e} = F (e) for all t ; Et(y) denotes the mathematical

expectation of a random variable y , given information known at t . At time

t , xt is assumed to be known, but xt+j , j ≥ 1 is not known at t . That is,

εt+1 is realized at (t + 1), after ut has been chosen at t . In problem (3.2.1)–

(3.2.2), uncertainty is injected by assuming that xt follows a random difference

equation.

Problem (3.2.1)–(3.2.2) continues to have a recursive structure, stemming

jointly from the additive separability of the objective function (3.2.1) in pairs

(xt, ut) and from the difference equation characterization of the transition law

(3.2.2). In particular, controls dated t affect returns r(xs, us) for s ≥ t but

not earlier. This feature implies that dynamic programming methods remain

appropriate.
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The problem is to maximize expression (3.2.1) subject to equation (3.2.2)

by choice of a “policy” or “contingency plan” ut = h(xt). The Bellman equation

(3.1.5) becomes

V (x) = max
u

{r (x, u) + βE [V [g (x, u, ε)] |x]}, (3.2.3)

where E{V [g(x, u, ε)]|x} =
∫
V [g(x, u, ε)]dF (ε) and where V (x) is the optimal

value of the problem starting from x at t = 0. The solution V (x) of equation

(3.2.3) can be computed by iterating on

Vj+1 (x) = max
u

{r (x, u) + βE [Vj [g (x, u, ε)] |x]}, (3.2.4)

starting from any bounded continuous initial V0 . Under various particular regu-

larity conditions, there obtain versions of the same four properties listed earlier.9

The first-order necessary condition for the problem on the right side of

equation (3.2.3) is

∂r (x, u)

∂u
+ βE

[
∂g

∂u
(x, u, ε)V ′ [g (x, u, ε)] |x

]
= 0,

which we obtained simply by differentiating the right side of equation (3.2.3),

passing the differentiation operation under the E (an integration) operator. Off

corners, the value function satisfies

V ′ (x) =
∂r

∂x
[x, h (x)] + βE

{
∂g

∂x
[x, h (x) , ε]V ′ (g [x, h (x) , ε]) |x

}
.

In the special case in which ∂g/∂x ≡ 0, the formula for V ′(x) becomes

V ′ (x) =
∂r

∂x
[x, h (x)] .

Substituting this formula into the first-order necessary condition for the problem

gives the stochastic Euler equation

∂r

∂u
(x, u) + βE

[
∂g

∂u
(x, u, ε)

∂r

∂x
(x̃, ũ) |x

]
= 0,

where tildes over x and u denote next-period values.

9 See Stokey and Lucas (with Prescott) (1989), or the framework presented in Appendix

A (see Technical Appendixes).
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3.3. Concluding remarks

This chapter has put forward basic tools and findings: the Bellman equation

and several approaches to solving it; the Euler equation; and the Benveniste-

Scheinkman formula. To appreciate and believe in the power of these tools

requires more words and more practice than we have yet supplied. In the next

several chapters, we put the basic tools to work in different contexts, with par-

ticular specification of return and transition equations designed to render the

Bellman equation susceptible to further analysis and computation.

Exercise

Exercise 3.1 Howard’s policy iteration algorithm

Consider the Brock-Mirman problem: to maximize

E0

∞∑

t=0

βt ln ct,

subject to ct + kt+1 ≤ Akαt θt , k0 given, A > 0, 1 > α > 0, where {θt} is

an i.i.d. sequence with ln θt distributed according to a normal distribution with

mean zero and variance σ2 .

Consider the following algorithm. Guess at a policy of the form kt+1 =

h0(Ak
α
t θt) for any constant h0 ∈ (0, 1). Then form

J0 (k0, θ0) = E0

∞∑

t=0

βt ln (Akαt θt − h0Ak
α
t θt) .

Next choose a new policy h1 by maximizing

ln (Akαθ − k′) + βEJ0 (k′, θ′) ,

where k′ = h1Ak
αθ . Then form

J1 (k0, θ0) = E0

∞∑

t=0

βt ln (Akαt θt − h1Ak
α
t θt) .

Continue iterating on this scheme until successive hj have converged.

Show that, for the present example, this algorithm converges to the optimal

policy function in one step.



Chapter 4

Practical Dynamic Programming

4.1. The curse of dimensionality

We often encounter problems where it is impossible to attain closed forms for

iterating on the Bellman equation. Then we have to adopt some numerical

approximations. This chapter describes two popular methods for obtaining nu-

merical approximations. The first method replaces the original problem with

another problem by forcing the state vector to live on a finite and discrete grid of

points, then applies discrete-state dynamic programming to this problem. The

“curse of dimensionality” impels us to keep the number of points in the dis-

crete state space small. The second approach uses polynomials to approximate

the value function. Judd (1998) is a comprehensive reference about numerical

analysis of dynamic economic models and contains many insights about ways to

compute dynamic models.

4.2. Discretization of state space

We introduce the method of discretization of the state space in the context of

a particular discrete-state version of an optimal savings problem. An infinitely

lived household likes to consume one good, which it can acquire by using labor

income or accumulated savings. The household has an endowment of labor at

time t , st , that evolves according to an m-state Markov chain with transition

matrix P . If the realization of the process at t is s̄i , then at time t the

household receives labor income of amount ws̄i . The wage w is fixed over

time. We shall sometimes assume that m is 2, and that st takes on value 0

in an unemployed state and 1 in an employed state. In this case, w has the

interpretation of being the wage of employed workers.

The household can choose to hold a single asset in discrete amount at ∈ A
where A is a grid [a1 < a2 < · · · < an] . How the model builder chooses the

– 95 –



96 Practical Dynamic Programming

end points of the grid A is important, as we describe in detail in chapter 17 on

incomplete market models. The asset bears a gross rate of return r that is fixed

over time.

The household’s maximum problem, for given values of (w, r ) and given

initial values (a0, s0 ), is to choose a policy for {at+1}∞t=0 to maximize

E
∞∑

t=0

βtu (ct) , (4.2.1)

subject to
ct + at+1 = (r + 1) at + wst

ct ≥ 0

at+1 ∈ A
(4.2.2)

where β ∈ (0, 1) is a discount factor and r is fixed rate of return on the assets.

We assume that β(1 + r) < 1. Here u(c) is a strictly increasing, concave one-

period utility function. Associated with this problem is the Bellman equation

v (a, s) = max
a′∈A

{u [(r + 1)a+ ws− a′] + βEv (a′, s′) |s},

or for each i ∈ [1, . . . ,m] and each h ∈ [1, . . . , n] ,

v (ah, s̄i) = max
a′∈A

{u [(r + 1) ah + ws̄i − a′] + β

m∑

j=1

Pijv (a′, s̄j)}, (4.2.3)

where a′ is next period’s value of asset holdings, and s′ is next period’s value

of the shock; here v(a, s) is the optimal value of the objective function, starting

from asset, employment state (a, s). A solution of this problem is a value

function v(a, s) that satisfies equation (4.2.3) and an associated policy function

a′ = g(a, s) mapping this period’s (a, s) pair into an optimal choice of assets to

carry into next period.
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4.3. Discrete-state dynamic programming

For discrete-state space of small size, it is easy to solve the Bellman equation

numerically by manipulating matrices. Here is how to write a computer program

to iterate on the Bellman equation in the context of the preceding model of asset

accumulation.1 Let there be n states [a1, a2, . . . , an] for assets and two states

[s1, s2] for employment status. Define two n× 1 vectors vj , j = 1, 2, whose ith

rows are determined by vj(i) = v(ai, sj), i = 1, . . . , n . Let 1 be the n×1 vector

consisting entirely of ones. Define two n× n matrices Rj whose (i, h) element

is

Rj (i, h) = u [(r + 1)ai + wsj − ah] , i = 1, . . . , n, h = 1, . . . , n.

Define an operator T ([v1, v2]) that maps a pair of vectors [v1, v2] into a pair of

vectors [tv1, tv2] :
2

tv1 = max{R1 + βP111v
′
1 + βP121v

′
2}

tv2 = max{R2 + βP211v
′
1 + βP221v

′
2}.

(4.3.1)

Here it is understood that the “max” operator applied to an (n×m) matrix M

returns an (n× 1) vector whose ith element is the maximum of the ith row of

the matrix M . These two equations can be written compactly as
[
tv1

tv2

]
= max

{[
R1

R2

]
+ β (P ⊗ 1)

[
v′1
v′2

]}
, (4.3.2)

where ⊗ is the Kronecker product.

The Bellman equation can be represented

[v1v2] = T ([v1, v2]) ,

and can be solved by iterating to convergence on

[v1, v2]m+1 = T ([v1, v2]m) .

1 Matlab versions of the program have been written by Gary Hansen, Selahattin İmrohoroğlu,

George Hall, and Chao Wei.
2 Programming languages like Gauss and Matlab execute maximum operations over vectors

very efficiently. For example, for an n×m matrix A , the Matlab command [r,index] =max(A)

returns the two (1×m) row vectors r,index, where rj = maxiA(i, j) and indexj is the row

i that attains maxiA(i, j) for column j [i.e., indexj = argmaxiA(i, j) ]. This command

performs m maximizations simultaneously.
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4.4. Application of Howard improvement algorithm

Often computation speed is important. We saw in an exercise in chapter 2 that

the policy improvement algorithm can be much faster than iterating on the Bell-

man equation. It is also easy to implement the Howard improvement algorithm

in the present setting. At time t , the system resides in one of N predetermined

positions, denoted xi for i = 1, 2, . . . , N . There exists a predetermined class

M of (N × N) stochastic matrices P , which are the objects of choice. Here

Pij = Prob [xt+1 = xj | xt = xi] , i = 1, . . . , N ; j = 1, . . . , N .

The matrices P satisfy Pij ≥ 0,
∑N

j=1 Pij = 1, and additional restrictions

dictated by the problem at hand that determine the class M . The one-period

return function is represented as cP , a vector of length N , and is a function of

P . The ith entry of cP denotes the one-period return when the state of the

system is xi and the transition matrix is P . The Bellman equation is

vP (xi) = max
P∈M

{cP (xi) + β
N∑

j=1

Pij vP (xj)}

or

vP = max
P∈M

{cP + βPvP } . (4.4.1)

We can express this as

vP = TvP ,

where T is the operator defined by the right side of (4.4.1). Following Putter-

man and Brumelle (1979) and Putterman and Shin (1978), define the operator

B = T − I,

so that

Bv = max
P∈M

{cP + βPv} − v.

In terms of the operator B , the Bellman equation is

Bv = 0. (4.4.2)

The policy improvement algorithm consists of iterations on the following

two steps.

1. For fixed Pn , solve

(I − β Pn) vPn
= cPn

(4.4.3)
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for vPn
.

2. Find Pn+1 such that

cPn+1 + (βPn+1 − I) vPn
= BvPn

(4.4.4)

Step 1 is accomplished by setting

vPn
= (I − βPn)

−1
cPn

. (4.4.5)

Step 2 amounts to finding a policy function (i.e., a stochastic matrix Pn+1 ∈ M)

that solves a two-period problem with vPn
as the terminal value function.

Following Putterman and Brumelle, the policy improvement algorithm can

be interpreted as a version of Newton’s method for finding the zero of Bv = v .

Using equation (4.4.3) for n+ 1 to eliminate cPn+1 from equation (4.4.4) gives

(I − βPn+1) vPn+1 + (βPn+1 − I) vPn
= BvPn

which implies

vPn+1 = vPn
+ (I − βPn+1)

−1
BvPn

. (4.4.6)

From equation (4.4.4), (βPn+1 − I) can be regarded as the gradient of BvPn
,

which supports the interpretation of equation (4.4.6) as implementing Newton’s

method.3

3 Newton’s method for finding the solution of G(z) = 0 is to iterate on zn+1 = zn −

G′(zn)−1G(zn).
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4.5. Numerical implementation

We shall illustrate Howard’s policy improvement algorithm by applying it to

our savings example. Consider a given feasible policy function k′ = f(k, s). For

each h , define the n× n matrices Jh by

Jh (a, a′) =

{
1 if g (a, sh) = a′

0 otherwise .

Here h = 1, 2, . . . ,m where m is the number of possible values for st , and

Jh(a, a
′) is the element of Jh with rows corresponding to initial assets a and

columns to terminal assets a′ . For a given policy function a′ = g(a, s) define

the n× 1 vectors rh with rows corresponding to

rh (a) = u [(r + 1) a+ wsh − g (a, sh)] , (4.5.1)

for h = 1, . . . ,m .

Suppose the policy function a′ = g(a, s) is used forever. Let the value

associated with using g(a, s) forever be represented by the m (n × 1) vectors

[v1, . . . , vm] , where vh(ai) is the value starting from state (ai, sh). Suppose that

m = 2. The vectors [v1, v2] obey
[
v1

v2

]
=

[
r1

r2

]
+

[
βP11J1 βP12J1

βP21J2 βP22J2

] [
v1

v2

]
.

Then [
v1

v2

]
=

[
I − β

(P11J1 P12J1

P21J2 P22J2

)]−1 [ r1
r2

]
. (4.5.2)

Here is how to implement the Howard policy improvement algorithm.

Step 1. For an initial feasible policy function gj(k, j) for j = 1, form the

rh matrices using equation (4.5.1), then use equation (4.5.2) to evaluate

the vectors of values [vj1, v
j
2] implied by using that policy forever.

Step 2. Use [vj1, v
j
2] as the terminal value vectors in equation (4.3.2), and

perform one step on the Bellman equation to find a new policy function

gj+1(k, s) for j + 1 = 2. Use this policy function, update j , and repeat

step 1.

Step 3. Iterate to convergence on steps 1 and 2.
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4.5.1. Modified policy iteration

Researchers have had success using the following modification of policy iteration:

for k ≥ 2, iterate k times on Bellman’s equation. Take the resulting policy

function and use equation (4.5.2) to produce a new candidate value function.

Then starting from this terminal value function, perform another k iterations on

the Bellman equation. Continue in this fashion until the decision rule converges.

4.6. Sample Bellman equations

This section presents some examples. The first two examples involve no opti-

mization, just computing discounted expected utility. Appendix A of chapter 6

describes some related examples based on search theory.

4.6.1. Example 1: calculating expected utility

Suppose that the one-period utility function is the constant relative risk aversion

form u(c) = c1−γ/(1 − γ). Suppose that ct+1 = λt+1ct and that {λt} is an

n-state Markov process with transition matrix Pij = Prob(λt+1 = λ̄j |λt = λ̄i).

Suppose that we want to evaluate discounted expected utility

V (c0, λ0) = E0

∞∑

t=0

βtu (ct) , (4.6.1)

where β ∈ (0, 1). We can express this equation recursively:

V (ct, λt) = u (ct) + βEtV (ct+1, λt+1) (4.6.2)

We use a guess-and-verify technique to solve equation (4.6.2) for V (ct, λt).

Guess that V (ct, λt) = u(ct)w(λt) for some function w(λt). Substitute the

guess into equation (4.6.2), divide both sides by u(ct), and rearrange to get

w (λt) = 1 + βEt

(
ct+1

ct

)1−γ

w (λt+1)

or

wi = 1 + β
∑

j

Pij (λj)
1−γ wj . (4.6.3)
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Equation (4.6.3) is a system of linear equations in wi, i = 1, . . . , n whose solu-

tion can be expressed as

w =
[
1 − βP diag

(
λ1−γ

1 , . . . , λ1−γ
n

)]−1

1

where 1 is an n× 1 vector of ones.

4.6.2. Example 2: risk-sensitive preferences

Suppose we modify the preferences of the previous example to be of the recursive

form

V (ct, λt) = u (ct) + βRtV (ct+1, λt+1) , (4.6.4)

where Rt(V ) =
(

2
σ

)
logEt

[
exp

(
σVt+1

2

)]
is an operator used by Jacobson (1973),

Whittle (1990), and Hansen and Sargent (1995) to induce a preference for ro-

bustness to model misspecification.4 Here σ ≤ 0; when σ < 0, it represents a

concern for model misspecification, or an extra sensitivity to risk.

Let’s apply our guess-and-verify method again. If we make a guess of the

same form as before, we now find

w (λt) = 1 + β

(
2

σ

)
logEt

{
exp

[
σ

2

(
ct+1

ct

)1−γ

w (λt)

]}

or

wi = 1 + β
2

σ
log
∑

j

Pij exp
(σ

2
λ1−γ
j wj

)
. (4.6.5)

Equation (4.6.5) is a nonlinear system of equations in the n× 1 vector of w ’s.

It can be solved by an iterative method: guess at an n× 1 vector w0 , use it on

the right side of equation (4.6.5) to compute a new guess w1
i , i = 1, . . . , n , and

iterate.

4 Also see Epstein and Zin (1989) and Weil (1989) for a version of the Rt operator.
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4.6.3. Example 3: costs of business cycles

Robert E. Lucas, Jr., (1987) proposed that the cost of business cycles be mea-

sured in terms of a proportional upward shift in the consumption process that

would be required to make a representative consumer indifferent between its

random consumption allocation and a nonrandom consumption allocation with

the same mean. This measure of business cycles is the fraction Ω that satisfies

E0

∞∑

t=0

βtu [(1 + Ω) ct] =

∞∑

t=0

βtu [E0 (ct)] . (4.6.6)

Suppose that the utility function and the consumption process are as in example

1. Then for given Ω, the calculations in example 1 can be used to calculate the

left side of equation (4.6.6). In particular, the left side just equals u[(1 +

Ω)c0]w(λ), where w(λ) is calculated from equation (4.6.3). To calculate the

right side, we have to evaluate

E0ct = c0
∑

λt,...,λ1

λtλt−1 · · ·λ1π (λt|λt−1)π (λt−1|λt−2) · · ·π (λ1|λ0) , (4.6.7)

where the summation is over all possible paths of growth rates between 0 and

t . In the case of i.i.d. λt , this expression simplifies to

E0ct = c0 (Eλ)
t
, (4.6.8)

where Eλt is the unconditional mean of λ . Under equation (4.6.8), the right

side of equation (4.6.6) is easy to evaluate.

Given γ, π , a procedure for constructing the cost of cycles—more precisely,

the costs of deviations from mean trend—to the representative consumer is first

to compute the right side of equation (4.6.6). Then we solve the following

equation for Ω:

u [(1 + Ω) c0]w (λ0) =
∞∑

t=0

βtu [E0 (ct)] .

Using a closely related but somewhat different stochastic specification, Lu-

cas (1987) calculated Ω. He assumed that the endowment is a geometric trend

with growth rate µ plus an i.i.d. shock with mean zero and variance σ2
z . Starting

from a base µ = µ0 , he found µ, σz pairs to which the household is indifferent,
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assuming various values of γ that he judged to be within a reasonable range.5

Lucas found that for reasonable values of γ , it takes a very small adjustment

in the trend rate of growth µ to compensate for even a substantial increase in

the “cyclical noise” σz , which meant to him that the costs of business cycle

fluctuations are small.

Subsequent researchers have studied how other preference specifications

would affect the calculated costs. Tallarini (1996, 2000) used a version of the

preferences described in example 2 and found larger costs of business cycles

when parameters are calibrated to match data on asset prices. Hansen, Sargent,

and Tallarini (1999) and Alvarez and Jermann (1999) considered local measures

of the cost of business cycles and provided ways to link them to the equity

premium puzzle, to be studied in chapter 13.

4.7. Polynomial approximations

Judd (1998) describes a method for iterating on the Bellman equation using

a polynomial to approximate the value function and a numerical optimizer to

perform the optimization at each iteration. We describe this method in the

context of the Bellman equation for a particular problem that we shall encounter

later.

In chapter 19, we shall study Hopenhayn and Nicolini’s (1997) model of

optimal unemployment insurance. A planner wants to provide incentives to an

unemployed worker to search for a new job while also partially insuring the

worker against bad luck in the search process. The planner seeks to deliver

discounted expected utility V to an unemployed worker at minimum cost while

providing proper incentives to search for work. Hopenhayn and Nicolini show

that the minimum cost C(V ) satisfies the Bellman equation

C (V ) = min
V u

{c+ β [1 − p (a)]C (V u)} (4.7.1)

where c, a are given by

c = u−1 [max (0, V + a− β{p (a)V e + [1 − p (a)]V u})] . (4.7.2)

5 See chapter 13 for a discussion of reasonable values of γ . See Table 1 of Manuelli and

Sargent (1988) for a correction to Lucas’s calculations.
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and

a = max

{
0,

log [rβ (V e − V u)]

r

}
. (4.7.3)

Here V is a discounted present value that an insurer has promised to an unem-

ployed worker, Vu is a value for next period that the insurer promises the worker

if he remains unemployed, 1− p(a) is the probability of remaining unemployed

if the worker exerts search effort a , and c is the worker’s consumption level.

Hopenhayn and Nicolini assume that p(a) = 1 − exp(ra), r > 0.

4.7.1. Recommended computational strategy

To approximate the solution of the Bellman equation (4.7.1), we apply a compu-

tational procedure described by Judd (1996, 1998). The method uses a polyno-

mial to approximate the ith iterate Ci(V ) of C(V ). This polynomial is stored

on the computer in terms of n + 1 coefficients. Then at each iteration, the

Bellman equation is to be solved at a small number m ≥ n + 1 values of V .

This procedure gives values of the ith iterate of the value function Ci(V ) at

those particular V ’s. Then we interpolate (or “connect the dots”) to fill in the

continuous function Ci(V ). Substituting this approximation Ci(V ) for C(V )

in equation (4.7.1), we pass the minimum problem on the right side of equa-

tion (4.7.1) to a numerical minimizer. Programming languages like Matlab and

Gauss have easy-to-use algorithms for minimizing continuous functions of sev-

eral variables. We solve one such numerical problem minimization for each node

value for V . Doing so yields optimized value Ci+1(V ) at those node points. We

then interpolate to build up Ci+1(V ). We iterate on this scheme to convergence.

Before summarizing the algorithm, we provide a brief description of Chebyshev

polynomials.
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4.7.2. Chebyshev polynomials

Where n is a nonnegative integer and x ∈ IR , the nth Chebyshev polynomial,

is

Tn (x) = cos
(
n cos−1 x

)
. (4.7.4)

Given coefficients cj , j = 0, . . . , n , the nth-order Chebyshev polynomial approx-

imator is

Cn (x) = c0 +

n∑

j=1

cjTj (x) . (4.7.5)

We are given a real-valued function f of a single variable x ∈ [−1, 1].

For computational purposes, we want to form an approximator to f of the

form (4.7.5). Note that we can store this approximator simply as the n + 1

coefficients cj , j = 0, . . . , n . To form the approximator, we evaluate f(x) at

n+ 1 carefully chosen points, then use a least-squares formula to form the cj ’s

in equation (4.7.5). Thus, to interpolate a function of a single variable x with

domain x ∈ [−1, 1], Judd (1996, 1998) recommends evaluating the function at

the m ≥ n+ 1 points xk, k = 1, . . . ,m , where

xk = cos

(
2k − 1

2m
π

)
, k = 1, . . . ,m. (4.7.6)

Here xk is the zero of the k th Chebyshev polynomial on [−1, 1]. Given the

m ≥ n+ 1 values of f(xk) for k = 1, . . . ,m , choose the least-squares values of

cj

cj =

∑m
k=1 f (xk)Tj (xk)∑m

k=1 Tj (xk)
2 , j = 0, . . . , n (4.7.7)
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4.7.3. Algorithm: summary

In summary, applied to the Hopenhayn-Nicolini model, the numerical procedure

consists of the following steps:

1. Choose upper and lower bounds for V u , so that V and V u will be under-

stood to reside in the interval [V u, V
u
] . In particular, set V

u
= V e− 1

βp′(0) ,

the bound required to assure positive search effort, computed in chapter 19.

Set V u = Vrmaut .

2. Choose a degree n for the approximator, a Chebyshev polynomial, and a

number m ≥ n+ 1 of nodes or grid points.

3. Generate the m zeros of the Chebyshev polynomial on the set [1,−1], given

by (4.7.6).

4. By a change of scale, transform the zi ’s to corresponding points V u` in

[V u, V
u
] .

5. Choose initial values of the n+1 coefficients in the Chebyshev polynomial,

for example, cj = 0, . . . , n . Use these coefficients to define the function

Ci(V
u) for iteration number i = 0.

6. Compute the function C̃i(V ) ≡ c + β[1 − p(a)]Ci(V
u), where c, a are de-

termined as functions of (V, V u) from equations (4.7.2) and (4.7.3). This

computation builds in the functional forms and parameters of u(c) and

p(a), as well as β .

7. For each point V u` , use a numerical minimization program to find Ci+1(V
u
` ) =

minV u C̃i(Vu).

8. Using these m values of Cj+1(V
u
` ), compute new values of the coefficients

in the Chebyshev polynomials by using “least squares” [formula (4.7.7)].

Return to step 5 and iterate to convergence.
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4.7.4. Shape-preserving splines

Judd (1998) points out that because they do not preserve concavity, using

Chebyshev polynomials to approximate value functions can cause problems. He

recommends the Schumaker quadratic shape-preserving spline. It ensures that

the objective in the maximization step of iterating on a Bellman equation will

be concave and differentiable (Judd, 1998, p. 441). Using Schumaker splines

avoids the type of internodal oscillations associated with other polynomial ap-

proximation methods. The exact interpolation procedure is described in Judd

(1998, p. 233). A relatively small number of nodes usually is sufficient. Judd

and Solnick (1994) find that this approach outperforms linear interpolation and

discrete-state approximation methods in a deterministic optimal growth prob-

lem.6

4.8. Concluding remarks

This chapter has described two of three standard methods for approximating so-

lutions of dynamic programs numerically: discretizing the state space and using

polynomials to approximate the value function. The next chapter describes the

third method: making the problem have a quadratic return function and linear

transition law. A benefit of making the restrictive linear-quadratic assumptions

is that they make solving a dynamic program easy by exploiting the ease with

which stochastic linear difference equations can be manipulated.

6 The Matlab program schumaker.m (written by Leonardo Rezende of the University of

Illinois) can be used to compute the spline. Use the Matlab command ppval to evaluate the

spline.



Chapter 5
Linear Quadratic Dynamic Programming

5.1. Introduction

This chapter describes the class of dynamic programming problems in which

the return function is quadratic and the transition function is linear. This

specification leads to the widely used optimal linear regulator problem, for which

the Bellman equation can be solved quickly using linear algebra. We consider the

special case in which the return function and transition function are both time

invariant, though the mathematics is almost identical when they are permitted

to be deterministic functions of time.

Linear quadratic dynamic programming has two uses for us. A first is to

study optimum and equilibrium problems arising for linear rational expectations

models. Here the dynamic decision problems naturally take the form of an

optimal linear regulator. A second is to use a linear quadratic dynamic program

to approximate one that is not linear quadratic.

Later in the chapter, we also describe a filtering problem of great interest to

macroeconomists. Its mathematical structure is identical to that of the optimal

linear regulator, and its solution is the Kalman filter, a recursive way of solving

linear filtering and estimation problems. Suitably reinterpreted, formulas that

solve the optimal linear regulator also describe the Kalman filter.

– 109 –
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5.2. The optimal linear regulator problem

The undiscounted optimal linear regulator problem is to maximize over choice

of {ut}∞t=0 the criterion

−
∞∑

t=0

{x′tRxt + u′tQut}, (5.2.1)

subject to xt+1 = Axt + But , x0 given. Here xt is an (n × 1) vector of state

variables, ut is a (k×1) vector of controls, R is a positive semidefinite symmetric

matrix, Q is a positive definite symmetric matrix, A is an (n × n) matrix,

and B is an (n × k) matrix. We guess that the value function is quadratic,

V (x) = −x′Px , where P is a positive semidefinite symmetric matrix.

Using the transition law to eliminate next period’s state, the Bellman equa-

tion becomes

−x′Px = max
u

{−x′Rx− u′Qu− (Ax+Bu)
′
P (Ax+Bu)}. (5.2.2)

The first-order necessary condition for the maximum problem on the right side

of equation (5.2.2) is1

(Q+B′PB) u = −B′PAx, (5.2.3)

which implies the feedback rule for u :

u = − (Q+B′PB)
−1
B′PAx (5.2.4)

or u = −Fx, where

F = (Q+B′PB)
−1
B′PA. (5.2.5)

Substituting the optimizer (5.2.4) into the right side of equation (5.2.2) and

rearranging gives

P = R+A′PA−A′PB (Q+B′PB)
−1
B′PA. (5.2.6)

Equation (5.2.6) is called the algebraic matrix Riccati equation. It expresses

the matrix P as an implicit function of the matrices R,Q,A,B . Solving this

equation for P requires a computer whenever P is larger than a 2× 2 matrix.

1 We use the following rules for differentiating quadratic and bilinear matrix forms: ∂x′Ax
∂x =

(A+ A′)x; ∂y
′Bz
∂y = Bz, ∂y

′Bz
∂z = B′y .
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In exercise 5.1 , you are asked to derive the Riccati equation for the case

where the return function is modified to

− (x′tRxt + u′tQut + 2u′tWxt) .

5.2.1. Value function iteration

Under particular conditions to be discussed in the section on stability, equation

(5.2.6) has a unique positive semidefinite solution, which is approached in the

limit as j → ∞ by iterations on the matrix Riccati difference equation:2

Pj+1 = R+A′PjA−A′PjB (Q+B′PjB)
−1
B′PjA, (5.2.7a)

starting from P0 = 0. The policy function associated with Pj is

Fj+1 = (Q+B′PjB)
−1
B′PjA. (5.2.7b)

Equation (5.2.7) is derived much like equation (5.2.6) except that one starts

from the iterative version of the Bellman equation rather than from the asymp-

totic version.

5.2.2. Discounted linear regulator problem

The discounted optimal linear regulator problem is to maximize

−
∞∑

t=0

βt{x′tRxt + u′tQut}, 0 < β < 1, (5.2.8)

subject to xt+1 = Axt + But, x0 given. This problem leads to the following

matrix Riccati difference equation modified for discounting:

Pj+1 = R+ βA′PjA− β2A′PjB (Q+ βB′PjB)
−1
B′PjA. (5.2.9)

The algebraic matrix Riccati equation is modified correspondingly. The value

function for the infinite horizon problem is simply V (x0) = −x′0Px0 , where P

2 If the eigenvalues of A are bounded in modulus below unity, this result obtains, but

much weaker conditions suffice. See Bertsekas (1976, chap. 4) and Sargent (1980).
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is the limiting value of Pj resulting from iterations on equation (5.2.9) start-

ing from P0 = 0. The optimal policy is ut = −Fxt , where F = β(Q +

βB′PB)−1B′PA .

The Matlab program olrp.m solves the discounted optimal linear regula-

tor problem. Matlab has a variety of other programs that solve both discrete-

and continuous-time versions of undiscounted optimal linear regulator problems.

The program policyi.m solves the undiscounted optimal linear regulator prob-

lem using policy iteration, which we study next.

5.2.3. Policy improvement algorithm

The policy improvement algorithm can be applied to solve the discounted opti-

mal linear regulator problem. Starting from an initial F0 for which the eigen-

values of A − BF0 are less than 1/
√
β in modulus, the algorithm iterates on

the two equations

Pj = R+ F ′
jQFj + β (A−BFj)

′ Pj (A−BFj) (5.2.10)

Fj+1 = β (Q+ βB′PjB)
−1
B′PjA. (5.2.11)

The first equation is an example of a discrete Lyapunov or Sylvester equation,

which is to be solved for the matrix Pj that determines the value −x′tPjxt that

is associated with following policy Fj forever. The solution of this equation can

be represented in the form

Pj =

∞∑

k=0

βk (A−BFj)
′k (

R+ F ′
jQFj

)
(A−BFj)

k
.

If the eigenvalues of the matrix A − BFj are bounded in modulus by 1/
√
β ,

then a solution of this equation exists. There are several methods available

for solving this equation.3 The Matlab program policyi.m solves the undis-

counted optimal linear regulator problem using policy iteration. This algorithm

is typically much faster than the algorithm that iterates on the matrix Riccati

equation. Later we shall present a third method for solving for P that rests on

the link between P and shadow prices for the state vector.

3 The Matlab programs dlyap.m and doublej.m solve discrete Lyapunov equations. See

Anderson, Hansen, McGrattan, and Sargent (1996).
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5.3. The stochastic optimal linear regulator problem

The stochastic discounted linear optimal regulator problem is to choose a deci-

sion rule for ut to maximize

−E0

∞∑

t=0

βt{x′tRxt + u′tQut}, 0 < β < 1, (5.3.1)

subject to x0 given, and the law of motion

xt+1 = Axt +But + Cεt+1, t ≥ 0, (5.3.2)

where εt+1 is an (n× 1) vector of random variables that is independently and

identically distributed according to the normal distribution with mean vector

zero and covariance matrix

Eεtε
′
t = I. (5.3.3)

(See Kwakernaak and Sivan, 1972, for an extensive study of the continuous-time

version of this problem; also see Chow, 1981.) The matrices R,Q,A , and B

obey the assumption that we have described.

The value function for this problem is

v (x) = −x′Px− d, (5.3.4)

where P is the unique positive semidefinite solution of the discounted algebraic

matrix Riccati equation corresponding to equation (5.2.9). As before, it is the

limit of iterations on equation (5.2.9) starting from P0 = 0. The scalar d is

given by

d = β (1 − β)−1 tr PCC′ (5.3.5)

where “tr” denotes the trace of a matrix. Furthermore, the optimal policy

continues to be given by ut = −Fxt , where

F = β (Q+ βB′P ′B)
−1
B′PA. (5.3.6)

A notable feature of this solution is that the feedback rule (5.3.6) is identi-

cal with the rule for the corresponding nonstochastic linear optimal regulator

problem. This outcome is the certainty equivalence principle.

Certainty Equivalence Principle: The decision rule that solves

the stochastic optimal linear regulator problem is identical with the decision

rule for the corresponding nonstochastic linear optimal regulator problem.
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Proof: Substitute guess (5.3.4) into the Bellman equation to obtain

v (x) = max
u

{
−x′Rx− u′Qu− βE

[
(Ax+Bu+ Cε)

′
P (Ax+Bu+ Cε)

]
− βd

}
,

where ε is the realization of εt+1 when xt = x and where Eε|x = 0. The

preceding equation implies

v (x) =max
u

{−x′Rx− u′Qu− βE {x′A′PAx+ x′A′PBu

+ x′A′PCε+ u′B′PAx+ u′B′PBu+ u′B′PCε

+ ε′C′PAx+ ε′C′PBu+ ε′C′PCε} − βd} .

Evaluating the expectations inside the braces and using Eε|x = 0 gives

v (x) = max
u

−{x′Rx+ u′Qu+ βx′A′PAx+ β2x′A′PBu

+ βu′B′PBu+ βEε′Pε} − βd.

The first-order condition for u is

(Q+ βB′PB) u = −βB′PAx,

which implies equation (5.3.6). Using Eε′C′PCε = trPCC′ , substituting equa-

tion (5.3.6) into the preceding expression for v(x), and using equation (5.3.4)

gives

P = R+ βA′PA− β2A′PB (Q+ βB′PB)
−1
B′PA,

and

d = β (1 − β)
−1

trPCC′.
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5.3.1. Discussion of certainty equivalence

The remarkable thing about this solution is that, although through d the objec-

tive function (5.3.3) depends on CC′ , the optimal decision rule ut = −Fxt is

independent of CC′ . This is the message of equation (5.3.6) and the discounted

algebraic Riccati equation for P , which are identical with the formulas derived

earlier under certainty. In other words, the optimal decision rule ut = h(xt) is

independent of the problem’s noise statistics.4 The certainty equivalence prin-

ciple is a special property of the optimal linear regulator problem and comes

from the quadratic objective function, the linear transition equation, and the

property E(εt+1|xt) = 0. Certainty equivalence does not characterize stochastic

control problems generally.

For the remainder of this chapter, we return to the nonstochastic optimal

linear regulator, remembering the stochastic counterpart.

5.4. Shadow prices in the linear regulator

For several purposes,5 it is helpful to interpret the gradient −2Pxt of the value

function −x′tPxt as a shadow price or Lagrange multiplier. Thus, associate

with the Bellman equation the Lagrangian

−x′tPxt = V (xt) = min
{µt+1}

max
ut

−
{
x′tRxt + u′tQut + x′t+1Pxt+1

+ 2µ′
t+1 [Axt +But − xt+1]

}
,

where 2µt+1 is a vector of Lagrange multipliers. The first-order necessary con-

ditions for an optimum with respect to ut and xt are

2Qut + 2B′µt+1 = 0

2Pxt+1 − 2µt+1 = 0.
(5.4.1)

4 Therefore, in linear quadratic versions of the optimum savings problem, there are no

precautionary savings. See chapters 16 and 17.
5 The gradient of the value function has information from which prices can be coaxed

where the value function is for a planner in a linear quadratic economy. See Hansen and

Sargent (2000).
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Using the transition law and rearranging gives the usual formula for the optimal

decision rule, namely, ut = −(Q + B′PB)−1B′PAxt . Notice that by (5.4.1),

the shadow price vector satisfies µt+1 = Pxt+1 .

Later in this chapter, we shall describe a computational strategy that solves

for P by directly finding the optimal multiplier process {µt} and representing it

as µt = Pxt . This strategy exploits the stability properties of optimal solutions

of the linear regulator problem, which we now briefly take up.

5.4.1. Stability

Upon substituting the optimal control ut = −Fxt into the law of motion xt+1 =

Axt + But , we obtain the optimal “closed-loop system” xt+1 = (A − BF )xt .

This difference equation governs the evolution of xt under the optimal control.

The system is said to be stable if limt→∞ xt = 0 starting from any initial

x0 ∈ Rn . Assume that the eigenvalues of (A − BF ) are distinct, and use

the eigenvalue decomposition (A − BF ) = DΛD−1 where the columns of D

are the eigenvectors of (A − BF ) and Λ is a diagonal matrix of eigenvalues of

(A−BF ). Write the “closed-loop” equation as xt+1 = DΛD−1xt . The solution

of this difference equation for t > 0 is readily verified by repeated substitution

to be xt = DΛtD−1x0 . Evidently, the system is stable for all x0 ∈ Rn if and

only if the eigenvalues of (A − BF ) are all strictly less than unity in absolute

value. When this condition is met, (A−BF ) is said to be a “stable matrix.”6

A vast literature is devoted to characterizing the conditions on A,B,R , and

Q under which the optimal closed-loop system matrix (A−BF ) is stable. These

results are surveyed by Anderson, Hansen, McGrattan, and Sargent (1996) and

can be briefly described here for the undiscounted case β = 1. Roughly speak-

ing, the conditions on A,B,R , and Q that are required for stability are as

follows: First, A and B must be such that it is possible to pick a control law

ut = −Fxt that drives xt to zero eventually, starting from any x0 ∈ Rn [“the

pair (A,B) must be stabilizable”]. Second, the matrix R must be such that the

controller wants to drive xt to zero as t → ∞ .

6 It is possible to amend the statements about stability in this section to permit A−BF

to have a single unit eigenvalue associated with a constant in the state vector. See chapter 2

for examples.



Shadow prices in the linear regulator 117

It would take us far afield to go deeply into this body of theory, but we can

give a flavor for the results by considering some very special cases. The following

assumptions and propositions are too strict for most economic applications,

but similar results can obtain under weaker conditions relevant for economic

problems.7

Assumption A.1: The matrix R is positive definite.

There immediately follows:

Proposition 1: Under assumption A.1, if a solution to the undiscounted

regulator exists, it satisfies limt→∞ xt = 0.

Proof: If xt 6→ 0, then
∑∞

t=0 x
′
tRxt → −∞ .

Assumption A.2: The matrix R is positive semidefinite.

Under assumption A.2, R is similar to a triangular matrix R∗ :

R = T ′

(
R∗

11 0

0 0

)
T

where R∗
11 is positive definite and T is nonsingular. Notice that x′tRxt =

x∗1tR
∗
11x

∗
1t where x∗t = Txt =

(
T1

T2

)
xt =

(
x∗1t
x∗2t

)
. Let x∗1t ≡ T1xt . These

calculations support the proposition:

Proposition 2: Suppose that a solution to the optimal linear regulator

exists under assumption A.2. Then limt→∞ x∗1t = 0.

The following definition is used in control theory:

Definition: The pair (A,B) is said to be stabilizable if there exists a matrix

F for which (A−BF ) is a stable matrix.

7 See Kwakernaak and Sivan (1972) and Anderson, Hansen, McGrattan, and Sargent

(1996).
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The following indicates the flavor of a variety of stability theorems from

control theory:8 , 9

Theorem: If (A,B) is stabilizable and R is positive definite, then under the

optimal rule F , (A−BF ) is a stable matrix.

In the next section, we assume that A,B,Q,R satisfy conditions sufficient

to invoke such a stability proposition, and we use that assumption to justify

a solution method that solves the undiscounted linear regulator by searching

among the many solutions of the Euler equations for a stable solution.

5.5. A Lagrangian formulation

This section describes a Lagrangian formulation of the optimal linear regula-

tor.10 Besides being useful computationally, this formulation carries insights

about the connections between stability and optimality and also opens the way

to constructing solutions of dynamic systems not coming directly from an in-

tertemporal optimization problem.11

For the undiscounted optimal linear regulator problem, form the Lagrangian

L = −
∞∑

t=0

{
x′tRxt + u′tQut

+ 2µ′
t+1 [Axt +But − xt+1]

}
.

8 These conditions are discussed under the subjects of controllability, stabilizability, recon-

structability, and detectability in the literature on linear optimal control. (For continuous-time

linear system, these concepts are described by Kwakernaak and Sivan, 1972; for discrete-time

systems, see Sargent, 1980.) These conditions subsume and generalize the transversality con-

ditions used in the discrete-time calculus of variations (see Sargent, 1987a). That is, the

case when (A − BF ) is stable corresponds to the situation in which it is optimal to solve

“stable roots backward and unstable roots forward.” See Sargent (1987a, chap. 9). Hansen

and Sargent (1981) describe the relationship between Euler equation methods and dynamic

programming for a class of linear optimal control systems. Also see Chow (1981).
9 The conditions under which (A− BF ) is stable are also the conditions under which xt

converges to a unique stationary distribution in the stochastic version of the linear regulator

problem.
10 Such formulations are recommended by Chow (1997) and Anderson, Hansen, McGrattan,

and Sargent (1996).
11 Blanchard and Kahn (1980); Whiteman (1983); Hansen, Epple, and Roberds (1985); and

Anderson, Hansen, McGrattan and Sargent (1996) use and extend such methods.
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First-order conditions for maximization with respect to {ut, xt+1} are

2Qut + 2B′µt+1 = 0

µt = Rxt +A′µt+1 , t ≥ 0.
(5.5.1)

The Lagrange multiplier vector µt+1 is often called the costate vector. Solve

the first equation for ut in terms of µt+1 ; substitute into the law of motion

xt+1 = Axt + But ; arrange the resulting equation and the second equation of

(5.5.1) into the form

L

(
xt+1

µt+1

)
= N

(
xt

µt

)
, t ≥ 0,

where

L =

(
I BQ−1B′

0 A′

)
, N =

(
A 0

−R I

)
.

When L is of full rank (i.e., when A is of full rank), we can write this system

as (
xt+1

µt+1

)
= M

(
xt

µt

)
(5.5.2)

where

M ≡ L−1N =

(
A+BQ−1B′A′−1R −BQ−1B′A′−1

−A−1R A′−1

)
(5.5.3)

To exhibit the properties of the (2n× 2n) matrix M , we introduce a (2n× 2n)

matrix

J =

(
0 −In
In 0

)
.

The rank of J is 2n .

Definition: A matrix M is called symplectic if

MJM ′ = J. (5.5.4)

It can be verified directly that M in equation (5.5.3) is symplectic. It follows

from equation (5.5.4) and J−1 = J ′ = −J that for any symplectic matrix M ,

M ′ = J−1M−1J. (5.5.5)
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Equation (5.5.5) states that M ′ is related to the inverse of M by a similar-

ity transformation. For square matrices, recall that (a) similar matrices share

eigenvalues; (b) the eigenvalues of the inverse of a matrix are the inverses of

the eigenvalues of the matrix; and (c) a matrix and its transpose have the same

eigenvalues. It then follows from equation (5.5.5) that the eigenvalues of M

occur in reciprocal pairs: if λ is an eigenvalue of M , so is λ−1 .

Write equation (5.5.2) as

yt+1 = Myt (5.5.6)

where yt =

(
xt

µt

)
. Consider the following triangularization of M

V −1MV =

(
W11 W12

0 W22

)

where each block on the right side is (n × n), where V is nonsingular, and

where W22 has all its eigenvalues exceeding 1 and W11 has all of its eigenvalues

less than 1. The Schur decomposition and the eigenvalue decomposition are two

possible such decompositions.12 Write equation (5.5.6) as

yt+1 = VWV −1yt. (5.5.7)

The solution of equation (5.5.7) for arbitrary initial condition y0 is evidently

yt+1 = V

[
W t

11 W12,t

0 W t
22

]
V −1y0 (5.5.8)

where W12,t for t ≥ 1 obeys the recursion

W12,t = W t−1
11 W12,t−1 +W12W

t−1
22

subject to the initial condition W12,0 = 0 and where W t
ii is Wii raised to the

tth power.

Write equation (5.5.8) as

(
y∗1t+1

y∗2t+1

)
=

[
W t

11 W t
12,t

0 W t
22

] (
y∗10
y∗20

)

12 Evan Anderson’s Matlab program schurg.m attains a convenient Schur decomposition

and is very useful for solving linear models with distortions. See McGrattan (1994) for some

examples of distorted economies that could be solved with the Schur decomposition.
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where y∗t = V −1yt , and in particular where

y∗2t = V 21xt + V 22µt, (5.5.9)

and where V ij denotes the (i, j) piece of the partitioned V −1 matrix.

Because W22 is an unstable matrix, unless y∗20 = 0, y∗t will diverge. Let

V ij denote the (i, j) piece of the partitioned V −1 matrix. To attain stability,

we must impose y∗20 = 0, which from equation (5.5.9) implies

V 21x0 + V 22µ0 = 0

or

µ0 = −
(
V 22

)−1
V 21x0.

This equation replicates itself over time in the sense that it implies

µt = −
(
V 22

)−1
V 21xt. (5.5.10)

But notice that because (V 21 V 22) is the second row block of the inverse of V ,

(
V 21 V 22

) (
V11

V21

)
= 0

which implies

V 21V11 + V 22V21 = 0.

Therefore,

−
(
V 22

)−1
V 21 = V21V

−1
11 .

So we can write

µ0 = V21V
−1
11 x0 (5.5.11)

and

µt = V21V
−1
11 xt.

However, we know from equations (5.4.1) that µt = Pxt , where P occurs in the

matrix that solves the Riccati equation (5.2.6). Thus, the preceding argument

establishes that

P = V21V
−1
11 . (5.5.12)

This formula provides us with an alternative, and typically very efficient, way

of computing the matrix P .
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This same method can be applied to compute the solution of any system of

the form (5.5.2) if a solution exists, even if the eigenvalues of M fail to occur

in reciprocal pairs. The method will typically work so long as the eigenvalues

of M split half inside and half outside the unit circle.13 Systems in which

the eigenvalues (adjusted for discounting) fail to occur in reciprocal pairs arise

when the system being solved is an equilibrium of a model in which there are

distortions that prevent there being any optimum problem that the equilibrium

solves. See Woodford (1999) for an application of such methods to solve for

linear approximations of equilibria of a monetary model with distortions.

5.6. The Kalman filter

Suitably reinterpreted, the same recursion (5.2.7) that solves the optimal linear

regulator also determines the celebrated Kalman filter. The Kalman filter is a

recursive algorithm for computing the mathematical expectation E[xt|yt, . . . , y0]
of a hidden state vector xt , conditional on observing a history yt, . . . , y0 of a

vector of noisy signals on the hidden state. The Kalman filter can be used to

formulate or simplify a variety of signal-extraction and prediction problems in

economics. After giving the formulas for the Kalman filter, we shall describe

two examples.14

The setting for the Kalman filter is the following linear state-space system.

Given x0 , let

xt+1 = Axt + Cwt+1 (5.6.1a)

yt = Gxt + vt (5.6.1b)

where xt is an (n × 1) state vector, wt is an i.i.d. sequence Gaussian vector

with Ewtw
′
t = I , and vt is an i.i.d. Gaussian vector orthogonal to ws for all

t, s with Evtv
′
t = R ; and A,C , and G are matrices conformable to the vectors

they multiply. Assume that the initial condition x0 is unobserved but is known

13 See Whiteman (1983); Blanchard and Kahn (1980); and Anderson, Hansen, McGrattan,

and Sargent (1996) for applications and developments of these methods.
14 See Hamilton (1994) and Kim and Nelson (1999) for diverse applications of the Kalman

filter. Appendix B on dual filtering and control (see Technical Appendixes) briefly describes

a discrete-state nonlinear filtering problem.
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to have a Gaussian distribution with mean x̂0 and covariance matrix Σ0 . At

time t , the history of observations yt ≡ [yt, . . . , y0] is available to estimate

the location of xt and the location of xt+1 . The Kalman filter is a recursive

algorithm for computing x̂t+1 = E[xt+1|yt] . The algorithm is

x̂t+1 = (A−KtG) x̂t +Ktyt (5.6.2)

where

Kt = AΣtG
′ (GΣtG

′ +R)
−1

(5.6.3a)

Σt+1 = AΣtA
′ + CC′ −AΣtG

′ (GΣtG
′ +R)

−1
GΣtA. (5.6.3b)

Here Σt = E(xt − x̂t)(xt − x̂t)
′ , and Kt is called the Kalman gain/ Sometimes

the Kalman filter is written in terms of the “observer system”

x̂t+1 = Ax̂t +Ktat (5.6.4a)

yt = Gx̂t + at (5.6.4b)

where at ≡ yt − Gx̂t ≡ yt − E[yt|yt−1] . The random vector at is called the

innovation in yt , being the part of yt that cannot be forecast linearly from its

own past. Subtracting equation (5.6.4b) from (5.6.1b) gives at = G(xt−x̂t)+vt ;
multiplying each side by its own transpose and taking expectations gives the

following formula for the innovation covariance matrix:

Eata
′
t = GΣtG

′ +R. (5.6.5)

Equations (5.6.3) display extensive similarities to equations (5.2.7), the

recursions for the optimal linear regulator. Note that equation (5.6.3b) is a

Riccati equation. Indeed, with the judicious use of matrix transposition and

reversal of time, the two systems of equations (5.6.3) and (5.2.7) can be made to

match. In Appendix B on dual filtering and control (see Technical Appendixes),

we compare versions of these equations and describe the concept of duality that

links them. Appendix B also contains a formal derivation of the Kalman filter.

We now put the Kalman filter to work.15

15 The Matlab program kfilter.m computes the Kalman filter. Matlab has several pro-

grams that compute the Kalman filter for discrete- and continuous-time models.
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5.6.1. Muth’s example

Phillip Cagan (1956) and Milton Friedman (1956) posited that when people

wanted to form expectations of future values of a scalar yt , they would use the

following “adaptive expectations” scheme:

y∗t+1 = K

∞∑

j=0

(1 −K)
j
yt−j (5.6.6a)

or

y∗t+1 = (1 −K) y∗t +Kyt, (5.6.6b)

where y∗t+1 is people’s expectation. Friedman used this scheme to describe

people’s forecasts of future income. Cagan used it to model their forecasts of

inflation during hyperinflations. Cagan and Friedman did not assert that the

scheme is an optimal one, and so did not fully defend it. Muth (1960) wanted

to understand the circumstances under which this forecasting scheme would be

optimal. Therefore, he sought a stochastic process for yt such that equation

(5.6.6) would be optimal. In effect, he posed and solved an “inverse optimal

prediction” problem of the form “You give me the forecasting scheme; I have

to find the stochastic process that makes the scheme optimal.” Muth solved

the problem using classical (nonrecursive) methods. The Kalman filter was first

described in print in the same year as Muth’s solution of this problem (Kalman,

1960). The Kalman filter lets us present the solution to Muth’s problem quickly.

Muth studied the model

xt+1 = xt + wt+1 (5.6.7a)

yt = xt + vt, (5.6.7b)

where yt, xt are scalar random processes, and wt+1, vt are mutually indepen-

dent i.i.d. Gaussian random process with means of zero and variances Ew2
t+1 =

Q,Ev2
t = R , and Evswt+1 = 0 for all t, s . The initial condition is that

x0 is Gaussian with mean x̂0 and variance Σ0 . Muth sought formulas for

x̂t+1 = E[xt+1|yt] , where yt = [yt, . . . , y0] .

For this problem, A = 1, CC′ = Q,G = 1, causing the Kalman filtering

equations to become

Kt =
Σt

Σt +R
(5.6.8a)

Σt+1 = Σt +Q− Σ2
t

Σt +R
. (5.6.8b)
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Figure 5.6.1: Graph of f(Σ) = Σ(R+Q)+QR
Σ+R , Q = R = 1,

against the 45-degree line. Iterations on the Riccati equation

for Σt converge to the fixed point.

The second equation can be rewritten

Σt+1 =
Σt (R+Q) +QR

Σt +R
. (5.6.9)

For Q = R = 1, Figure 5.6.1 plots the function f(Σ) = Σ(R+Q)+QR
Σ+R appearing

on the right side of equation (5.6.9) for values Σ ≥ 0 against the 45-degree line.

Note that f(0) = Q . This graph identifies the fixed point of iterations on f(Σ)

as the intersection of f(·) and the 45-degree line. That the slope of f(·) is less

than unity at the intersection assures us that the iterations on f will converge

as t→ +∞ starting from any Σ0 ≥ 0.

Muth studied the solution of this problem as t → ∞ . Evidently, Σt →
Σ∞ ≡ Σ is the fixed point of a graph like Figure 5.6.1. Then Kt → K and the

formula for x̂t+1 becomes

x̂t+1 = (1 −K) x̂t +Kyt (5.6.10)

where K = Σ
Σ+R ∈ (0, 1). This is a version of Cagan’s adaptive expectations

formula. Iterating backward on equation (5.6.10) gives x̂t+1 = K
∑t

j=0(1 −
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K)jyt−j+K(1−K)t+1x̂0, which is a version of Cagan and Friedman’s geometric

distributed lag formula. Using equations (5.6.7), we find that E[yt+j |yt] =

E[xt+j |yt] = x̂t+1 for all j ≥ 1. This result in conjunction with equation

(5.6.10) establishes that the adaptive expectation formula (5.6.10) gives the

optimal forecast of yt+j for all horizons j ≥ 1. This finding itself is remarkable

and special because for most processes, the optimal forecast will depend on

the horizon. That there is a single optimal forecast for all horizons in one

sense justifies the term permanent income that Milton Friedman (1955) chose

to describe the forecast.

The dependence of the forecast on horizon can be studied using the formulas

E
[
xt+j |yt−1

]
= Aj x̂t (5.6.11a)

E
[
yt+j |yt−1

]
= GAj x̂t (5.6.11b)

In the case of Muth’s example,

E
[
yt+j |yt−1

]
= ŷt = x̂t ∀j ≥ 0.

5.6.2. Jovanovic’s example

In chapter 6, we will describe a version of Jovanovic’s (1979) matching model,

at the core of which is a “signal-extraction” problem that simplifies Muth’s

problem. Let xt, yt be scalars with A = 1, C = 0, G = 1, R > 0. Let x0

be Gaussian with mean µ and variance Σ0 . Interpret xt (which is evidently

constant with this specification) as the hidden value of θ , a “match parameter.”

Let yt denote the history of ys from s = 0 to s = t . Define mt ≡ x̂t+1 ≡ E[θ|yt]
and Σt+1 = E(θ−mt)

2 . Then in this particular case the Kalman filter becomes

mt = (1 −Kt)mt−1 +Ktyt (5.6.12a)

Kt =
Σt

Σt +R
(5.6.12b)

Σt+1 =
ΣtR

Σt +R
. (5.6.12c)

The recursions are to be initiated from (m−1,Σ0), a pair that embodies all

“prior” knowledge about the position of the system. It is easy to see from
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Figure 5.6.1 that when Q = 0, Σ = 0 is the limit point of iterations on equation

(5.6.12c) starting from any Σ0 ≥ 0. Thus, the value of the match parameter is

eventually learned.

It is instructive to write equation (5.6.12c) as

1

Σt+1
=

1

Σt
+

1

R
. (5.6.13)

The reciprocal of the variance is often called the precision of the estimate.

According to equation (5.6.13) the precision increases without bound as t grows,

and Σt+1 → 0.16

We can represent the Kalman filter in the form (5.6.4) as

mt+1 = mt +Kt+1at+1

which implies that

E (mt+1 −mt)
2 = K2

t+1σ
2
a,t+1

where at+1 = yt+1 −mt and the variance of at is equal to σ2
a,t+1 = (Σt+1 +R)

from equation (5.6.5). This implies

E (mt+1 −mt)
2 =

Σ2
t+1

Σt+1 +R
.

For the purposes of our discrete-time counterpart of the Jovanovic model in

chapter 6, it will be convenient to represent the motion of mt+1 by means of

the equation

mt+1 = mt + gt+1ut+1

where gt+1 ≡
(

Σ2
t+1

Σt+1+R

).5
and ut+1 is a standardized i.i.d. normalized and

standardized with mean zero and variance 1 constructed to obey gt+1ut+1 ≡
Kt+1at+1 .

16 As a further special case, consider when there is zero precision initially (Σ0 = +∞ ).

Then solving the difference equation (5.6.13) gives 1
Σt

= t/R . Substituting this into equations

(5.6.12) gives Kt = (t + 1)−1 , so that the Kalman filter becomes m0 = y0 and mt =

[1 − (t+ 1)−1]mt−1 + (t+ 1)−1yt , which implies that mt = (t+ 1)−1
∑t
s=0 yt , the sample

mean, and Σt = R/t .
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5.7. Concluding remarks

In exchange for their restrictions, the linear quadratic dynamic optimization

models of this chapter acquire tractability. The Bellman equation leads to Ric-

cati difference equations that are so easy to solve numerically that the curse of

dimensionality loses most of its force. It is easy to solve linear quadratic control

or filtering with many state variables. That it is difficult to solve those prob-

lems otherwise is why linear quadratic approximations are used so widely. We

describe those approximations in Appendix B to this chapter.

In chapter 7, we go beyond the single-agent optimization problems of this

chapter and the previous one to study systems with multiple agents simultane-

ously solving such problems. We introduce two equilibrium concepts for restrict-

ing how different agents’ decisions are reconciled. To facilitate the analysis, we

describe and illustrate those equilibrium concepts in contexts where each agent

solves an optimal linear regulator problem.

A. Matrix formulas

Let (z, x, a) each be n× 1 vectors, A,C,D , and V each be (n× n) matrices,

B an (n×m) matrix, and y an (m× 1) vector. Then ∂a′x
∂x = a, ∂x

′Ax
∂x = (A+

A′)x, ∂
2(x′Ax)
∂x∂x′ = (A+A′), ∂x

′Ax
∂A = xx′, ∂y

′Bz
∂y = Bz, ∂y

′Bz
∂z = B′y, ∂y

′Bz
∂B = yz′.

The equation

A′V A+ C = V

to be solved for V is called a discrete Lyapunov equation, and its generalization

A′V D + C = V

is called the discrete Sylvester equation. The discrete Sylvester equation has a

unique solution if and only if the eigenvalues {λi} of A and {δj} of D satisfy

the condition λiδj 6= 1 ∀ i, j.
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B. Linear quadratic approximations

This appendix describes an important use of the optimal linear regulator: to

approximate the solution of more complicated dynamic programs.17 Optimal

linear regulator problems are often used to approximate problems of the follow-

ing form: maximize over {ut}∞t=0

E0

∞∑

t=0

βtr (zt) (5.B.1)

xt+1 = Axt +But + Cwt+1 (5.B.2)

where {wt+1} is a vector of i.i.d. random disturbances with mean zero and finite

variance, and r(zt) is a concave and twice continuously differentiable function

of zt ≡
(
xt

ut

)
. All nonlinearities in the original problem are absorbed into the

composite function r(zt).

5.B.1. An example: the stochastic growth model

Take a parametric version of Brock and Mirman’s stochastic growth model,

whose social planner chooses a policy for {ct, at+1}∞t=0 to maximize

E0

∞∑

t=0

βt ln ct

where
ct + it = Aaαt θt

at+1 = (1 − δ) at + it

ln θt+1 = ρ ln θt + wt+1

where {wt+1} is an i.i.d. stochastic process with mean zero and finite variance,

θt is a technology shock, and θ̃t ≡ ln θt . To get this problem into the form

17 Kydland and Prescott (1982) used such a method, and so do many of their followers in

the real business cycle literature. See King, Plosser, and Rebelo (1988) for related methods

of real business cycle models.
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(5.B.1)–(5.B.2), take xt =

(
at

θ̃t

)
, ut = it , and r(zt) = ln(Aaαt exp θ̃t − it),

and we write the laws of motion as




1

at+1

θ̃t+1



 =




1 0 0

0 (1 − δ) 0

0 0 ρ








1

at

θ̃t



 +




0

1

0



 it +




0

0

1



 wt+1

where it is convenient to add the constant 1 as the first component of the state

vector.

5.B.2. Kydland and Prescott’s method

We want to replace r(zt) by a quadratic z′tMzt . We choose a point z̄ and

approximate with the first two terms of a Taylor series:18

r̂ (z) = r (z̄) + (z − z̄)
′ ∂r

∂z

+
1

2
(z − z̄)

′ ∂2r

∂z∂z′
(z − z̄) .

(5.B.3)

If the state xt is n × 1 and the control ut is k × 1, then the vector zt is

(n + k) × 1. Let e be the (n + k) × 1 vector with 0’s everywhere except for

a 1 in the row corresponding to the location of the constant unity in the state

vector, so that 1 ≡ e′zt for all t .

Repeatedly using z′e = e′z = 1, we can express equation (5.B.3) as

r̂ (z) = z′Mz,

where

M =e

[
r (z̄) −

(
∂r

∂z

)′

z̄ +
1

2
z̄′

∂2r

∂z∂z′
z̄

]
e′

+
1

2

(
∂r

∂z
e′ − ez̄′

∂2r

∂z∂z′
− ∂2r

∂z∂z′
z̄e′ + e

∂r

∂z

′)

+
1

2

(
∂2r

∂z∂z′

)

18 This setup is taken from McGrattan (1994) and Anderson, Hansen, McGrattan, and

Sargent (1996).
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where the partial derivatives are evaluated at z̄ . Partition M , so that

z′Mz ≡
(
x

u

)′ (
M11 M12

M21 M22

) (
x

u

)

=

(
x

u

)′(
R W

W ′ Q

) (
x

u

)
.

5.B.3. Determination of z̄

Usually, the point z̄ is chosen as the (optimal) stationary state of the non-

stochastic version of the original nonlinear model:

∞∑

t=0

βtr (zt)

xt+1 = Axt +But.

This stationary point is obtained in these steps:

1. Find the Euler equations.

2. Substitute zt+1 = zt ≡ z̄ into the Euler equations and transition laws,

and solve the resulting system of nonlinear equations for z̄ . This pur-

pose can be accomplished, for example, by using the nonlinear equation

solver fsolve.m in Matlab.
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5.B.4. Log linear approximation

For some problems Christiano (1990) has advocated a quadratic approximation

in logarithms. We illustrate his idea with the stochastic growth example. Define

ãt = log at , θ̃t = log θt.

Christiano’s strategy is to take ãt, θ̃t as the components of the state and write

the law of motion as




1

ãt+1

θ̃t+1



 =




1 0 0

0 0 0

0 0 ρ








1

ãt

θ̃t





+




0

1

0


 ut +




0

0

1


wt+1

where the control ut is ãt+1 .

Express consumption as

ct = A (exp ãt)
α
(
exp θ̃t

)
+ (1 − δ) exp ãt − exp ãt+1.

Substitute this expression into ln ct ≡ r(zt), and proceed as before to obtain

the second-order Taylor series approximation about z̄ .

5.B.5. Trend removal

It is conventional in the real business cycle literature to specify the law of motion

for the technology shock θt by

θ̃t = log

(
θt
γt

)
, γ > 1

θ̃t+1 = ρθ̃t + wt+1, |ρ| < 1. (5.B.4)

This inspires us to write the law of motion for capital as

γ
at+1

γt+1
= (1 − δ)

at
γt

+
it
γt



Exercises 133

or

γ exp ãt+1 = (1 − δ) exp ãt + exp
(̃
it
)

(5.B.5)

where ãt ≡ log
(
at

γt

)
, ĩt = log

(
it
γt

)
. By studying the Euler equations for a model

with a growing technology shock (γ > 1), we can show that there exists a

steady state for ãt , but not for at . Researchers often construct linear quadratic

approximations around the nonstochastic steady state of ã .

Exercises

Exercise 5.1 Consider the modified version of the optimal linear regulator

problem where the objective is to maximize

−
∞∑

t=0

βt {x′tRxt + u′tQut + 2u′tHxt}

subject to the law of motion:

xt+1 = Axt +But.

Here xt is an n × 1 state vector, ut is a k × 1 vector of controls, and x0 is a

given initial condition. The matrices R,Q are positive definite and symmetric.

The maximization is with respect to sequences {ut, xt}∞t=0 .

a. Show that the optimal policy has the form

ut = − (Q+ βB′PB)
−1

(βB′PA+H)xt,

where P solves the algebraic matrix Riccati equation

P = R+ βA′PA− (βA′PB +H ′) (Q+ βB′PB)
−1

(βB′PA+H) . (5.6)

b. Write a Matlab program to solve equation (5.6) by iterating on P starting

from P being a matrix of zeros.

Exercise 5.2 Verify that equations (5.2.10) and (5.2.11) implement the policy

improvement algorithm for the discounted linear regulator problem.
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Exercise 5.3 A household seeks to maximize

−
∞∑

t=1

βt
{

(ct − b)
2
+ γi2t

}

subject to

ct + it = rat + yt (5.7a)

at+1 = at + it (5.7b)

yt+1 = ρ1yt + ρ2yt−1. (5.7c)

Here ct, it, at, yt are the household’s consumption, investment, asset holdings,

and exogenous labor income at t ; while b > 0, γ > 0, r > 0, β ∈ (0, 1), and

ρ1, ρ2 are parameters, and y0, y−1 are initial conditions. Assume that ρ1, ρ2

are such that (1 − ρ1z − ρ2z
2) = 0 implies |z| > 1.

a. Map this problem into an optimal linear regulator problem.

b. For parameter values [β, (1 + r), b, γ, ρ1, ρ2] = (.95, .95−1, 30, 1, 1.2,

−.3), compute the household’s optimal policy function using your Matlab pro-

gram from exercise 5.1 .

Exercise 5.4 Modify exercise 5.3 by assuming that the household seeks to

maximize

−
∞∑

t=1

βt
{
(st − b)

2
+ γi2t

}

Here st measures consumption services that are produced by durables or habits

according to

st = λht + πct (5.8a)

ht+1 = δht + θct (5.8b)

where ht is the stock of the durable good or habit, (λ, π, δ, θ) are parameters,

and h0 is an initial condition.

a. Map this problem into a linear regulator problem.

b. For the same parameter values as in exercise 5.3 and (λ, π, δ, θ) = (1, .05, .95, 1),

compute the optimal policy for the household.
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c. For the same parameter values as in exercise 5.3 and (λ, π, δ, θ) = (−1, 1, .95, 1),

compute the optimal policy.

d. Interpret the parameter settings in part b as capturing a model of durable

consumption goods, and the settings in part c as giving a model of habit per-

sistence.

Exercise 5.5 A household’s labor income follows the stochastic process

yt+1 = ρ1yt + ρ2yt−1 + wt+1 + γwt,

where wt+1 is a Gaussian martingale difference sequence with unit variance.

Calculate

E

∞∑

j=0

βj
[
yt+j|yt, wt

]
, (5.9)

where yt, wt denotes the history of y, w up to t .

a. Write a Matlab program to compute expression (5.9).

b. Use your program to evaluate expression (5.9) for the parameter values

(β, ρ1, ρ2, γ) = (.95, 1.2,−.4, .5).

Exercise 5.6 Dynamic Laffer curves

The demand for currency in a small country is described by

(1) Mt/pt = γ1 − γ2pt+1/pt,

where γ1 > γ2 > 0, Mt is the stock of currency held by the public at the

end of period t , and pt is the price level at time t . There is no randomness

in the country, so that there is perfect foresight. Equation (1) is a Cagan-like

demand function for currency, expressing real balances as an inverse function of

the expected gross rate of inflation.

Speaking of Cagan, the government is running a permanent real deficit of

g per period, measured in goods, all of which it finances by currency creation.

The government’s budget constraint at t is

(2) (Mt −Mt−1) /pt = g,

where the left side is the real value of the new currency printed at time t . The

economy starts at time t = 0, with the initial level of nominal currency stock

M−1 = 100 being given.
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For this model, define an equilibrium as a pair of positive sequences {pt >
0,Mt > 0}∞t=0 that satisfy equations (1) and (2) (portfolio balance and the

government budget constraint, respectively) for t ≥ 0, and the initial condition

assigned for M−1 .

a. Let γ1 = 100, γ2 = 50, g = .05. Write a computer program to compute

equilibria for this economy. Describe your approach and display the program.

b. Argue that there exists a continuum of equilibria. Find the lowest value of

the initial price level p0 for which there exists an equilibrium. (Hint 1: Notice

the positivity condition that is part of the definition of equilibrium. Hint 2: Try

using the general approach to solving difference equations described in section

5.5.

c. Show that for all of these equilibria except the one that is associated with the

minimal p0 that you calculated in part b, the gross inflation rate and the gross

money creation rate both eventually converge to the same value. Compute this

value.

d. Show that there is a unique equilibrium with a lower inflation rate than the

one that you computed in part b. Compute this inflation rate.

e. Increase the level of g to .075. Compare the (eventual or asymptotic) infla-

tion rate that you computed in part b and the inflation rate that you computed

in part c. Are your results consistent with the view that “larger permanent

deficits cause larger inflation rates”?

f. Discuss your results from the standpoint of the Laffer curve.

Hint: A Matlab program dlqrmon.m performs the calculations. It is available

from the web site for the book.

Exercise 5.7 A government faces an exogenous stream of government expen-

ditures {gt} that it must finance. Total government expenditures at t , consist

of two components:

(1) gt = gTt + gPt

where gTt is transitory expenditures and gPt is permanent expenditures. At

the beginning of period t , the government observes the history up to t of both

gTt and gPt . Further, it knows the stochastic laws of motion of both, namely,

(2)
gPt+1 = gPt + c1ε1,t+1

gTt+1 = (1 − ρ)µT + ρgTt + c2ε2t+1
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where εt+1 =

[
ε1t+1

ε2t+1

]
is an i.i.d. Gaussian vector process with mean zero and

identity covariance matrix. The government finances its budget with a distorting

taxes. If it collects Tt total revenues at t , it bears a dead weight loss of W (Tt)

where W (T ) = w1Tt + .5w2T
2
t , where w1, w2 > 0. The government’s loss

functional is

(3) E
∞∑

t=0

βtW (Tt) , β ∈ (0, 1) .

The government can purchase or issue one-period risk-free loans at a constant

price q . Therefore, it faces a sequence of budget constraints

(4) gt + qbt+1 = Tt + bt,

where q−1 is the gross rate of return on one-period risk-free government loans.

Assume that b0 = 0. The government also faces the terminal value condition

lim
t→+∞

βtW ′ (Tt) bt+1 = 0,

which prevents it from running a Ponzi scheme. The government wants to design

a tax collection strategy expressing Tt as a function of the history of gTt, gPt, bt

that minimizes (3) subject to (1), (2), and (4).

a. Formulate the government’s problem as a dynamic programming problem.

Please carefully define the state and control for this problem. Write the Bellman

equation in as much detail as you can. Tell a computational strategy for solving

the Bellman equation. Tell the form of the optimal value function and the

optimal decision rule.

b. Using objects that you computed in part a, please state the form of the law

of motion for the joint process of gTt, gPt, Tt, bt+1 under the optimal government

policy.

Some background: Assume now that the optimal tax rule that you computed

above has been in place for a very long time. A macroeconomist who is studying

the economy observes time series on gt, Tt , but not on bt or the breakdown of gt

into its components gTt, gPt . The macroeconomist has a very long time series

for [gt, Tt] and proceeds to computing a vector autoregression for this vector.
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c. Define a population vector autoregression for the [gt, Tt] process. (Feel free

to assume that lag lengths are infinite if this simplifies your answer.)

d. Please tell precisely how the vector autoregression for [gt, Tt] depends on

the parameters [ρ, β, µ, q, w1, w2, c1, c2] that determine the joint [gt, Tt] process

according to the economic theory you used in part a.

e. Now suppose that in addition to his observations on [Tt, gt ], the economist

gets an error-ridden time series on government debt bt :

b̃t = bt + c3w3t+1

where w3t+1 is an i.i.d. scalar Gaussian process with mean zero and unit variance

that is orthogonal to wis+1 for i = 1, 2 for all s and t . Please tell how the vector

autoregression for [gt, Tt, b̃t] is related to the parameters [ρ, β, µ, q, w1, w2, c1, c2, c3] .

Is there any way to use the vector autoregression to make inferences about those

parameters?



Chapter 6
Search, Matching, and Unemployment

6.1. Introduction

This chapter applies dynamic programming to a choice between only two actions,

to accept or reject a take-it-or-leave-it job offer. An unemployed worker faces

a probability distribution of wage offers or job characteristics, from which a

limited number of offers are drawn each period. Given his perception of the

probability distribution of offers, the worker must devise a strategy for deciding

when to accept an offer.

The theory of search is a tool for studying unemployment. Search theory

puts unemployed workers in a setting where they sometimes choose to reject

available offers and to remain unemployed now because they prefer to wait

for better offers later. We use the theory to study how workers respond to

variations in the rate of unemployment compensation, the perceived riskiness

of wage distributions, the probability of being fired, the quality of information

about jobs, and the frequency with which the wage distribution can be sampled.

This chapter provides an introduction to the techniques used in the search

literature and a sampling of search models. The chapter studies ideas intro-

duced in two important papers by McCall (1970) and Jovanovic (1979a). These

papers differ in the search technologies with which they confront an unemployed

worker.1 We also study a related model of occupational choice by Neal (1999).

1 Stigler’s (1961) important early paper studied a search technology different from both

McCall’s and Jovanovic’s. In Stigler’s model, an unemployed worker has to choose in advance

a number n of offers to draw, from which he takes the highest wage offer. Stigler’s formulation

of the search problem was not sequential.

– 139 –
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6.2. Preliminaries

This section describes elementary properties of probability distributions that

are used extensively in search theory.

6.2.1. Nonnegative random variables

We begin with some characteristics of nonnegative random variables that possess

first moments. Consider a random variable p with a cumulative probability

distribution function F (P ) defined by Prob{p ≤ P} = F (P ). We assume that

F (0) = 0, that is, that p is nonnegative. We assume that F (∞) = 1 and that

F , a nondecreasing function, is continuous from the right. We also assume that

there is an upper bound B < ∞ such that F (B) = 1, so that p is bounded

with probability 1.

The mean of p , Ep , is defined by

Ep =

∫ B

0

p dF (p) . (6.2.1)

Let u = 1−F (p) and v = p and use the integration-by-parts formula
∫ b
a u dv =

uv
∣∣∣
b

a
−
∫ b
a v du, to verify that

∫ B

0

[1 − F (p)] dp =

∫ B

0

p dF (p) .

Thus, we have the following formula for the mean of a nonnegative random

variable:

Ep =

∫ B

0

[1 − F (p)] dp = B −
∫ B

0

F (p) dp. (6.2.2)

Now consider two independent random variables p1 and p2 drawn from

the distribution F . Consider the event {(p1 < p) ∩ (p2 < p)} , which by the

independence assumption has probability F (p)2 . The event {(p1 < p) ∩ (p2 <

p)} is equivalent to the event {max(p1, p2) < p} , where “max” denotes the

maximum. Therefore, if we use formula (6.2.2), the random variable max(p1, p2)

has mean

Emax (p1, p2) = B −
∫ B

0

F (p)
2
dp. (6.2.3)
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Similarly, if p1, p2, . . . , pn are n independent random variables drawn from F ,

we have Prob{max(p1, p2, . . . , pn) < p} = F (p)n and

Mn ≡ Emax (p1, p2, . . . , pn) = B −
∫ B

0

F (p)n dp, (6.2.4)

where Mn is defined as the expected value of the maximum of p1, . . . , pn .

6.2.2. Mean-preserving spreads

Rothschild and Stiglitz have introduced mean-preserving spreads as a convenient

way of characterizing the riskiness of two distributions with the same mean.

Consider a class of distributions with the same mean. We index this class by

a parameter r belonging to some set R . For the r th distribution we denote

Prob{p ≤ P} = F (P, r) and assume that F (P, r) is differentiable with respect

to r for all P ∈ [0, B] . We assume that there is a single finite B such that

F (B, r) = 1 for all r in R and continue to assume as before that F (0, r) = 0 for

all r in R , so that we are considering a class of distributions R for nonnegative,

bounded random variables.

From equation (6.2.2), we have

Ep = B −
∫ B

0

F (p, r) dp. (6.2.5)

Therefore, two distributions with the same value of
∫ B
0 F (θ, r)dθ have identical

means. We write this as the identical means condition:

(i)

∫ B

0

[F (θ, r1) − F (θ, r2)] dθ = 0.

Two distributions r1, r2 are said to satisfy the single-crossing property if there

exists a θ̂ with 0 < θ̂ < B such that

(ii) F (θ, r2) − F (θ, r1) ≤ 0 (≥ 0) when θ ≥ (≤) θ̂.
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1

F(   , r)

F(   , r  ) 

F(   , r  )

1

2

B

Figure 6.2.1: Two distributions, r1 and r2 , that satisfy the

single-crossing property.

Figure 6.2.1 illustrates the single-crossing property. If two distributions r1

and r2 satisfy properties (i) and (ii), we can regard distribution r2 as having

been obtained from r1 by a process that shifts probability toward the tails of

the distribution while keeping the mean constant.

Properties (i) and (ii) imply (iii), the following property:

(iii)

∫ y

0

[F (θ, r2) − F (θ, r1)] dθ ≥ 0, 0 ≤ y ≤ B .

Rothschild and Stiglitz regard properties (i) and (iii) as defining the concept

of a “mean-preserving increase in spread.” In particular, a distribution indexed

by r2 is said to have been obtained from a distribution indexed by r1 by a
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mean-preserving increase in spread if the two distributions satisfy (i) and (iii).2

For infinitesimal changes in r , Diamond and Stiglitz use the differential

versions of properties (i) and (iii) to rank distributions with the same mean

in order of riskiness. An increase in r is said to represent a mean-preserving

increase in risk if

(iv)

∫ B

0

Fr (θ, r) dθ = 0

(v)

∫ y

0

Fr (θ, r) dθ ≥ 0, 0 ≤ y ≤ B ,

where Fr(θ, r) = ∂F (θ, r)/∂r .

6.3. McCall’s model of intertemporal job search

We now consider an unemployed worker who is searching for a job under the

following circumstances: Each period the worker draws one offer w from the

same wage distribution F (W ) = Prob{w ≤ W} , with F (0) = 0, F (B) = 1 for

B < ∞ . The worker has the option of rejecting the offer, in which case he or

she receives c this period in unemployment compensation and waits until next

period to draw another offer from F ; alternatively, the worker can accept the

offer to work at w , in which case he or she receives a wage of w per period

forever. Neither quitting nor firing is permitted.

Let yt be the worker’s income in period t . We have yt = c if the worker

is unemployed and yt = w if the worker has accepted an offer to work at wage

w . The unemployed worker devises a strategy to maximize E
∑∞

t=0 β
tyt where

0 < β < 1 is a discount factor.

2 Rothschild and Stiglitz (1970, 1971) use properties (i) and (iii) to characterize mean-

preserving spreads rather than (i) and (ii) because (i) and (ii) fail to possess transitivity. That

is, if F (θ, r2) is obtained from F (θ, r1) via a mean-preserving spread in the sense that the

term has in (i) and (ii), and F (θ, r3) is obtained from F (θ, r2) via a mean-preserving spread

in the sense of (i) and (ii), it does not follow that F (θ, r3) satisfies the single-crossing property

(ii) vis-à-vis distribution F (θ, r1) . A definition based on (i) and (iii), however, does provide a

transitive ordering, which is a desirable feature for a definition designed to order distributions

according to their riskiness.
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Let v(w) be the expected value of
∑∞

t=0 β
tyt for a worker who has offer

w in hand, who is deciding whether to accept or to reject it, and who behaves

optimally. We assume no recall. The value function v(w) satisfies the Bellman

equation

v (w) = max

{
w

1 − β
, c+ β

∫
v (w′) dF (w′)

}
, (6.3.1)

where the maximization is over the two actions: (1) accept the wage offer w

and work forever at wage w , or (2) reject the offer, receive c this period, and

draw a new offer w′ from distribution F next period. Figure 6.3.1 graphs the

functional equation (6.3.1) and reveals that its solution will be of the form

v (w) =





w

1 − β
= c+ β

∫ B

0

v (w′) dF (w′) if w ≤ w

w

1 − β
if w ≥ w.

(6.3.2)

Using equation (6.3.2), we can convert the functional equation (6.3.1) into

an ordinary equation in the reservation wage w . Evaluating v(w) and using

equation (6.3.2), we have

w

1 − β
= c+ β

∫ w

0

w

1 − β
dF (w′) + β

∫ B

w

w′

1 − β
dF (w′)

or

w

1 − β

∫ w

0

dF (w′) +
w

1 − β

∫ B

w

dF (w′)

= c+ β

∫ w

0

w

1 − β
dF (w′) + β

∫ B

w

w′

1 − β
dF (w′)

or

w

∫ w

0

dF (w′) − c =
1

1 − β

∫ B

w

(βw′ − w) dF (w′) .

Adding w
∫ B
w dF (w′) to both sides gives

(w − c) =
β

1 − β

∫ B

w

(w′ − w) dF (w′) . (6.3.3)

Equation (6.3.3) is often used to characterize the determination of the reser-

vation wage w . The left side is the cost of searching one more time when an

offer w is in hand. The right side is the expected benefit of searching one more
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v

w

Reject the offer Accept the offer

Q

w
_

Figure 6.3.1: The function v(w) = max{w/(1 − β), c +

β
∫ B
0 v(w′)dF (w′)} . The reservation wage w = (1 − β)[c +

β
∫ B
0
v(w′)dF (w′)] .

time in terms of the expected present value associated with drawing w′ > w .

Equation (6.3.3) instructs the agent to set w so that the cost of searching one

more time equals the benefit.

Let us define the function on the right side of equation (6.3.3) as

h (w) =
β

1 − β

∫ B

w

(w′ − w) dF (w′) . (6.3.4)

Notice that h(0) = Ewβ/(1−β), that h(B) = 0, and that h(w) is differentiable,

with derivative given by3

h′ (w) = − β

1 − β
[1 − F (w)] < 0.

3 To compute h′(w) , we apply Leibniz’s rule to equation (6.3.4). Let φ(t) =
∫ β(t)

α(t)
f(x, t)d x

for t ∈ [c, d] . Assume that f and ft are continuous and that α, β are differentiable on [c, d] .
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We also have

h′′ (w) =
β

1 − β
F ′ (w) > 0,

so that h(w) is convex to the origin. Figure 6.3.2 graphs h(w) against (w − c)

and indicates how w is determined. From Figure 6.3.2 it is apparent that an

increase in c leads to an increase in w .

w-c

w
_

h(w)

w

-c

β/(1−β)E(w) * 

Figure 6.3.2: The reservation wage, w , that satisfies w−c =

[β/(1 − β)]
∫ B
w

(w′ − w)dF (w′) ≡ h(w).

Then Leibniz’s rule asserts that φ(t) is differentiable on [c, d] and

φ′ (t) = f [β (t) , t] β′ (t) − f [α (t) , t]α′ (t) +

∫ β(t)

α(t)

ft (x, t) d x.

To apply this formula to the equation in the text, let w play the role of t .
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To get an alternative characterization of the condition determining w , we

return to equation (6.3.3) and express it as

w − c =
β

1 − β

∫ B

w

(w′ − w) dF (w′) +
β

1 − β

∫ w

0

(w′ − w) dF (w′)

− β

1 − β

∫ w

0

(w′ − w) dF (w′)

=
β

1 − β
Ew − β

1 − β
w − β

1 − β

∫ w

0

(w′ − w) dF (w′)

or

w − (1 − β) c = βEw − β

∫ w

0

(w′ − w) dF (w′) .

Applying integration by parts to the last integral on the right side and rearrang-

ing, we have

w − c = β (Ew − c) + β

∫ w

0

F (w′) dw′. (6.3.5)

At this point it is useful to define the function

g (s) =

∫ s

0

F (p) dp. (6.3.6)

This function has the characteristics that g(0) = 0, g(s) ≥ 0, g′(s) = F (s) > 0,

and g′′(s) = F ′(s) > 0 for s > 0. Then equation (6.3.5) can be expressed

alternatively as w− c = β(Ew− c) + βg(w), where g(s) is the function defined

by equation (6.3.6). In Figure 6.3.3 we graph the determination of w , using

equation (6.3.5).
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[E(w)-c]β

[E(w)-c]β +βg(w)

ww

w-c

-c

_0

Figure 6.3.3: The reservation wage, w , that satisfies w−c =

β(Ew − c) + β
∫ w
0
F (w′)dw′ ≡ β(Ew − c) + βg(w).

6.3.1. Effects of mean preserving spreads

Figure 6.3.3 can be used to establish two propositions about w . First, given F ,

w increases when the rate of unemployment compensation c increases. Second,

given c , a mean-preserving increase in risk causes w to increase. This second

proposition follows directly from Figure 6.3.3 and the characterization (iii) or

(v) of a mean-preserving increase in risk. From the definition of g in equation

(6.3.6) and the characterization (iii) or (v), a mean-preserving spread causes an

upward shift in β(Ew − c) + βg(w).

Since either an increase in unemployment compensation or a mean-preserving

increase in risk raises the reservation wage, it follows from the expression for the

value function in equation (6.3.2) that unemployed workers are also better off in

those situations. It is obvious that an increase in unemployment compensation

raises the welfare of unemployed workers but it might seem surprising in the

case of a mean-preserving increase in risk. Intuition for this latter finding can

be gleaned from the result in option pricing theory that the value of an option is

an increasing function of the variance in the price of the underlying asset. This
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is so because the option holder receives payoffs only from the tail of the distri-

bution. In our context, the unemployed worker has the option to accept a job

and the asset value of a job offering wage rate w is equal to w/(1−β). Under a

mean-preserving increase in risk, the higher incidence of very good wage offers

increases the value of searching for a job while the higher incidence of very bad

wage offers is less detrimental because the option to work will in any case not

be exercised at such low wages.

6.3.2. Allowing quits

Thus far, we have supposed that the worker cannot quit. It happens that had

we given the worker the option to quit and search again, after being unemployed

one period, he would never exercise that option. To see this point, recall that

the reservation wage w in (6.3.2) satisfies

v (w) =
w

1 − β
= c+ β

∫
v (w′) dF (w′) . (6.3.7)

Suppose the agent has in hand an offer to work at wage w . Assuming that

the agent behaves optimally after any rejection of a wage w , we can compute

the lifetime utility associated with three mutually exclusive alternative ways of

responding to that offer:

A1. Accept the wage and keep the job forever:

w

1 − β
.

A2. Accept the wage but quit after t periods:

w − βtw

1 − β
+ βt

(
c+ β

∫
v (w′) dF (w′)

)
=

w

1 − β
− βt

w − w

1 − β
.

A3. Reject the wage:

c+ β

∫
v (w′) dF (w′) =

w

1 − β
.

We conclude that if w < w ,

A1 ≺ A2 ≺ A3,
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and if w > w ,

A1 � A2 � A3.

The three alternatives yield the same lifetime utility when w = w .

6.3.3. Waiting times

It is straightforward to derive the probability distribution of the waiting time

until a job offer is accepted. Let N be the random variable “length of time

until a successful offer is encountered,” with the understanding that N = 1

if the first job offer is accepted. Let λ =
∫ w
0 dF (w′) be the probability that

a job offer is rejected. Then we have Prob{N = 1} = (1 − λ). The event

that N = 2 is the event that the first draw is less than w , which occurs with

probability λ , and that the second draw is greater than w , which occurs with

probability (1−λ). By virtue of the independence of successive draws, we have

Prob{N = 2} = (1 − λ)λ . More generally, Prob{N = j} = (1 − λ)λj−1 , so the

waiting time is geometrically distributed. The mean waiting time N̄ is given by

N̄ =
∞∑

j=1

j · Prob{N = j} =
∞∑

j=1

j (1 − λ) λj−1 = (1 − λ)
∞∑

j=1

j∑

k=1

λj−1

= (1 − λ)

∞∑

k=0

∞∑

j=1

λj−1+k = (1 − λ)

∞∑

k=0

λk (1 − λ)−1 = (1 − λ)−1 .

That is, the mean waiting time to a successful job offer equals the reciprocal of

the probability of an accepted offer on a single trial.4

As an illustration of the power of using a recursive approach, we can also

compute the mean waiting time N̄ as follows. First, given that our search

environment is stationary and therefore is associated with a constant reservation

wage and a constant probability of escaping unemployment, it follows that the

“remaining” mean waiting time for all unemployed workers is equal to N̄ in any

4 An alternative way of deriving the mean waiting time is to use the algebra of z trans-

forms; we say that h(z) =
∑∞

j=0 hjz
j and note that h′(z) =

∑∞
j=1 jhjz

j−1 and h′(1) =∑∞
j=1 jhj . (For an introduction to z transforms, see Gabel and Roberts, 1973.) The z

transform of the sequence (1−λ)λj−1 is given by
∑∞
j=1(1−λ)λj−1zj = (1−λ)z/(1−λz) .

Evaluating h′(z) at z = 1 gives, after some simplification, h′(1) = 1/(1 − λ) . Therefore, we

have that the mean waiting time is given by (1 − λ)
∑∞

j=1 jλ
j−1 = 1/(1 − λ) .
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given period. That is, all unemployed workers face a remaining mean waiting

time of N̄ regardless of how long of an unemployment spell they have suffered

so far. Second, the mean waiting time N̄ must then be equal to the weighted

sum of two possible outcomes: either the worker accepts a job next period,

with probability (1 − λ); or she remains unemployed in the next period, with

probability λ . In the first case, the worker will have ended her unemployment

after one last period of unemployment while in the second case, the worker

will have suffered one period of unemployment and will face a remaining mean

waiting time of N̄ periods. Hence, the mean waiting time must satisfy the

following recursive formula:

N̄ = (1 − λ) · 1 + λ ·
(
1 + N̄

)
=⇒ N̄ = (1 − λ)

−1
.

We invite the reader to prove that, given F , the mean waiting time increases

with increases in the rate of unemployment compensation, c .

6.3.4. Firing

We now consider a modification of the job search model in which each period

after the first period on the job the worker faces probability α of being fired,

where 1 > α > 0. The probability α of being fired next period is assumed to be

independent of tenure. The worker continues to sample wage offers from a time-

invariant and known probability distribution F and to receive unemployment

compensation in the amount c . The worker receives a time-invariant wage w

on a job until she is fired. A worker who is fired becomes unemployed for one

period before drawing a new wage.

We let v̂(w) be the expected present value of income of a previously unem-

ployed worker who has offer w in hand and who behaves optimally. If she rejects

the offer, she receives c in unemployment compensation this period and next

period draws a new offer w′ , whose value to her now is β
∫
v̂(w′)dF (w′). If she

rejects the offer, v̂(w) = c+β
∫
v̂(w′)dF (w′). If she accepts the offer, she receives

w this period, with probability 1−α that she is not fired next period, in which

case she receives βv̂(w), with probability α that she is fired, and after one period

of unemployment draws a new wage, receiving β[c + β
∫
v̂(w′)dF (w′)] . There-

fore, if she accepts the offer, v̂(w) = w+β(1−α)v̂(w)+βα[c+β
∫
v̂(w′)dF (w′)] .
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Thus, the Bellman equation becomes

v̂ (w) = max
{
w + β (1 − α) v̂ (w) + βα [c+ βEv̂] , c+ βEv̂

}
,

where Ev̂ =
∫
v̂(w′)dF (w′). This equation has the following solution, where

the optimal policy is of the reservation wage form5

v̂ (w) =





w + βα [c+ βEv̂]
1 − β (1 − α)

, if w ≥ w

c+ βEv̂, w ≤ w

where w solves
w + βα [c+ βEv̂]

1 − β (1 − α)
= c+ βEv̂,

which can be rearranged as

w

1 − β
= c+ βEv̂ = c+ β

∫
v̂ (w′) dF (w′) . (6.3.8)

We can compare the reservation wage in (6.3.8) to the reservation wage in

expression (6.3.7) when there was no risk of being fired. The two expressions

look identical but the reservation wages are not the same because the two value

functions are different. In particular, it must be the case that v̂(w) lies strictly

below v(w). This is an immediate implication of our argument that it cannot be

optimal to quit if you have accepted a wage strictly greater than the reservation

wage in the economy without firings ( see section 6.3.2). So even though workers

in the economy without firings could mimic the outcomes of the economy with

firings by occasionally firing themselves or quitting into unemployment, they

choose not to do so because that would lower their expected welfare. Since

the employed workers in the economy with firings are worse off than employed

workers in the economy without firings, it follows that v̂(w) lies strictly below

v(w) over the whole domain because even at wages that are rejected the value

function embodies future outcomes which are in expected terms less favorable

in the economy with firings.

5 That it takes this form can be established by guessing that v̂(w) is nondecreasing in

w . This guess implies the equation in the text for v̂(w) , which is nondecreasing in w . This

argument verifies that v̂(w) is nondecreasing, given the uniqueness of the solution of the

Bellman equation.
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Since the value function v̂(w) in the economy with firings lies strictly below

the value function v(w) in the economy without firings, it follows from (6.3.8)

and (6.3.7) that the reservation wage w is strictly lower in the economy with

firings. There is less of a reason to hold out for high-paying jobs when a job

is expected to last for a shorter period of time. That is, unemployed workers

optimally invest less in search when the payoffs associated with wage offers have

gone down because of the probability of being fired.

6.4. A lake model

Consider an economy consisting of a continuum of ex ante identical workers

living in the environment described in the previous section. These workers

move recurrently between unemployment and employment. The mean duration

of each spell of employment is α−1 and the mean duration of unemployment

is [1 − F (w)]−1 . The average unemployment rate Ut across the continuum of

workers obeys the difference equation

Ut+1 = α (1 − Ut) + F (w)Ut,

where α is the hazard rate of escaping employment and [1−F (w)] is the hazard

rate of escaping unemployment. Solving this difference equation for a stationary

solution, i.e., imposing Ut+1 = Ut = U , gives

U =
α

α+ 1 − F (w)
=⇒ U =

1

1 − F (w)
1

1 − F (w)
+

1

α

. (6.4.1)

Equation (6.4.1) expresses the stationary unemployment rate in terms of the

ratio of the average duration of unemployment to the sum of average durations

of unemployment and employment. The unemployment rate, being an average

across workers at each moment, thus reflects the average outcomes experienced

by workers across time. This way of linking economy-wide averages at a point

in time with the time-series average for a representative worker is our first en-

counter with a class of models sometimes referred to as Bewley models, which

we shall study in depth in chapter 17.
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This model of unemployment is sometimes called a lake model and can be

represented as in Figure 6.4.1, with two lakes denoted U and 1−U representing

volumes of unemployment and employment, and streams of rate α from the 1−U
lake to the U lake and of rate 1 − F (w) from the U lake to the 1 − U lake.

Equation (6.4.1) allows us to study the determinants of the unemployment rate

in terms of the hazard rate of becoming unemployed α and the hazard rate of

escaping unemployment 1 − F (w).

1−U
U

1−F(w)
_

α

Figure 6.4.1: Lake model with flows of rate α from em-

ployment state 1 − U to unemployment state U and of rate

[1 − F (w)] from U to 1 − U .

6.5. A model of career choice

This section describes a model of occupational choice that Derek Neal (1999)

used to study the employment histories of recent high school graduates. Neal

wanted to explain why young men switch jobs and careers often early in their

work histories, then later focus their search on jobs within a single career, and

finally settle down in a particular job. Neal’s model can be regarded as a sim-

plified version of Brian McCall’s (1991) model.

A worker chooses career-job (θ, ε) pairs subject to the following conditions:

There is no unemployment. The worker’s earnings at time t are θt + εt . The

worker maximizes E
∑∞

t=0 β
t(θt + εt). A career is a draw of θ from c.d.f. F ;

a job is a draw of ε from c.d.f. G . Successive draws are independent, and
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G(0) = F (0) = 0, G(Bε) = F (Bθ) = 1. The worker can draw a new career only

if he also draws a new job. However, the worker is free to retain his existing

career (θ ), and to draw a new job (ε′ ). The worker decides at the beginning

of a period whether to stay in the current career-job pair, stay in his current

career but draw a new job, or draw a new career-job pair. There is no recalling

past jobs or careers.

Let v(θ, ε) be the optimal value of the problem at the beginning of a period

for a worker with career-job pair (θ, ε) who is about to decide whether to draw

a new career and or job. The Bellman equation is

v (θ, ε) = max

{
θ + ε+ βv (θ, ε) , θ +

∫
[ε′ + βv (θ, ε′)] dG (ε′) ,

∫ ∫
[θ′ + ε′ + βv (θ′, ε′)] dF (θ′) dG (ε′)

}
. (6.5.1)

The maximization is over the three possible actions: (1) retain the present job-

career pair; (2) retain the present career but draw a new job; and (3) draw both

a new job and a new career. The value function is increasing in both θ and ε .

Figures 6.5.1 and 6.5.2 display the optimal value function and the optimal

decision rule Neal’s model where F and G are each distributed according to

discrete uniform distributions on [0, 5] with 50 evenly distributed discrete values

for each of θ and ε and β = .95. We computed the value function by iterating

to convergence on the Bellman equation. The optimal policy is characterized

by three regions in the (θ, ε) space. For high enough values of ε+ θ , the worker

stays put. For high θ but low ε , the worker retains his career but searches for

a better job. For low values of θ + ε , the worker finds a new career and a new

job.6

When the career-job pair (θ, ε) is such that the worker chooses to stay put,

the value function in (6.5.1) attains the value (θ + ε)/(1 − β). Of course, this

happens when the decision to stay put weakly dominates the other two actions,

which occurs when
θ + ε

1 − β
≥ max {C (θ) , Q} , (6.5.2)

where Q is the value of drawing both a new job and a new career,

Q ≡
∫ ∫

[θ′ + ε′ + βv (θ′, ε′)] dF (θ′) dG (ε′) ,

6 The computations were performed by the Matlab program neal2.m.
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Figure 6.5.1: Optimal value function for Neal’s model with

β = .95. The value function is flat in the reject (θ, ε) region,

increasing in θ only in the keep-career-but-draw-new-job re-

gion, and increasing in both θ and ε in the stay-put region.

and C(θ) is the value of drawing a new job but keeping θ :

C (θ) = θ +

∫
[ε′ + βv (θ, ε′)] dG (ε′) .

For a given career θ , a job ε(θ) makes equation (6.5.2) hold with equality.

Evidently, ε(θ) solves

ε (θ) = max [(1 − β)C (θ) − θ, (1 − β)Q− θ] .

The decision to stay put is optimal for any career-job pair (θ, ε) that satisfies

ε ≥ ε(θ). When this condition is not satisfied, the worker will draw either a new

career-job pair (θ′, ε′) or only a new job ε′ . Retaining the current career θ is

optimal when

C (θ) ≥ Q. (6.5.3)

We can solve (6.5.3) for the critical career value θ satisfying

C
(
θ
)

= Q. (6.5.4)
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Figure 6.5.2: Optimal decision rule for Neal’s model. For

(θ, ε)’s within the white area, the worker changes both jobs

and careers. In the grey area, the worker retains his career

but draws a new job. The worker accepts (θ, ε) in the black

area.

Thus, independently of ε , the worker will never abandon any career θ ≥ θ . The

decision rule for accepting the current career can thus be expressed as follows:

accept the current career θ if θ ≥ θ or if the current career-job pair (θ, ε)

satisfies ε ≥ ε(θ).

We can say more about the cutoff value ε(θ) in the retain-θ region θ ≥ θ .

When θ ≥ θ , because we know that the worker will keep θ forever, it follows

that

C (θ) =
θ

1 − β
+

∫
J (ε′) dG (ε′) ,

where J(ε) is the optimal value of
∑∞

t=0 β
tεt for a worker who has just drawn

ε , who has already decided to keep his career θ , and who is deciding whether

to try a new job next period. The Bellman equation for J is

J (ε) = max

{
ε

1 − β
, ε+ β

∫
J (ε′) dG (ε′)

}
. (6.5.5)

This resembles the Bellman equation for the optimal value function for the

basic McCall model, with a slight modification. The optimal policy is of the
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reservation-job form: keep the job ε for ε ≥ ε , otherwise try a new job next

period. The absence of θ from (6.5.5) implies that in the range θ ≥ θ , ε is

independent of θ .

These results explain some features of the value function plotted in Figure

6.5.1 At the boundary separating the “new life” and “new job” regions of the

(θ, ε) plane, equation (6.5.4) is satisfied. At the boundary separating the “new

job” and “stay put” regions, θ+ε
1−β = C(θ) = θ

1−β +
∫
J(ε′)dG(ε′). Finally,

between the “new life” and “stay put” regions, θ+ε
1−β = Q , which defines a

diagonal line in the (θ, ε) plane (see Figure 6.5.2). The value function is the

constant value Q in the “get a new life” region (i.e., draw a new (θ, ε) pair).

Equation (6.5.3) helps us understand why there is a set of high θ ’s in Figure

6.5.2 for which v(θ, ε) rises with θ but is flat with respect to ε .

Probably the most interesting feature of the model is that it is possible to

draw a (θ, ε) pair such that the value of keeping the career (θ ) and drawing a

new job match (ε′ ) exceeds both the value of stopping search, and the value of

starting again to search from the beginning by drawing a new (θ′, ε′) pair. This

outcome occurs when a large θ is drawn with a small ε . In this case, it can

occur that θ ≥ θ and ε < ε(θ).

Viewed as a normative model for young workers, Neal’s model tells them:

don’t shop for a firm until you have found a career you like. As a positive model,

it predicts that workers will not switch careers after they have settled on one.

Neal presents data indicating that while this prediction is too stark, it is a good

first approximation. He suggests that extending the model to include learning,

along the lines of Jovanovic’s model to be described next, could help explain the

later career switches that his model misses.7

7 Neal’s model can be used to deduce waiting times to the event (θ ≥ θ)∪ (ε ≥ ε(θ)) . The

first event within the union is choosing a career that is never abandoned. The second event is

choosing a permanent job. Neal used the model to approximate and interpret observed career

and job switches of young workers.
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6.6. A simple version of Jovanovic’s matching model

The preceding models invite questions about how we envision the determination

of the wage distribution F . Given F , we have seen that the worker sets a

reservation wage w and refuses all offers less than w . If homogeneous firms were

facing a homogeneous population of workers all of whom used such a decision

rule, no wages less than w would ever be recorded. Furthermore, it would seem

to be in the interest of each firm simply to offer the reservation wage w and never

to make an offer exceeding it. These considerations reveal a force that would

tend to make the wage distribution collapse to a trivial one concentrated at

w . This situation, however, would invalidate the assumptions under which the

reservation wage policy was derived. It is thus a serious challenge to imagine

an equilibrium context in which there survive both a distribution of wage or

price offers and optimal search activity by individual agents in the face of that

distribution. A number of attempts have been made to meet this challenge.

One interesting effort stems from matching models, in which the main idea

is to reinterpret w not as a wage but instead, more broadly, as a parameter

characterizing the entire quality of a match occurring between a pair of agents.

The parameter w is regarded as a summary measure of the productivities or

utilities jointly generated by the activities of the match. We can consider pairs

consisting of a firm and a worker, a man and a woman, a house and an owner,

or a person and a hobby. The idea is to analyze the way in which matches form

and maybe also dissolve by viewing both parties to the match as being drawn

from populations that are statistically homogeneous to an outside observer,

even though the match is idiosyncratic from the perspective of the parties to

the match.

Jovanovic (1979a) has used a model of this kind supplemented by a hy-

pothesis that both sides of the match behave optimally but only gradually learn

about the quality of the match. Jovanovic was motivated by a desire to explain

three features of labor market data: (1) on average, wages rise with tenure on the

job, (2) quits are negatively correlated with tenure (that is, a quit has a higher

probability of occurring earlier in tenure than later), and (3) the probability of a

subsequent quit is negatively correlated with the current wage rate. Jovanovic’s

insight was that each of these empirical regularities could be interpreted as re-

flecting the operation of a matching process with gradual learning about match

quality. We consider a simplified version of Jovanovic’s model of matching.
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(Prescott and Townsend, 1980, describe a discrete-time version of Jovanovic’s

model, which has been simplified here.) A market has two sides that could be

variously interpreted as consisting of firms and workers, or men and women, or

owners and renters, or lakes and fishermen. Following Jovanovic, we shall adopt

the firm-worker interpretation here. An unmatched worker and a firm form a

pair and jointly draw a random match parameter θ from a probability distri-

bution with cumulative distribution function Prob{θ ≤ s} = F (s). Here the

match parameter reflects the marginal productivity of the worker in the match.

In the first period, before the worker decides whether to work at this match or

to wait and to draw a new match next period from the same distribution F ,

the worker and the firm both observe only y = θ + u , where u is a random

noise that is uncorrelated with θ . Thus, in the first period, the worker-firm pair

receives only a noisy observation on θ . This situation corresponds to that when

both sides of the market form only an error-ridden impression of the quality of

the match at first. On the basis of this noisy observation, the firm, which is

imagined to operate competitively under constant returns to scale, offers to pay

the worker the conditional expectation of θ , given (θ + u), for the first period,

with the understanding that in subsequent periods it will pay the worker the

expected value of θ , depending on whatever additional information both sides

of the match receive.8 Given this policy of the firm, the worker decides whether

to accept the match and to work this period for E[θ|(θ + u)] or to refuse the

offer and draw a new match parameter θ′ and noisy observation on it, (θ′ +u′),

next period. If the worker decides to accept the offer in the first period, then

in the second period both the firm and the worker are assumed to observe the

true value of θ . This situation corresponds to that in which both sides learn

about each other and about the quality of the match. In the second period the

firm offers to pay the worker θ then and forever more. The worker next decides

whether to accept this offer or to quit, be unemployed this period, and draw a

new match parameter and a noisy observation on it next period.

We can conveniently think of this process as having three stages. Stage 1 is

the “predraw” stage, in which a previously unemployed worker has yet to draw

the one match parameter and the noisy observation on it that he is entitled to

8 Jovanovic assumed firms to be risk neutral and to maximize the expected present value

of profits. They compete for workers by offering wage contracts. In a long-run equilibrium

the payments practices of each firm would be well understood, and this fact would support

the described implicit contract as a competitive equilibrium.
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draw after being unemployed the previous period. We let Q denote the expected

present value of wages, before drawing, of a worker who was unemployed last

period and who behaves optimally. The second stage of the process occurs after

the worker has drawn a match parameter θ , has received the noisy observation

of (θ + u) on it, and has received the firm’s wage offer of E[θ|(θ + u)] for this

period. At this stage, the worker decides whether to accept this wage for this

period and the prospect of receiving θ in all subsequent periods. The third

stage occurs in the next period, when the worker and firm discover the true

value of θ and the worker must decide whether to work at θ this period and in

all subsequent periods that he remains at this job (match).

We now add some more specific assumptions about the probability distri-

bution of θ and u . We assume that θ and u are independently distributed

random variables. Both are normally distributed, θ being normal with mean µ

and variance σ2
0 , and u being normal with mean 0 and variance σ2

u . Thus, we

write

θ ∼ N
(
µ, σ2

0

)
, u ∼ N

(
0, σ2

u

)
. (6.6.1)

In the first period, after drawing a θ , the worker and firm both observe the

noise-ridden version of θ , y = θ + u . Both worker and firm are interested in

making inferences about θ , given the observation (θ + u). They are assumed

to use Bayes’ law and to calculate the posterior probability distribution of θ ,

that is, the probability distribution of θ conditional on (θ+u). The probability

distribution of θ , given θ + u = y , is known to be normal, with mean m0 and

variance σ2
1 . Using the Kalman filtering formula in chapter 5 and Appendix B

(see Technical appendixes), we have9

m0 = E (θ|y) = E (θ) +
cov (θ, y)

var (y)
[y − E (y)]

= µ+
σ2

0

σ2
0 + σ2

u

(y − µ) ≡ µ+K0 (y − µ) ,

σ2
1 = E

[
(θ −m0)

2 |y
]

=
σ2

0

σ2
0 + σ2

u

σ2
u = K0σ

2
u .

(6.6.2)

After drawing θ and observing y = θ + u the first period, the firm is assumed

to offer the worker a wage of m0 = E[θ|(θ + u)] the first period and a promise

9 In the special case in which random variables are jointly normally distributed, linear

least-squares projections equal conditional expectations.



162 Search, Matching, and Unemployment

to pay θ for the second period and thereafter. The worker has the choice of

accepting or rejecting the offer.

From equation (6.6.2) and the property that the random variable y − µ =

θ+ u− µ is normal, with mean zero and variance (σ2
0 + σ2

u), it follows that m0

is itself normally distributed, with mean µ and variance σ4
0/(σ

2
0 + σ2

u) = K0σ
2
0 :

m0 ∼ N
(
µ,K0σ

2
0

)
. (6.6.3)

Note that K0σ
2
0 < σ2

0 , so that m0 has the same mean but a smaller variance

than θ .

6.6.1. Recursive formulation and solution

The worker seeks to maximize the expected present value of wages. We now

proceed to solve the worker’s problem by working backward. At stage 3, the

worker knows θ and is confronted by the firm with an offer to work this period

and forever more at a wage of θ . We let J(θ) be the expected present value of

wages of a worker at stage 3 who has a known match θ in hand and who behaves

optimally. The worker who accepts the match this period receives θ this period

and faces the same choice at the same θ next period. (The worker can quit next

period, though it will turn out that the worker who does not quit this period

never will.) Therefore, if the worker accepts the match, the value of match θ

is given by θ + βJ(θ), where β is the discount factor. The worker who rejects

the match must be unemployed this period and must draw a new match next

period. The expected present value of wages of a worker who was unemployed

last period and who behaves optimally is Q . Therefore, the Bellman equation

is J(θ) = max{θ + βJ(θ), βQ} . This equation is graphed in Figure 6.6.1 and

evidently has the solution

J (θ) =

{
θ + βJ (θ) = θ

1−β for θ ≥ θ

βQ for θ ≤ θ.
(6.6.4)

The optimal policy is a reservation wage policy: accept offers θ ≥ θ , and reject

offers θ ≤ θ , where θ satisfies

θ

1 − β
= βQ. (6.6.5)
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Reject the offer Accept the offer

Q

_

J(  )J

Figure 6.6.1: The function J(θ) = max{θ + βJ(θ), βQ} .

The reservation wage in stage 3, θ , satisfies θ/(1− β) = βQ .

We now turn to the worker’s decision in stage 2, given the decision rule in

stage 3. In stage 2, the worker is confronted with a current wage offer m0 =

E[θ|(θ+u)] and a conditional probability distribution function that we write as

Prob{θ ≤ s|θ + u} = F (s|m0, σ
2
1). (Because the distribution is normal, it can

be characterized by the two parameters m0, σ
2
1 .) We let V (m0) be the expected

present value of wages of a worker at the second stage who has offer m0 in hand

and who behaves optimally. The worker who rejects the offer is unemployed this

period and draws a new match parameter next period. The expected present

value of this option is βQ . The worker who accepts the offer receives a wage of

m0 this period and a probability distribution of wages of F (θ′|m0, σ
2
1) for next

period. The expected present value of this option is m0+β
∫
J(θ′)dF (θ′|m0, σ

2
1).

The Bellman equation for the second stage therefore becomes

V (m0) = max

{
m0 + β

∫
J (θ′) dF

(
θ′|m0, σ

2
1

)
, βQ

}
. (6.6.6)
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Note that both m0 and β
∫
J(θ′)dF (θ′|m0, σ

2
1) are increasing in m0 , whereas

βQ is a constant. For this reason a reservation wage policy will be an optimal

one. The functional equation evidently has the solution

V (m0) =

{
m0 + β

∫
J (θ′) dF

(
θ′|m0, σ

2
1

)
for m0 ≥ m0

βQ for m0 ≤ m0.
(6.6.7)

If we use equation (6.6.7), an implicit equation for the reservation wage m0 is

then

V (m0) = m0 + β

∫
J (θ′) dF

(
θ′|m0, σ

2
1

)
= βQ. (6.6.8)

Using equations (6.6.8) and (6.6.4), we shall show that m0 < θ , so that the

worker becomes choosier over time with the firm. This force makes wages rise

with tenure.

Using equations (6.6.4) and (6.6.5) repeatedly in equation (6.6.8), we ob-

tain

m0 + β
θ

1 − β

∫ θ

−∞

dF
(
θ′|m0, σ

2
1

)
+

β

1 − β

∫ ∞

θ

θ′dF
(
θ′|m0, σ

2
1

)

=
θ

1 − β
=

θ

1 − β

∫ θ

−∞

dF
(
θ′|m0, σ

2
1

)

+
θ

1 − β

∫ ∞

θ

dF
(
θ′|m0, σ

2
1

)
.

Rearranging this equation, we get

θ

∫ θ

−∞

dF
(
θ′|m0, σ

2
1

)
−m0 =

1

1 − β

∫ ∞

θ

(
βθ′ − θ

)
dF
(
θ′|m0, σ

2
1

)
. (6.6.9)

Now note the identity

θ =

∫ θ

−∞

θdF
(
θ′|m0, σ

2
1

)
+

(
1

1 − β
− β

1 − β

)∫ ∞

θ

θdF
(
θ′|m0, σ

2
1

)
. (6.6.10)

Adding equation (6.6.10) to (6.6.9) gives

θ −m0 =
β

1 − β

∫ ∞

θ

(
θ′ − θ

)
dF
(
θ′|m0, σ

2
1

)
. (6.6.11)
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The right side of equation (6.6.11) is positive. The left side is therefore also

positive, so that we have established that

θ > m0. (6.6.12)

Equation (6.6.11) resembles equation (6.3.3) and has a related interpretation.

Given θ and m0 , the right side is the expected benefit of a match m0 , namely,

the expected present value of the match in the event that the match parame-

ter eventually turns out to exceed the reservation match θ so that the match

endures. The left side is the one-period cost of temporarily staying in a match

paying less than the eventual reservation match value θ : having remained un-

employed for a period in order to have the privilege of drawing the match pa-

rameter θ , the worker has made an investment to acquire this opportunity and

must make a similar investment to acquire a new one. Having only the noisy

observation of (θ + u) on θ , the worker is willing to stay in matches m0 with

m0 < m0 < θ because it is worthwhile to speculate that the match is really

better than it seems now and will seem next period.

Now turning briefly to stage 1, we have defined Q as the predraw expected

present value of wages of a worker who was unemployed last period and who is

about to draw a match parameter and a noisy observation on it. Evidently, Q

is given by

Q =

∫
V (m0) dG

(
m0|µ,K0σ

2
0

)
(6.6.13)

where G(m0|µ,K0σ
2
0) is the normal distribution with mean µ and variance

K0σ
2
0 , which, as we saw before, is the distribution of m0 .

Collecting some of the equations, we see that the worker’s optimal policy

is determined by

J (θ) =

{
θ + βJ (θ) = θ

1−β for θ ≥ θ

βQ for θ ≤ θ
(6.6.14)

V (m0) =

{
m0 + β

∫
J (θ′) dF

(
θ′|m0, σ

2
1

)
for m0 ≥ m0

βQ for m0 ≤ m0

(6.6.15)

θ −m0 =
β

1 − β

∫ ∞

θ

(
θ′ − θ

)
dF
(
θ′|m0, σ

2
1

)
(6.6.16)

Q =

∫
V (m0) dG

(
m0|µ,K0σ

2
0

)
. (6.6.17)
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To analyze formally the existence and uniqueness of a solution to these equa-

tions, one would proceed as follows. Use equations (6.6.14), (6.6.15), and

(6.6.16) to write a single functional equation in V ,

V (m0) =max

{
m0 + β

∫
max

[
θ

1 − β
,

β

∫
V (m′

1)dG
(
m′

1|µ,K0σ
2
0

)
]
dF (θ|m0, σ

2
1) ,

β

∫
V (m′

1)dG
(
m′

1|µ,K0σ
2
0

)
}
.

The expression on the right defines an operator, T , mapping continuous

functions V into continuous functions TV . This functional equation can be

expressed V = TV . The operator T can be directly verified to satisfy the

following two properties: (1) it is monotone, that is, v(m) ≥ z(m) for all

m implies (Tv)(m) ≥ (Tz)(m) for all m ; (2) for all positive constants c ,

T (v+c) ≤ Tv+βc . These are Blackwell’s sufficient conditions for the functional

equation Tv = v to have a unique continuous solution. See Appendix A on

functional analysis (see Technical Appendixes).

6.6.2. Endogenous statistics

We now proceed to calculate probabilities and expectations of some interesting

events and variables. The probability that a previously unemployed worker

accepts an offer is given by

Prob{m0 ≥ m0} =

∫ ∞

m0

dG
(
m0|µ,K0σ

2
0

)
.

The probability that a previously unemployed worker accepts an offer and then

quits the second period is given by

Prob{
(
θ ≤ θ

)
∩ (m0 ≥ m0)} =

∫ ∞

m0

∫ θ

−∞

dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

)
.

The probability that a previously unemployed worker accepts an offer the first

period and also elects not to quit the second period is given by

Prob{
(
θ ≥ θ

)
∩ (m0 ≥ m)} =

∫ ∞

m0

∫ ∞

θ

dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

)
.
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The mean wage of those employed the first period is given by

w1 =

∫ ∞

m0

m0 dG
(
m0|µ,K0σ

2
0

)

∫ ∞

m0

dG
(
m0|µ,K0σ

2
0

) , (6.6.18)

whereas the mean wage of those workers who are in the second period of tenure

is given by

w2 =

∫ ∞

m0

∫ ∞

θ

θ dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

)

∫ ∞

m0

∫ ∞

θ

dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

) . (6.6.19)

We shall now prove that w2 > w1 , so that wages rise with tenure. After

substituting m0 ≡
∫
θdF (θ|m0, σ

2
1) into equation (6.6.18),

w1 =

∫ ∞

m0

∫ ∞

−∞

θ dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

)

∫ ∞

m0

dG
(
m0|µ,K0σ

2
0

)

=
1∫ ∞

m0

dG
(
m0|µ,K0σ

2
0

)

{∫ ∞

m0

∫ θ

−∞

θ dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

)

+ w2

∫ ∞

m0

∫ ∞

θ

dF
(
θ|m0, σ

2
1

)
dG
(
m0|µ,K0σ

2
0

)
}

<

∫ ∞

m0

{
θ F

(
θ|m0, σ

2
1

)
+ w2

[
1 − F

(
θ|m0, σ

2
1

)]}
dG
(
m0|µ,K0σ

2
0

)

∫ ∞

m0

dG
(
m0|µ,K0σ

2
0

)

< w2.

It is quite intuitive that the mean wage of those workers who are in the second

period of tenure must exceed the mean wage of all employed in the first period.

The former group is a subset of the latter group where workers with low pro-

ductivities, θ < θ , have left. Since the mean wages are equal to the true average

productivity in each group, it follows that w2 > w1 .
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The model thus implies that “wages rise with tenure,” both in the sense

that mean wages rise with tenure and in the sense that θ > m0 , which asserts

that the lower bound on second-period wages exceeds the lower bound on first-

period wages. That wages rise with tenure was observation 1 that Jovanovic

sought to explain.

Jovanovic’s model also explains observation 2, that quits are negatively

correlated with tenure. The model implies that quits occur between the first

and second periods of tenure. Having decided to stay for two periods, the worker

never quits.

The model also accounts for observation 3, namely, that the probability

of a subsequent quit is negatively correlated with the current wage rate. The

probability of a subsequent quit is given by

Prob{θ′ < θ|m0} = F
(
θ|m0, σ

2
1

)
,

which is evidently negatively correlated with m0 , the first-period wage. Thus,

the model explains each observation that Jovanovic sought to interpret. In the

version of the model that we have studied, a worker eventually becomes perma-

nently matched with probability 1. If we were studying a population of such

workers of fixed size, all workers would eventually be absorbed into the state of

being permanently matched. To provide a mechanism for replenishing the stock

of unmatched workers, one could combine Jovanovic’s model with the “firing”

model in section 6.3.4. By letting matches θ “go bad” with probability λ each

period, one could presumably modify Jovanovic’s model to get the implication

that, with a fixed population of workers, a fraction would remain unmatched

each period because of the dissolution of previously acceptable matches.
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6.7. A longer horizon version of Jovanovic’s model

Here we consider a T +1 period version of Jovanovic’s model, in which learning

about the quality of the match continues for T periods before the quality of

the match is revealed by “nature.” (Jovanovic assumed that T = ∞ .) We use

the recursive projection technique (the Kalman filter) of chapter 5 to handle

the firm’s and worker’s sequential learning. The prediction of the true match

quality can then easily be updated with each additional noisy observation.

A firm-worker pair jointly draws a match parameter θ at the start of the

match, which we call the beginning of period 0. The value θ is revealed to

the pair only at the beginning of the (T + 1)th period of the match. After θ

is drawn but before the match is consummated, the firm-worker pair observes

y0 = θ + u0 , where u0 is random noise. At the beginning of each period of the

match, the worker-firm pair draws another noisy observation yt = θ + ut on

the match parameter θ . The worker then decides whether or not to continue

the match for the additional period. Let yt = {y0, . . . , yt} be the firm’s and

worker’s information set at time t . We assume that θ and ut are independently

distributed random variables with θ ∼ N (µ,Σ0) and ut ∼ N (0, σ2
u). For t ≥ 0

define mt = E[θ|yt] and m−1 = µ . The conditional means mt and variances

E(θ −mt)
2 = Σt+1 can be computed with the Kalman filter via the formulas

from chapter 5:

mt = (1 −Kt)mt−1 +Ktyt (6.7.1a)

Kt =
Σt

Σt +R
(6.7.1b)

Σt+1 =
ΣtR

Σt +R
, (6.7.1c)

where R = σ2
u and Σ0 is the unconditional variance of θ . The recursions are

to be initiated from m−1 = µ , and given Σ0 .

Using the formulas from chapter 5, we have that conditional on yt , mt+1 ∼
N (mt,Kt+1Σt+1) and θ ∼ N (mt,Σt+1) where Σ0 is the unconditional variance

of θ .
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6.7.1. The Bellman equations

For t ≥ 0, let vt(mt) be the value of the worker’s problem at the beginning of

period t for a worker who optimally estimates that the match value is mt after

having observed yt . At the start of period T + 1, we suppose that the value of

the match is revealed without error. Thus, at time T , θ ∼ N (mT ,ΣT+1). The

firm-worker pair estimates θ by mt for t = 0, . . . , T , and by θ for t ≥ T + 1.

Then the following functional equations characterize the solution of the problem:

vT+1 (θ) = max

{
θ

1 − β
, βQ

}
, (6.7.2)

vT (m) = max
{
m+ β

∫
vT+1 (θ) dF (θ | m,ΣT+1) , βQ

}
, (6.7.3)

vt (m) = max
{
m+ β

∫
vt+1 (m′) dF (m′|m,Kt+1Σt+1) , βQ

}
,

t = 0, . . . , T − 1, (6.7.4)

Q =

∫
v0 (m) dF (m|µ,K0Σ0) , (6.7.5)

with Kt and Σt from the Kalman filter. Starting from vT+1 and reasoning

backward, it is evident that the worker’s optimal policy is to set reservation

wages mt, t = 0, . . . , T that satisfy

mT+1 = θ = β (1 − β)Q ,

mT + β

∫
vT+1 (θ) dF (θ|mT ,ΣT+1) = βQ , (6.7.6)

mt + β

∫
vt+1 (m′) dF (m′ | mt,Kt+1Σt+1) = βQ , t = 1, . . . , T − 1 .

To compute a solution to the worker’s problem, we can define a mapping

from Q into itself, with the property that a fixed point of the mapping is the

optimal value of Q . Here is an algorithm:

a. Guess a value of Q , say Qi with i = 1.

b. Given Qi , compute sequentially the value functions in equations (6.7.2)

through (6.7.4). Let the solutions be denoted viT+1(θ) and vit(m) for t =

0, . . . , T .

c. Given vi1(m), evaluate equation (6.7.5) and call the solution Q̃i .

d. For a fixed “relaxation parameter” g ∈ (0, 1), compute a new guess of Q

from

Qi+1 = gQi + (1 − g) Q̃i .
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e. Iterate on this scheme to convergence.

We now turn to the case where the true θ is never revealed by nature,

that is, T = ∞ . Note that (Σt+1)
−1 = (σ2

u)
−1 + (Σt)

−1 , so Σt+1 < Σt and

Σt+1 → 0 as t→ ∞ . In other words, the accuracy of the prediction of θ becomes

arbitrarily good as the information set yt becomes large. Consequently, the

firm and worker eventually learn the true θ , and the value function “at infinity”

becomes

v∞ (θ) = max

{
θ

1 − β
, βQ

}
,

and the Bellman equation for any finite tenure t is given by equation (6.7.4),

and Q in equation (6.7.5) is the value of an unemployed worker. The optimal

policy is a reservation wage mt , one for each tenure t . In fact, in the absence

of a final date T + 1 when θ is revealed by nature, the solution is actually a

time-invariant policy function m(σ2
t ) with an acceptance and a rejection region

in the space of (m,σ2).

To compute a numerical solution when T = ∞ , we would still have to rely

on the procedure that we have outlined based on the assumption of some finite

date when the true θ is revealed, say in period T̂ + 1. The idea is to choose

a sufficiently large T̂ so that the conditional variance of θ at time T̂ , σ2
T̂

, is

close to zero. We then examine the approximation that σ2
T̂+1

is equal to zero.

That is, equations (6.7.2) and (6.7.3) are used to truncate an otherwise infinite

series of value functions.

6.8. Concluding remarks

The situations analyzed in this chapter are ones in which a currently unem-

ployed worker rationally chooses to refuse an offer to work, preferring to remain

unemployed today in exchange for better prospects tomorrow. The worker is

voluntarily unemployed in one sense, having chosen to reject the current draw

from the distribution of offers. In this model, the activity of unemployment is

an investment incurred to improve the situation faced in the future. A theory

in which unemployment is voluntary permits an analysis of the forces imping-

ing on the choice to remain unemployed. Thus we can study the response of

the worker’s decision rule to changes in the distribution of offers, the rate of

unemployment compensation, the number of offers per period, and so on.
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Chapter 21 studies the optimal design of unemployment compensation.

That issue is a trivial one in the present chapter with risk-neutral agents and

no externalities. Here the government should avoid any policy that affects the

workers’ decision rules since it would harm efficiency, and the first-best way

of pursuing distributional goals is through lump-sum transfers. In contrast,

chapter 21 assumes risk-averse agents and incomplete insurance markets, which

together with information asymmetries, make for an intricate contract design

problem in the provision of unemployment insurance.

Chapter 26 presents various equilibrium models of search and matching. We

study workers searching for jobs in an island model, workers and firms forming

matches in a model with a “matching function,” and how a medium of exchange

can overcome the problem of “double coincidence of wants” in a search model

of money.

A. More numerical dynamic programming

This appendix describes two more examples using the numerical methods of

chapter 4.

6.A.1. Example 4: search

An unemployed worker wants to maximize E0

∑∞
t=0 β

tyt where yt = w if the

worker is employed at wage w , yt = 0 if the worker is unemployed, and β ∈
(0, 1). Each period an unemployed worker draws a positive wage from a discrete-

state Markov chain with transition matrix P . Thus, wage offers evolve according

to a Markov process with transition probabilities given by

P (i, j) = Prob (wt+1 = w̃j |wt = w̃i) .

Once he accepts an offer, the worker works forever at the accepted wage. There

is no firing or quitting. Let v be an (n × 1) vector of values vi representing

the optimal value of the problem for a worker who has offer wi, i = 1, . . . , n in

hand and who behaves optimally. The Bellman equation is

vi = max
accept,reject





wi
1 − β

, β

n∑

j=1

Pijvj




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or

v = max{w̃/ (1 − β) , βPv}.

Here w̃ is an (n × 1) vector of possible wage values. This matrix equation

can be solved using the numerical procedures described earlier. The optimal

policy depends on the structure of the Markov chain P . Under restrictions on

P making w positively serially correlated, the optimal policy has the following

reservation wage form: there is a w such that the worker should accept an offer

w if w ≥ w .

6.A.2. Example 5: a Jovanovic model

Here is a simplified version of the search model of Jovanovic (1979a). A newly

unemployed worker draws a job offer from a distribution given by µi = Prob(w1 =

w̃i), where w1 is the first-period wage. Let µ be the (n × 1) vector with ith

component µi . After an offer is drawn, subsequent wages associated with the

job evolve according to a Markov chain with time-varying transition matrices

Pt (i, j) = Prob (wt+1 = w̃j |wt = w̃i) ,

for t = 1, . . . , T . We assume that for times t > T , the transition matrices

Pt = I , so that after T a job’s wage does not change anymore with the passage

of time. We specify the Pt matrices to capture the idea that the worker-firm

pair is learning more about the quality of the match with the passage of time.

For example, we might set

Pt =




1 − qt qt 0 0 . . . 0 0

qt 1 − 2qt qt 0 . . . 0 0

0 qt 1 − 2qt qt . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 1 − 2qt qt

0 0 0 0 . . . qt 1 − qt




,

where q ∈ (0, 1). In the following numerical examples, we use a slightly more

general form of transition matrix in which (except at endpoints of the distribu-

tion),
Prob (wt+1 = w̃k±m|wt = w̃k) = Pt (k, k ±m) = qt

Pt (k, k) = 1 − 2qt.
(6.A.1)
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Here m ≥ 1 is a parameter that indexes the spread of the distribution.

At the beginning of each period, a previously matched worker is exposed

with probability λ ∈ (0, 1) to the event that the match dissolves. We then have

a set of Bellman equations

vt = max{w̃ + β (1 − λ)Ptvt+1 + βλQ, βQ+ c}, (6.A.2a)

for t = 1, . . . , T, and

vT+1 = max{w̃ + β (1 − λ) vT+1 + βλQ, βQ+ c}, (6.A.2b)

Q = µ′v1 ⊗ 1

c = c⊗ 1

where ⊗ is the Kronecker product, and 1 is an (n × 1) vector of ones. These

equations can be solved by using calculations of the kind described previously.

The optimal policy is to set a sequence of reservation wages {wj}Tj=1 .

Wage distributions

We can use recursions to compute probability distributions of wages at tenures

1, 2, . . . , n . Let the reservation wage for tenure j be wj ≡ w̃ρ(j) , where ρ(j) is

the index associated with the cutoff wage. For i ≥ ρ(1), define

δ1 (i) = Prob {w1 = w̃i | w1 ≥ w1} =
µi∑n

h=ρ(1) µh
.

Then

γ2 (j) = Prob {w2 = w̃j | w1 ≥ w1} =
n∑

i=ρ(1)

P1 (i, j) δ1 (i) .

For i ≥ ρ(2), define

δ2 (i) = Prob{w2 = w̃i | w2 ≥ w2 ∩ w1 ≥ w1}

or

δ2 (i) =
γ2 (i)∑n

h=ρ(2) γ2 (h)
.

Then

γ3 (j) = Prob{w3 = w̃j | w2 ≥ w2 ∩ w1 ≥ w1} =

n∑

i=ρ(2)

P2 (i, j) δ2 (i) .
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Next, for i ≥ ρ(3), define δ3(i) = Prob{w3 = w̃i | (w3 ≥ w3)∩(w2 ≥ w2)∩(w1 ≥
w1)} . Then

δ3 (i) =
γ3 (i)∑n

h=ρ(3) γ3 (h)
.

Continuing in this way, we can define the wage distributions δ1(i), δ2(i),

δ3(i), . . . . The mean wage at tenure k is given by

∑

i≥ρ(k)

w̃iδk (i) .

Separation probabilities

The probability of rejecting a first period offer is Q(1) =
∑

h<ρ(1) µh . The prob-

ability of separating at the beginning of period j ≥ 2 is Q(j) =
∑
h<ρ(j) γj(h).

Numerical examples

Figures 6.A.1, 6.A.2, and 6.A.3 report some numerical results for three versions

of this model. For all versions, we set β = .95, c = 0, q = .5, and T + 1 = 21.

For all three examples, we used a wage grid with 60 equispaced points on the

interval [0, 10].

For the initial distribution µ we used the uniform distribution. We used

a sequence of transition matrices of the form (6.A.1), with a “gap” parameter

of m . For the first example, we set m = 6 and λ = 0, while the second sets

m = 10 and λ = 0 and third sets m = 10 and λ = .1.

Figure 6.A.1 shows the reservation wage falls as m increases from 6 to 10,

and that it falls further when the probability of being fired λ rises from zero

to .1. Figure 6.A.2 shows the same pattern for average wages. Figure 6.A.3

displays quit probabilities for the first two models. They fall with tenure, with

shapes and heights that depend to some degree on m,λ .
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Figure 6.A.1: Reservation wages as a function of tenure for

model with three different parameter settings [m = 6, λ = 0]

(the dots), [m = 10, λ = 0] (the line with circles), and [m =

10, λ = .1] (the dashed line).
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Figure 6.A.2: Mean wages as a function of tenure for model

with three different parameter settings [m = 6, λ = 0] (the

dots), [m = 10, λ = 0] (the line with circles), and [m =

10, λ = .1] (the dashed line).
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Figure 6.A.3: Quit probabilities as a function of tenure for

Jovanovic model with [m = 6, λ = 0] (line with dots) and

[m = 10, λ = .1] (the line with circles).

Exercises

Exercise 6.1 Being unemployed with a chance of an offer

An unemployed worker samples wage offers on the following terms: each period,

with probability φ , 1 > φ > 0, she receives no offer (we may regard this as a

wage offer of zero forever). With probability (1−φ) she receives an offer to work

for w forever, where w is drawn from a cumulative distribution function F (w).

Successive draws across periods are independently and identically distributed.

The worker chooses a strategy to maximize

E

∞∑

t=0

βtyt, where 0 < β < 1,

yt = w if the worker is employed, and yt = c if the worker is unemployed.

Here c is unemployment compensation, and w is the wage at which the worker

is employed. Assume that, having once accepted a job offer at wage w , the

worker stays in the job forever.

Let v(w) be the expected value of
∑∞
t=0 β

tyt for an unemployed worker who

has offer w in hand and who behaves optimally. Write the Bellman equation

for the worker’s problem.
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Exercise 6.2 Two offers per period

Consider an unemployed worker who each period can draw two independently

and identically distributed wage offers from the cumulative probability distri-

bution function F (w). The worker will work forever at the same wage after

having once accepted an offer. In the event of unemployment during a period,

the worker receives unemployment compensation c . The worker derives a de-

cision rule to maximize E
∑∞

t=0 β
tyt , where yt = w or yt = c , depending on

whether she is employed or unemployed. Let v(w) be the value of E
∑∞
t=0 β

tyt

for a currently unemployed worker who has best offer w in hand.

a. Formulate the Bellman equation for the worker’s problem.

b. Prove that the worker’s reservation wage is higher than it would be had

the worker faced the same c and been drawing only one offer from the same

distribution F (w) each period.

Exercise 6.3 A random number of offers per period

An unemployed worker is confronted with a random number, n , of job offers

each period. With probability πn , the worker receives n offers in a given period,

where πn ≥ 0 for n ≥ 1, and
∑N

n=1 πn = 1 for N < +∞ . Each offer is drawn

independently from the same distribution F (w). Assume that the number of

offers n is independently distributed across time. The worker works forever at

wage w after having accepted a job and receives unemployment compensation

of c during each period of unemployment. He chooses a strategy to maximize

E
∑∞

t=0 β
tyt where yt = c if he is unemployed, yt = w if he is employed.

Let v(w) be the value of the objective function of an unemployed worker

who has best offer w in hand and who proceeds optimally. Formulate the

Bellman equation for this worker.

Exercise 6.4 Cyclical fluctuations in number of job offers

Modify exercise 6.3 as follows: Let the number of job offers n follow a Markov

process, with

Prob{Number of offers next period = m|Number of offers this period = n}
= πmn, m = 1, . . . , N, n = 1, . . . , N

N∑

m=1

πmn = 1 for n = 1, . . . , N.
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Here [πmn] is a “stochastic matrix” generating a Markov chain. Keep all other

features of the problem as in exercise 6.3 . The worker gets n offers per period,

where n is now generated by a Markov chain so that the number of offers is

possibly correlated over time.

a. Let v(w, n) be the value of E
∑∞
t=0 β

tyt for an unemployed worker who has

received n offers this period, the best of which is w . Formulate the Bellman

equation for the worker’s problem.

b. Show that the optimal policy is to set a reservation wage w(n) that depends

on the number of offers received this period.

Exercise 6.5 Choosing the number of offers

An unemployed worker must choose the number of offers n to solicit. At a cost

of k(n) the worker receives n offers this period. Here k(n + 1) > k(n) for

n ≥ 1. The number of offers n must be chosen in advance at the beginning

of the period and cannot be revised during the period. The worker wants to

maximize E
∑∞

t=0 β
tyt . Here yt consists of w each period she is employed but

not searching, [w − k(n)] the first period she is employed but searches for n

offers, and [c − k(n)] each period she is unemployed but solicits and rejects n

offers. The offers are each independently drawn from F (w). The worker who

accepts an offer works forever at wage w .

Let Q be the value of the problem for an unemployed worker who has not

yet chosen the number of offers to solicit. Formulate the Bellman equation for

this worker.

Exercise 6.6 Mortensen externality

Two parties to a match (say, worker and firm) jointly draw a match parameter θ

from a c.d.f. F (θ). Once matched, they stay matched forever, each one deriving

a benefit of θ per period from the match. Each unmatched pair of agents can

influence the number of offers received in a period in the following way. The

worker receives n offers per period, where n = f(c1 + c2) and c1 represents the

resources the worker devotes to searching and c2 represents the resources the

typical firm devotes to searching. Symmetrically, the representative firm receives

n offers per period where n = f(c1 + c2). (We shall define the situation so that

firms and workers have the same reservation θ so that there is never unrequited

love.) Both c1 and c2 must be chosen at the beginning of the period, prior

to searching during the period. Firms and workers have the same preferences,
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given by the expected present value of the match parameter θ , net of search

costs. The discount factor β is the same for worker and firm.

a. Consider a Nash equilibrium in which party i chooses ci , taking cj , j 6= i ,

as given. Let Qi be the value for an unmatched agent of type i before the level

of ci has been chosen. Formulate the Bellman equation for agents of types 1

and 2.

b. Consider the social planning problem of choosing c1 and c2 sequentially so

as to maximize the criterion of λ times the utility of agent 1 plus (1−λ) times

the utility of agent 2, 0 < λ < 1. Let Q(λ) be the value for this problem for two

unmatched agents before c1 and c2 have been chosen. Formulate the Bellman

equation for this problem.

c. Comparing the results in a and b, argue that, in the Nash equilibrium, the

optimal amount of resources has not been devoted to search.

Exercise 6.7 Variable labor supply

An unemployed worker receives each period a wage offer w drawn from the

distribution F (w). The worker has to choose whether to accept the job—

and therefore to work forever—or to search for another offer and collect c in

unemployment compensation. The worker who decides to accept the job must

choose the number of hours to work in each period. The worker chooses a

strategy to maximize

E

∞∑

t=0

βtu (yt, lt) , where 0 < β < 1,

and yt = c if the worker is unemployed, and yt = w(1 − lt) if the worker is

employed and works (1 − lt) hours; lt is leisure with 0 ≤ lt ≤ 1.

Analyze the worker’s problem. Argue that the optimal strategy has the

reservation wage property. Show that the number of hours worked is the same

in every period.

Exercise 6.8 Wage growth rate and the reservation wage

An unemployed worker receives each period an offer to work for wage wt forever,

where wt = w in the first period and wt = φtw after t periods on the job.

Assume φ > 1, that is, wages increase with tenure. The initial wage offer is

drawn from a distribution F (w) that is constant over time (entry-level wages are
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stationary); successive drawings across periods are independently and identically

distributed.

The worker’s objective function is to maximize

E

∞∑

t=0

βtyt, where 0 < β < 1,

and yt = wt if the worker is employed and yt = c if the worker is unemployed,

where c is unemployment compensation. Let v(w) be the optimal value of the

objective function for an unemployed worker who has offer w in hand. Write

the Bellman equation for this problem. Argue that, if two economies differ only

in the growth rate of wages of employed workers, say φ1 > φ2 , the economy

with the higher growth rate has the smaller reservation wage.

Note: Assume that φiβ < 1, i = 1, 2.

Exercise 6.9 Search with a finite horizon

Consider a worker who lives two periods. In each period the worker, if unem-

ployed, receives an offer of lifetime work at wage w , where w is drawn from a

distribution F . Wage offers are identically and independently distributed over

time. The worker’s objective is to maximize E{y1 + βy2} , where yt = w if

the worker is employed and is equal to c—unemployment compensation—if the

worker is not employed.

Analyze the worker’s optimal decision rule. In particular, establish that the

optimal strategy is to choose a reservation wage in each period and to accept

any offer with a wage at least as high as the reservation wage and to reject offers

below that level. Show that the reservation wage decreases over time.

Exercise 6.10 Finite horizon and mean-preserving spread

Consider a worker who draws every period a job offer to work forever at wage w .

Successive offers are independently and identically distributed drawings from a

distribution Fi(w), i = 1, 2. Assume that F1 has been obtained from F2 by a

mean-preserving spread. The worker’s objective is to maximize

E

T∑

t=0

βtyt, 0 < β < 1,

where yt = w if the worker has accepted employment at wage w and is zero

otherwise. Assume that both distributions, F1 and F2 , share a common upper

bound, B .
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a. Show that the reservation wages of workers drawing from F1 and F2 coincide

at t = T and t = T − 1.

b. Argue that for t ≤ T − 2 the reservation wage of the workers that sample

wage offers from the distribution F1 is higher than the reservation wage of the

workers that sample from F2 .

c. Now introduce unemployment compensation: the worker who is unemployed

collects c dollars. Prove that the result in part a no longer holds; that is, the

reservation wage of the workers that sample from F1 is higher than the one

corresponding to workers that sample from F2 for t = T − 1.

Exercise 6.11 Pissarides’ analysis of taxation and variable search in-

tensity

An unemployed worker receives each period a zero offer (or no offer) with prob-

ability [1− π(e)] . With probability π(e) the worker draws an offer w from the

distribution F . Here e stands for effort—a measure of search intensity—and

π(e) is increasing in e . A worker who accepts a job offer can be fired with

probability α , 0 < α < 1. The worker chooses a strategy, that is, whether to

accept an offer or not and how much effort to put into search when unemployed,

to maximize

E

∞∑

t=0

βtyt, 0 < β < 1,

where yt = w if the worker is employed with wage w and yt = 1 − e+ z if the

worker spends e units of leisure searching and does not accept a job. Here z is

unemployment compensation. For the worker who searched and accepted a job,

yt = w − e − T (w); that is, in the first period the wage is net of search costs.

Throughout, T (w) is the amount paid in taxes when the worker is employed.

We assume that w − T (w) is increasing in w . Assume that w − T (w) = 0 for

w = 0, that if e = 0, then π(e) = 0—that is, the worker gets no offers—and

that π′(e) > 0, π′′(e) < 0.

a. Analyze the worker’s problem. Establish that the optimal strategy is to

choose a reservation wage. Display the condition that describes the optimal

choice of e , and show that the reservation wage is independent of e .

b. Assume that T (w) = t(w − a) where 0 < t < 1 and a > 0. Show that

an increase in a decreases the reservation wage and increases the level of effort,

increasing the probability of accepting employment.
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c. Show under what conditions a change in t has the opposite effect.

Exercise 6.12 Search and nonhuman wealth

An unemployed worker receives every period an offer to work forever at wage

w , where w is drawn from the distribution F (w). Offers are independently

and identically distributed. Every agent has another source of income, which

we denote εt , that may be regarded as nonhuman wealth. In every period all

agents get a realization of εt , which is independently and identically distributed

over time, with distribution function G(ε). We also assume that wt and εt are

independent. The objective of a worker is to maximize

E

∞∑

t=0

βtyt, 0 < β < 1,

where yt = w+φεt if the worker has accepted a job that pays w , and yt = c+εt

if the worker remains unemployed. We assume that 0 < φ < 1 to reflect the fact

that an employed worker has less time to engage in the collection of nonhuman

wealth. Assume 1 > Prob{w ≥ c+ (1 − φ)ε} > 0.

Analyze the worker’s problem. Write down the Bellman equation, and show

that the reservation wage increases with the level of nonhuman wealth.

Exercise 6.13 Search and asset accumulation

A worker receives, when unemployed, an offer to work forever at wage w , where

w is drawn from the distribution F (w). Wage offers are identically and inde-

pendently distributed over time. The worker maximizes

E

∞∑

t=0

βtu (ct, lt) , 0 < β < 1,

where ct is consumption and lt is leisure. Assume Rt is i.i.d. with distribution

H(R). The budget constraint is given by

at+1 ≤ Rt (at + wtnt − ct)

and lt + nt ≤ 1 if the worker has a job that pays wt . If the worker is unem-

ployed, the budget constraint is at+1 ≤ Rt(at + z − ct) and lt = 1. Here z is

unemployment compensation. It is assumed that u(·) is bounded and that at ,

the worker’s asset position, cannot be negative. This assumption corresponds

to a no-borrowing assumption. Write the Bellman equation for this problem.
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Exercise 6.14 Temporary unemployment compensation

Each period an unemployed worker draws one, and only one, offer to work

forever at wage w . Wages are i.i.d. draws from the c.d.f. F , where F (0) = 0

and F (B) = 1. The worker seeks to maximize E
∑∞
t=0 β

tyt , where yt is the

sum of the worker’s wage and unemployment compensation, if any. The worker

is entitled to unemployment compensation in the amount γ > 0 only during

the first period that she is unemployed. After one period on unemployment

compensation, the worker receives none.

a. Write the Bellman equations for this problem. Prove that the worker’s

optimal policy is a time-varying reservation wage strategy.

b. Show how the worker’s reservation wage varies with the duration of unem-

ployment.

c. Show how the worker’s “hazard of leaving unemployment” (i.e., the proba-

bility of accepting a job offer) varies with the duration of unemployment.

Now assume that the worker is also entitled to unemployment compensation

if she quits a job. As before, the worker receives unemployment compensation

in the amount of γ during the first period of an unemployment spell, and zero

during the remaining part of an unemployment spell. (To qualify again for

unemployment compensation, the worker must find a job and work for at least

one period.)

The timing of events is as follows. At the very beginning of a period, a

worker who was employed in the previous period must decide whether or not to

quit. The decision is irreversible; that is, a quitter cannot return to an old job.

If the worker quits, she draws a new wage offer as described previously, and if

she accepts the offer she immediately starts earning that wage without suffering

any period of unemployment.

d. Write the Bellman equations for this problem. Hint: At the very beginning

of a period, let ve(w) denote the value of a worker who was employed in the

previous period with wage w (before any wage draw in the current period).

Let vu1 (w′) be the value of an unemployed worker who has drawn wage offer

w′ and who is entitled to unemployment compensation, if she rejects the offer.

Similarly, let vu+(w′) be the value of an unemployed worker who has drawn wage

offer w′ but who is not eligible for unemployment compensation.
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e. Characterize the three reservation wages, we , wu1 , and wu+ , associated with

the value functions in part d. How are they related to γ ? (Hint: Two of the

reservation wages are straightforward to characterize, while the remaining one

depends on the actual parameterization of the model.)

Exercise 6.15 Seasons, I

An unemployed worker seeks to maximize E
∑∞

t=0 β
tyt , where β ∈ (0, 1), yt is

her income at time t , and E is the mathematical expectation operator. The

person’s income consists of one of two parts: unemployment compensation of

c that she receives each period she remains unemployed, or a fixed wage w

that the worker receives if employed. Once employed, the worker is employed

forever with no chance of being fired. Every odd period (i.e., t = 1, 3, 5, . . .)

the worker receives one offer to work forever at a wage drawn from the c.d.f.

F (W ) = Prob(w ≤ W ). Assume that F (0) = 0 and F (B) = 1 for some

B > 0. Successive draws from F are independent. Every even period (i.e.,

t = 0, 2, 4, . . .), the unemployed worker receives two offers to work forever at a

wage drawn from F . Each of the two offers is drawn independently from F .

a. Formulate the Bellman equations for the unemployed person’s problem.

b. Describe the form of the worker’s optimal policy.

Exercise 6.16 Seasons, II

Consider the following problem confronting an unemployed worker. The worker

wants to maximize

E0

∞∑

0

βtyt, β ∈ (0, 1) ,

where yt = wt in periods in which the worker is employed and yt = c in

periods in which the worker is unemployed, where wt is a wage rate and c is a

constant level of unemployment compensation. At the start of each period, an

unemployed worker receives one and only one offer to work at a wage w drawn

from a c.d.f. F (W ), where F (0) = 0, F (B) = 1 for some B > 0. Successive

draws from F are identically and independently distributed. There is no recall

of past offers. Only unemployed workers receive wage offers. The wage is fixed

as long as the worker remains in the job. The only way a worker can leave a job

is if she is fired. At the beginning of each odd period (t = 1, 3, . . .), a previously

employed worker faces the probability of π ∈ (0, 1) of being fired. If a worker
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is fired, she immediately receives a new draw of an offer to work at wage w . At

each even period (t = 0, 2, . . .), there is no chance of being fired.

a. Formulate a Bellman equation for the worker’s problem.

b. Describe the form of the worker’s optimal policy.

Exercise 6.17 Gittins indexes for beginners

At the end of each period,10 a worker can switch between two jobs, A and B,

to begin the following period at a wage that will be drawn at the beginning of

next period from a wage distribution specific to job A or B, and to the worker’s

history of past wage draws from jobs of either type A or type B. The worker

must decide to stay or leave a job at the end of a period after his wage for this

period on his current job has been received, but before knowing what his wage

would be next period in either job. The wage at either job is described by a

job-specific n-state Markov chain. Each period the worker works at either job

A or job B. At the end of the period, before observing next period’s wage on

either job, he chooses which job to go to next period. We use lowercase letters

(i, j = 1, . . . , n) to denote states for job A, and uppercase letters (I, J = 1, . . . n)

for job B. There is no option of being unemployed.

Let wa(i) be the wage on job A when state i occurs and wb(I) be the wage

on job B when state I occurs. Let A = [Aij ] be the matrix of one-step transition

probabilities between the states on job A, and let B = [Bij ] be the matrix for

job B. If the worker leaves a job and later decides to returns to it, he draws

the wage for his first new period on the job from the conditional distribution

determined by his last wage working at that job.

The worker’s objective is to maximize the expected discounted value of his

lifetime earnings, E0

∑∞
t=0 β

tyt , where β ∈ (0, 1) is the discount factor, and

where yt is his wage from whichever job he is working at in period t .

a. Consider a worker who has worked at both jobs before. Suppose that wa(i)

was the last wage the worker receives on job A and wb(I) the last wage on job

B. Write the Bellman equation for the worker.

b. Suppose that the worker is just entering the labor force. The first time

he works at job A, the probability distribution for his initial wage is πa =

(πa1, . . . , πan). Similarly, the probability distribution for his initial wage on

10 See Gittins (1989) for more general versions of this problem.
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job B is πb = (πb1, . . . , πbn) Formulate the decision problem for a new worker,

who must decide which job to take initially. Hint: Let va(i) be the expected

discounted present value of lifetime earnings for a worker who was last in state

i on job A and has never worked on job B; define vb(I) symmetrically.

Exercise 6.18 Jovanovic (1979b)

An employed worker in the tth period of tenure on the current job receives a

wage wt = xt(1 − φt − st) where xt is job-specific human capital, φt ∈ (0, 1)

is the fraction of time that the worker spends investing in job-specific human

capital, and st ∈ (0, 1) is the fraction of time that the worker spends searching

for a new job offer. If the worker devotes st to searching at t , then with

probability π(st) ∈ (0, 1) at the beginning of t + 1 the worker receives a new

job offer to begin working at new job-specific capital level µ′ drawn from the

c.d.f. F (·). That is, searching for a new job offer promises the prospect of

instantaneously reinitializing job-specific human capital at µ′ . Assume that

π′(s) > 0, π′′(s) < 0. While on a given job, job-specific human capital evolves

according to

xt+1 = G (xt, φt) = g (xtφt) − δxt,

where g′(·) > 0, g′′(·) < 0, δ ∈ (0, 1) is a depreciation rate, and x0 = µ where

t is tenure on the job, and µ is the value of the “match” parameter drawn at

the start of the current job. The worker is risk neutral and seeks to maximize

E0

∑∞
τ=0 β

τyτ , where yτ is his wage in period τ .

a. Formulate the worker’s Bellman equation.

b. Describe the worker’s decision rule for deciding whether to accept an offer

µ′ at the beginning of next period.

c. Assume that g(xφ) = A(xφ)α for A > 0, α ∈ (0, 1). Assume that π(s) = s.5 .

Assume that F is a discrete n-valued distribution with probabilities fi ; for

example, let fi = n−1 . Write a Matlab program to solve the Bellman equation.

Compute the optimal policies for φ, s and display them.

Exercise 6.19 Value function iteration and policy improvement algo-

rithm, donated by Pierre-Olivier Weill

The goal of this exercise is to study, in the context of a specific problem, two

methods for solving dynamic programs: value function iteration and Howard’s

policy improvement. Consider McCall’s model of intertemporal job search.
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An unemployed worker draws one offer from a c.d.f. F , with F (0) = 0 and

F (B) = 1, B < ∞ . If the worker rejects the offer, she receives unemployment

compensation c and can draw a new wage offer next period. If she accepts the

offer, she works forever at wage w . The objective of the worker is to maximize

the expected discounted value of her earnings. Her discount factor is 0 < β < 1.

a. Write the Bellman equation. Show that the optimal policy is of the reser-

vation wage form. Write an equation for the reservation wage w∗ .

b. Consider the value function iteration method. Show that at each iteration,

the optimal policy is of the reservation wage form. Let wn be the reservation

wage at iteration n . Derive a recursion for wn . Show that wn converges to w∗

at rate β .

c. Consider Howard’s policy improvement algorithm. Show that at each it-

eration, the optimal policy is of the reservation wage form. Let wn be the

reservation wage at iteration n . Derive a recursion for wn . Show that the rate

of convergence of wn towards w∗ is locally quadratic. Specifically use a Taylor

expansion to show that, for wn close enough to w∗ , there is a constant K such

that wn+1 − w∗ ∼= K(wn − w∗)2 .



Part III

Competitive equilibria
and applications



Chapter 7
Recursive (Partial) Equilibrium

7.1. An equilibrium concept

This chapter formulates competitive and oligopolistic equilibria in some dynamic

settings. Up to now, we have studied single-agent problems where components

of the state vector not under the control of the agent were taken as given. In this

chapter, we describe multiple-agent settings in which some of the components

of the state vector that one agent takes as exogenous are determined by the

decisions of other agents. We study partial equilibrium models of a kind applied

in microeconomics.1 We describe two closely related equilibrium concepts for

such models: a rational expectations or recursive competitive equilibrium, and

a Markov perfect equilibrium. The first equilibrium concept jointly restricts a

Bellman equation and a transition law that is taken as given in that Bellman

equation. The second equilibrium concept leads to pairs (in the duopoly case)

or sets (in the oligopoly case) of Bellman equations and transition equations

that are to be solved jointly by simultaneous backward induction.

Though the equilibrium concepts introduced in this chapter obviously tran-

scend linear quadratic setups, we choose to present them in the context of linear

quadratic examples in which the Bellman equations remain tractable.

1 For example, see Rosen and Topel (1988) and Rosen, Murphy, and Scheinkman (1994)

– 191 –
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7.2. Example: adjustment costs

This section describes a model of a competitive market with producers who

face adjustment costs.2 The model consists of n identical firms whose profit

function makes them want to forecast the aggregate output decisions of other

firms just like them in order to determine their own output. We assume that

n is a large number so that the output of any single firm has a negligible effect

on aggregate output and, hence, firms are justified in treating their forecast of

aggregate output as unaffected by their own output decisions. Thus, one of n

competitive firms sells output yt and chooses a production plan to maximize

∞∑

t=0

βtRt (7.2.1)

where

Rt = ptyt − .5d (yt+1 − yt)
2 (7.2.2)

subject to y0 being a given initial condition. Here β ∈ (0, 1) is a discount factor,

and d > 0 measures a cost of adjusting the rate of output. The firm is a price

taker. The price pt lies on the demand curve

pt = A0 −A1Yt (7.2.3)

where A0 > 0, A1 > 0 and Yt is the market-wide level of output, being the

sum of output of n identical firms. The firm believes that market-wide output

follows the law of motion

Yt+1 = H0 +H1Yt ≡ H (Yt) , (7.2.4)

where Y0 is a known initial condition. The belief parameters H0, H1 are among

the equilibrium objects of the analysis, but for now we proceed on faith and take

them as given. The firm observes Yt and yt at time t when it chooses yt+1 .

The adjustment costs d(yt+1 − yt)
2 give the firm the incentive to forecast the

market price.

Substituting equation (7.2.3) into equation (7.2.2) gives

Rt = (A0 −A1Yt) yt − .5d (yt+1 − yt)
2
.

2 The model is a version of one analyzed by Lucas and Prescott (1971) and Sargent (1987a).

The recursive competitive equilibrium concept was used by Lucas and Prescott (1971) and

described further by Prescott and Mehra (1980).
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The firm’s incentive to forecast the market price translates into an incentive to

forecast the level of market output Y . We can write the Bellman equation for

the firm as

v (y, Y ) = max
y′

{
A0y −A1yY − .5d (y′ − y)

2
+ βv (y′, Y ′)

}
(7.2.5)

where the maximization is subject to Y ′ = H(Y ). Here ′ denotes next period’s

value of a variable. The Euler equation for the firm’s problem is

−d (y′ − y) + βvy (y′, Y ′) = 0. (7.2.6)

Noting that for this problem the control is y′ and applying the Benveniste-

Scheinkman formula from chapter 5 gives

vy (y, Y ) = A0 −A1Y + d (y′ − y) .

Substituting this equation into equation (7.2.6) gives

−d (yt+1 − yt) + β [A0 −A1Yt+1 + d (yt+2 − yt+1)] = 0. (7.2.7)

In the process of solving its Bellman equation, the firm sets an output path

that satisfies equation (7.2.7), taking equation (7.2.4) as given, subject to the

initial conditions (y0, Y0) as well as an extra terminal condition. The terminal

condition is

lim
t→∞

βtytvy (yt, Yt) = 0. (7.2.8)

This is called the transversality condition and acts as a first-order necessary

condition “at infinity.” The firm’s decision rule solves the difference equation

(7.2.7) subject to the given initial condition y0 and the terminal condition

(7.2.8). Solving the Bellman equation by backward induction automatically

incorporates both equations (7.2.7) and (7.2.8).

The firm’s optimal policy function is

yt+1 = h (yt, Yt) . (7.2.9)

Then with n identical firms, setting Yt = nyt makes the actual law of motion

for output for the market

Yt+1 = nh (Yt/n, Yt) . (7.2.10)
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Thus, when firms believe that the law of motion for market-wide output is

equation (7.2.4), their optimizing behavior makes the actual law of motion

equation (7.2.10).

A recursive competitive equilibrium equates the actual and perceived laws

of motion (7.2.4) and (7.2.10). For this model, we adopt the following definition:

Definition: A recursive competitive equilibrium3 of the model with adjust-

ment costs is a value function v(y, Y ), an optimal policy function h(y, Y ), and

a law of motion H(Y ) such that

a. Given H , v(y, Y ) satisfies the firm’s Bellman equation and h(y, Y ) is the

optimal policy function.

b. The law of motion H satisfies H(Y ) = nh(Y/n, Y ).

The firm’s optimum problem induces a mapping M from a perceived law

of motion for capital H to an actual law of motion M(H). The mapping is

summarized in equation (7.2.10). The H component of a rational expectations

equilibrium is a fixed point of the operator M .

This equilibrium just defined is a special case of a recursive competitive

equilibrium, to be defined more generally in the next section. How might we

find an equilibrium? The next subsection shows a method that works in the

present case and often works more generally. The method involves noting that

the equilibrium solves an associated planning problem. For convenience, we’ll

assume from now on that the number of firms is one, while retaining the as-

sumption of price-taking behavior.

3 This is also often called a rational expectations equilibrium.
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7.2.1. A planning problem

Our solution strategy is to match the Euler equations of the market problem

with those for a planning problem that can be solved as a single-agent dynamic

programming problem. The optimal quantities from the planning problem are

then the recursive competitive equilibrium quantities, and the equilibrium price

can be coaxed from shadow prices for the planning problem.

To determine the planning problem, we first compute the sum of consumer

and producer surplus at time t , defined as

St = S (Yt, Yt+1) =

∫ Yt

0

(A0 −A1x) d x− .5d (Yt+1 − Yt)
2
. (7.2.11)

The first term is the area under the demand curve. The planning problem is to

choose a production plan to maximize

∞∑

t=0

βtS (Yt, Yt−1) (7.2.12)

subject to an initial condition Y0 . The Bellman equation for the planning

problem is

V (Y ) = max
Y ′

{
A0Y − A1

2
Y 2 − .5d (Y ′ − Y )

2
+ βV (Y ′)

}
. (7.2.13)

The Euler equation is

−d (Y ′ − Y ) + βV ′ (Y ′) = 0. (7.2.14)

Applying the Benveniste-Scheinkman formula gives

V ′ (Y ) = A0 −A1Y + d (Y ′ − Y ) . (7.2.15)

Substituting this into equation (7.2.14) and rearranging gives

βA0 + dYt − [βA1 + d (1 + β)]Yt+1 + dβYt+2 = 0. (7.2.16)

Return to equation (7.2.7) and set yt = Yt for all t . (Remember that we

have set n = 1. When n 6= 1 we have to adjust pieces of the argument for n .)

Notice that with yt = Yt , equations (7.2.16) and (7.2.7) are identical. Thus,

a solution of the planning problem also is an equilibrium. Setting yt = Yt in
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equation (7.2.7) amounts to dropping equation (7.2.4) and instead solving for

the coefficients H0, H1 that make yt = Yt true and that jointly solve equations

(7.2.4) and (7.2.7).

It follows that for this example we can compute an equilibrium by forming

the optimal linear regulator problem corresponding to the Bellman equation

(7.2.13). The optimal policy function for this problem can be used to form the

rational expectations H(Y ).4

7.3. Recursive competitive equilibrium

The equilibrium concept of the previous section is widely used. Following

Prescott and Mehra (1980), it is useful to define the equilibrium concept more

generally as a recursive competitive equilibrium. Let x be a vector of state

variables under the control of a representative agent and let X be the vector

of those same variables chosen by “the market.” Let Z be a vector of other

state variables chosen by “nature,” that is, determined outside the model. The

representative agent’s problem is characterized by the Bellman equation

v (x,X,Z) = max
u

{R (x,X,Z, u) + βv (x′, X ′, Z ′)} (7.3.1)

where ′ denotes next period’s value, and where the maximization is subject to

the restrictions:

x′ = g (x,X,Z, u) (7.3.2)

X ′ = G (X,Z) (7.3.3)

Z ′ = ζ (Z) . (7.3.4)

Here g describes the impact of the representative agent’s controls u on his state

x′ ; G and ζ describe his beliefs about the evolution of the aggregate state. The

solution of the representative agent’s problem is a decision rule

u = h (x,X,Z) . (7.3.5)

4 The method of this section was used by Lucas and Prescott (1971). It uses the connection

between equilibrium and Pareto optimality expressed in the fundamental theorems of welfare

economics. See Mas-Colell, Whinston, and Green (1995).
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To make the representative agent representative, we impose X = x , but

only “after” we have solved the agent’s decision problem. Substituting equation

(7.3.5) and X = xt into equation (7.3.2) gives the actual law of motion

X ′ = GA (X,Z) , (7.3.6)

where GA(X,Z) ≡ g[X,X,Z, h(X,X,Z)] . We are now ready to propose a

definition:

Definition: A recursive competitive equilibrium is a policy function h , an

actual aggregate law of motion GA , and a perceived aggregate law G such that

(a) given G , h solves the representative agent’s optimization problem; and (b)

h implies that GA = G .

This equilibrium concept is also sometimes called a rational expectations

equilibrium. The equilibrium concept makes G an outcome of the analysis. The

functions giving the representative agent’s expectations about the aggregate

state variables contribute no free parameters and are outcomes of the analysis.

There are no free parameters that characterize expectations.5 In exercise 7.1 ,

you are asked to implement this equilibrium concept.

7.4. Markov perfect equilibrium

It is instructive to consider a dynamic model of duopoly. A market has two

firms. Each firm recognizes that its output decision will affect the aggregate

output and therefore influence the market price. Thus, we drop the assumption

of price-taking behavior.6 The one-period return function of firm i is

Rit = ptyit − .5d (yit+1 − yit)
2
. (7.4.1)

There is a demand curve

pt = A0 −A1 (y1t + y2t) . (7.4.2)

5 This is the sense in which rational expectations models make expectations disappear

from a model.
6 One consequence of departing from the price-taking framework is that the market out-

come will no longer maximize welfare, measured as the sum of consumer and producer surplus.

See exercise 7.4 for the case of a monopoly.
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Substituting the demand curve into equation (7.4.1) lets us express the return

as

Rit = A0yit −A1y
2
it −A1yity−i,t − .5d (yit+1 − yit)

2 , (7.4.3)

where y−i,t denotes the output of the firm other than i . Firm i chooses a

decision rule that sets yit+1 as a function of (yit, y−i,t) and that maximizes

∞∑

t=0

βtRit.

Temporarily assume that the maximizing decision rule is yit+1 = fi(yit, y−i,t).

Given the function f−i , the Bellman equation of firm i is

vi (yit, y−i,t) = max
yit+1

{Rit + βvi (yit+1, y−i,t+1)} , (7.4.4)

where the maximization is subject to the perceived decision rule of the other

firm

y−i,t+1 = f−i (y−i,t, yit) . (7.4.5)

Note the cross-reference between the two problems for i = 1, 2.

We now advance the following definition:

Definition: A Markov perfect equilibrium is a pair of value functions vi and

a pair of policy functions fi for i = 1, 2 such that

a. Given f−i ,vi satisfies the Bellman equation (7.4.4).

b. The policy function fi attains the right side of the Bellman equation (7.4.4).

The adjective Markov denotes that the equilibrium decision rules depend

only on the current values of the state variables yit , not their histories. Perfect

means that the equilibrium is constructed by backward induction and therefore

builds in optimizing behavior for each firm for all conceivable future states, in-

cluding many that are not realized by iterating forward on the pair of equilibrium

strategies fi .
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7.4.1. Computation

If it exists, a Markov perfect equilibrium can be computed by iterating to con-

vergence on the pair of Bellman equations (7.4.4). In particular, let vji , f
j
i be

the value function and policy function for firm i at the j th iteration. Then

imagine constructing the iterates

vj+1
i (yit, y−i,t) = max

yi,t+1

{
Rit + βvji (yit+1, y−i,t+1)

}
, (7.4.6)

where the maximization is subject to

y−i,t+1 = f j−i (y−i,t, yit) . (7.4.7)

In general, these iterations are difficult.7 In the next section, we de-

scribe how the calculations simplify for the case in which the return function is

quadratic and the transition laws are linear.

7.5. Linear Markov perfect equilibria

In this section, we show how the optimal linear regulator can be used to solve a

model like that in the previous section. That model should be considered to be

an example of a dynamic game. A dynamic game consists of these objects: (a)

a list of players; (b) a list of dates and actions available to each player at each

date; and (c) payoffs for each player expressed as functions of the actions taken

by all players.

The optimal linear regulator is a good tool for formulating and solving dy-

namic games. The standard equilibrium concept—subgame perfection—in these

games requires that each player’s strategy be computed by backward induction.

This leads to an interrelated pair of Bellman equations. In linear quadratic

dynamic games, these “stacked Bellman equations” become “stacked Riccati

equations” with a tractable mathematical structure.

We now consider the following two-player, linear quadratic dynamic game.

An (n× 1) state vector xt evolves according to a transition equation

xt+1 = Atxt +B1tu1t +B2tu2t (7.5.1)

7 See Levhari and Mirman (1980) for how a Markov perfect equilibrium can be computed

conveniently with logarithmic returns and Cobb-Douglas transition laws. Levhari and Mirman

construct a model of fish and fishers.
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where ujt is a (kj × 1) vector of controls of player j . We start with a finite

horizon formulation, where t0 is the initial date and t1 is the terminal date for

the common horizon of the two players. Player 1 maximizes

−
t1−1∑

t=t0

(
xTt R1xt + uT1tQ1u1t + uT2tS1u2t

)
(7.5.2)

where R1 and S1 are positive semidefinite and Q1 is positive definite. Player

2 maximizes

−
t1−1∑

t=t0

(
xTt R2xt + uT2tQ2u2t + uT1tS2u1t

)
(7.5.3)

where R2 and S2 are positive semidefinite and Q2 is positive definite.

We formulate a Markov perfect equilibrium as follows. Player j employs

linear decision rules

ujt = −Fjtxt, t = t0, . . . , t1 − 1

where Fjt is a (kj × n) matrix. Assume that player i knows {F−i,t; t =

t0, . . . , t1 − 1} . Then player 1’s problem is to maximize expression (7.5.2) sub-

ject to the known law of motion (7.5.1) and the known control law u2t = −F2txt

of player 2. Symmetrically, player 2’s problem is to maximize expression (7.5.3)

subject to equation (7.5.1) and u1t = −F1txt . A Markov perfect equilibrium is

a pair of sequences {F1t, F2t; t = t0, t0 + 1, . . . , t1 − 1} such that {F1t} solves

player 1’s problem, given {F2t} , and {F2t} solves player 2’s problem, given

{F1t} . We have restricted each player’s strategy to depend only on xt , and

not on the history ht = {(xs, u1s, u2s), s = t0, . . . , t} . This restriction on strat-

egy spaces accounts for the adjective “Markov” in the phrase “Markov perfect

equilibrium.”

Player 1’s problem is to maximize

−
t1−1∑

t=t0

{
xTt
(
R1 + FT2tS1F2t

)
xt + uT1tQ1u1t

}

subject to

xt+1 = (At −B2tF2t)xt +B1tu1t.

This is an optimal linear regulator problem, and it can be solved by working

backward. Evidently, player 2’s problem is also an optimal linear regulator

problem.
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The solution of player 1’s problem is given by

F1t =
(
BT1tP1t+1B1t +Q1

)−1
BT1tP1t+1 (At −B2tF2t) (7.5.4)

t = t0, t0 + 1, . . . , t1 − 1

where P1t is the solution of the following matrix Riccati difference equation
with terminal condition P1t1 = 0:

P1t = (At − B2tF2t)
T P1t+1 (At − B2tF2t)

(
R1 + FT2tS1F2t

)

− (At − B2tF2t)
T P1t+1B1t

(
BT

1tP1t+1B1t + Q1

)−1
BT

1tP1t+1 (At − B2tF2t) .

(7.5.5)

The solution of player 2’s problem is

F2t =
(
BT2tP2t+1B2t +Q2

)−1
BT2tP2t+1 (At −B1tF1t) (7.5.6)

where P2t solves the following matrix Riccati difference equation, with terminal

condition P2t1 = 0:

P2t = (At −B1tF1t)
T
P2t+1 (At −B1tF1t) +

(
R2 + FT1tS2F1t

)

− (At −B1tF1t)
T
P2t+1B2t

(
BT2tP2t+1B2t +Q2

)−1
BT2tP2t+1 (At −B1tF1t) .

(7.5.7)

The equilibrium sequences {F1t, F2t; t = t0, t0 +1, . . . , t1−1} can be calcu-

lated from the pair of coupled Riccati difference equations (7.5.5) and (7.5.7).

In particular, we use equations (7.5.4), (7.5.5), (7.5.6), and (7.5.7) to “work

backward” from time t1 − 1. Notice that given P1t+1 and P2t+1 , equations

(7.5.4) and (7.5.6) are a system of (k2 × n) + (k1 × n) linear equations in the

(k2 × n) + (k1 × n) unknowns in the matrices F1t and F2t .

Notice how j ’s control law Fjt is a function of {Fis, s ≥ t, i 6= j} . Thus,

agent i ’s choice of {Fit; t = t0, . . . , t1 − 1} influences agent j ’s choice of control

laws. However, in the Markov perfect equilibrium of this game, each agent

is assumed to ignore the influence that his choice exerts on the other agent’s

choice.8

8 In an equilibrium of a Stackelberg or dominant player game, the timing of moves is so

altered relative to the present game that one of the agents called the leader takes into account

the influence that his choices exert on the other agent’s choices. See chapter 18.
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We often want to compute the solutions of such games for infinite horizons,

in the hope that the decision rules Fit settle down to be time invariant as

t1 → +∞ . In practice, we usually fix t1 and compute the equilibrium of an

infinite horizon game by driving t0 → −∞ . Judd followed that procedure in

the following example.

7.5.1. An example

This section describes the Markov perfect equilibrium of an infinite horizon

linear quadratic game proposed by Kenneth Judd (1990). The equilibrium is

computed by iterating to convergence on the pair of Riccati equations defined

by the choice problems of two firms. Each firm solves a linear quadratic op-

timization problem, taking as given and known the sequence of linear decision

rules used by the other player. The firms set prices and quantities of two goods

interrelated through their demand curves. There is no uncertainty. Relevant

variables are defined as follows:

Iit = inventories of firm i at beginning of t .

qit = production of firm i during period t .

pit = price charged by firm i during period t .

Sit = sales made by firm i during period t .

Eit = costs of production of firm i during period t .

Cit = costs of carrying inventories for firm i during t .

The firms’ cost functions are

Cit = ci1 + ci2Iit + .5ci3I
2
it

Eit = ei1 + ei2qit + .5ei3q
2
it

where eij , cij are positive scalars.

Inventories obey the laws of motion

Ii,t+1 = (1 − δ) Iit + qit − Sit

Demand is governed by the linear schedule

St = dpit +B
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where St = [S1t S2t ]
′
, d is a (2 × 2) negative definite matrix, and B is a

vector of constants. Firm i maximizes the undiscounted sum

lim
T→∞

1

T

T∑

t=0

(pitSit − Eit − Cit)

by choosing a decision rule for price and quantity of the form

uit = −Fixt

where uit = [ pit qit ]
′ , and the state is xt = [ I1t I2t ] .

In the web site for the book, we supply a Matlab program nnash.m that

computes a Markov perfect equilibrium of the linear quadratic dynamic game

in which player i maximizes

−
∞∑

t=0

{x′trixt + 2x′twiuit + u′itqiuit + u′jtsiujt + 2u′jtmiuit}

subject to the law of motion

xt+1 = axt + b1u1t + b2u2t

and a control law ujt = −fjxt for the other player; here a is n × n ; b1 is

n× k1 ; b2 is n× k2 ; r1 is n× n ; r2 is n× n ; q1 is k1 × k1 ; q2 is k2 × k2 ; s1

is k2 × k2 ; s2 is k1 × k1 ; w1 is n× k1 ; w2 is n× k2 ; m1 is k2 × k1 ; and m2

is k1 × k2 . The equilibrium of Judd’s model can be computed by filling in the

matrices appropriately. A Matlab tutorial judd.m uses nnash.m to compute the

equilibrium.
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7.6. Concluding remarks

This chapter has introduced two equilibrium concepts and illustrated how dy-

namic programming algorithms are embedded in each. For the linear models we

have used as illustrations, the dynamic programs become optimal linear regula-

tors, making it tractable to compute equilibria even for large state spaces. We

chose to define these equilibria concepts in partial equilibrium settings that are

more natural for microeconomic applications than for macroeconomic ones. In

the next chapter, we use the recursive equilibrium concept to analyze a general

equilibrium in an endowment economy. That setting serves as a natural starting

point for addressing various macroeconomic issues.

Exercises

These problems aim to teach about (1) mapping problems into recursive forms,

(2) different equilibrium concepts, and (3) using Matlab. Computer programs

are available from the web site for the book.9

Exercise 7.1 A competitive firm

A competitive firm seeks to maximize

(1)

∞∑

t=0

βtRt

where β ∈ (0, 1), and time t revenue Rt is

(2) Rt = ptyt − .5d (yt+1 − yt)
2
, d > 0,

where pt is the price of output, and yt is the time t output of the firm. Here

.5d(yt+1 − yt)
2 measures the firm’s cost of adjusting its rate of output. The

firm starts with a given initial level of output y0 . The price lies on the market

demand curve

(3) pt = A0 −A1Yt, A0, A1 > 0

9 The web site is ftp://zia.stanford.edu/pub/sargent/webdocs/matlab.
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where Yt is the market level of output, which the firm takes as exogenous, and

which the firm believes follows the law of motion

(4) Yt+1 = H0 +H1Yt,

with Y0 as a fixed initial condition.

a. Formulate the Bellman equation for the firm’s problem.

b. Formulate the firm’s problem as a discounted optimal linear regulator prob-

lem, being careful to describe all of the objects needed. What is the state for

the firm’s problem?

c. Use the Matlab program olrp.m to solve the firm’s problem for the following

parameter values: A0 = 100, A1 = .05, β = .95, d = 10, H0 = 95.5, and H1 =

.95. Express the solution of the firm’s problem in the form

(5) yt+1 = h0 + h1yt + h2Yt,

giving values for the hj ’s.

d. If there were n identical competitive firms all behaving according to equation

(5), what would equation (5) imply for the actual law of motion (4) for the

market supply Y ?

e. Formulate the Euler equation for the firm’s problem.

Exercise 7.2 Rational expectations

Now assume that the firm in problem 1 is “representative.” We implement

this idea by setting n = 1. In equilibrium, we will require that yt = Yt , but

we don’t want to impose this condition at the stage that the firm is optimizing

(because we want to retain competitive behavior). Define a rational expectations

equilibrium to be a pair of numbers H0, H1 such that if the representative firm

solves the problem ascribed to it in problem 1, then the firm’s optimal behavior

given by equation (5) implies that yt = Yt ∀ t ≥ 0.

a. Use the program that you wrote for exercise 7.1 to determine which if any of

the following pairs (H0, H1) is a rational expectations equilibrium: (i) (94.0888,

.9211); (ii) (93.22, .9433), and (iii) (95.08187459215024, .95245906270392)?

b. Describe an iterative algorithm by which the program that you wrote for

exercise 7.1 might be used to compute a rational expectations equilibrium. (You

are not being asked actually to use the algorithm you are suggesting.)
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Exercise 7.3 Maximizing welfare

A planner seeks to maximize the welfare criterion

(6)
∞∑

t=0

βtSt,

where St is “consumer surplus plus producer surplus” defined to be

St = S (Yt, Yt+1) =

∫ Yt

0

(A0 −A1x) d x− .5d (Yt+1 − Yt)
2 .

a. Formulate the planner’s Bellman equation.

b. Formulate the planner’s problem as an optimal linear regulator, and solve it

using the Matlab program olrp.m. Represent the solution in the form Yt+1 =

s0 + s1Yt .

c. Compare your answer in part b with your answer to part a of exercise 7.2 .

Exercise 7.4 Monopoly

A monopolist faces the industry demand curve (3) and chooses Yt to maximize∑∞
t=0 β

tRt where Rt = ptYt − .5d(Yt+1 − Yt)
2 and where Y0 is given.

a. Formulate the firm’s Bellman equation.

b. For the parameter values listed in exercise 7.1 , formulate and solve the firm’s

problem using olrp.m.

c. Compare your answer in part b with the answer you obtained to part b of

exercise 7.3 .

Exercise 7.5 Duopoly

An industry consists of two firms that jointly face the industry-wide demand

curve (3), where now Yt = y1t + y2t . Firm i = 1, 2 maximizes

(7)
∞∑

t=0

βtRit

where Rit = ptyit − .5d(yi,t+1 − yit)
2 .

a. Define a Markov perfect equilibrium for this industry.
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b. Formulate the Bellman equation for each firm.

c. Use the Matlab program nash.m to compute an equilibrium, assuming the

parameter values listed in exercise 7.1 .

Exercise 7.6 Self-control

This is a model of a human who has time inconsistent preferences, of a type

proposed by Phelps and Pollak (1968) and used by Laibson (1994).10 The

human lives from t = 0, . . . , T . Think of the human as actually consisting of

T+1 personalities, one for each period. Each personality is a distinct agent (i.e.,

a distinct utility function and constraint set). Personality T has preferences

ordered by u(cT ) and personality t < T has preferences that are ordered by

u (ct) + δ

T−t∑

j=1

βju (ct+j) , (7.1)

where u(·) is a twice continuously differentiable, increasing, and strictly concave

function of consumption of a single good; β ∈ (0, 1), and δ ∈ (0, 1]. When

δ < 1, preferences of the sequence of personalities are time inconsistent (that is,

not recursive). At each t , let there be a savings technology described by

kt+1 + ct ≤ f (kt) , (7.2)

where f is a production function with f ′ > 0, f ′′ ≤ 0.

a. Define a Markov perfect equilibrium for the T + 1 personalities.

b. Argue that the Markov perfect equilibrium can be computed by iterating on

the following functional equations:

Vj+1 (k) = max
c

{u (c) + βδWj (k′)} (7.3a)

Wj+1 (k) = u [cj+1 (k)] + βWj [f (k) − cj+1 (k)] (7.4)

where cj+1(k) is the maximizer of the right side of (7.3a) for j + 1, starting

from W0(k) = u[f(k)] . Here Wj(k) is the value of u(cT−j) + βu(cT−j+1) +

. . .+ βT−ju(cT ), taking the decision rules ch(k) as given for h = 0, 1, . . . , j .

c. State the optimization problem of the time 0 person who is given the power

to dictate the choices of all subsequent persons. Write the Bellman equations

for this problem. The time 0 person is said to have a commitment technology

for “self-control” in this problem.

10 See Gul and Pesendorfer (2000) for a single-agent recursive representation of preferences

exhibiting temptation and self-control.



Chapter 8
Equilibrium with Complete Markets

8.1. Time 0 versus sequential trading

This chapter describes competitive equilibria for a pure exchange infinite hori-

zon economy with stochastic endowments. This economy is useful for studying

risk sharing, asset pricing, and consumption. We describe two market struc-

tures: an Arrow-Debreu structure with complete markets in dated contingent

claims all traded at time 0, and a sequential-trading structure with complete

one-period Arrow securities . These two entail different assets and timings of

trades, but have identical consumption allocations. Both are referred to as com-

plete markets economies. They allow more comprehensive sharing of risks than

do the incomplete markets economies to be studied in chapters 16 and 17, or

the economies with imperfect enforcement or imperfect information, studied in

chapters 19 and 20.

8.2. The physical setting: preferences and endowments

In each period t ≥ 0, there is a realization of a stochastic event st ∈ S . Let

the history of events up and until time t be denoted st = [s0, s1, . . . , st] . The

unconditional probability of observing a particular sequence of events st is given

by a probability measure πt(s
t). We write conditional probabilities as πt(s

t|sτ ),
which is the probability of observing st conditional upon the realization of sτ .

In this chapter, we shall assume that trading occurs after observing s0 , which

we capture by setting π0(s0) = 1 for the initially given value of s0 .1

In section 8.9 we shall follow much of the literatures in macroeconomics

and econometrics and assume that πt(s
t) is induced by a Markov process. We

wait to impose that special assumption because some important findings do not

require making that assumption.

1 Most of our formulas carry over to the case where trading occurs before s0 has been

realized; just postulate a nondegenerate probability distribution π0(s0) over the initial state.

– 208 –
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There are I agents named i = 1, . . . , I . Agent i owns a stochastic en-

dowment of one good yit(s
t) that depends on the history st . The history st is

publicly observable. Household i purchases a history-dependent consumption

plan ci = {cit(st)}∞t=0 and orders these consumption streams by

U
(
ci
)

=

∞∑

t=0

∑

st

βtu
[
cit
(
st
)]
πt
(
st
)
. (8.2.1)

The right side is equal to E0

∑∞
t=0 β

tu(cit), where E0 is the mathematical ex-

pectation operator, conditioned on s0 . Here u(c) is an increasing, twice con-

tinuously differentiable, strictly concave function of consumption c ≥ 0 of one

good. The utility function satisfies the Inada condition2

lim
c↓0

u′ (c) = +∞.

A feasible allocation satisfies

∑

i

cit
(
st
)
≤
∑

i

yit
(
st
)

(8.2.2)

for all t and for all st .

8.3. Alternative trading arrangements

For a two-event stochastic process st ∈ S = {0, 1} , the trees in Figures 8.3.1

and 8.3.2 give two portraits of how the history of the economy unfolds. From

the perspective of time 0 given s0 = 0, Figure 8.3.1 portrays the full variety

of prospective histories that are possible up to time 3. Figure 8.3.2 portrays a

particular history that it is known the economy has indeed followed up to time

2, together with the two possible one-period continuations into period 3 that

can occur after that history.

2 The chief role of this Inada condition in this chapter will be to guarantee interior solu-

tions, i.e., the consumption of each agent is strictly positive in every period.
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(0,1,1,1)

(0,1,1,0)

(0,1,0,1)

(0,1,0,0)

(0,0,1,1)

(0,0,1,0)

(0,0,0,1)

(0,0,0,0)

t=0 t=1 t=2 t=3

Figure 8.3.1: The Arrow-Debreu commodity space for a

two-state Markov chain. At time 0, there are trades in time

t = 3 goods for each of the eight nodes that signify histories

that can possibly be reached starting from the node at time

0.

In this chapter we shall study two distinct trading arrangements that corre-

spond, respectively, to the two views of the economy in Figures 8.3.1 and 8.3.2.

One is what we shall call the Arrow-Debreu structure. Here markets meet at

time 0 to trade claims to consumption at all times t > 0 and that are contingent

on all possible histories up to t , st . In that economy, at time 0, households

trade claims on the time t consumption good at all nodes st . After time 0,

no further trades occur. The other economy has sequential trading of only one-

period-ahead state-contingent claims. Here trades occur at each date t ≥ 0.

Trades for history st+1 –contingent date t+1 goods occur only at the particular

date t history st that has been reached at t , as in Figure 8.3.2. Remarkably,

these two trading arrangements will support identical equilibrium allocations.

Those allocations share the notable property of being functions only of the ag-

gregate endowment realization. They depend neither on the specific history
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t=1t=0 t=2 t=3

(1|0,0,1)

(0|0,0,1)

Figure 8.3.2: The commodity space with Arrow securities.

At date t = 2, there are trades in time 3 goods for only those

time t = 3 nodes that can be reached from the realized time

t = 2 history (0, 0, 1).

preceding the outcome for the aggregate endowment nor on the realization of

individual endowments.

8.3.1. History dependence

In principle, the situation of household i at time t might very well depend on the

history st . A natural measure of household i ’s luck in life is {yi0(s0), yi1(s1), . . . ,
yit(s

t)} . This obviously depends on the history st . A question that will occupy

us in this chapter and in chapter 19 is whether, after trading, the household’s

consumption allocation at time t is history dependent or whether it depends

only on the current aggregate endowment. Remarkably, in the complete markets

models of this chapter, the consumption allocation at time t will depend only

on the aggregate endowment realization. The market incompleteness of chapter

17 and the information and enforcement frictions of chapter 19 will break that

result and put history dependence into equilibrium allocations.
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8.4. Pareto problem

As a benchmark against which to measure allocations attained by a market

economy, we seek efficient allocations. An allocation is said to be efficient if

it is Pareto optimal: it has the property that any reallocation that makes one

household strictly better off also makes one or more other households worse off.

We can find efficient allocations by posing a Pareto problem for a fictitious social

planner. The planner attaches nonnegative Pareto weights λi, i = 1, . . . , I on

the consumers and chooses allocations ci, i = 1, . . . , I to maximize

W =
I∑

i=1

λiU
(
ci
)

(8.4.1)

subject to (8.2.2). We call an allocation efficient if it solves this problem for

some set of nonnegative λi ’s. Let θt(s
t) be a nonnegative Lagrange multiplier

on the feasibility constraint (8.2.2) for time t and history st , and form the

Lagrangian

L =

∞∑

t=0

∑

st

{
I∑

i=1

λiβ
tu
(
cit
(
st
))
πt
(
st
)

+ θt
(
st
) I∑

i=1

[
yit
(
st
)
− cit

(
st
)]
}

The first-order condition for maximizing L with respect to cit(s
t) is

βtu′
(
cit
(
st
))
πt
(
st
)

= λ−1
i θt

(
st
)

(8.4.2)

for all i, t, st . Taking the ratio of (8.4.2) for consumers i and 1 gives

u′
(
cit (s

t)
)

u′ (c1t (st))
=
λ1

λi

which implies

cit
(
st
)

= u′−1
(
λ−1
i λ1u

′
(
c1t
(
st
)))

. (8.4.3)

Substituting (8.4.3) into feasibility condition (8.2.2) at equality gives

∑

i

u′−1
(
λ−1
i λ1u

′
(
c1t
(
st
)))

=
∑

i

yit
(
st
)
. (8.4.4)

Equation (8.4.4) is one equation in c1t (s
t). The right side of (8.4.4) is the

realized aggregate endowment, so the left side is a function only of the aggre-

gate endowment. Thus, c1t (s
t) depends only on the current realization of the
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aggregate endowment and neither on the specific history st leading up to that

outcome nor on the realization of individual endowments. Equation (8.4.3)

then implies that for all i , cit(s
t) depends only on the aggregate endowment

realization. We thus have:

Proposition 1: An efficient allocation is a function of the realized aggre-

gate endowment and depends neither on the specific history leading up to that

outcome nor on the realizations of individual endowments; cit(s
t) = ciτ (s̃

τ ) for

st and s̃τ such that
∑
j y

j
t (s

t) =
∑

j y
j
τ (s̃

τ ).

To compute the optimal allocation, first solve (8.4.4) for c1t (s
t), then solve

(8.4.3) for cit(s
t). Note from (8.4.3) that only the ratios of the Pareto weights

matter, so that we are free to normalize the weights, e.g., to impose
∑

i λi = 1.

8.4.1. Time invariance of Pareto weights

Through equations (8.4.3) and (8.4.4), the allocation cit(s
t) assigned to con-

sumer i depends in a time-invariant way on the aggregate endowment
∑

j y
j
t (s

t).

Consumer i ’s share of the aggregate varies directly with his Pareto weight λi .

In chapter 19, we shall see that the constancy through time of the Pareto weights

{λj}Ij=1 is a telltale sign that there are no enforcement- or information-related

incentive problems in this economy. When we inject those problems into our

environment in chapter 19, the time invariance of the Pareto weights evaporates.

8.5. Time 0 trading: Arrow-Debreu securities

We now describe how an optimal allocation can be attained by a competitive

equilibrium with the Arrow-Debreu timing. Households trade dated history-

contingent claims to consumption. There is a complete set of securities. Trades

occur at time 0, after s0 has been realized. At t = 0, households can exchange

claims on time t consumption, contingent on history st at price q0t (s
t). The

superscript 0 refers to the date at which trades occur, while the subscript t refers

to the date that deliveries are to be made. The household’s budget constraint
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is
∞∑

t=0

∑

st

q0t
(
st
)
cit
(
st
)
≤

∞∑

t=0

∑

st

q0t
(
st
)
yit
(
st
)
. (8.5.1)

The household’s problem is to choose ci to maximize expression (8.2.1) subject

to inequality (8.5.1). Here q0t (s
t) is the price of time t consumption contingent

on history st at t in terms of an abstract unit of account or numeraire.

Underlying the single budget constraint (8.5.1) is the fact that multilateral

trades are possible through a clearing operation that keeps track of net claims.3

All trades occur at time 0. After time 0, trades that were agreed to at time 0

are executed, but no more trades occur.

Each household has a single budget constraint (8.5.1) to which we attach a

Lagrange multiplier µi . We obtain the first-order conditions for the household’s

problem:

∂U
(
ci
)

∂cit (s
t)

= µiq
0
t

(
st
)
. (8.5.2)

The left side is the derivative of total utility with respect to the time t , history st

component of consumption. Each household has its own µi that is independent

of time. Note also that with specification (8.2.1) of the utility functional, we

have
∂U
(
ci
)

∂cit (s
t)

= βtu′
[
cit
(
st
)]
πt
(
st
)
. (8.5.3)

This expression implies that equation (8.5.2) can be written

βtu′
[
cit
(
st
)]
πt
(
st
)

= µiq
0
t

(
st
)
. (8.5.4)

We use the following definitions:

Definitions: A price system is a sequence of functions {q0t (st)}∞t=0 . An

allocation is a list of sequences of functions ci = {cit(st)}∞t=0 , one for each i .

Definition: A competitive equilibrium is a feasible allocation and a price

system such that, given the price system, the allocation solves each household’s

problem.

3 In the language of modern payments systems, this is a system with net settlements, not

gross settlements, of trades.
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Notice that equation (8.5.4) implies

u′
[
cit (s

t)
]

u′
[
cjt (st)

] =
µi
µj

(8.5.5)

for all pairs (i, j). Thus, ratios of marginal utilities between pairs of agents are

constant across all histories and dates.

An equilibrium allocation solves equations (8.2.2), (8.5.1), and (8.5.5).

Note that equation (8.5.5) implies that

cit
(
st
)

= u′−1

{
u′
[
c1t
(
st
)] µi
µ1

}
. (8.5.6)

Substituting this into equation (8.2.2) at equality gives

∑

i

u′−1

{
u′
[
c1t
(
st
)] µi
µ1

}
=
∑

i

yit
(
st
)
. (8.5.7)

The right side of equation (8.5.7) is the current realization of the aggregate

endowment. It does not per se depend on the specific history leading up this

outcome; therefore, the left side, and so c1t (s
t), must also depend only on the

current aggregate endowment. It follows from equation (8.5.6) that the equi-

librium allocation cit(s
t) for each i depends only on the economy’s aggregate

endowment. We summarize this analysis in the following proposition:

Proposition 2: The competitive equilibrium allocation is a function of

the realized aggregate endowment and depends neither on the specific history

leading up to that outcome nor on the realizations of individual endowments;

cit(s
t) = ciτ (s̃

τ ) for st and s̃τ such that
∑

j y
j
t (s

t) =
∑
j y

j
τ (s̃

τ ).
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8.5.1. Equilibrium pricing function

Suppose that ci , i = 1, . . . , I is an equilibrium allocation. Then the marginal

condition (8.5.2) or (8.5.4) gives the price system q0t (s
t) as a function of the

allocation to household i , for any i . Note that the price system is a stochastic

process. Because the units of the price system are arbitrary, one of the prices

can be normalized at any positive value. We shall set q00(s0) = 1, putting the

price system in units of time 0 goods. This choice implies that µi = u′[ci0(s0)]

for all i .

8.5.2. Optimality of equilibrium allocation

A competitive equilibrium allocation is a particular Pareto optimal allocation,

one that sets the Pareto weights λi = µ−1
i , where µi, i = 1, . . . , I is the unique

(up to multiplication by a positive scalar) set of Pareto weights associated with

the competitive equilibrium. Furthermore, at the competitive equilibrium allo-

cation, the shadow prices θt(s
t) for the associated planning problem equal the

prices q0t (s
t) for goods to be delivered at date t contingent on history st as-

sociated with the Arrow-Debreu competitive equilibrium. That the allocations

for the planning problem and the competitive equilibrium are aligned reflects

the two fundamental theorems of welfare economics (see Mas-Colell, Whinston,

and Green (1995)).

8.5.3. Equilibrium computation

To compute an equilibrium, we have somehow to determine ratios of the La-

grange multipliers, µi/µ1 , i = 1, . . . , I , that appear in equations (8.5.6) and

(8.5.7). The following Negishi algorithm accomplishes this.4

1. Fix a positive value for one µi , say µ1 , throughout the algorithm. Guess

some positive values for the remaining µi ’s. Then solve equations (8.5.6) and

(8.5.7) for a candidate consumption allocation ci, i = 1, . . . , I .

2. Use (8.5.4) for any household i to solve for the price system q0t (s
t).

4 See Negishi (1960).
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3. For i = 1, . . . , I , check the budget constraint (8.5.1). For those i ’s for which

the cost of consumption exceeds the value of their endowment, raise µi , while

for those i ’s for which the reverse inequality holds, lower µi .

4. Iterate to convergence on steps 1-3.

Multiplying all of the µi ’s by a positive scalar amounts simply to a change

in units of the price system. That is why we are free to normalize as we have in

step 1.

8.5.4. Interpretation of trading arrangement

In the competitive equilibrium, all trades occur at t = 0 in one market. Deliv-

eries occur after t = 0, but no more trades. A vast clearing or credit system

operates at t = 0. It ensures that condition (8.5.1) holds for each household

i . A symptom of the once-and-for-all trading arrangement is that each house-

hold faces one budget constraint that accounts for all trades across dates and

histories.

In section 8.8, we describe another trading arrangement with more trading

dates but fewer securities at each date.

8.6. Examples

8.6.1. Example 1: risk sharing

Suppose that the one-period utility function is of the constant relative risk-

aversion form

u (c) = (1 − γ)
−1
c1−γ , γ > 0.

Then equation (8.5.5) implies

[
cit
(
st
)]−γ

=
[
cjt
(
st
)]−γ µi

µj

or

cit
(
st
)

= cjt
(
st
)(µi

µj

)− 1
γ

. (8.6.1)
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Equation (8.6.1) states that time t elements of consumption allocations to dis-

tinct agents are constant fractions of one another. With a power utility function,

it says that individual consumption is perfectly correlated with the aggregate

endowment or aggregate consumption.5

The fractions of the aggregate endowment assigned to each individual are

independent of the realization of st . Thus, there is extensive cross-history

and cross-time consumption smoothing. The constant-fractions-of-consumption

characterization comes from these two aspects of the theory: (1) complete mar-

kets and (2) a homothetic one-period utility function.

8.6.2. Example 2: no aggregate uncertainty

Let the stochastic event st take values on the unit interval [0, 1]. There are

two households, with y1
t (s

t) = st and y2
t (s

t) = 1 − st . Note that the aggregate

endowment is constant,
∑

i y
i
t(s

t) = 1. Then equation (8.5.7) implies that

c1t (s
t) is constant over time and across histories, and equation (8.5.6) implies

that c2t (s
t) is also constant. Thus, the equilibrium allocation satisfies cit(s

t) = c̄i

for all t and st , for i = 1, 2. Then from equation (8.5.4),

q0t
(
st
)

= βtπt
(
st
) u′

(
c̄i
)

µi
, (8.6.2)

for all t and st , for i = 1, 2. Household i ’s budget constraint implies

u′
(
c̄i
)

µi

∞∑

t=0

∑

st

βtπt
(
st
) [
c̄i − yit

(
st
)]

= 0.

Solving this equation for c̄i gives

c̄i = (1 − β)

∞∑

t=0

∑

st

βtπt
(
st
)
yit
(
st
)
. (8.6.3)

5 Equation (8.6.1) implies that conditional on the history st , time t consumption cit(s
t) is

independent of the household’s individual endowment yit(s
t) . Mace (1991), Cochrane (1991),

and Townsend (1994) have all tested and rejected versions of this conditional independence

hypothesis. In chapter 19, we study how particular impediments to trade can help explain

these rejections.
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Summing equation (8.6.3) verifies that c̄1 + c̄2 = 1.6

8.6.3. Example 3: periodic endowment processes

Consider the special case of the previous example in which st is deterministic

and alternates between the values 1 and 0; s0 = 1, st = 0 for t odd, and st = 1

for t even. Thus, the endowment processes are perfectly predictable sequences

(1, 0, 1, . . .) for the first agent and (0, 1, 0, . . .) for the second agent. Let s̃t be

the history of (1, 0, 1, . . .) up to t . Evidently, πt(s̃
t) = 1, and the probability

assigned to all other histories up to t is zero. The equilibrium price system is

then

q0t
(
st
)

=

{
βt, if st = s̃t;

0, otherwise;

when using the time 0 good as numeraire, q00(s̃0) = 1. From equation (8.6.3),

we have

c̄1 = (1 − β)

∞∑

j=0

β2j =
1

1 + β
, (8.6.4a)

c̄2 = (1 − β)β

∞∑

j=0

β2j =
β

1 + β
. (8.6.4b)

Consumer 1 consumes more every period because he is richer by virtue of re-

ceiving his endowment earlier.

6 If we let β−1 = 1 + r , where r is interpreted as the risk-free rate of interest, then note

that (8.6.3) can be expressed as

c̄i =

(
r

1 + r

)
E0

∞∑

t=0

(1 + r)−t yit

(
st
)
.

Hence, equation (8.6.3) is a version of Friedman’s permanent income model, which asserts

that a household with zero financial assets consumes the annuity value of its human wealth

defined as the expected discounted value of its labor income (which for present purposes we

take to be yit(s
t)). Of course, in the present example, the household completely smooths its

consumption across time and histories, something that the household in Friedman’s model

typically cannot do. See chapter 16.
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8.7. Primer on asset pricing

Many asset-pricing models assume complete markets and price an asset by

breaking it into a sequence of history-contingent claims, evaluating each com-

ponent of that sequence with the relevant “state price deflator” q0t (s
t), then

adding up those values. The asset is viewed as redundant , in the sense that it

offers a bundle of history-contingent dated claims, each component of which has

already been priced by the market. While we shall devote chapter 13 entirely

to asset-pricing theories, it is useful to give some pricing formulas at this point

because they help illustrate the complete market competitive structure.

8.7.1. Pricing redundant assets

Let {dt(st)}∞t=0 be a stream of claims on time t , history st consumption, where

dt(s
t) is a measurable function of st . The price of an asset entitling the owner

to this stream must be

p0
0 (s0) =

∞∑

t=0

∑

st

q0t
(
st
)
dt
(
st
)
. (8.7.1)

If this equation did not hold, someone could make unbounded profits by syn-

thesizing this asset through purchases or sales of history-contingent dated com-

modities and then either buying or selling the asset. We shall elaborate this

arbitrage argument below and later in chapter 13 on asset pricing.

8.7.2. Riskless consol

As an example, consider the price of a riskless consol, that is, an asset offering

to pay one unit of consumption for sure each period. Then dt(s
t) = 1 for all t

and st , and the price of this asset is

∞∑

t=0

∑

st

q0t
(
st
)
. (8.7.2)
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8.7.3. Riskless strips

As another example, consider a sequence of strips of payoffs on the riskless

consol. The time t strip is just the payoff process dτ = 1 if τ = t ≥ 0, and

0 otherwise. Thus, the owner of the strip is entitled only to the time t coupon.

The value of the time t strip at time 0 is evidently
∑

st

q0t
(
st
)
.

Compare this to the price of the consol (8.7.2). Of course, we can think of the

t-period riskless strip as simply a t-period zero-coupon bond. See section 2.7

for an account of a closely related model of yields on such bonds.

8.7.4. Tail assets

Return to the stream of dividends {dt(st)}t≥0 generated by the asset priced in

equation (8.7.1). For τ ≥ 1, suppose that we strip off the first τ − 1 peri-

ods of the dividend and want to get the time 0 value of the dividend stream

{dt(st)}t≥τ . Specifically, we seek this asset value for each possible realization

of sτ . Let p0
τ (s

τ ) be the time 0 price of an asset that entitles the owner to

dividend stream {dt(st)}t≥τ if history sτ is realized,

p0
τ (sτ ) =

∑

t≥τ

∑

st|sτ

q0t
(
st
)
dt
(
st
)
, (8.7.3)

where the summation over st|sτ means that we sum over all possible histories

s̃t such that s̃τ = sτ . The units of the price are time 0 (state s0 ) goods per

unit (the numeraire) so that q00(s0) = 1. To convert the price into units of time

τ , history sτ consumption goods, divide by q0τ (s
τ ) to get

pττ (sτ ) ≡ p0
τ (sτ )

q0τ (sτ )
=
∑

t≥τ

∑

st|sτ

q0t (st)

q0τ (sτ )
dt
(
st
)
. (8.7.4)

Notice that7

qτt
(
st
)
≡ q0t (st)

q0τ (sτ )
=

βtu′
[
cit (s

t)
]
πt (s

t)

βτu′ [ciτ (sτ )]πτ (sτ )

= βt−τ
u′
[
cit (s

t)
]

u′ [ciτ (sτ )]
πt
(
st|sτ

)
.

(8.7.5)

7 Because the marginal conditions hold for all consumers, this condition holds for all i .
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Here qτt (s
t) is the price of one unit of consumption delivered at time t , history st

in terms of the date τ , history sτ consumption good; πt(s
t|sτ ) is the probability

of history st conditional on history sτ at date τ . Thus, the price at t for the

“tail asset” is

pττ (sτ ) =
∑

t≥τ

∑

st|sτ

qτt
(
st
)
dt
(
st
)
. (8.7.6)

When we want to create a time series of, say, equity prices, we use the “tail

asset” pricing formula. An equity purchased at time τ entitles the owner to the

dividends from time τ forward. Our formula (8.7.6) expresses the asset price

in terms of prices with time τ , history sτ good as numeraire.

Notice how formula (8.7.5) takes the form of a pricing function for a com-

plete markets economy with date- and history-contingent commodities, whose

markets have been reopened at date τ , history sτ , given the wealth levels im-

plied by the tails of each household’s endowment and consumption streams. We

leave it as an exercise to the reader to prove the following proposition.

Proposition 3: Starting from the distribution of time t wealth that is

implicit in a time 0 Arrow-Debreu equilibrium, if markets are reopened at date

t after history st , no trades will occur. That is, given the price system (8.7.5),

all households choose to continue the tails of their original consumption plans.

8.7.5. Pricing one-period returns

The one-period version of equation (8.7.5) is

qττ+1

(
sτ+1

)
= β

u′
[
ciτ+1

(
sτ+1

)]

u′ [ciτ (sτ )]
πτ+1

(
sτ+1|sτ

)
.

The right side is the one-period pricing kernel at time τ . If we want to find the

price at time τ in history sτ of a claim to a random payoff ω(sτ+1), we use

pττ (sτ ) =
∑

sτ+1

qττ+1

(
sτ+1

)
ω (sτ+1)

or

pττ (sτ ) = Eτ

[
β
u′ (cτ+1)

u′ (cτ )
ω (sτ+1)

]
, (8.7.7)
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where Eτ is the conditional expectation operator. We have deleted the i su-

perscripts on consumption, with the understanding that equation (8.7.7) is true

for any consumer i ; we have also suppressed the dependence of cτ on sτ , which

is implicit.

Let Rτ+1 ≡ ω(sτ+1)/p
τ
τ (s

τ ) be the one-period gross return on the asset.

Then for any asset, equation (8.7.7) implies

1 = Eτ

[
β
u′ (cτ+1)

u′ (cτ )
Rτ+1

]
≡ Eτ [mτ+1Rτ+1] . (8.7.8)

The term mτ+1 ≡ βu′(cτ+1)/u
′(cτ ) functions as a stochastic discount factor.

Like Rτ+1 , it is a random variable measurable with respect to sτ+1 , given sτ .

Equation (8.7.8) is a restriction on the conditional moments of returns and

mt+1 . Applying the law of iterated expectations to equation (8.7.8) gives the

unconditional moments restriction

1 = E

[
β
u′ (cτ+1)

u′ (cτ )
Rτ+1

]
≡ E [mτ+1Rτ+1] . (8.7.9)

In the next section, we display another market structure in which the one-

period pricing kernel qtt+1(s
t+1) also plays a decisive role. This structure uses

the celebrated one-period “Arrow securities,” the sequential trading of which

perfectly substitutes for the comprehensive trading of long horizon claims at

time 0.

8.8. Sequential trading: Arrow securities

This section describes an alternative market structure that preserves both the

equilibrium allocation and the key one-period asset-pricing formula (8.7.7).
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8.8.1. Arrow securities

We build on an insight of Arrow (1964) that one-period securities are enough

to implement complete markets, provided that new one-period markets are re-

opened for trading each period. Thus, at each date t ≥ 0, trades occur in a

set of claims to one-period-ahead state-contingent consumption. We describe a

competitive equilibrium of this sequential-trading economy. With a full array of

these one-period-ahead claims, the sequential-trading arrangement attains the

same allocation as the competitive equilibrium that we described earlier.

8.8.2. Insight: wealth as an endogenous state variable

A key step in finding a sequential-trading arrangement is to identify a variable

to serve as the state in a value function for the household at date t . We find

this state by taking an equilibrium allocation and price system for the (Arrow-

Debreu) time 0 trading structure and applying a guess-and-verify method. We

begin by asking the following question. In the competitive equilibrium where

all trading takes place at time 0, excluding its endowment, what is the implied

wealth of household i at time t after history st ? In period t , conditional on

history st , we sum up the value of the household’s purchased claims to current

and future goods net of its outstanding liabilities. Since history st is realized,

we discard all claims and liabilities contingent on another initial history. For

example, household i ’s net claim to delivery of goods in a future period τ ≥ t ,

contingent on history s̃τ such that s̃t = st , is given by [ciτ (s̃
τ )− yit(s̃

τ )] . Thus,

the household’s wealth, or the value of all its current and future net claims,

expressed in terms of the date t , history st consumption good is

Υi
t

(
st
)

=

∞∑

τ=t

∑

sτ |st

qtτ (sτ )
[
ciτ (sτ ) − yit (s

τ )
]
. (8.8.1)

Notice that feasibility constraint (8.2.2) at equality implies that

I∑

i=1

Υi
t

(
st
)

= 0, ∀t, st.

In moving from the Arrow-Debreu economy to one with sequential trading,

we can match up the time t , history st wealth of the household in the sequen-

tial economy with the tail wealth Υi
t(s

t) from the Arrow-Debreu computed in
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equation (8.8.1). But first we have to say something about debt limits, a feature

that was absent in the Arrow-Debreu economy because we imposed (8.5.1).

8.8.3. Debt limits

In moving to the sequential formulation, we shall need to impose some restric-

tions on asset trades to prevent Ponzi schemes. We impose the weakest possible

restrictions in this section. We’ll synthesize restrictions that work by starting

from the equilibrium allocation of Arrow-Debreu economy (with time 0 mar-

kets), and find some state-by-state debt limits that suffice to support sequential

trading. Often we’ll refer to these weakest possible debt limits as the “natu-

ral debt limits.” These limits come from the commonsense requirement that it

has to be feasible for the consumer to repay his state contingent debt in every

possible state. Given our assumption that cit(s
t) must be nonnegative, that

feasibility requirement leads to the natural debt limits that we now describe.

Let qtτ (s
τ ) be the Arrow-Debreu price, denominated in units of the date

t , history st consumption good. Consider the value of the tail of agent i ’s

endowment sequence at time t in history st :

Ait
(
st
)

=

∞∑

τ=t

∑

sτ |st

qtτ (sτ ) yiτ (sτ ) . (8.8.2)

We call Ait(s
t) the natural debt limit at time t and history st . It is the value

of the maximal amount that agent i can repay starting from that period, as-

suming that his consumption is zero forever. From now on, we shall require

that household i at time t − 1 and history st−1 cannot promise to pay more

than Ait(s
t) conditional on the realization of st tomorrow, because it will not

be feasible to repay more. Note that household i at time t− 1 faces one such

borrowing constraint for each possible realization of st tomorrow.
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8.8.4. Sequential trading

There is a sequence of markets in one-period-ahead state-contingent claims to

wealth or consumption. At each date t ≥ 0, households trade claims to date

t+ 1 consumption, whose payment is contingent on the realization of st+1 . Let

ãit(s
t) denote the claims to time t consumption, other than its endowment, that

household i brings into time t in history st . Suppose that Q̃t(st+1|st) is a

pricing kernel to be interpreted as follows: Q̃t(st+1|st) gives the price of one

unit of time t+1 consumption, contingent on the realization st+1 at t+1, when

the history at t is st . Notice that we are guessing that this function exists. The

household faces a sequence of budget constraints for t ≥ 0, where the time t ,

history st budget constraint is

c̃it
(
st
)

+
∑

st+1

ãit+1

(
st+1, s

t
)
Q̃t
(
st+1|st

)
≤ yit

(
st
)

+ ãit
(
st
)
. (8.8.3)

At time t , a household chooses c̃it(s
t) and {ãit+1(st+1, s

t)} , where {ãit+1(st+1, s
t)}

is a vector of claims on time t + 1 consumption, one element of the vector for

each value of the time t+ 1 realization of st+1 . To rule out Ponzi schemes, we

impose the state-by-state borrowing constraints

−ãit+1

(
st+1

)
≤ Ait+1

(
st+1

)
, (8.8.4)

where Ait+1(s
t+1) is computed in equation (8.8.2).

Let ηit(s
t) and νit(s

t; st+1) be the nonnegative Lagrange multipliers on the

budget constraint (8.8.3) and the borrowing constraint (8.8.4), respectively, for

time t and history st . The Lagrangian can then be formed as

Li =

∞∑

t=0

∑

st

{
βtu(c̃it(s

t))πt(s
t)

+ ηit(s
t)
[
yit(s

t) + ãit(s
t) − c̃it(s

t) −
∑

st+1

ãit+1(st+1, s
t)Q̃t(st+1|st)

]

+ νit(s
t; st+1)

[
Ait+1(s

t+1) + ãit+1(s
t+1)

] }
,

for a given initial wealth ãi0(s0). The first-order conditions for maximizing Li

with respect to c̃it(s
t) and {ãit+1(st+1, s

t)}st+1 are

βtu′(c̃it(s
t))πt(s

t) − ηit(s
t) = 0 , (8.8.5a)

−ηit(st)Q̃t(st+1|st) + νit(s
t; st+1) + ηit+1(st+1, s

t) = 0 , (8.8.5b)



Sequential trading: Arrow securities 227

for all st+1 , t , st . In the optimal solution to this problem, the natural debt

limit (8.8.4) will not be binding, and hence the Lagrange multipliers νit(s
t; st+1)

are all equal to zero for the following reason: if there were any history st+1 lead-

ing to a binding natural debt limit, the household would from then on have to

set consumption equal to zero in order to honor his debt. Because the house-

hold’s utility function satisfies the Inada condition, that would mean that all

future marginal utilities would be infinite. Thus, it is trivial to find alternative

affordable allocations that yield higher expected utility by postponing earlier

consumption to periods after such a binding constraint, i.e., alternative prefer-

able allocations where the natural debt limits no longer bind. After setting

νit(s
t; st+1) = 0 in equation (8.8.5b), the first-order conditions imply the follow-

ing conditions on the optimally chosen consumption allocation,

Q̃t(st+1|st) = β
u′(c̃it+1(s

t+1))

u′(c̃it(s
t))

πt(s
t+1|st), (8.8.6)

for all st+1 , t , st .

Definition: A distribution of wealth is a vector ~̃at(s
t) = {ãit(st)}Ii=1 satis-

fying
∑
i ã
i
t(s

t) = 0.

Definition: A sequential-trading competitive equilibrium is an initial distri-

bution of wealth ~̃a0(s0), an allocation {c̃i}Ii=1 , and pricing kernels Q̃t(st+1|st)
such that

(a) for all i , given ãi0(s0) and the pricing kernels, the consumption allocation

c̃i solves the household’s problem;

(b) for all realizations of {st}∞t=0 , the households’ consumption allocation and

implied asset portfolios {c̃it(st), {ãit+1(st+1, s
t)}st+1}i satisfy

∑
i c̃
i
t(s

t) =
∑
i y
i
t(s

t)

and
∑
i ã
i
t+1(st+1, s

t) = 0 for all st+1 .

Note that this definition leaves open the initial distribution of wealth. The

Arrow-Debreu equilibrium with complete markets at time 0 in effect pinned

down a particular distribution of wealth.
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8.8.5. Equivalence of allocations

By making an appropriate guess about the form of the pricing kernels, it is

easy to show that a competitive equilibrium allocation of the complete markets

model with time 0 trading is also a sequential-trading competitive equilibrium

allocation, one with a particular initial distribution of wealth. Thus, take q0t (s
t)

as given from the Arrow-Debreu equilibrium and suppose that the pricing kernel

Q̃t(st+1|st) makes the following recursion true:

q0t+1(s
t+1) = Q̃t(st+1|st)q0t (st),

or

Q̃t(st+1|st) = qtt+1(s
t+1). (8.8.7)

Let {cit(st)} be a competitive equilibrium allocation in the Arrow-Debreu

economy. If equation (8.8.7) is satisfied, that allocation is also a sequential-

trading competitive equilibrium allocation. To show this fact, take the house-

hold’s first-order conditions (8.5.4) for the Arrow-Debreu economy from two

successive periods and divide one by the other to get

βu′[cit+1(s
t+1)]π(st+1|st)

u′[cit(s
t)]

=
q0t+1(s

t+1)

q0t (s
t)

= Q̃t(st+1|st). (8.8.8)

If the pricing kernel satisfies equation (8.8.7), this equation is equivalent with the

first-order condition (8.8.6) for the sequential-trading competitive equilibrium

economy. It remains for us to choose the initial wealth of the sequential-trading

equilibrium so that the sequential-trading competitive equilibrium duplicates

the Arrow-Debreu competitive equilibrium allocation.

We conjecture that the initial wealth vector ~̃a0(s0) of the sequential-trading

economy should be chosen to be the null vector. This is a natural conjecture,

because it means that each household must rely on its own endowment stream

to finance consumption, in the same way that households are constrained to

finance their history-contingent purchases for the infinite future at time 0 in

the Arrow-Debreu economy. To prove that the conjecture is correct, we must

show that this particular initial wealth vector enables household i to finance

{cit(st)} and leaves no room to increase consumption in any period and history.

The proof proceeds by guessing that, at time t ≥ 0 and history st , house-

hold i chooses an asset portfolio given by ãit+1(st+1, s
t) = Υi

t+1(s
t+1) for all
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st+1 . The value of this asset portfolio expressed in terms of the date t , history

st consumption good is

∑

st+1

ãit+1(st+1, s
t)Q̃t(st+1|st) =

∑

st+1|st

Υi
t+1(s

t+1)qtt+1(s
t+1)

=
∞∑

τ=t+1

∑

sτ |st

qtτ (s
τ )
[
ciτ (s

τ ) − yiτ (s
τ )
]
, (8.8.9)

where we have invoked expressions (8.8.1) and (8.8.7).8 To demonstrate that

household i can afford this portfolio strategy, we now use budget constraint

(8.8.3) to compute the implied consumption plan {c̃iτ (sτ )} . First, in the initial

period t = 0 with ãi0(s0) = 0, the substitution of equation (8.8.9) into budget

constraint (8.8.3) at equality yields

c̃i0(s0) +

∞∑

t=1

∑

st

q0t (s
t)
[
cit(s

t) − yit(s
t)
]

= yit(s0) + 0 .

This expression together with budget constraint (8.5.1) at equality imply c̃i0(s0) =

ci0(s0). In other words, the proposed asset portfolio is affordable in period 0

and the associated consumption level is the same as in the competitive equi-

librium of the Arrow-Debreu economy. In all consecutive future periods t > 0

and histories st , we replace ãit(s
t) in constraint (8.8.3) by Υi

t(s
t), and after

noticing that the value of the asset portfolio in (8.8.9) can be written as

∑

st+1

ãit+1(st+1, s
t)Q̃t(st+1|st) = Υi

t(s
t) −

[
cit(s

t) − yit(s
t)
]
, (8.8.10)

it follows immediately from (8.8.3) that c̃it(s
t) = cit(s

t) for all periods and

histories.

We have shown that the proposed portfolio strategy attains the same con-

sumption plan as in the competitive equilibrium of the Arrow-Debreu economy,

8 We have also used the following identities,

qt+1
τ (sτ )qtt+1(st+1) =

q0τ (sτ )

q0t+1(st+1)

q0t+1(st+1)

q0t (s
t)

= qtτ (sτ ) for τ > t.
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but what precludes household i from further increasing current consumption

by reducing some component of the asset portfolio? The answer lies in the

debt limit restrictions to which the household must adhere. In particular, if

the household wants to ensure that consumption plan {ciτ (sτ )} can be attained

starting next period in all possible future states, the household should subtract

the value of this commitment to future consumption from the natural debt limit

in (8.8.2). Thus, the household is facing a state-by-state borrowing constraint

that is more restrictive than restriction (8.8.4): for any st+1 ,

−ãit+1(s
t+1) ≤ Ait+1(s

t+1) −
∞∑

τ=t+1

∑

sτ |st+1

qt+1
τ (sτ )ciτ (s

τ ) = −Υi
t+1(s

t+1),

or

ãit+1(s
t+1) ≥ Υi

t+1(s
t+1).

Hence, household i does not want to increase consumption at time t by reduc-

ing next period’s wealth below Υi
t+1(s

t+1) because that would jeopardize the

attainment of the preferred consumption plan satisfying first-order conditions

(8.8.6) for all future periods and histories.

8.9. Recursive competitive equilibrium

We have established that the equilibrium allocations are the same in the Arrow-

Debreu economy with complete markets in dated contingent claims all traded

at time 0, and in a sequential-trading economy with complete one-period Ar-

row securities. This finding holds for arbitrary individual endowment processes

{yit(st)}i that are measurable functions of the history of events st , which in turn

are governed by some arbitrary probability measure πt(s
t). At this level of gen-

erality, both the pricing kernels Q̃t(st+1|st) and the wealth distributions ~̃at(s
t)

in the sequential-trading economy depend on the history st . That is, these

objects are time-varying functions of all past events {sτ}tτ=0 , which makes it

extremely difficult to formulate an economic model that can be used to confront

empirical observations. What we want is a framework where economic outcomes

are functions of a limited number of “state variables” that summarize the effects

of past events and current information. This desire leads us to make the follow-

ing specialization of the exogenous forcing processes that facilitate a recursive

formulation of the sequential-trading equilibrium.
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8.9.1. Endowments governed by a Markov process

Let π(s′|s) be a Markov chain with given initial distribution π0(s) and state

space s ∈ S . That is, Prob(st+1 = s′|st = s) = π(s′|s) and Prob(s0 = s) =

π0(s). As we saw in chapter 2, the chain induces a sequence of probability

measures πt(s
t) on histories st via the recursions

πt(s
t) = π(st|st−1)π(st−1|st−2) . . . π(s1|s0)π0(s0). (8.9.1)

In this chapter we have assumed that trading occurs after s0 has been observed,

which is here captured by setting π0(s0) = 1 for the initially given value of s0 .

Because of the Markov property, the conditional probability πt(s
t|sτ ) for

t > τ depends only on the state sτ at time τ and does not depend on the

history before τ ,

πt(s
t|sτ ) = π(st|st−1)π(st−1|st−2) . . . π(sτ+1|sτ ). (8.9.2)

Next, we assume that households’ endowments in period t are time invari-

ant measurable functions of st , y
i
t(s

t) = yi(st) for each i . This assumption

means that each household’s endowment follows a Markov process, since st it-

self is governed by a Markov process. Of course, all of our previous results

continue to hold, but the Markov assumption imparts further structure to the

equilibrium.

8.9.2. Equilibrium outcomes inherit the Markov property

Proposition 2 asserted a particular kind of history independence of the equilib-

rium allocation that prevails under any stochastic process for the endowments.

That is, each individual’s consumption is only a function of the current realiza-

tion of the aggregate endowment and does not depend on the specific history

leading up that outcome. Now, under the assumption that the endowments are

governed by a Markov process, it follows immediately from equations (8.5.6)

and (8.5.7) that the equilibrium allocation is a function only of the current

state st ,

cit(s
t) = c̄i(st). (8.9.3)

After substituting (8.9.2) and (8.9.3) into (8.8.6), the pricing kernel in the

sequential-trading equilibrium is then only a function of the current state,

Q̃t(st+1|st) = β
u′(c̄i(st+1))

u′(c̄i(st))
π(st+1|st) ≡ Q(st+1|st). (8.9.4)
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After similar substitutions with respect to equation (8.7.5), we can also establish

history independence of the relative prices in the Arrow-Debreu economy:

Proposition 4: Given that the endowments follow a Markov process, the

Arrow-Debreu equilibrium price of date-t ≥ 0, history st consumption goods

expressed in terms of date τ (0 ≤ τ ≤ t), history sτ consumption goods is not

history dependent: qτt (s
t) = qjk(s̃

k) for j, k ≥ 0 such that t − τ = k − j and

[sτ , sτ+1, . . . , st] = [s̃j , s̃j+1, . . . , s̃k] .

Using this proposition, we can verify that both the natural debt limits

(8.8.2) and households’ wealth levels (8.8.1) exhibit history independence,

Ait(s
t) = Āi(st) , (8.9.5)

Υi
t(s

t) = Ῡi(st) . (8.9.6)

The finding concerning wealth levels (8.9.6) conveys a deep insight into how

the sequential-trading competitive equilibrium attains the first-best outcome in

which no idiosyncratic risk is borne by individual households. In particular, each

household enters every period with a wealth level that is independent of past

realizations of his endowment. That is, his past trades have fully insured him

against the idiosyncratic outcomes of his endowment. And for that very same

insurance motive, the household now enters the present period with a wealth

level that is a function of the current state st . It is a state-contingent wealth

level that was chosen by the household in the previous period t − 1, and this

wealth will be just sufficient for continuing his trading scheme of insuring against

future idiosyncratic risks. The optimal holding of wealth is a function only of

st because the current state st determines the current endowment and contains

all information that predicts future realizations of the household’s endowment

process (besides determining current prices and forecasts of future prices). It can

be shown that a household tends to choose higher wealth levels for those states

next period that either make his next period endowment low or more generally

signal poor future prospects for the household as compared to states that are

more favorable to that particular household. Of course, these tendencies among

individual households are modified by differences in the economy’s aggregate

endowment across states (as reflected in equilibrium asset prices). Aggregate

shocks cannot be diversified away but must be borne by all of the households.

The pricing kernel Q(st|st−1) and the assumed clearing of all markets create

the “invisible hand” that coordinates households’ transactions at time t− 1 in
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such a way that only aggregate risk and no idiosyncratic risk is borne by the

households.

8.9.3. Recursive formulation of optimization and equilibrium

Given that the pricing kernel Q(s′|s) and the endowment yi(s) are functions

of a Markov process s , we are motivated to seek a recursive solution to the

household’s optimization problem. Household i ’s state at time t is its wealth

ait and the current realization st . We seek a pair of optimal policy functions

hi(a, s), gi(a, s, s′) such that the household’s optimal decisions are

cit = hi(ait, st), (8.9.7a)

ait+1(st+1) = gi(ait, st, st+1). (8.9.7b)

Let vi(a, s) be the optimal value of household i ’s problem starting from

state (a, s); vi(a, s) is the maximum expected discounted utility household i

with current wealth a can attain in state s . The Bellman equation for the

household’s problem is

vi(a, s) = max
c,â(s′)

{
u(c) + β

∑

s′

vi[â(s′), s′]π(s′|s)
}

(8.9.8)

where the maximization is subject to the following version of constraint (8.8.3):

c+
∑

s′

â(s′)Q(s′|s) ≤ yi(s) + a (8.9.9)

and also

c ≥ 0, (8.9.10a)

−â(s′) ≤ Āi(s′), ∀s′. (8.9.10b)

Let the optimum decision rules be

c = hi(a, s), (8.9.11a)

â(s′) = gi(a, s, s′). (8.9.11b)

Note that the solution of the Bellman equation implicitly depends on Q(·|·)
because it appears in the constraint (8.9.9). In particular, use the first-order
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conditions for the problem on the right of equation (8.9.8) and the Benveniste-

Scheinkman formula and rearrange to get

Q(st+1|st) =
βu′(cit+1)π(st+1|st)

u′(cit)
, (8.9.12)

where it is understood that cit = hi(ait, st) and cit+1 = hi(ait+1(st+1), st+1) =

hi(gi(ait, st, st+1), st+1).

Definition: A recursive competitive equilibrium is an initial distribution of

wealth ~a0 , a pricing kernel Q(s′|s), sets of value functions {vi(a, s)}Ii=1 , and

decision rules {hi(a, s), gi(a, s, s′)}Ii=1 such that

(a) for all i , given ai0 and the pricing kernel, the decision rules solve the house-

hold’s problem;

(b) for all realizations of {st}∞t=0 , the consumption and asset portfolios {{cit,
{âit+1(s

′)}s′}i}t implied by the decision rules satisfy
∑
i c
i
t =

∑
i y
i(st) and∑

i â
i
t+1(s

′) = 0 for all t and s′ .

We shall use the recursive competitive equilibrium concept extensively in

our discussion of asset pricing in chapter 13.

8.10. j -step pricing kernel

We are sometimes interested in the price at time t of a claim to one unit of

consumption at date τ > t contingent on the time τ state being sτ , regardless

of the particular history by which sτ is reached at τ . We let Qj(s
′|s) denote

the j -step pricing kernel to be interpreted as follows: Qj(s
′|s) gives the price

of one unit of consumption j periods ahead, contingent on the state in that

future period being s′ , given that the current state is s . For example, j = 1

corresponds to the one-step pricing kernel Q(s′|s).
With markets in all possible j -step-ahead contingent claims, the counter-

part to constraint (8.8.3), the household’s budget constraint at time t , is

cit +

∞∑

j=1

∑

st+j

Qj(st+j |st)zit,j(st+j) ≤ yi(st) + ait. (8.10.1)
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Here zit,j(st+j) is household i ’s holdings at the end of period t of contingent

claims that pay one unit of the consumption good j periods ahead at date t+j ,

contingent on the state at date t+ j being st+j . The household’s wealth in the

next period depends on the chosen asset portfolio and the realization of st+1 ,

ait+1(st+1) = zit,1(st+1) +

∞∑

j=2

∑

st+j

Qj−1(st+j |st+1)z
i
t,j(st+j).

The realization of st+1 determines both which element of the vector of one-

period-ahead claims {zit,1(st+1)} pays off at time t+1, and the capital gains and

losses inflicted on the holdings of longer horizon claims implied by equilibrium

prices Qj(st+j+1|st+1).

With respect to zit,j(st+j) for j > 1, use the first-order condition for the

problem on the right of (8.9.8) and the Benveniste-Scheinkman formula and

rearrange to get

Qj(st+j |st) =
∑

st+1

βu′[cit+1(st+1)]π(st+1|st)
u′(cit)

Qj−1(st+j |st+1). (8.10.2)

This expression, evaluated at the competitive equilibrium consumption allo-

cation, characterizes two adjacent pricing kernels.9 Together with first-order

condition (8.9.12), formula (8.10.2) implies that the kernels Qj, j = 2, 3, . . . ,

can be computed recursively:

Qj(st+j |st) =
∑

st+1

Q1(st+1|st)Qj−1(st+j |st+1). (8.10.3)

9 According to expression (8.9.3), the equilibrium consumption allocation is not history

dependent, so that (cit, {c
i
t+1(st+1)}st+1 ) = (c̄i(st), {c̄

i(st+1)}st+1 ) . Because marginal con-

ditions hold for all households, the characterization of pricing kernels in (8.10.2) holds for any

i .
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8.10.1. Arbitrage-free pricing

It is useful briefly to describe how arbitrage free pricing theory deduces re-

strictions on asset prices by manipulating budget sets with redundant assets.

We now present an arbitrage argument as an alternative way of deriving re-

striction (8.10.3) that was established above by using households’ first-order

conditions evaluated at the equilibrium consumption allocation. In addition to

j -step-ahead contingent claims, we illustrate the arbitrage pricing theory by

augmenting the trading opportunities in our Arrow securities economy by let-

ting the consumer also trade an ex-dividend Lucas tree. Because markets are

already complete, these additional assets are redundant. They have to be priced

in a way that leaves the budget set unaltered.10

Assume that at time t , in addition to purchasing a quantity zt,j(st+j) of

j -step-ahead claims paying one unit of consumption at time t + j if the state

takes value st+j at time t+j , the consumer also purchases Nt units of a stock or

Lucas tree. Let the ex-dividend price of the tree at time t be p(st). Next period,

the tree pays a dividend d(st+1) depending on the state st+1 . Ownership of the

Nt units of the tree at the beginning of t+1 entitles the consumer to a claim on

Nt[p(st+1) + d(st+1)] units of time t + 1 consumption.11 As before, let at be

the wealth of the consumer, apart from his endowment, y(st). In this setting,

the augmented version of constraint (8.10.1), the consumer’s budget constraint,

is

ct +

∞∑

j=1

∑

st+j

Qj(st+j |st)zt,j(st+j) + p(st)Nt ≤ at + y(st) (8.10.4a)

and
at+1(st+1) = zt,1(st+1) + [p(st+1) + d(st+1)]Nt

+

∞∑

j=2

∑

st+j

Qj−1(st+j |st+1)zt,j(st+j).
(8.10.4b)

Multiply equation (8.10.4b) by Q1(st+1|st), sum over st+1 , solve for∑
st+1

Q1(st+1|st)zt,1(st), and substitute this expression in (8.10.4a) to get

ct+



p(st) −

∑

st+1

Q1(st+1|st)[p(st+1) + d(st+1)]



Nt

10 That the additional assets are redundant follows from the fact that trading Arrow secu-

rities is sufficient to complete markets.
11 We calculate the price of this asset using a different method in chapter 13.
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+

∞∑

j=2

∑

st+j




Qj(st+j |st) −
∑

st+1

Qj−1(st+j |st+1)Q1(st+1|st)




 zt,j(st+j)

+
∑

st+1

Q1(st+1|st)at+1(st+1) ≤ at + y(st). (8.10.5)

If the two terms in braces are not zero, the consumer can attain unbounded

consumption and future wealth by purchasing or selling either the stock (if the

first term in braces is not zero) or a state-contingent claim (if any of the terms

in the second set of braces is not zero). Therefore, so long as the utility function

has no satiation point, in any equilibrium, the terms in the braces must be zero.

Thus, we have the arbitrage pricing

formulas

p(st) =
∑

st+1

Q1(st+1|st)[p(st+1) + d(st+1)], (8.10.6a)

Qj(st+j |st) =
∑

st+1

Qj−1(st+j |st+1)Q1(st+1|st). (8.10.6b)

These are called arbitrage pricing formulas because if they were violated, there

would exist an arbitrage. An arbitrage is defined as a risk-free transaction that

earns positive profits.

8.11. Consumption strips and the cost of business cycles

This section briefly describes the ideas of Alvarez and Jermann (2003); Lustig

(2000); Hansen, Sargent, and Tallarini (1999); and Tallarini (2000). Their pur-

pose is to link measures of the cost of business cycles with a risk premium for

some assets. To this end, consider an endowment economy with a representative

consumer endowed with a consumption process ct = c(st), where st is Markov

with transition probabilities π(s′|s). Alvarez and Jermann define a one-period

consumption strip as a claim to the random payoff ct , sold at date t − 1. The

price in terms of time t− 1 consumption of this one-period consumption strip

is

at−1 = Et−1mtct, (8.11.1)

where mt is the one-period stochastic discount factor

mt =
βu′(ct)

u′(ct−1)
. (8.11.2)
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Using the definition of a conditional covariance, equation (8.11.1) implies

at−1 = Et−1mtEt−1ct + covt−1(ct,mt), (8.11.3)

where covt−1(ct,mt) < 0. Note that the price of a one-period claim on Et−1ct

is simply

ãt−1 = Et−1mtEt−1ct, (8.11.4)

so that the negative covariance in equation (8.11.3) is a discount due to risk in

the price of the risky claim on ct relative to the risk-free claim on a payout with

the same mean. Define the multiplicative risk premium on the consumption

strip as (1 + µt−1) ≡ ãt/at , which evidently equals

1 + µt−1 =
Et−1mtEt−1ct
Et−1mtct

. (8.11.5)

8.11.1. Link to business cycle costs

The cost of business cycle as defined in chapter 4 does not link immediately to

an asset-pricing calculation because it is inframarginal. Alvarez and Jermann

(2003) and Hansen, Sargent, and Tallarini (1999) were interested in coaxing

attitudes about the cost of business cycles from asset prices. Alvarez and Jer-

mann designed a notion of the marginal costs of business cycles to match asset

pricing. With the timing conventions of Lustig (2000), their concept of marginal

cost corresponds to the risk premium in one-period consumption strips.

Alvarez and Jermann (2003) and Lustig (2000) define the total costs of

business cycles in terms of a stochastic process of adjustments to consumption

Ωt−1 constructed to satisfy

E0

∞∑

t=0

βtu[(1 + Ωt−1)ct] = E0

∞∑

t=0

βtu(Et−1ct).

The idea is to compensate the consumer for the one-period-ahead risk in con-

sumption that he faces.

The time t component of the marginal cost of business cycles is defined as

follows through a variational argument, taking the endowment as a benchmark.
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Let α ∈ (0, 1) be a parameter to index consumption processes. Define Ωt−1(α)

implicitly by means of

Et−1u{[1 + Ωt−1(α)]ct} = Et−1u[αEt−1ct + (1 − α)ct]. (8.11.6)

Differentiate equation (8.11.6) with respect to α and evaluate at α = 0 to get

Ω′
t−1(0) =

Et−1u
′(ct)(Et−1ct − ct−1)

Et−1ctu′(ct)
.

Multiply both numerator and denominator of the right side by β/u′(ct−1) to

get

Ω′
t−1(0) =

Et−1mt(Et−1ct − ct)

Et−1mtct
, (8.11.7)

where we use Ωt−1(0) = 0. Rearranging gives

1 + Ω′
t−1(0) =

Et−1mtEt−1ct
Et−1mtct

. (8.11.8)

Comparing equation (8.11.8) with (8.11.5) shows that the marginal cost of

business cycles equals the multiplicative risk premium on the one-period con-

sumption strip. Thus, in this economy, the marginal cost of business cycles can

be coaxed from asset market data.

8.12. Gaussian asset-pricing model

The theory of the preceding section is readily adapted to a setting in which the

state of the economy evolves according to a continuous-state Markov process.

We use such a version in chapter 13. Here we give a taste of how such an

adaptation can be made by describing an economy in which the state follows

a linear stochastic difference equation driven by a Gaussian disturbance. If we

supplement this with the specification that preferences are quadratic, we get a

setting in which asset prices can be calculated swiftly.

Suppose that the state evolves according to the stochastic difference equa-

tion

st+1 = Ast + Cwt+1 (8.12.1)

where A is a matrix whose eigenvalues are bounded from above in modulus by

1/
√
β and wt+1 is a Gaussian martingale difference sequence adapted to the
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history of st . Assume that Ewt+1wt+1 = I . The conditional density of st+1 is

Gaussian:

π(st|st−1) ∼ N (Ast−1, CC
′). (8.12.2)

More precisely,

π(st|st−1) = K exp
{
−.5(st −Ast−1)(CC

′)−1(st −Ast−1)
}
, (8.12.3)

where K = (2π)−
k/2 det(CC′)−

1/2 and st is k× 1. We also assume that π0(s0)

is Gaussian.12

If {cit(st)}∞t=0 is the equilibrium allocation to agent i , and the agent has

preferences represented by (8.2.1), the equilibrium pricing function satisfies

q0t (s
t) =

βtu′[cit(st)]π(st)

u′[ci0(s0)]
. (8.12.4)

Once again, let {dt(st)}∞t=0 be a stream of claims to consumption. The

time 0 price of the asset with this dividend stream is

p0 =

∞∑

t=0

∫

st

q0t (s
t)dt(st)d s

t.

Substituting equation (8.12.4) into the preceding equation gives

p0 =
∑

t

∫

st

βt
u′[cit(st)]

u′[ci0(s0)]
dt(st)π(st)dst

or

p0 = E

∞∑

t=0

βt
u′[ct(st)]

u′[c0(s0)]
dt(st). (8.12.5)

This formula expresses the time 0 asset price as an inner product of a discounted

marginal utility process and a dividend process.13

This formula becomes especially useful in the case that the one-period util-

ity function u(c) is quadratic, so that marginal utilities become linear, and the

dividend process dt is linear in st . In particular, assume that

u(ct) = −.5(ct − b)2 (8.12.6)

dt = Sdst, (8.12.7)

12 If st is stationary, π0(s0) can be specified to be the stationary distribution of the

process.
13 For two scalar stochastic processes x, y , the inner product is defined as < x, y >=

E
∑∞

t=0 β
txtyt .
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where b > 0 is a bliss level of consumption. Furthermore, assume that the

equilibrium allocation to agent i is

cit = Scist, (8.12.8)

where Sci is a vector conformable to st .

The utility function (8.12.6) implies that u′(cit) = b − cit = b − Scist .

Suppose that unity is one element of the state space for st , so that we can

express b = Sbst . Then b − ct = Sfst , where Sf = Sb − Sci , and the asset-

pricing formula becomes

p0 =
E0

∑∞
t=0 β

ts′tS
′
fSdst

Sfs0
. (8.12.9)

Thus, to price the asset, we have to evaluate the expectation of the sum of a

discounted quadratic form in the state variable. This is easy to do by using

results from chapter 2.

In chapter 2, we evaluated the conditional expectation of the geometric sum

of the quadratic form

α0 = E0

∞∑

t=0

βts′tS
′
fSdst.

We found that it could be written in the form

α0 = s′0µs0 + σ, (8.12.10)

where µ is an (n× n) matrix and σ is a scalar that satisfy

µ = S′
fSd + βA′µA

σ = βσ + β trace (µCC′)
(8.12.11)

The first equation of (8.12.11) is a discrete Lyapunov equation in the square

matrix µ , and can be solved by using one of several algorithms.14 After µ has

been computed, the second equation can be solved for the scalar σ .

14 The Matlab control toolkit has a program called dlyap.m; also see a program called

doublej.m.
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8.13. Recursive version of Pareto problem

At the very outset of this chapter, we characterized Pareto optimal allocations.

This section considers how to formulate a Pareto problem recursively, which will

give a preview of things to come in chapters 19 and 22. For this purpose, we

consider a special case of the earlier example 2 of an economy with a constant

aggregate endowment and two types of household with y1
t = st, y

2
t = 1− st . We

now assume that the st process is i.i.d., so that πt(s
t) = π(st)π(st−1) · · ·π(s0).

Also, let’s assume that st has a discrete distribution so that st ∈ [s1, . . . , sS ]

with probabilities Πi = Prob(st = si) where si+1 > si and s1 ≥ 0 and sS ≤ 1.

In our recursive formulation, each period a planner assigns a pair of previ-

ously promised discounted utility streams by delivering a state-contingent con-

sumption allocation today and a pair of state-contingent promised discounted

utility streams starting tomorrow. Both the state-contingent consumption to-

day and the promised discounted utility tomorrow are functions of the initial

promised discounted utility levels.

Define v as the expected discounted utility of a type 1 person and P (v) as

the maximal expected discounted utility that can be offered to a type 2 person,

given that a type 1 person is offered at least v . Each of these expected values

is to be evaluated before the realization of the state at the initial date.

The Pareto problem can be expressed as choosing stochastic processes

{c1t (st), c2t (st)}∞t=0 to maximize P (v) subject to the utility constraint∑∞
t=0

∑
st βtu(c1t (s

t))πt(s
t) ≥ v and c1t (s

t) + c2t (s
t) = 1. In terms of the com-

petitive equilibrium allocation calculated for this economy above, let c = c1

be the constant consumption allocated to a type 1 person and 1 − c = c2 be

the constant consumption allocated to a type 2 person. Since we have shown

that the competitive equilibrium allocation is a Pareto optimal allocation, we

already know one point on the Pareto frontier P (v). In particular, when a type

1 person is promised v = u(c)/(1 − β), a type 2 person attains life-time utility

P (v) = u(1 − c)/(1 − β).

We can express the discounted values v and P (v) recursively as

v =
S∑

i=1

[u(ci) + βwi] Πi

and

P (v) =

S∑

i=1

[u(1 − ci) + βP (wi)] Πi,
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where ci is consumption of the type 1 person in state i , wi is the continuation

value assigned to the type 1 person in state i ; and 1 − ci and P (wi) are

the consumption and the continuation value, respectively, assigned to a type 2

person in state i . Assume that the continuation values wi ∈ V , where V is a

set of admissible discounted values of utility. In this section, we assume that

V = [u(ε)/(1−β), u(1)/(1−β)] where ε ∈ (0, 1) is an arbitrarily small number.

In effect, before the realization of the current state, a Pareto optimal allo-

cation offers the type 1 person a state-contingent vector of consumption ci in

state i and a state-contingent vector of continuation values wi in state i , with

each wi itself being a present value of one-period future utilities. In terms of

the pair of values (v, P (v)), we can express the Pareto problem recursively as

P (v) = max
{ci,wi}S

i=1

S∑

i=1

[u(1 − ci) + βP (wi)]Πi (8.13.1)

where the maximization is subject to

S∑

i=1

[u(ci) + βwi]Πi ≥ v (8.13.2)

where ci ∈ [0, 1] and wi ∈ V .

To solve the Pareto problem, form the Lagrangian

L =

S∑

i=1

Πi[u(1 − ci) + βP (wi) + θ(u(ci + βwi)] − θv

where θ is a Lagrange multiplier on constraint (8.13.2). First-order conditions

with respect to ci and wi , respectively, are

−u′(1 − ci) + θu′(ci) = 0, (8.13.3a)

P ′(wi) + θ = 0. (8.13.3b)

The envelope condition is P ′(v) = −θ . Thus, (8.13.3b) becomes P ′(wi) =

P ′(v). But P (v) happens to be strictly concave, so that this equality implies

wi = v , so that any solution of the Pareto problem leaves the continuation value

wi independent of the state i . Equation (8.13.3a) implies that

u′(1 − ci)

u′(ci)
= −P ′(v). (8.13.4)
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Since the right side of (8.13.4) is independent of i , so is the left side, and

therefore c is independent of i . And since v is constant over time (because

wi = v for all i), it follows that c is constant over time.

Notice from (8.13.4) that P ′(v) serves as a relative Pareto weight on the

type 1 person. The recursive formulation brings out that, because P ′(wi) =

P ′(v), the relative Pareto weight remains constant over time and is independent

of the realization of st . The planner imposes complete risk sharing.

In chapter 19, we shall encounter recursive formulations again. There im-

pediments to risk sharing that occur in the form either of enforcement or of

information constraints will impel the planner sometimes to make continuation

values respond to the current realization of shocks to endowments or preferences.

8.14. Static models of trade

To illustrate some classic doctrines and also to give us more practice in formu-

lating and computing competitive equilibria, we now describe a linear quadratic

static model of international trade. In chapter 23, we’ll use a dynamic ver-

sion of a closely related model to study intertemporal properties of programs to

liberalize international trade.

8.15. Closed economy model

A representative household in country i has preferences

u(ci, `i; γi) = [−.5(Πci − b) · (Πci − b) − (γ′i`i + .5`′iΓ`i)] , (8.15.1)

where ci is a 2 × 1 vector of consumption goods in country i , b is a 2 × 1

vector of bliss levels of consumption, `i is a 2 × 1 vector of types of labor in

country i , and γi and Γ are 2×1 and 2×2, respectively, matrices of parameters

measuring disutility of labor. Here Π is a 2 × 2 matrix mapping consumption

rates into “services.” We use Π to parameterize the responsiveness of demands

to prices. Notice that we have endowed countries with identical preferences,

except possibly that γi 6= γj for i 6= j . The production technology is

ci = `i. (8.15.2)
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A closed economy planning problem for country i is to maximize (8.15.1) sub-

ject to (8.15.2). The first-order necessary conditions for this problem are

Π′(b − Πci) = γi + Γci. (8.15.3)

These two equations determine ci .

An allocation that solves the closed economy planning problem can be de-

centralized as a competitive equilibrium in which a household chooses (ci, `i) to

maximize (8.15.1) subject to

pi · ci ≤ wi · `i. (8.15.4)

Meanwhile, a representative competitive firm chooses (ci, `i) to maximize pi ·
ci − wi · `i subject to (8.15.2). Letting µi be a Lagrange multiplier on the

household’s budget constraint (8.15.4), first-order necessary conditions for the

household’s problem are

µipi = Π′(b − Πci), (8.15.5a)

µiwi = γi + Γ`i. (8.15.5b)

The firm’s problem and a zero profits condition imply that pi = wi , which in

conjunction with (8.15.5) implies that the competitive equilibrium value of ci

equals the solution of the planning problem described by equation (8.15.3).

We can solve (8.15.5a) for the demand curve

ci(µipi) = Π−1b− (Π′Π)−1µipi (8.15.6)

and (8.15.5b) with wi = pi for the supply curve

`i(µipi) = −Γ−1γi + Γ−1µipi. (8.15.7)

Competitive equilibrium for closed economy i requires ci = `i , or

Π−1b− (Π′Π)−1µipi = −Γ−1γi + Γ−1µipi. (8.15.8)

This is a system of two linear equations that determine the 2 × 1 vector µipi .

We are free to normalize (i.e., to choose a numeraire) by setting µi to some

positive number. Setting µi = 1 measures prices in units of marginal utility of

the representative consumer of economy i .
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8.15.1. Two countries under autarky

Suppose that there are two countries named L and S (denoting large and small).

Country L consists of N identical consumers, each of whom has preferences

(8.15.1) for i = L , while country S consists of one household with preferences

(8.15.1) for i = S . Under no trade or autarky, each country is a closed economy

whose allocations and prices are given by the country i = S,L versions of

(8.15.3) and (8.15.8). There are gains to trade if the price vectors in autarky,

pS and pL , are not linearly dependent.

8.15.2. Welfare measures

We shall measure the welfare of each of the two countries by

uL = Nu(cL, cL; γL),

uS = u(cS , cS; γS).
(8.15.9)

where the function u is defined in (8.15.1).

8.16. Two countries under free trade

A competitive equilibrium under free trade equates world supply and demand

at a common price vector p :

NcL(µLp) + cS(µSp) = N`L(µLp) + `S(µSp) (8.16.1)

or
N(Π−1b− (Π′Π)−1µLp) + (Π−1b− (Π′Π)−1µSp)

= N(−Γ−1γL + Γ−1µLp) + (−Γ−1γS + Γ−1µSp).
(8.16.2)

We are free to normalize by setting either µL or µS to an arbitrary positive

number. We choose to set µL = 1, thereby denominating prices in units of

marginal utility of a representative agent of country L . The budget constraint

for country S is p · (cS − `S) = 0 or

p ·
[(

Π−1b− (Π′Π)−1µSp
)
−
(
−Γ−1γS + Γ−1µSp

)]
= 0. (8.16.3)
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Equations (8.16.2) and (8.16.3) are three equations in the three variables µS , p

(remember that p is a 2 × 1 vector). Notice that µS is an outcome of an

equilibrium.

If γS 6= γL , there will be gains to trade. From now on, we shall assume

that γS1 > γL1 and γS2 < γL2 , so that country S has a comparative advantage

in producing good 2. Then under free trade, country L will import good 2 and

export good 1.

8.16.1. Small country assumption

Consider the limit of the equilibrium price vector under free trade as N → +∞
under the normalization µL = 1. It solves (8.16.2) as N → +∞ and evidently

equals the equilibrium price vector of the large country L under autarky. Hence,

a switch from autarky to free trade would not affect the welfare of the large

country L and it is only the small country S that stands to gain from free trade.

However, the welfare implications are reversed when considering deviations from

free trade due to tariffs. Any tariff levied by the small country S will not affect

relative prices in the large country L and hence, the welfare of the large country

L would be unchanged. In contrast, country L can affect relative prices in

country S by imposing an import tariff and by so manipulating relative prices,

the large country can reap some of the welfare gains of international trade.

Next, we study the effects of such a tariff but not under the extreme “small

country assumption” where N goes to infinity and all trade takes place at

the limiting prices. Instead, for a given finite value of N , we compute the

equilibrium price vector associated with an import tariff imposed by the large

country, and examine the welfare consequences.
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8.17. A tariff

Assume that country L imposes a tariff of tL ≥ 0 on imports of good 2 into

L . For every unit of good 2 imported into country L , country L collects a tax

of tL , denominated in units of utility of a representative resident of country L

(because we continue to normalize prices so that µL = 1). Let p now denote

the price vector that prevails in country L . Then the price vector in country

S is

[
p1

p2 − tL

]
, which says that good 2 costs tL more per unit in country L

than in country S . Equating world demand to supply leads to the equation

NcL

([
p1

p2

])
+ cS

(
µS

[
p1

p2 − tL

])

= N`L

([
p1

p2

])
+ `S

(
µS

[
p1

p2 − tL

])
.

(8.17.1)

Notice how the above system of equations has country L facing p2 and country

S facing µS(p2 − tL). The budget constraint of country S is now
[

p1

p2 − tL

]
· (cS − `S) = 0. (8.17.2)

For given tL ≥ 0, (8.17.1) and (8.17.2) are three equations that determine

(µS , p1, p2). Walras’s law implies that at equilibrium prices, the budget con-

straint of country L is automatically satisfied at the same price vector

[
p1

p2 − tL

]

faced in country S . But residents of country L face p , not

[
p1

p2 − tL

]
. This

means that the budget constraint facing a household in country L is actually

p · (cL − `L) = τ,

where τ is a transfer from the government of country L that satisfies

Nτ = tL(`S2 − cS2). (8.17.3)

Equation (8.17.3) expresses how the government of country L rebates tariff

revenues to its residents; Nτ measures the flow of resources that country L

extracts from S by altering the terms of trade in favor of L . Imposing that

tariff thus implements a “beggar thy neighbor” policy.
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8.17.1. Nash tariff

For a given tariff tL , we can compute the equilibrium price and consumption

allocation. Let c(tL) = NcL(tL) + cS(tL) be the worldwide consumption allo-

cation, indexed by the tariff rate tL . Let ui(tL) be the welfare of country i as

a function of the tariff, as measured by (8.15.9) evaluated at the consumption

allocation (cL(tL), cS(tL)). Let uW (tL) = uL(tL) + uS(tL).

Definition: In a one-period Nash equilibrium, the government of country L

imposes a tariff rate that satisfies

tNL = arg max
tL

uL(tL). (8.17.4)

The following statements are true:

Proposition: World welfare uW (tL) is strictly concave, is decreasing in

tL ≥ 0, and is maximized by setting tL = 0. But uL(tL) is strictly concave in

tL and is maximized at tNL > 0. Therefore, uL(tNL ) > uL(0).

A consequence of this proposition is that country L prefers the Nash equilibrium

to free trade, but country S prefers free trade. To induce country L to accept

free trade, country S will have to transfer resources to it. In chapter 23, we

shall study how country S can do that efficiently in a repeated version of an

economy like the one we have described here.

8.18. Concluding remarks

The framework in this chapter serves much of macroeconomics either as founda-

tion or straw man (“benchmark model” is a kinder phrase than “straw man”).

It is the foundation of extensive literatures on asset pricing and risk sharing.

We describe the literature on asset pricing in more detail in chapter 13. The

model also serves as benchmark, or point of departure, for a variety of models

designed to confront observations that seem inconsistent with complete mar-

kets. In particular, for models with exogenously imposed incomplete markets,

see chapters 16 on precautionary saving and 17 on incomplete markets. For

models with endogenous incomplete markets, see chapters 19 and 20 on enforce-

ment and information problems. For models of money, see chapters 24 and 25.
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To take monetary theory as an example, complete markets models dispose of

any need for money because they contain an efficient multilateral trading mech-

anism, with such extensive netting of claims that no medium of exchange is

required to facilitate bilateral exchanges. Any modern model of money intro-

duces frictions that impede complete markets. Some monetary models (e.g., the

cash-in-advance model of Lucas, 1981) impose minimal impediments to com-

plete markets, to preserve many of the asset-pricing implications of complete

markets models while also allowing classical monetary doctrines like the quan-

tity theory of money. The shopping time model of chapter 24 is constructed in

a similar spirit. Other monetary models, such as the Townsend turnpike model

of chapter 25 or the Kiyotaki-Wright search model of chapter 26, impose more

extensive frictions on multilateral exchanges and leave the complete markets

model farther behind. Before leaving the complete markets model, we’ll put it

to work in several of the following chapters.

Exercises

Exercise 8.1 Existence of representative consumer

Suppose households 1 and 2 have one-period utility functions u(c1) and w(c2),

respectively, where u and w are both increasing, strictly concave, twice differ-

entiable functions of a scalar consumption rate. Consider the Pareto problem:

vθ(c) = max
{c1,c2}

[
θu(c1) + (1 − θ)w(c2)

]

subject to the constraint c1 + c2 = c . Show that the solution of this problem

has the form of a concave utility function vθ(c), which depends on the Pareto

weight θ . Show that v′θ(c) = θu′(c1) = (1 − θ)w′(c2).

The function vθ(c) is the utility function of the representative consumer.

Such a representative consumer always lurks within a complete markets compet-

itive equilibrium even with heterogeneous preferences. At a competitive equi-

librium, the marginal utilities of the representative agent and each and every

agent are proportional.
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Exercise 8.2 Term structure of interest rates

Consider an economy with a single consumer. There is one good in the economy,

which arrives in the form of an exogenous endowment obeying15

yt+1 = λt+1yt,

where yt is the endowment at time t and {λt+1} is governed by a two-state

Markov chain with transition matrix

P =

[
p11 1 − p11

1 − p22 p22

]
,

and initial distribution πλ = [π0 1 − π0 ] . The value of λt is given by λ̄1 = .98

in state 1 and λ̄2 = 1.03 in state 2. Assume that the history of ys, λs up to

t is observed at time t . The consumer has endowment process {yt} and has

preferences over consumption streams that are ordered by

E0

∞∑

t=0

βtu(ct)

where β ∈ (0, 1) and u(c) = c1−γ

1−γ , where γ ≥ 1.

a. Define a competitive equilibrium, being careful to name all of the objects of

which it consists.

b. Tell how to compute a competitive equilibrium.

For the remainder of this problem, suppose that p11 = .8, p22 = .85, π0 = .5,

β = .96, and γ = 2. Suppose that the economy begins with λ0 = .98 and

y0 = 1.

c. Compute the (unconditional) average growth rate of consumption, computed

before having observed λ0 .

d. Compute the time 0 prices of three risk-free discount bonds, in particu-

lar, those promising to pay one unit of time j consumption for j = 0, 1, 2,

respectively.

e. Compute the time 0 prices of three bonds, in particular, ones promising

to pay one unit of time j consumption contingent on λj = λ̄1 for j = 0, 1, 2,

respectively.

15 Such a specification was made by Mehra and Prescott (1985).
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f. Compute the time 0 prices of three bonds, in particular, ones promising to

pay one unit of time j consumption contingent on λj = λ̄2 for j = 0, 1, 2,

respectively.

g. Compare the prices that you computed in parts d, e, and f.

Exercise 8.3 An economy consists of two infinitely lived consumers named

i = 1, 2. There is one nonstorable consumption good. Consumer i consumes cit
at time t . Consumer i ranks consumption streams by

∞∑

t=0

βtu(cit),

where β ∈ (0, 1) and u(c) is increasing, strictly concave, and twice continu-

ously differentiable. Consumer 1 is endowed with a stream of the consumption

good yit = 1, 0, 0, 1, 0, 0, 1, . . .. Consumer 2 is endowed with a stream of the

consumption good 0, 1, 1, 0, 1, 1, 0, . . .. Assume that there are complete markets

with time 0 trading.

a. Define a competitive equilibrium.

b. Compute a competitive equilibrium.

c. Suppose that one of the consumers markets a derivative asset that promises

to pay .05 units of consumption each period. What would the price of that asset

be?

Exercise 8.4 Consider a pure endowment economy with a single representative

consumer; {ct, dt}∞t=0 are the consumption and endowment processes, respec-

tively. Feasible allocations satisfy

ct ≤ dt.

The endowment process is described by16

dt+1 = λt+1dt.

The growth rate λt+1 is described by a two-state Markov process with transition

probabilities

Pij = Prob(λt+1 = λ̄j |λt = λ̄i).

16 See Mehra and Prescott (1985).
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Assume that

P =

[
.8 .2

.1 .9

]
,

and that

λ̄ =

[
.97

1.03

]
.

In addition, λ0 = .97 and d0 = 1 are both known at date 0. The consumer has

preferences over consumption ordered by

E0

∞∑

t=0

βt
c1−γt

1 − γ
,

where E0 is the mathematical expectation operator, conditioned on information

known at time 0, γ = 2, β = .95.

Part I

At time 0, after d0 and λ0 are known, there are complete markets in date- and

history-contingent claims. The market prices are denominated in units of time

0 consumption goods.

a. Define a competitive equilibrium, being careful to specify all the objects

composing an equilibrium.

b. Compute the equilibrium price of a claim to one unit of consumption at date

5, denominated in units of time 0 consumption, contingent on the following

history of growth rates: (λ1, λ2, . . . , λ5) = (.97, .97, 1.03, .97, 1.03). Please give

a numerical answer.

c. Compute the equilibrium price of a claim to one unit of consumption at date

5, denominated in units of time 0 consumption, contingent on the following

history of growth rates: (λ1, λ2, . . . , λ5) = (1.03, 1.03, 1.03, 1.03, .97).

d. Give a formula for the price at time 0 of a claim on the entire endowment

sequence.

e. Give a formula for the price at time 0 of a claim on consumption in period

5, contingent on the growth rate λ5 being .97 (regardless of the intervening

growth rates).
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Part II

Now assume a different market structure. Assume that at each date t ≥ 0 there

is a complete set of one-period forward Arrow securities.

f. Define a (recursive) competitive equilibrium with Arrow securities, being

careful to define all of the objects that compose such an equilibrium.

g. For the representative consumer in this economy, for each state compute the

“natural debt limits” that constrain state-contingent borrowing.

h. Compute a competitive equilibrium with Arrow securities. In particular,

compute both the pricing kernel and the allocation.

i. An entrepreneur enters this economy and proposes to issue a new security

each period, namely, a risk-free two-period bond. Such a bond issued in period

t promises to pay one unit of consumption at time t+1 for sure. Find the price

of this new security in period t , contingent on λt .

Exercise 8.5 A periodic economy

An economy consists of two consumers, named i = 1, 2. The economy exists

in discrete time for periods t ≥ 0. There is one good in the economy, which

is not storable and arrives in the form of an endowment stream owned by each

consumer. The endowments to consumers i = 1, 2 are

y1
t = st

y2
t = 1

where st is a random variable governed by a two-state Markov chain with values

st = s̄1 = 0 or st = s̄2 = 1. The Markov chain has time invariant transition

probabilities denoted by π(st+1 = s′|st = s) = π(s′|s), and the probability

distribution over the initial state is π0(s). The aggregate endowment at t is

Y (st) = y1
t + y2

t .

Let ci denote the stochastic process of consumption for agent i . Household

i orders consumption streams according to

U(ci) =

∞∑

t=0

∑

st

βt ln[cit(s
t)]π(st),

where πt(s
t) is the probability of the history st = (s0, s1, . . . , st).



Exercises 255

a. Give a formula for πt(s
t).

b. Let θ ∈ (0, 1) be a Pareto weight on household 1. Consider the planning

problem

max
c1,c2

{
θ ln(c1) + (1 − θ) ln(c2)

}

where the maximization is subject to

c1t (s
t) + c2t (s

t) ≤ Y (st).

Solve the Pareto problem, taking θ as a parameter.

b. Define a competitive equilibrium with history-dependent Arrow-Debreu secu-

rities traded once and for all at time 0. Be careful to define all of the objects

that compose a competitive equilibrium.

c. Compute the competitive equilibrium price system (i.e., find the prices of all

of the Arrow-Debreu securities).

d. Tell the relationship between the solutions (indexed by θ ) of the Pareto

problem and the competitive equilibrium allocation. If you wish, refer to the

two welfare theorems.

e. Briefly tell how you can compute the competitive equilibrium price system

before you have figured out the competitive equilibrium allocation.

f. Now define a recursive competitive equilibrium with trading every period

in one-period Arrow securities only. Describe all of the objects of which such

an equilibrium is composed. (Please denominate the prices of one-period time

t+ 1 state-contingent Arrow securities in units of time t consumption.) Define

the “natural borrowing limits” for each consumer in each state. Tell how to

compute these natural borrowing limits.

g. Tell how to compute the prices of one-period Arrow securities. How many

prices are there (i.e., how many numbers do you have to compute)? Compute

all of these prices in the special case that β = .95 and π(sj |si) = Pij where

P =

[
.8 .2

.3 .7

]
.

h. Within the one-period Arrow securities economy, a new asset is introduced.

One of the households decides to market a one-period-ahead riskless claim to one

unit of consumption (a one-period real bill). Compute the equilibrium prices
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of this security when st = 0 and when st = 1. Justify your formula for these

prices in terms of first principles.

i. Within the one-period Arrow securities equilibrium, a new asset is introduced.

One of the households decides to market a two-period-ahead riskless claim to one

unit of consumption (a two-period real bill). Compute the equilibrium prices of

this security when st = 0 and when st = 1.

j. Within the one-period Arrow securities equilibrium, a new asset is introduced.

One of the households decides at time t to market five-period-ahead claims to

consumption at t+5 contingent on the value of st+5 . Compute the equilibrium

prices of these securities when st = 0 and st = 1 and st+5 = 0 and st+5 = 1.

Exercise 8.6. Optimal taxation

The government of a small country must finance an exogenous stream of gov-

ernment purchases {gt}∞t=0 . Assume that gt is described by a discrete-state

Markov chain with transition matrix P and initial distribution π0 . Let πt(g
t)

denote the probability of the history gt = gt, gt−1, . . . , g0 , conditioned on g0 .

The state of the economy is completely described by the history gt . There are

complete markets in date-history claims to goods. At time 0, after g0 has been

realized, the government can purchase or sell claims to time t goods contingent

on the history gt at a price p0
t (g

t) = βtπt(g
t), where β ∈ (0, 1). The date-

state prices are exogenous to the small country. The government finances its

expenditures by raising history-contingent tax revenues of Rt = Rt(g
t) at time

t . The present value of its expenditures must not exceed the present value of

its revenues.

Raising revenues by taxation is distorting. The government confronts a

dead weight loss function W (Rt) that measures the distortion at time t . As-

sume that W is an increasing, twice differentiable, strictly convex function that

satisfies W (0) = 0,W ′(0) = 0,W ′(R) > 0 for R > 0 and W ′′(R) > 0 for

R ≥ 0. The government devises a state-contingent taxation and borrowing plan

to minimize

E0

∞∑

t=0

βtW (Rt), (1)

where E0 is the mathematical expectation conditioned on g0 .
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Suppose that gt takes two possible values, ḡ1 = .2 (peace) and ḡ2 = 1

(war) and that P =

[
.8 .2

.5 .5

]
. Suppose that g0 = .2. Finally, suppose that

W (R) = .5R2 .

a. Please write out (1) long hand, i.e., write out an explicit expression for the

mathematical expectation E0 in terms of a summation over the appropriate

probability distribution.

b. Compute the optimal tax and borrowing plan. In particular, give analytic

expressions for Rt = Rt(g
t) for all t and all gt .

c. There is an equivalent market setting in which the government can buy and

sell one-period Arrow securities each period. Find the price of one-period Arrow

securities at time t , denominated in units of the time t good.

d. Let Bt(gt) be the one-period Arrow securities at t that the government

issued for state gt at time t − 1. For t > 0, compute Bt(gt) for gt = ḡ1 and

gt = ḡ2 .

e. Use your answers to parts b and d to describe the government’s optimal

policy for taxing and borrowing.

Exercise 8.7 Equilibrium computation

For the following exercise, assume the following parameters for the static trade

model:

Π =

[
1 0

0 1

]
, b =

[
20

20

]
, Γ =

[
1 0

0 1

]

γL =

[
1

2

]
, γS =

[
2

1

]
, N = 100.

a. Write a Matlab program to compute the equilibrium for the closed economy

model.

b. Verify that the equilibrium of the two-country model under free trade can be

computed as follows. Normalize µL = 1. Use the budget constraint of country

S to deduce

µS =
p · (Π−1b+ Γ−1γS)

p · [(Π′Π)−1 + Γ−1] p
. (1)

Notice that (8.16.2) can be expressed as

[(Π′Π)−1 + Γ−1](N + µS)p = (N + 1)Π−1b+ Γ−1(NγL + γS). (2)
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Substitute (1) into (2) to get two equations in the two unknowns p . Solve this

equation for p , then solve (1) for µS . Then compute the equilibrium allocation

from (8.15.6), set `i = ci , and compute welfare for the two countries from

(8.15.1) and (8.15.9).

c. For the world trade model with a given tariff tL , show that (8.17.1) can be

expressed as

((Π′Π)−1 + Γ−1)(N + µS)p = µS(Γ−1 + (Π′Π)−1)

[
0

tL

]

+ (N + 1)Π−1b+ Γ−1(NγL + γS).

(3)

Then, paralleling the argument in part b, show that µS can be expressed as

µS(tL) =

(
p+

[
0

−tL

])
· (Π−1b+ Γ−1γS)

(
p+

[
0

−tL

])
· [(Π′Π)−1 + Γ−1]

(
p+

[
0

−tL

]) . (4)

Substitute (4) into (3) to get two equations that can be solved for p . Write a

Matlab program to compute the equilibrium allocation and price system for a

given tariff tL ≥ 0.

d. Write a Matlab program to compute the Nash equilibrium tariff tNL .

Exercise 8.8 A competitive equilibrium

A pure endowment economy consists of two type of consumers. Consumers of

type 1 order consumption streams of the one good according to

∞∑

t=0

βtc1t

and consumers of type 2 order consumption streams according to

∞∑

t=0

βt ln(c2t )

where cit ≥ 0 is the consumption of a type i consumer and β ∈ (0, 1) is a

common discount factor. The consumption good is tradable but nonstorable.
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There are equal numbers of the two types of consumer. The consumer of type

1 is endowed with the consumption sequence

y1
t = µ > 0 ∀t ≥ 0

where µ > 0. The consumer of type 2 is endowed with the consumption sequence

y2
t =

{
0 if t ≥ 0 is even

α if t ≥ 0 is odd

where α = µ(1 + β−1).

a. Define a competitive equilibrium with time 0 trading. Be careful to include

definitions of all of the objects of which a competitive equilibrium is composed.

b. Compute a competitive equilibrium allocation with time 0 trading.

c. Compute the time 0 wealths of the two types of consumers using the com-

petitive equilibrium prices.

d. Define a competitive equilibrium with sequential trading of Arrow securities.

e. Compute a competitive equilibrium with sequential trading of Arrow securi-

ties.

Exercise 8.9 Corners

A pure endowment economy consists of two type of consumers. Consumers of

type 1 order consumption streams of the one good according to

∞∑

t=0

βtc1t

and consumers of type 2 order consumption streams according to

∞∑

t=0

βt ln(c2t )

where cit ≥ 0 is the consumption of a type i consumer and β ∈ (0, 1) is a

common discount factor. Please note the nonnegativity constraint on consump-

tion of each person (the force of this is that cit is consumption, not production).

The consumption good is tradable but nonstorable. There are equal numbers
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of the two types of consumer. The consumer of type 1 is endowed with the

consumption sequence

y1
t = µ > 0 ∀t ≥ 0

where µ > 0. The consumer of type 2 is endowed with the consumption sequence

y2
t =

{
0 if t ≥ 0 is even

α if t ≥ 0 is odd

where

α = µ(1 + β−1). (1)

a. Define a competitive equilibrium with time 0 trading. Be careful to include

definitions of all of the objects of which a competitive equilibrium is composed.

b. Compute a competitive equilibrium allocation with time 0 trading. Compute

the equilibrium price system. Please also compute the sequence of one-period

gross interest rates. Do they differ between odd and even periods?

c. Compute the time 0 wealths of the two types of consumers using the com-

petitive equilibrium prices.

d. Now consider an economy identical to the preceding one except in one respect.

The endowment of consumer 1 continues to be 1 each period, but we assume

that the endowment of consumer 2 is larger (though it continues to be zero in

every even period). In particular, we alter the assumption about endowments

in condition (1) to the new condition

α > µ(1 + β−1).

Compute the competitive equilibrium allocation and price system for this econ-

omy.

e. Compute the sequence of one-period interest rates implicit in the equilibrium

price system that you computed in part d. Are interest rates higher or lower

than those you computed in part b?

Exercise 8.10 Equivalent martingale measure

Let {dt(st)}∞t=0 be a stream of payouts. Suppose that there are complete mar-

kets. From (8.5.4) and (8.7.1), the price at time 0 of a claim on this stream of

dividends is

a0 =
∑

t=0

∑

st

βt
u′(cit(s

t))

µi
πt(s

t)dt(st).
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Show that this a0 can also be represented as

a0 =
∑

t

bt
∑

st

dt(st)π̃t(s
t) (1)

= Ẽ0

∞∑

t=0

btdt(st)

where Ẽ is the mathematical expectation with respect to the twisted measure

π̃t(s
t) defined by

π̃t(s
t) = b−1

t βt
u′(cit(s

t))

µi
πt(s

t)

bt =
∑

st

βt
u′(cit(s

t))

µi
πt(s

t).

Prove that π̃t(s
t) is a probability measure. Interpret bt itself as a price of

particular asset. Note: π̃t(s
t) is called an equivalent martingale measure. See

chapter 13.

Exercise 8.11 Harrison-Kreps prices

Show that the asset price in (1) of the previous exercise can also be represented

as

a0 =

∞∑

t=0

∑

st

βtp0
t (s

t)dt(s
t)πt(s

t)

= E0

∞∑

t=0

βtp0
tdt

where p0
t (s

t) = q0t (s
t)/[βtπt(s

t)] .

Exercise 8.12 Early resolution of uncertainty

An economy consists of two households named i = 1, 2. Each household evalu-

ates streams of a single consumption good according to
∑∞

t=0

∑
st βtu[cit(s

t)]πt(s
t).

Here u(c) is an increasing, twice continuously differentiable, strictly concave

function of consumption c of one good. The utility function satisfies the In-

ada condition limc↓0 u
′(c) = +∞. A feasible allocation satisfies

∑
i c
i
t(s

t) ≤∑
i y
i(st). The households’ endowments of the one nonstorable good are both

functions of a state variable st ∈ S = {0, 1, 2} ; st is described by a time in-

variant Markov chain with initial distribution π0 = [ 0 1 0 ]
′

and transition
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density defined by the stochastic matrix

P =




1 0 0

.5 0 .5

0 0 1


 .

The endowments of the two households are

y1
t = st/2

y2
t = 1 − st/2.

a. Define a competitive equilibrium with Arrow securities.

b. Compute a competitive equilibrium with Arrow securities.

c. By hand, simulate the economy. In particular, for every possible realization

of the histories st , describe time series of c1t , c
2
t and the wealth levels θit of the

households. (Note: Usually this would be an impossible task by hand, but this

problem has been set up to make the task manageable.)

Exercise 8.13 donated by Pierre-Olivier Weill

An economy is populated by a continuum of infinitely lived consumers of types

j ∈ {0, 1} , with a measure one of each. There is one nonstorable consumption

good arriving in the form of an endowment stream owned by each consumer.

Specifically, the endowments are

y0
t (st) = (1 − st)ȳ

0

y1
t (st) = stȳ

1,

where st is a two-state time-invariant Markov chain valued in {0, 1} and ȳ0 <

ȳ1 . The initial state is s0 = 1. Transition probabilities are denoted π(s′|s) for

(s, s′) ∈ {0, 1}2 , where ′ denotes a next period value. The aggregate endowment

is yt(st) ≡ (1 − st)ȳ
0 + stȳ

1 . Thus, this economy fluctuates stochastically

between recessions yt(0) = ȳ0 and booms yt(1) = ȳ0 . In a recession, the

aggregate endowment is owned by type 0 consumers, while in a boom it is owned

by a type 1 consumers. A consumer orders consumption streams according to:

U(cj) =

∞∑

t=0

∑

st

βtπ(st|s0)
cjt (s

t)1−γ

1 − γ
,
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where st = (st, st−1, . . . , s0) is the history of the state up to time t , β ∈ (0, 1)

is the discount factor, and γ > 0 is the coefficient of relative risk aversion.

a. Define a competitive equilibrium with time 0 trading. Compute the price

system {q0t (st)}∞t=0 and the equilibrium allocation {cj(st)}∞t=0 , for j ∈ {0, 1} .

b. Find a utility function Ū(c) = E0

(∑∞
t=0 β

tu(ct)
)

such that the price system

q0t (s
t) and the aggregate endowment yt(st) is an equilibrium allocation of the

single-agent economy
(
Ū , {yt(st)}∞t=0

)
. How does your answer depend on the

initial distribution of endowments yjt (st) among the two types j ∈ {0, 1}? How

would you defend the representative agent assumption in this economy?

c. Describe the equilibrium allocation under the following three market struc-

tures: (i) at each node st , agents can trade only claims on their entire endow-

ment streams; (ii) at each node st , there is a complete set of one-period ahead

Arrow securities; and (iii) at each node st , agents can only trade two risk-free

assets, namely, a one-period zero-coupon bond that pays one unit of consump-

tion for sure at t+ 1 and a two-period zero-coupon bond that pays one unit of

the consumption good for sure at t+ 2. How would you modify your answer in

the absence of aggregate uncertainty?

d. Assume that π(1|0) = 1, π(0|1) = 0, and as before s0 = 1. Compute the

allocation in an equilibrium with time 0 trading. Does the type j = 1 agent

always consume the largest share of the aggregate endowment? How does it

depend on parameter values? Provide economic intuition for your results.

e. Assume that π(1|0) = 1 and π(0|1) = 0. Remember that s0 = 1. Assume

that at t = 1 agent j = 0 is given the option to default on her financial

obligation. For example, in the time 0 trading economy, these obligations are

deliveries of goods. Upon default, it is assumed that the agent is excluded from

the market and has to consume her endowment forever. Will the agent ever

exercise her option to default?



Chapter 9
Overlapping Generations Models

This chapter describes the pure exchange overlapping generations model of Paul

Samuelson (1958). We begin with an abstract presentation that treats the over-

lapping generations model as a special case of the chapter 8 general equilibrium

model with complete markets and all trades occurring at time 0. A peculiar

type of heterogeneity across agents distinguishes the model. Each individual

cares about consumption only at two adjacent dates, and the set of individuals

who care about consumption at a particular date includes some who care about

consumption one period earlier and others who care about consumption one pe-

riod later. We shall study how this special preference and demographic pattern

affects some of the outcomes of the chapter 8 model.

While it helps to reveal the fundamental structure, allowing complete mar-

kets with time 0 trading in an overlapping generations model strains credulity.

The formalism envisions that equilibrium price and quantity sequences are set at

time 0, before the participants who are to execute the trades have been born.

For that reason, most applied work with the overlapping generations model

adopts a sequential-trading arrangement, like the sequential trade in Arrow

securities described in chapter 8. The sequential-trading arrangement has all

trades executed by agents living in the here and now. Nevertheless, equilibrium

quantities and intertemporal prices are equivalent between these two trading

arrangements. Therefore, analytical results found in one setting transfer to the

other.

Later in the chapter, we use versions of the model with sequential trading

to tell how the overlapping generations model provides a framework for thinking

about equilibria with government debt and/or valued fiat currency, intergener-

ational transfers, and fiscal policy.

– 264 –
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9.1. Endowments and preferences

Time is discrete, starts at t = 1, and lasts forever, so t = 1, 2, . . .. There is an

infinity of agents named i = 0, 1, . . .. We can also regard i as agent i ’s period

of birth. There is a single good at each date. There is no uncertainty. Each

agent has a strictly concave, twice continuously differentiable, one-period utility

function u(c), which is strictly increasing in consumption c of one good. Agent

i consumes a vector ci = {cit}∞t=1 and has the special utility function

U i(ci) = u(cii) + u(cii+1), i ≥ 1, (9.1.1a)

U0(c0) = u(c01). (9.1.1b)

Notice that agent i only wants goods dated i and i+ 1. The interpretation of

equations (9.1.1) is that agent i lives during periods i and i+ 1 and wants to

consume only when he is alive.

Each household has an endowment sequence yi satisfying yii ≥ 0, yii+1 ≥
0, yit = 0 ∀t 6= i or i+ 1. Thus, households are endowed with goods only when

they are alive.

9.2. Time 0 trading

We use the definition of competitive equilibrium from chapter 8. Thus, we

temporarily suspend disbelief and proceed in the style of Debreu (1959) with

time 0 trading. Specifically, we imagine that there is a “clearinghouse” at time

0 that posts prices and, at those prices, compiles aggregate demand and supply

for goods in different periods. An equilibrium price vector makes markets for

all periods t ≥ 2 clear, but there may be excess supply in period 1; that is, the

clearinghouse might end up with goods left over in period 1. Any such excess

supply of goods in period 1 can be given to the initial old generation without

any effects on the equilibrium price vector, since those old agents optimally

consume all their wealth in period 1 and do not want to buy goods in future

periods. The reason for our special treatment of period 1 will become clear as

we proceed.
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Thus, at date 0, there are complete markets in time t consumption goods

with date 0 price q0t . A household’s budget constraint is

∞∑

t=1

q0t c
i
t ≤

∞∑

t=1

q0t y
i
t. (9.2.1)

Letting µi be a multiplier attached to consumer i ’s budget constraint, the

consumer’s first-order conditions are

µiq0i = u′(cii), (9.2.2a)

µiq0i+1 = u′(cii+1), (9.2.2b)

cit = 0 if t /∈ {i, i+ 1}. (9.2.2c)

Evidently an allocation is feasible if for all t ≥ 1,

cit + ci−1
t ≤ yit + yi−1

t . (9.2.3)

Definition: An allocation is stationary if cii+1 = co, c
i
i = cy ∀i ≥ 1.

Here the subscript o denotes old and y denotes young. Note that we do not

require that c01 = co . We call an equilibrium with a stationary allocation a

stationary equilibrium.

9.2.1. Example equilibrium

Let ε ∈ (0, .5). The endowments are

yii = 1 − ε, ∀i ≥ 1,

yii+1 = ε, ∀i ≥ 0,

yit = 0 otherwise.

(9.2.4)

This economy has many equilibria. We describe two stationary equilibria

now, and later we shall describe some nonstationary equilibria. We can use a

guess-and-verify method to confirm the following two equilibria.

1. Equilibrium H: a high-interest-rate equilibrium. Set q0t = 1 ∀t ≥ 1 and

cii = cii+1 = .5 for all i ≥ 1 and c01 = ε . To verify that this is an equilibrium,
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notice that each household’s first-order conditions are satisfied and that the

allocation is feasible. There is extensive intergenerational trade that occurs

at time 0 at the equilibrium price vector q0t . Note that constraint (9.2.3)

holds with equality for all t ≥ 2 but with strict inequality for t = 1. Some

of the t = 1 consumption good is left unconsumed.

2. Equilibrium L: a low-interest-rate equilibrium. Set q01 = 1,
q0t+1

q0t
= u′(ε)

u′(1−ε) =

α > 1. Set cit = yit for all i, t . This equilibrium is autarkic, with prices

being set to eradicate all trade.

9.2.2. Relation to the welfare theorems

As we shall explain in more detail later, equilibrium H Pareto dominates equi-

librium L. In equilibrium H every generation after the initial old one is better

off and no generation is worse off than in equilibrium L. The equilibrium H

allocation is strange because some of the time 1 good is not consumed, leaving

room to set up a giveaway program to the initial old that makes them better

off and costs subsequent generations nothing. We shall see how the institution

of fiat money accomplishes this purpose.1

Equilibrium L is a competitive equilibrium that evidently fails to satisfy one

of the assumptions needed to deliver the first fundamental theorem of welfare

economics, which identifies conditions under which a competitive equilibrium

allocation is Pareto optimal.2 The condition of the theorem that is violated by

equilibrium L is the assumption that the value of the aggregate endowment at

the equilibrium prices is finite.3

1 See Karl Shell (1971) for an investigation that characterizes why some competitive equi-

libria in overlapping generations models fail to be Pareto optimal. Shell cites earlier studies

that had sought reasons why the welfare theorems seem to fail in the overlapping generations

structure.
2 See Mas-Colell, Whinston, and Green (1995) and Debreu (1954).
3 Note that if the horizon of the economy were finite, then the counterpart of equilibrium

H would not exist and the allocation of the counterpart of equilibrium L would be Pareto

optimal.
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9.2.3. Nonstationary equilibria

Our example economy has more equilibria. To construct all equilibria, we sum-

marize preferences and consumption decisions in terms of an offer curve. We

shall use a graphical apparatus proposed by David Gale (1973) and used further

to good advantage by William Brock (1990).

Definition: The household’s offer curve is the locus of (cii, c
i
i+1) that solves

max
{ci

i
,ci

i+1
}
U(ci)

subject to

cii + αic
i
i+1 ≤ yii + αiy

i
i+1.

Here αi ≡ q0i+1

q0
i

, the reciprocal of the one-period gross rate of return from period

i to i+ 1, is treated as a parameter.

Evidently, the offer curve solves the following pair of equations:

cii + αic
i
i+1 = yii + αiy

i
i+1 (9.2.5a)

u′(cii+1)

u′(cii)
= αi (9.2.5b)

for αi > 0. We denote the offer curve by

ψ(cii, c
i
i+1) = 0.

The graphical construction of the offer curve is illustrated in Figure 9.2.1.

We trace it out by varying αi in the household’s problem and reading tangency

points between the household’s indifference curve and the budget line. The

resulting locus depends on the endowment vector and lies above the indifference

curve through the endowment vector. By construction, the following property is

also true: at the intersection between the offer curve and a straight line through

the endowment point, the straight line is tangent to an indifference curve.4

4 Given our assumptions on preferences and endowments, the conscientious reader will

find Figure 9.2.1 deceptive because the offer curve appears to fail to intersect the feasibility

line at ctt = ctt+1 , i.e., equilibrium H above. Our excuse for the deception is the expositional

clarity that we gain when we introduce additional objects in the graphs.
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Offer curve

Feasibility line

to the endowment
corresponding

Indifference curve

c t

t+1
c

t-1

t

yt

t

y
t

t+1

c
t

t

,

Figure 9.2.1: The offer curve and feasibility line.

Following Gale (1973), we can use the offer curve and a straight line de-

picting feasibility in the (cii, c
i−1
i ) plane to construct a machine for computing

equilibrium allocations and prices. In particular, we can use the following pair

of difference equations to solve for an equilibrium allocation. For i ≥ 1, the

equations are5

ψ(cii, c
i
i+1) = 0, (9.2.6a)

cii + ci−1
i = yii + yi−1

i . (9.2.6b)

After the allocation has been computed, the equilibrium price system can be

computed from

q0i = u′(cii)

for all i ≥ 1.

5 By imposing equation (9.2.6b) with equality, we are implicitly possibly including a give-

away program to the initial old.
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9.2.4. Computing equilibria

Example 1: Gale’s equilibrium computation machine: A procedure for con-

structing an equilibrium is illustrated in Figure 9.2.2, which reproduces a version

of a graph of David Gale (1973). Start with a proposed c11 , a time 1 allocation

to the initial young. Then use the feasibility line to find the maximal feasible

value for c11 , the time 1 allocation to the initial old. In the Arrow-Debreu equi-

librium, the allocation to the initial old will be less than this maximal value, so

that some of the time 1 good is thrown away. The reason for this is that the

budget constraint of the initial old, q01(c
0
1−y0

1) ≤ 0, implies that c01 = y0
1 .6 The

candidate time 1 allocation is thus feasible, but the time 1 young will choose

c11 only if the price α1 is such that (c12, c
1
1) lies on the offer curve. Therefore, we

choose c12 from the point on the offer curve that cuts a vertical line through c11 .

Then we proceed to find c22 from the intersection of a horizontal line through

c12 and the feasibility line. We continue recursively in this way, choosing cii as

the intersection of the feasibility line with a horizontal line through ci−1
i , then

choosing cii+1 as the intersection of a vertical line through cii and the offer curve.

We can construct a sequence of αi ’s from the slope of a straight line through

the endowment point and the sequence of (cii, c
i
i+1) pairs that lie on the offer

curve.

If the offer curve has the shape drawn in Figure 9.2.2, any c11 between the

upper and lower intersections of the offer curve and the feasibility line is an equi-

librium setting of c11 . Each such c11 is associated with a distinct allocation and

αi sequence, all but one of them converging to the low -interest-rate stationary

equilibrium allocation and interest rate.

Example 2: Endowment at +∞ : Take the preference and endowment struc-

ture of the previous example and modify only one feature. Change the endow-

ment of the initial old to be y0
1 = ε > 0 and “δ > 0 units of consumption at

t = +∞ ,” by which we mean that we take
∑

t

q0t y
0
t = q01ε+ δ lim

t→∞
q0t .

It is easy to verify that the only competitive equilibrium of the economy with

this specification of endowments has q0t = 1 ∀t ≥ 1, and thus αt = 1 ∀t ≥ 1.

6 Soon we shall discuss another market structure that avoids throwing away any of the

initial endowment by augmenting the endowment of the initial old with a particular zero-

dividend infinitely durable asset.



Time 0 trading 271

Offer curve

Feasibility line

c t

t+1
c

t-1

t

yt

tc c

c

c

c

y
t

t+1

1

1
2

2
2

3
2

1

0
1

,

c
t

t

Figure 9.2.2: A nonstationary equilibrium allocation.

The reason is that all the “low-interest-rate” equilibria that we have described

would assign an infinite value to the endowment of the initial old. Confronted

with such prices, the initial old would demand unbounded consumption. That

is not feasible. Therefore, such a price system cannot be an equilibrium.

Example 3: A Lucas tree: Take the preference and endowment structure to

be the same as example 1 and modify only one feature. Endow the initial old

with a “Lucas tree,” namely, a claim to a constant stream of d > 0 units of

consumption for each t ≥ 1.7 Thus, the budget constraint of the initial old

person now becomes

q01c
0
1 = d

∞∑

t=1

q0t + q01y
0
1 .

The offer curve of each young agent remains as before, but now the feasibility

line is

cii + ci−1
i = yii + yi−1

i + d

7 This is a version of an example of Brock (1990).
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for all i ≥ 1. Note that young agents are endowed below the feasibility line.

From Figure 9.2.3, it seems that there are two candidates for stationary equi-

libria, one with constant α < 1, another with constant α > 1. The one with

α < 1 is associated with the steeper budget line in Figure 9.2.3. However, the

candidate stationary equilibrium with α > 1 cannot be an equilibrium for a

reason similar to that encountered in example 2. At the price system associ-

ated with an α > 1, the wealth of the initial old would be unbounded, which

would prompt them to consume an unbounded amount, which is not feasible.

This argument rules out not only the stationary α > 1 equilibrium but also all

nonstationary candidate equilibria that converge to that constant α . Therefore,

there is a unique equilibrium; it is stationary and has α < 1.

Unique equilibrium

Feasibility line

Offer curve

c t

t+1
c

t-1

t

y
t

t+1

without tree

Feasibility line
with tree

yt

t

Not an equilibrium

(R>1)

R>1

R<1

dividend

,

c t

t

Figure 9.2.3: Unique equilibrium with a fixed-dividend as-

set.

If we interpret the gross rate of return on the tree as α−1 = p+d
p , where

p =
∑∞

t=1 q
0
t d , we can compute that p = d

R−1 where R = α−1 . Here p is the

price of the Lucas tree.
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In terms of the logarithmic preference example, the difference equation

(9.2.9) becomes modified to

αi =
1 + 2d

ε
− ε−1 − 1

αi−1
. (9.2.7)

Example 4: Government expenditures: Take the preferences and endowments

to be as in example 1 again, but now alter the feasibility condition to be

cii + ci−1
i + g = yii + yi−1

i

for all i ≥ 1 where g > 0 is a positive level of government purchases. The

“clearinghouse” is now looking for an equilibrium price vector such that this

feasibility constraint is satisfied. We assume that government purchases do not

give utility. The offer curve and the feasibility line look as in Figure 9.2.4.

Notice that the endowment point (yii , y
i
i+1) lies outside the relevant feasibility

line. Formally, this graph looks like example 3, but with a “negative dividend

d .” Now there are two stationary equilibria with α > 1, and a continuum of

equilibria converging to the higher α equilibrium (the one with the lower slope

α−1 of the associated budget line). Equilibria with α > 1 cannot be ruled out

by the argument in example 3 because no one’s endowment sequence receives

infinite value when α > 1.

Later, we shall interpret this example as one in which a government finances

a constant deficit either by money creation or by borrowing at a negative real

net interest rate. We shall discuss this and other examples in a setting with

sequential trading.

Example 5: Log utility: Suppose that u(c) = ln c and that the endowment is

described by equations (9.2.4). Then the offer curve is given by the recursive

formulas cii = .5(1 − ε+ αiε), c
i
i+1 = α−1

i cii . Let αi be the gross rate of return

facing the young at i . Feasibility at i and the offer curves then imply

1

2αi−1
(1 − ε+ αi−1ε) + .5(1 − ε+ αiε) = 1. (9.2.8)

This implies the difference equation

αi = ε−1 − ε−1 − 1

αi−1
. (9.2.9)
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Figure 9.2.4: Equilibria with debt- or money-financed gov-

ernment deficit finance.

See Figure 9.2.2. An equilibrium αi sequence must satisfy equation (9.2.8)

and have αi > 0 for all i . Evidently, αi = 1 for all i ≥ 1 is an equilibrium

α sequence. So is any αi sequence satisfying equation (9.2.8) and α1 ≥ 1;

α1 < 1 will not work because equation (9.2.8) implies that the tail of {αi} is

an unbounded negative sequence. The limiting value of αi for any α1 > 1 is
1−ε
ε = u′(ε)/u′(1− ε), which is the interest factor associated with the stationary

autarkic equilibrium. Notice that Figure 9.2.2 suggests that the stationary αi =

1 equilibrium is not stable, while the autarkic equilibrium is.
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9.3. Sequential trading

We now alter the trading arrangement to bring us into line with standard presen-

tations of the overlapping generations model. We abandon the time 0, complete

markets trading arrangement and replace it with sequential trading in which a

durable asset, either government debt or money or claims on a Lucas tree, is

passed from old to young. Some cross-generation transfers occur with volun-

tary exchanges, while others are engineered by government tax and transfer

programs.

9.4. Money

In Samuelson’s (1958) version of the model, trading occurs sequentially through

a medium of exchange, an inconvertible (or “fiat”) currency. In Samuelson’s

model, the preferences and endowments are as described previously, with one

important additional component of the endowment. At date t = 1, old agents

are endowed in the aggregate with M > 0 units of intrinsically worthless cur-

rency. No one has promised to redeem the currency for goods. The currency

is not “backed” by any government promise to redeem it for goods. But as

Samuelson showed, there can exist a system of expectations that will make the

currency be valued. Currency will be valued today if people expect it to be

valued tomorrow. Samuelson thus envisioned a situation in which currency is

backed by expectations without promises.

For each date t ≥ 1, young agents purchase mi
t units of currency at a price

of 1/pt units of the time t consumption good. Here pt ≥ 0 is the time t price

level. At each t ≥ 1, each old agent exchanges his holdings of currency for the

time t consumption good. The budget constraints of a young agent born in

period i ≥ 1 are

cii +
mi
i

pi
≤ yii, (9.4.1)

cii+1 ≤ mi
i

pi+1
+ yii+1, (9.4.2)

mi
i ≥ 0. (9.4.3)
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If mi
i ≥ 0, inequalities (9.4.1) and (9.4.2) imply

cii + cii+1

(
pi+1

pi

)
≤ yii + yii+1

(
pi+1

pi

)
. (9.4.4)

Provided that we set
pi+1

pi
= αi =

q0i+1

q0i
,

this budget set is identical with equation (9.2.1).

We use the following definitions:

Definition: A nominal price sequence is a positive sequence {pi}i≥1 .

Definition: An equilibrium with valued fiat money is a feasible allocation

and a nominal price sequence with pt < +∞ for all t such that given the price

sequence, the allocation solves the household’s problem for each i ≥ 1.

The qualification that pt < +∞ for all t means that fiat money is valued.

9.4.1. Computing more equilibria

Summarize the household’s optimal decisions with a saving function

yii − cii = s(αi; y
i
i, y

i
i+1). (9.4.5)

Then the equilibrium conditions for the model are

M

pi
= s(αi; y

i
i, y

i
i+1) (9.4.6a)

αi =
pi+1

pi
, (9.4.6b)

where it is understood that cii+1 = yii+1 + M
pi+1

. To compute an equilibrium, we

solve the difference equations (9.4.6) for {pi}∞i=1 , then get the allocation from

the household’s budget constraints evaluated at equality at the equilibrium level

of real balances. As an example, suppose that u(c) = ln(c), and that (yii , y
i
i+1) =

(w1, w2) with w1 > w2 . The saving function is s(αi) = .5(w1 − αiw2). Then

equation (9.4.6a) becomes

.5(w1 − w2
pt+1

pt
) =

M

pt
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or

pt = 2M/w1 +

(
w2

w1

)
pt+1. (9.4.7)

This is a difference equation whose solutions with a positive price level are

pt =
2M

w1(1 − w2

w1
)

+ c

(
w1

w2

)t
, (9.4.8)

for any scalar c > 0.8 The solution for c = 0 is the unique stationary solution.

The solutions with c > 0 have uniformly higher price levels than the c = 0

solution, and have the value of currency going to zero.

9.4.2. Equivalence of equilibria

We briefly look back at the equilibria with time 0 trading and note that the

equilibrium allocations are the same under time 0 and sequential trading. Thus,

the following proposition asserts that with an adjustment to the endowment and

the consumption allocated to the initial old, a competitive equilibrium allocation

with time 0 trading is an equilibrium allocation in the fiat money economy (with

sequential trading).

Proposition: Let ci denote a competitive equilibrium allocation (with time

0 trading) and suppose that it satisfies c11 < y1
1 . Then there exists an equilibrium

(with sequential trading) of the monetary economy with allocation that satisfies

cii = cii, c
i
i+1 = cii+1 for i ≥ 1.

Proof: Take the competitive equilibrium allocation and price system and

form αi = q0i+1/q
0
i . Set mi

i/pi = yii − cii . Set mi
i = M for all i ≥ 1, and

determine p1 from M
p1

= y1
1 − c11 . This last equation determines a positive

initial price level p1 provided that y1
1 − c11 > 0. Determine subsequent price

levels from pi+1 = αipi . Determine the allocation to the initial old from c01 =

y0
1 + M

p1
= y0

1 + (y1
1 − c11).

In the monetary equilibrium, time t real balances equal the per capita

savings of the young and the per capita dissavings of the old. To be in a

monetary equilibrium, both quantities must be positive for all t ≥ 1.

A converse of the proposition is true.

8 See the appendix to chapter 2.
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Proposition: Let ci be an equilibrium allocation for the fiat money econ-

omy. Then there is a competitive equilibrium with time 0 trading with the same

allocation, provided that the endowment of the initial old is augmented with a

particular transfer from the clearinghouse.

To verify this proposition, we have to construct the required transfer from

the clearinghouse to the initial old. Evidently, it is y1
1−c11 . We invite the reader

to complete the proof.

9.5. Deficit finance

For the rest of this chapter, we shall assume sequential trading. With sequential

trading of fiat currency, this section reinterprets one of our earlier examples with

time 0 trading, the example with government spending.

Consider the following overlapping generations model: The population is

constant. At each date t ≥ 1, N identical young agents are endowed with

(ytt, y
t
t+1) = (w1, w2), where w1 > w2 > 0. A government levies lump-sum

taxes of τ1 on each young agent and τ2 on each old agent alive at each t ≥ 1.

There are N old people at time 1 each of whom is endowed with w2 units

of the consumption good and M0 > 0 units of inconvertible, perfectly durable

fiat currency. The initial old have utility function c01 . The young have utility

function u(ctt) + u(ctt+1). For each date t ≥ 1 the government augments the

currency supply according to

Mt −Mt−1 = pt(g − τ1 − τ2), (9.5.1)

where g is a constant stream of government expenditures per capita and 0 <

pt ≤ +∞ is the price level. If pt = +∞ , we intend that equation (9.5.1) be

interpreted as

g = τ1 + τ2. (9.5.2)

For each t ≥ 1, each young person’s behavior is summarized by

st = f(Rt; τ1, τ2) = argmax
s≥0

[u(w1 − τ1 − s) + u(w2 − τ2 +Rts)] . (9.5.3)

Definition: An equilibrium with valued fiat currency is a pair of positive

sequences {Mt, pt} such that (a) given the price level sequence, Mt/pt = f(Rt)
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(the dependence on τ1, τ2 being understood); (b) Rt = pt/pt+1 ; and (c) the

government budget constraint (9.5.1) is satisfied for all t ≥ 1.

The condition f(Rt) = Mt/pt can be written as f(Rt) = Mt−1/pt+ (Mt−
Mt−1)/pt . The left side is the savings of the young. The first term on the right

side is the dissaving of the old (the real value of currency that they exchange

for time t consumption). The second term on the right is the dissaving of the

government (its deficit), which is the real value of the additional currency that

the government prints at t and uses to purchase time t goods from the young.

To compute an equilibrium, define d = g − τ1 − τ2 and write equation

(9.5.1) as
Mt

pt
=
Mt−1

pt−1

pt−1

pt
+ d

for t ≥ 2 and
M1

p1
=
M0

p1
+ d

for t = 1. Substitute Mt/pt = f(Rt) into these equations to get

f(Rt) = f(Rt−1)Rt−1 + d (9.5.4a)

for t ≥ 2 and

f(R1) =
M0

p1
+ d. (9.5.4b)

Given p1 , which determines an initial R1 by means of equation (9.5.4b),

equations (9.5.4) form an autonomous difference equation in Rt . This system

can be solved using Figure 9.2.4.
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9.5.1. Steady states and the Laffer curve

Let’s seek a stationary solution of equations (9.5.4), a quest that is rendered

reasonable by the fact that f(Rt) is time invariant (because the endowment and

the tax patterns as well as the government deficit d are time-invariant). Guess

that Rt = R for t ≥ 1. Then equations (9.5.4) become

f(R)(1 −R) = d, (9.5.5a)

f(R) =
M0

p1
+ d. (9.5.5b)

For example, suppose that u(c) = ln(c). Then f(R) = w1−τ1
2 − w2−τ2

2R . We

have graphed f(R)(1−R) against d in Figure 9.5.1. Notice that if there is one

solution for equation (9.5.5a), then there are at least two.

ReciprocalHigh inflation
equilibrium

(low interest rate)

Low inflation
equilibrium

(high interest rate)

government
spendings

Seigneuriage earnings

of the gross inflation rate

Figure 9.5.1: The Laffer curve in revenues from the inflation

tax.

Here (1−R) can be interpreted as a tax rate on real balances, and f(R)(1−
R) is a Laffer curve for the inflation tax rate. The high-return (low-tax) R = R

is associated with the good Laffer curve stationary equilibrium, and the low-

return (high-tax) R = R comes with the bad Laffer curve stationary equilibrium.

Once R is determined, we can determine p1 from equation (9.5.5b).

Figure 9.5.1 is isomorphic with Figure 9.2.4. The saving rate function f(R)

can be deduced from the offer curve. Thus, a version of Figure 9.2.4 can be used

to solve the difference equation (9.5.4a) graphically. If we do so, we discover a

continuum of nonstationary solutions of equation (9.5.4a), all but one of which

have Rt → R as t→ ∞ . Thus, the bad Laffer curve equilibrium is stable.
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The stability of the bad Laffer curve equilibrium arises under perfect fore-

sight dynamics. Bruno and Fischer (1990) and Marcet and Sargent (1989) an-

alyze how the system behaves under two different types of adaptive dynamics.

They find that either under a crude form of adaptive expectations or under a

least-squares learning scheme, Rt converges to R . This finding is comforting be-

cause the comparative dynamics are more plausible at R (larger deficits bring

higher inflation). Furthermore, Marimon and Sunder (1993) present experi-

mental evidence pointing toward the selection made by the adaptive dynamics.

Marcet and Nicolini (1999) build an adaptive model of several Latin American

hyperinflations that rests on this selection.

9.6. Equivalent setups

This section describes some alternative asset structures and trading arrange-

ments that support the same equilibrium allocation. We take a model with a

government deficit and show how it can be supported with sequential trading in

government-indexed bonds, sequential trading in fiat currency, or time 0 trading

in Arrow-Debreu dated securities.

9.6.1. The economy

Consider an overlapping generations economy with one agent born at each t ≥ 1

and an initial old person at t = 1. Young agents born at date t have endowment

pattern (ytt, y
t
t+1) and the utility function described earlier. The initial old

person is endowed with M0 > 0 units of unbacked currency and y0
1 units of the

consumption good. There is a stream of per-young-person government purchases

{gt} .

Definition: An equilibrium with money-financed government deficits is a

sequence {Mt, pt}∞t=1 with 0 < pt < +∞ and Mt > 0 that satisfies (a) given

{pt} ,

Mt = argmax
M̃≥0

[
u(ytt − M̃/pt) + u(ytt+1 + M̃/pt+1)

]
; (9.6.1a)

and (b)

Mt −Mt−1 = ptgt. (9.6.1b)
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Now consider a version of the same economy in which there is no currency

but rather indexed government bonds. The demographics and endowments are

identical with the preceding economy, but now each initial old person is endowed

with B1 units of a maturing bond, denominated in units of time 1 consumption

good. In period t , the government sells new one-period bonds to the young

to finance its purchases gt of time t goods and to pay off the one-period debt

falling due at time t . Let Rt > 0 be the gross real one-period rate of return on

government debt between t and t+ 1.

Definition: An equilibrium with bond-financed government deficits is a

sequence {Bt+1, Rt}∞t=1 that satisfies (a) given {Rt} ,

Bt+1 = argmax
B̃

[u(ytt − B̃/Rt) + u(ytt+1 + B̃)]; (9.6.2a)

and (b)

Bt+1/Rt = Bt + gt, (9.6.2b)

with B1 ≥ 0 given.

These two types of equilibria are isomorphic in the following sense: Take

an equilibrium of the economy with money-financed deficits and transform it

into an equilibrium of the economy with bond-financed deficits as follows: set

Bt = Mt−1/pt, Rt = pt/pt+1 . It can be verified directly that these settings

of bonds and interest rates, together with the original consumption allocation,

form an equilibrium of the economy with bond-financed deficits.

Each of these two types of equilibria is evidently also isomorphic to the

following equilibrium formulated with time 0 markets:

Definition: Let Bg1 represent claims to time 1 consumption owed by the

government to the old at time 1. An equilibrium with time 0 trading is an

initial level of government debt Bg1 , a price system {q0t }∞t=1 , and a sequence

{st}∞t=1 such that (a) given the price system,

st = arg max
s̃

{
u(ytt − s̃) + u

[
ytt+1 +

(
q0t
q0t+1

)
s̃

]}
;

and (b)

q01B
g
1 +

∞∑

t=1

q0t gt = 0. (9.6.3)
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Condition b is the Arrow-Debreu version of the government budget con-

straint. Condition a is the optimality condition for the intertemporal consump-

tion decision of the young of generation t .

The government budget constraint in condition b can be represented recur-

sively as

q0t+1B
g
t+1 = q0tB

g
t + q0t gt. (9.6.4)

If we solve equation (9.6.4) forward and impose limT→∞ q0t+TB
g
t+T = 0, we

obtain the budget constraint (9.6.3) for t = 1. Condition (9.6.3) makes it

evident that when
∑∞

t=1 q
0
t gt > 0, Bg1 < 0, so that the government has negative

net worth. This negative net worth corresponds to the unbacked claims that

the market nevertheless values in the sequential-trading version of the model.

9.6.2. Growth

It is easy to extend these models to the case in which there is growth in the

population. Let there be Nt = nNt−1 identical young people at time t , with

n > 0. For example, consider the economy with money-financed deficits. The

total money supply is NtMt , and the government budget constraint is

NtMt −Nt−1Mt−1 = Ntptg,

where g is per-young-person government purchases. Dividing both sides of the

budget constraint by Nt and rearranging gives

Mt

pt+1

pt+1

pt
= n−1Mt−1

pt
+ g. (9.6.5)

This equation replaces equation (9.6.1b) in the definition of an equilibrium with

money-financed deficits. (Note that in a steady state, R = n is the high-interest-

rate equilibrium.) Similarly, in the economy with bond-financed deficits, the

government budget constraint would become

Bt+1

Rt
= n−1Bt + gt.

It is also easy to modify things to permit the government to tax young and

old people at t . In that case, with government bond finance the government

budget constraint becomes

Bt+1

Rt
= n−1Bt + gt − τ tt − n−1τ t−1

t ,
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where τst is the time t tax on a person born in period s .

9.7. Optimality and the existence of monetary equilibria

Wallace (1980) discusses the connection between nonoptimality of the equilib-

rium without valued money and existence of monetary equilibria. Abstracting

from his assumption of a storage technology, we study how the arguments ap-

ply to a pure endowment economy. The environment is as follows. At any

date t , the population consists of Nt young agents and Nt−1 old agents where

Nt = nNt−1 with n > 0. Each young person is endowed with y1 > 0 goods, and

an old person receives the endowment y2 > 0. Preferences of a young agent at

time t are given by the utility function u(ctt, c
t
t+1), which is twice differentiable

with indifference curves that are convex to the origin. The two goods in the

utility function are normal goods, and

θ(c1, c2) ≡ u1(c1, c2)/u2(c1, c2),

the marginal rate of substitution function, approaches infinity as c2/c1 ap-

proaches infinity and approaches zero as c2/c1 approaches zero. The welfare

of the initial old agents at time 1 is strictly increasing in c01 , and each one of

them is endowed with y2 goods and m0
0 > 0 units of fiat money. Thus, the

beginning-of-period aggregate nominal money balances in the initial period 1

are M0 = N0m
0
0 .

For all t ≥ 1, Mt , the post-transfer time t stock of fiat money obeys

Mt = zMt−1 with z > 0. The time t transfer (or tax), (z − 1)Mt−1 , is divided

equally at time t among the Nt−1 members of the current old generation. The

transfers (or taxes) are fully anticipated and are viewed as lump-sum: they do

not depend on consumption and saving behavior. The budget constraints of a

young agent born in period t are

ctt +
mt
t

pt
≤ y1, (9.7.1)

ctt+1 ≤ y2 +
mt
t

pt+1
+

(z − 1)

Nt

Mt

pt+1
, (9.7.2)

mt
t ≥ 0, (9.7.3)
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where pt > 0 is the time t price level. In a nonmonetary equilibrium, the price

level is infinite, so the real values of both money holdings and transfers are zero.

Since all members in a generation are identical, the nonmonetary equilibrium is

autarky with a marginal rate of substitution equal to

θaut ≡
u1(y1, y2)

u2(y1, y2)
.

We ask two questions about this economy. Under what circumstances does a

monetary equilibrium exist? And, when it exists, under what circumstances

does it improve matters?

Let m̂t denote the equilibrium real money balances of a young agent at time

t , m̂t ≡ Mt/(Ntpt). Substitution of equilibrium money holdings into budget

constraints (9.7.1) and (9.7.2) at equality yield ctt = y1 − m̂t and ctt+1 =

y2 +nm̂t+1 . In a monetary equilibrium, m̂t > 0 for all t and the marginal rate

of substitution θ(ctt, c
t
t+1) satisfies

θ(y1 − m̂t, y2 + nm̂t+1) =
pt
pt+1

> θaut, ∀t ≥ 1. (9.7.4)

The equality part of (9.7.4) is the first-order condition for money holdings of an

agent born in period t evaluated at the equilibrium allocation. Since ctt < y1

and ctt+1 > y2 in a monetary equilibrium, the inequality in (9.7.4) follows from

the assumption that the two goods in the utility function are normal goods.

Another useful characterization of the equilibrium rate of return on money,

pt/pt+1 , can be obtained as follows. By the rule generating Mt and the equi-

librium condition Mt/pt = Ntm̂t , we have for all t ,

pt
pt+1

=
Mt+1

zMt

pt
pt+1

=
Nt+1m̂t+1

zNtm̂t
=
n

z

m̂t+1

m̂t
. (9.7.5)

We are now ready to address our first question, under what circumstances does

a monetary equilibrium exist?

Proposition: θautz < n is necessary and sufficient for the existence of at

least one monetary equilibrium.

Proof: We first establish necessity. Suppose to the contrary that there is a

monetary equilibrium and θautz/n ≥ 1. Then, by the inequality part of (9.7.4)

and expression (9.7.5), we have for all t ,

m̂t+1

m̂t
>
zθaut

n
≥ 1. (9.7.6)
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If zθaut/n > 1, one plus the net growth rate of m̂t is bounded uniformly above

one and, hence, the sequence {m̂t} is unbounded, which is inconsistent with

an equilibrium because real money balances per capita cannot exceed the en-

dowment y1 of a young agent. If zθaut/n = 1, the strictly increasing sequence

{m̂t} in (9.7.6) might not be unbounded but converge to some constant m̂∞ .

According to (9.7.4) and (9.7.5), the marginal rate of substitution will then

converge to n/z , which by assumption is now equal to θaut , the marginal rate

of substitution in autarky. Thus, real balances must be zero in the limit, which

contradicts the existence of a strictly increasing sequence of positive real bal-

ances in (9.7.6).

To show sufficiency, we prove the existence of a unique equilibrium with

constant per capita real money balances when θautz < n . Substitute our can-

didate equilibrium, m̂t = m̂t+1 ≡ m̂ , into (9.7.4) and (9.7.5), which yields two

equilibrium conditions,

θ(y1 − m̂, y2 + nm̂) =
n

z
> θaut.

The inequality part is satisfied under the parameter restriction of the proposi-

tion, and we only have to show the existence of m̂ ∈ [0, y1] that satisfies the

equality part. But the existence (and uniqueness) of such a m̂ is trivial. Note

that the marginal rate of substitution on the left side of the equality is equal

to θaut when m̂ = 0. Next, our assumptions on preferences imply that the

marginal rate of substitution is strictly increasing in m̂ , and approaches infinity

when m̂ approaches y1 .

The stationary monetary equilibrium in the proof will be referred to as the

m̂ equilibrium. In general, there are other nonstationary monetary equilibria

when the parameter condition of the proposition is satisfied. For example, in

the case of logarithmic preferences and a constant population, recall the con-

tinuum of equilibria indexed by the scalar c > 0 in expression (9.4.8). But

here we choose to focus solely on the stationary m̂ equilibrium and its welfare

implications. The m̂ equilibrium will be compared to other feasible allocations

using the Pareto criterion. Evidently, an allocation C = {c01; (ctt, ctt+1), t ≥ 1} is

feasible if

Ntc
t
t +Nt−1c

t−1
t ≤ Nty1 +Nt−1y2, ∀t ≥ 1,

or, equivalently,
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nctt + ct−1
t ≤ ny1 + y2, ∀t ≥ 1. (9.7.7)

The definition of Pareto optimality is:

Definition: A feasible allocation C is Pareto optimal if there is no other

feasible allocation C̃ such that

c̃01 ≥ c01,

u(c̃tt, c̃
t
t+1) ≥ u(ctt, c

t
t+1), ∀t ≥ 1,

and at least one of these weak inequalities holds with strict inequality.

We first examine under what circumstances the nonmonetary equilibrium

(autarky) is Pareto optimal.

Proposition: θaut ≥ n is necessary and sufficient for the optimality of the

nonmonetary equilibrium (autarky).

Proof: To establish sufficiency, suppose to the contrary that there exists

another feasible allocation C̃ that is Pareto superior to autarky and θaut ≥ n .

Without loss of generality, assume that the allocation C̃ satisfies (9.7.7) with

equality. (Given an allocation that is Pareto superior to autarky but that does

not satisfy (9.7.7), one can easily construct another allocation that is Pareto

superior to the given allocation, and hence to autarky.) Let period t be the first

period when this alternative allocation C̃ differs from the autarkic allocation.

The requirement that the old generation in this period is not made worse off,

c̃t−1
t ≥ y2 , implies that the first perturbation from the autarkic allocation must

be c̃tt < y1 , with the subsequent implication that c̃tt+1 > y2 . It follows that

the consumption of young agents at time t+ 1 must also fall below y1 , and we

define

εt+1 ≡ y1 − c̃t+1
t+1 > 0. (9.7.8)

Now, given c̃t+1
t+1 , we compute the smallest number ct+1

t+2 that satisfies

u(c̃t+1
t+1, c

t+1
t+2) ≥ u(y1, y2).

Let ct+1
t+2 be the solution to this problem. Since the allocation C̃ is Pareto

superior to autarky, we have c̃t+1
t+2 ≥ ct+1

t+2 . Before using this inequality, though,

we want to derive a convenient expression for ct+1
t+2 .
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Consider the indifference curve of u(c1, c2) that yields a fixed utility equal

to u(y1, y2). In general, along an indifference curve, c2 = h(c1), where h′ =

−u1/u2 = −θ and h′′ > 0. Therefore, applying the intermediate value theorem

to h , we have

h(c1) = h(y1) + (y1 − c1)[−h′(y1) + f(y1 − c1)], (9.7.9)

where the function f is strictly increasing and f(0) = 0.

Now, since (c̃t+1
t+1, c

t+1
t+2) and (y1, y2) are on the same indifference curve, we

may use (9.7.8) and (9.7.9) to write

ct+1
t+2 = y2 + εt+1[θaut + f(εt+1)],

and after invoking c̃t+1
t+2 ≥ ct+1

t+2 , we have

c̃t+1
t+2 − y2 ≥ εt+1[θaut + f(εt+1)]. (9.7.10)

Since C̃ satisfies (9.7.7) at equality, we also have

εt+2 ≡ y1 − c̃t+2
t+2 =

c̃t+1
t+2 − y2

n
. (9.7.11)

Substitution of (9.7.10) into (9.7.11) yields

εt+2 ≥ εt+1
θaut + f(εt+1)

n

> εt+1,

(9.7.12)

where the strict inequality follows from θaut ≥ n and f(εt+1) > 0 (implied by
εt+1 > 0). Continuing these computations of successive values of εt+k yields

εt+k ≥ εt+1

k−1∏

j=1

θaut + f(εt+j)

n
> εt+1

[
θaut + f(εt+1)

n

]k−1

, for k > 2,

where the strict inequality follows from the fact that {εt+j} is a strictly increas-

ing sequence. Thus, the ε sequence is bounded below by a strictly increasing

exponential and hence is unbounded. But such an unbounded sequence violates

feasibility because ε cannot exceed the endowment y1 of a young agent. It fol-

lows that we can rule out the existence of a Pareto superior allocation C̃ , and

conclude that θaut ≥ n is a sufficient condition for the optimality of autarky.
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To establish necessity, we prove the existence of an alternative feasible al-

location Ĉ that is Pareto superior to autarky when θaut < n . First, pick an

ε > 0 sufficiently small so that

θaut + f(ε) ≤ n, (9.7.13)

where f is defined implicitly by equation (9.7.9). Second, set ĉtt = y1 − ε ≡ ĉ1 ,

and

ĉtt+1 = y2 + ε[θaut + f(ε)] ≡ ĉ2, ∀t ≥ 1. (9.7.14)

That is, we have constructed a consumption bundle (ĉ1, ĉ2) that lies on the

same indifference curve as (y1, y2), and from (9.7.13) and (9.7.14), we have

ĉ2 ≤ y2 + nε,

which ensures that the condition for feasibility (9.7.7) is satisfied for t ≥ 2. By

setting ĉ01 = y2 + nε , feasibility is also satisfied in period 1 and the initial old

generation is then strictly better off under the alternative allocation Ĉ .

With a constant nominal money supply, z = 1, the two propositions show

that a monetary equilibrium exists if and only if the nonmonetary equilibrium

is suboptimal. In that case, the following proposition establishes that the sta-

tionary m̂ equilibrium is optimal.

Proposition: Given θautz < n , then z ≤ 1 is necessary and sufficient for

the optimality of the stationary monetary equilibrium m̂ .

Proof: The class of feasible stationary allocations with (ctt, c
t
t+1) = (c1, c2)

for all t ≥ 1, is given by

c1 +
c2
n

≤ y1 +
y2
n
, (9.7.15)

i.e., the condition for feasibility in (9.7.7). It follows that the m̂ equilibrium

satisfies (9.7.15) at equality, and we denote the associated consumption alloca-

tion of an agent born at time t ≥ 1 by (ĉ1, ĉ2). It is also the case that (ĉ1, ĉ2)

maximizes an agent’s utility subject to budget constraints (9.7.1) and (9.7.2).

The consolidation of these two constraints yields

c1 +
z

n
c2 ≤ y1 +

z

n
y2 +

z

n

(z − 1)

Nt

Mt

pt+1
, (9.7.16)
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where we have used the stationary rate or return in (9.7.5), pt/pt+1 = n/z .

After also invoking zMt = Mt+1 , n = Nt+1/Nt , and the equilibrium condition

Mt+1/(pt+1Nt+1) = m̂ , expression (9.7.16) simplifies to

c1 +
z

n
c2 ≤ y1 +

z

n
y2 + (z − 1)m̂. (9.7.17)

To prove the statement about necessity, Figure 9.7.1 depicts the two curves

(9.7.15) and (9.7.17) when condition z ≤ 1 fails to hold, i.e., we assume that

z > 1. The point that maximizes utility subject to (9.7.15) is denoted (c1, c2).

Transitivity of preferences and the fact that the slope of budget line (9.7.17)

is flatter than that of (9.7.15) imply that (ĉ1, ĉ2) lies southeast of (c1, c2). By

revealed preference, then, (c1, c2) is preferred to (ĉ1, ĉ2) and all generations

born in period t ≥ 1 are better off under the allocation C . The initial old

generation can also be made better off under this alternative allocation since it

is feasible to strictly increase their consumption,

c01 = y2 + n(y1 − c11) > y2 + n(y1 − ĉ11) = ĉ01.

Thus, we have established that z ≤ 1 is necessary for the optimality of the

stationary monetary equilibrium m̂ .

To prove sufficiency, note that (9.7.4), (9.7.5) and z ≤ 1 imply that

θ(ĉ1, ĉ2) =
n

z
≥ n.

We can then construct an argument that is analogous to the sufficiency part of

the proof to the preceding proposition.

As pointed out by Wallace (1980), the proposition implies no connection be-

tween the path of the price level in an m̂ equilibrium and the optimality of that

equilibrium. Thus, there may be an optimal monetary equilibrium with positive

inflation, for example, if θaut < n < z ≤ 1; and there may be a nonoptimal mon-

etary equilibrium with a constant price level, for example, if z = n > 1 > θaut .

What counts is the nominal quantity of fiat money. The proposition suggests

that the quantity of money should not be increased. In particular, if z ≤ 1,

then an optimal m̂ equilibrium exists whenever the nonmonetary equilibrium is

nonoptimal.
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Figure 9.7.1: The feasibility line (9.7.15) and the budget

line (9.7.17) when z > 1. The consumption allocation in the

monetary equilibrium is (ĉ1, ĉ2), and the point that maxi-

mizes utility subject to the feasibility line is denoted (c1, c2).

9.7.1. Balasko-Shell criterion for optimality

For the case of constant population, Balasko and Shell (1980) have established

a convenient general criterion for testing whether allocations are optimal.9 Bal-

asko and Shell permit diversity among agents in terms of endowments [wtht , w
th
t+1]

and utility functions uth(ctht , c
th
t+1), where wths is the time s endowment of an

agent named h who is born at t and cths is the time s consumption of agent

named h born at t . Balasko and Shell assume fixed populations of types h

over time. They impose several kinds of technical conditions that serve to rule

out possible pathologies. The two main ones are these. First, they assume

that indifference curves have neither flat parts nor kinks, and they also rule

out indifference curves with flat parts or kinks as limits of sequences of indif-

ference curves for given h as t → ∞ . Second, they assume that the aggregate

endowments
∑

h(w
th
t + wt−1,h

t ) are uniformly bounded from above and that

there exists an ε > 0 such that wsht > ε for all s, h , and for t ∈ {s, s + 1} .

They consider consumption allocations uniformly bounded away from the axes.

9 Balasko and Shell credit David Cass (1971) with having authored a version of their

criterion.
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With these conditions, Balasko and Shell consider the class of allocations in

which all young agents at t share a common marginal rate of substitution

1 + rt ≡ uth1 (ctht , c
th
t+1)/u

th
2 (ctht , c

th
t+1) and in which all of the endowments are

consumed. Then Balasko and Shell show that an allocation is Pareto optimal if

and only if
∞∑

t=1

t∏

s=1

[1 + rs] = +∞, (9.7.18)

that is, if and only if the infinite sum of t-period gross interest rates,
∏t
s=1[1 +

rs] , diverges.

The Balasko-Shell criterion for optimality succinctly summarizes the sense

in which low-interest-rate economies are not optimal. We have already en-

countered repeated examples of the situation that, before an equilibrium with

valued currency can exist, the equilibrium without valued currency must be a

low-interest-rate economy in just the sense identified by Balasko and Shell’s cri-

terion, (9.7.18). Furthermore, by applying the Balasko-Shell criterion, (9.7.18),

or by applying generalizations of it to allow for a positive net growth rate of

population n , it can be shown that, among equilibria with valued currency, only

equilibria with high rates of return on currency are optimal.

9.8. Within-generation heterogeneity

This section describes an overlapping generations model with within-generation

heterogeneity of endowments. We shall follow Sargent and Wallace (1982) and

Smith (1988) and use this model as a vehicle for talking about some issues in

monetary theory that require a setting in which government-issued currency

coexists with and is a more-or-less good substitute for private IOUs.

We now assume that within each generation born at t ≥ 1, there are J

groups of agents. There is a constant number Nj of group j agents. Agents of

group j are endowed with w1(j) when young and w2(j) when old. The saving

function of a household of group j born at time t solves the time t version of

problem (9.5.3). We denote this savings function f(Rt, j). If we assume that all

households of generation t have preferences U t(ct) = ln ctt + ln ctt+1 , the saving

function is

f(Rt, j) = .5

(
w1(j) −

w2(j)

Rt

)
.



Within-generation heterogeneity 293

At t = 1, there are old people who are endowed in the aggregate with H = H(0)

units of an inconvertible currency.

For example, assume that J = 2, that (w1(1), w2(1)) =

(α, 0), (w1(2), w2(2)) = (0, β), where α > 0, β > 0. The type 1 people are

lenders, while the type 2 are borrowers. For the case of log preference we have

the savings functions f(R, 1) = α/2, f(R, 2) = −β/(2R).

9.8.1. Nonmonetary equilibrium

An equilibrium consists of sequences (R, sj) of rates of return R and sav-

ings rates for j = 1, . . . , J and t ≥ 1 that satisfy (1)stj = f(Rt, j), and (2)∑J
j=1Njf(Rt, j) = 0. Condition (1) builds in household optimization; condition

(2) says that aggregate net savings equals zero (borrowing equals lending).

For the case in which the endowments, preferences, and group sizes are

constant across time, the interest rate is determined at the intersection of the

aggregate savings function with the R axis, depicted as R1 in Figure 9.8.1. No

intergenerational transfers occur in the nonmonetary equilibrium. The equi-

librium consists of a sequence of separate two-period pure consumption loan

economies of a type analyzed by Irving Fisher (1907).

9.8.2. Monetary equilibrium

In an equilibrium with valued fiat currency, at each date t ≥ 1 the old receive

goods from the young in exchange for the currency stock H . For any variable x ,

x = {xt}∞t=1 . An equilibrium with valued fiat money is a set of sequences R, p, s

such that (1) p is a positive sequence, (2) Rt = pt/pt+1 , (3) sjt = f(Rt, j),

and (4)
∑J
j=1Njf(Rt, j) = H

pt
. Condition (1) states that currency is valued

at all dates. Condition (2) states that currency and consumption loans are

perfect substitutes. Condition (3) requires that savings decisions are optimal.

Condition (4) equates the net savings of the young (the left side) to the net

dissaving of the old (the right side). The old supply currency inelastically.

We can determine a stationary equilibrium graphically. A stationary equi-

librium satisfies pt = p for all t , which implies R = 1 for all t . Thus, if it
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exists, a stationary equilibrium solves

J∑

j=1

Njf(1, j) =
H

p
(9.8.1)

for a positive price level. (See Figure 9.8.1.) Evidently, a stationary monetary

equilibrium exists if the net savings of the young are positive for R = 1.

f (R   , j) 
 tN j  Σ

R
1

 sH/p0

1

R

Figure 9.8.1: The intersection of the aggregate savings func-

tion with a horizontal line at R = 1 determines a stationary

equilibrium value of the price level, if positive.

For the special case of logarithmic preferences and two classes of young

people, the aggregate savings function of the young is time invariant and equal

to ∑

j

f(R, j) = .5(N1α−N2
β

R
).

Note that the equilibrium condition (9.8.1) can be written

.5N1α = .5N2
β

R
+
H

p
.



Within-generation heterogeneity 295

The left side is the demand for savings or the demand for “currency” while the

right side is the supply, consisting of privately issued IOU’s (the first term) and

government-issued currency. The right side is thus an abstract version of M1,

which is a sum of privately issued IOUs (demand deposits) and government-

issued reserves and currency.

9.8.3. Nonstationary equilibria

Mathematically, the equilibrium conditions for the model with log preferences

and two groups have the same structure as the model analyzed previously in

equations (9.4.7) and (9.4.8), with simple reinterpretations of parameters. We

leave it to the reader here and in an exercise to show that if there exists a

stationary equilibrium with valued fiat currency, then there exists a continuum

of equilibria with valued fiat currency, all but one of which have the real value

of government currency approaching zero asymptotically. A linear difference

equation like (9.4.7) supports this conclusion.

9.8.4. The real bills doctrine

In nineteenth-century Europe and the early days of the Federal Reserve system

in the United States, central banks conducted open market operations not by

purchasing government securities but by purchasing safe (risk-free) short-term

private IOUs. We now introduce this old-fashioned type of open market oper-

ation. The government can issue additional currency each period. It uses the

proceeds exclusively to purchase private IOUs (make loans to private agents)

in the amount Lt at time t . These open market operations are subject to the

sequence of restrictions

Lt = Rt−1Lt−1 +
Ht −Ht−1

pt
(9.8.2)

for t ≥ 1 and H0 = H given, L0 = 0. Here Lt is the amount of the time t

consumption good that the government lends to the private sector from period t

to period t+1. Equation (9.8.2) states that the government finances these loans

in two ways: first, by rolling over the proceeds Rt−1Lt−1 from the repayment

of last period’s loans, and second, by injecting new currency in the amount
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Ht −Ht−1 . With the government injecting new currency and purchasing loans

in this way each period, the equilibrium condition in the loan market becomes

J∑

j=1

Njf(Rt, j) + Lt =
Ht−1

pt
+
Ht −Ht−1

pt
(9.8.3)

where the first term on the right is the real dissaving of the old at t (their

real balances) and the second term is the real value of the new money printed

by the monetary authority to finance purchases of private IOUs issued by the

young at t . The left side is the net savings of the young plus the savings of the

government.

Under several guises, the effects of open market operations like this have

concerned monetary economists for centuries.10 We can state the following

proposition:

Irrelevance of Open Market Operations: Open market opera-

tions are irrelevant: all positive sequences {Lt, Ht}∞t=0 that satisfy the constraint

(9.8.2) are associated with the same equilibrium allocation, interest rate, and

price level sequences.

Proof: We can write the equilibrium condition (9.8.3) as

J∑

j=1

Njf(Rt, j) + Lt =
Ht

pt
. (9.8.4)

For t ≥ 1, iterating (9.8.2) once and using Rt−1 = pt−1

pt
gives

Lt = Rt−1Rt−2Lt−2 +
Ht −Ht−2

pt
.

Iterating back to time 0 and using L0 = 0 gives

Lt =
Ht −H0

pt
. (9.8.5)

10 One version of the issue concerned the effects on the price level of allowing banks to issue

private bank notes. Notice that there is nothing in our setup that makes us take seriously

that the notes Ht are issued by the government. We can also think of them as being issued

by a private bank.
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Substituting (9.8.5) into (9.8.4) gives

J∑

j=1

Njf(Rt, j) =
H0

pt
. (9.8.6)

This is the same equilibrium condition in the economy with no open market

operations, i.e., the economy with Lt ≡ 0 for all t ≥ 1. Any price level and rate

of return sequence that solves (9.8.6) also solves (9.8.3) for any Lt sequence

satisfying (9.8.2).

This proposition captures the spirit of Adam Smith’s real bills doctrine,

which states that if the government issues notes to purchase safe evidences of

private indebtedness, it is not inflationary. Sargent and Wallace (1982) extend

this discussion to settings in which the money market is separated from the credit

market by some legal restrictions that inhibit intermediation. Then open market

operations are no longer irrelevant because they can be used partially to undo

the legal restrictions. Sargent and Wallace show how those legal restrictions can

help stabilize the price level at a cost in terms of economic efficiency. Kahn and

Roberds (1998) extend this setting to study issues about regulating electronic

payments systems.

9.9. Gift-giving equilibrium

Michihiro Kandori (1992) and Lones Smith (1992) have used ideas from the

literature on reputation (see chapter 22) to study whether there exist history-

dependent sequences of gifts that support an optimal allocation. Their idea is

to set up the economy as a game played with a sequence of players. We briefly

describe a gift-giving game for an overlapping generations economy in which

voluntary intergenerational gifts supports an optimal allocation. Suppose that

the consumption of an initial old person is

c01 = y0
1 + s1

and the utility of each young agent is

u(yii − si) + u(yii+1 + si+1), i ≥ 1 (9.9.1)
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where si ≥ 0 is the gift from a young person at i to an old person at i . Suppose

that the endowment pattern is yii = 1 − ε, yii+1 = ε , where ε ∈ (0, .5).

Consider the following system of expectations, to which a young person

chooses whether to conform:

si =

{
.5 − ε if vi = v;

0 otherwise.
(9.9.2a)

vi+1 =

{
v if vi = v and si = .5 − ε;

v otherwise.
(9.9.2b)

Here we are free to take v = 2u(.5) and v = u(1 − ε) + u(ε). These are

“promised utilities.” We make them serve as “state variables” that summarize

the history of intergenerational gift giving. To start, we need an initial value v1 .

Equations (9.9.2) act as the transition laws that young agents face in choosing

si in (9.9.1).

An initial condition v1 and the rule (9.9.2) form a system of expectations

that tells the young person of each generation what he is expected to give. His

gift is immediately handed over to an old person. A system of expectations is

called an equilibrium if for each i ≥ 1, each young agent chooses to conform.

We can immediately compute two equilibrium systems of expectations. The

first is the “autarky” equilibrium: give nothing yourself and expect all future

generations to give nothing. To represent this equilibrium within equations

(9.9.2), set v1 6= v . It is easy to verify that each young person will confirm

what is expected of him in this equilibrium. Given that future generations will

not give, each young person chooses not to give.

For the second equilibrium, set v1 = v . Here each household chooses to

give the expected amount, because failure to do so causes the next generation

of young people not to give; whereas affirming the expectation to give passes

that expectation along to the next generation, which affirms it in turn. Each

of these equilibria is credible, in the sense of subgame perfection, to be studied

extensively in chapter 22.

Narayana Kocherlakota (1998) has compared gift giving and monetary equi-

libria in a variety of environments and has used the comparison to provide a

precise sense in which money substitutes for memory.
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9.10. Concluding remarks

The overlapping generations model is a workhorse in analyses of public finance,

welfare economics, and demographics. Diamond (1965) studied some fiscal pol-

icy issues within a version of the model with a neoclassical production. He

showed that, depending on preference and productivity parameters, equilibria

of the model can have too much capital, and that such capital overaccumula-

tion can be corrected by having the government issue and perpetually roll over

unbacked debt.11 Auerbach and Kotlikoff (1987) formulated a long-lived over-

lapping generations model with capital, labor, production, and various kinds of

taxes. They used the model to study a host of fiscal issues. Rios-Rull (1994a)

used a calibrated overlapping generations growth model to examine the quanti-

tative importance of market incompleteness for insuring against aggregate risk.

See Attanasio (2000) for a review of theories and evidence about consumption

within life-cycle models.

Several authors in a 1980 volume edited by John Kareken and Neil Wallace

argued through example that the overlapping generations model is useful for

analyzing a variety of issues in monetary economics. We refer to that volume,

McCandless and Wallace (1992), Champ and Freeman (1994), Brock (1990),

and Sargent (1987b) for a variety of applications of the overlapping generations

model to issues in monetary economics.

Exercises

Exercise 9.1 At each date t ≥ 1, an economy consists of overlapping generations

of a constant number N of two-period-lived agents. Young agents born in t

have preferences over consumption streams of a single good that are ordered by

u(ctt) + u(ctt+1), where u(c) = c1−γ/(1 − γ), and where cit is the consumption

of an agent born at i in time t . It is understood that γ > 0, and that when

γ = 1, u(c) = ln c . Each young agent born at t ≥ 1 has identical preferences

and endowment pattern (w1, w2), where w1 is the endowment when young and

w2 is the endowment when old. Assume 0 < w2 < w1 . In addition, there

are some initial old agents at time 1 who are endowed with w2 of the time 1

11 Abel, Mankiw, Summers, and Zeckhauser (1989) propose an empirical test of whether

there is capital overaccumulation in the U.S. economy, and conclude that there is not.
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consumption good, and who order consumption streams by c01 . The initial old

(i.e., the old at t = 1) are also endowed with M units of unbacked fiat currency.

The stock of currency is constant over time.

a. Find the saving function of a young agent.

b. Define an equilibrium with valued fiat currency.

c. Define a stationary equilibrium with valued fiat currency.

d. Compute a stationary equilibrium with valued fiat currency.

e. Describe how many equilibria with valued fiat currency there are. (You are

not being asked to compute them.)

f. Compute the limiting value as t → +∞ of the rate of return on currency

in each of the nonstationary equilibria with valued fiat currency. Justify your

calculations.

Exercise 9.2 Consider an economy with overlapping generations of a constant

population of an even number N of two-period-lived agents. New young agents

are born at each date t ≥ 1. Half of the young agents are endowed with w1

when young and 0 when old. The other half are endowed with 0 when young

and w2 when old. Assume 0 < w2 < w1 . Preferences of all young agents are as

in problem 1, with γ = 1. Half of the N initial old are endowed with w2 units

of the consumption good and half are endowed with nothing. Each old person

orders consumption streams by c01 . Each old person at t = 1 is endowed with

M units of unbacked fiat currency. No other generation is endowed with fiat

currency. The stock of fiat currency is fixed over time.

a. Find the saving function of each of the two types of young person for t ≥ 1.

b. Define an equilibrium without valued fiat currency. Compute all such equi-

libria.

c. Define an equilibrium with valued fiat currency.

d. Compute all the (nonstochastic) equilibria with valued fiat currency.

e. Argue that there is a unique stationary equilibrium with valued fiat currency.

f. How are the various equilibria with valued fiat currency ranked by the Pareto

criterion?
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Exercise 9.3 Take the economy of exercise 9.1 , but make one change. Endow

the initial old with a tree that yields a constant dividend of d > 0 units of the

consumption good for each t ≥ 1.

a. Compute all the equilibria with valued fiat currency.

b. Compute all the equilibria without valued fiat currency.

c. If you want, you can answer both parts of this question in the context of the

following particular numerical example: w1 = 10, w2 = 5, d = .000001.

Exercise 9.4 Take the economy of exercise 9.1 and make the following two

changes. First, assume that γ = 1. Second, assume that the number of young

agents born at t is N(t) = nN(t − 1), where N(0) > 0 is given and n ≥ 1.

Everything else about the economy remains the same.

a. Compute an equilibrium without valued fiat money.

b. Compute a stationary equilibrium with valued fiat money.

Exercise 9.5 Consider an economy consisting of overlapping generations of two-

period-lived consumers. At each date t ≥ 1 there are born N(t) identical young

people each of whom is endowed with w1 > 0 units of a single consumption good

when young and w2 > 0 units of the consumption good when old. Assume that

w2 < w1 . The consumption good is not storable. The population of young

people is described by N(t) = nN(t− 1), where n > 0. Young people born at t

rank utility streams according to ln(ctt) + ln(ctt+1) where cit is the consumption

of the time t good of an agent born in i . In addition, there are N(0) old people

at time 1, each of whom is endowed with w2 units of the time 1 consumption

good. The old at t = 1 are also endowed with one unit of unbacked pieces of

infinitely durable but intrinsically worthless pieces of paper called fiat money.

a. Define an equilibrium without valued fiat currency. Compute such an equi-

librium.

b. Define an equilibrium with valued fiat currency.

c. Compute all equilibria with valued fiat currency.

d. Find the limiting rates of return on currency as t → +∞ in each of the

equilibria that you found in part c. Compare them with the one-period interest

rate in the equilibrium in part a.
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e. Are the equilibria in part c ranked according to the Pareto criterion?

Exercise 9.6 Exchange rate determinacy

The world consists of two economies, named i = 1, 2, which except for their

governments’ policies are “copies” of one another. At each date t ≥ 1, there

is a single consumption good, which is storable, but only for rich people. Each

economy consists of overlapping generations of two-period-lived agents. For

each t ≥ 1, in economy i , N poor people and N rich people are born. Let

cht (s), y
h
t (s) be the time s (consumption, endowment) of a type h agent born

at t . Poor agents are endowed with [yht (t), y
h
t (t + 1)] = (α, 0); rich agents are

endowed with [yht (t), yht (t+ 1)] = (β, 0), where β >> α . In each country, there

are 2N initial old who are endowed in the aggregate with Hi(0) units of an

unbacked currency and with 2Nε units of the time 1 consumption good. For

the rich people, storing k units of the time t consumption good produces Rk

units of the time t+ 1 consumption good, where R > 1 is a fixed gross rate of

return on storage. Rich people can earn the rate of return R either by storing

goods or by lending to either government by means of indexed bonds. We

assume that poor people are prevented from storing capital or holding indexed

government debt by the sort of denomination and intermediation restrictions

described by Sargent and Wallace (1982).

For each t ≥ 1, all young agents order consumption streams according to

ln cht (t) + ln cht (t+ 1).

For t ≥ 1, the government of country i finances a stream of purchases (to

be thrown into the ocean) of Gi(t) subject to the following budget constraint:

(1) Gi(t) +RBi(t− 1) = Bi(t) +
Hi(t) −Hi(t− 1)

pi(t)
+ Ti(t),

where Bi(0) = 0; pi(t) is the price level in country i ; Ti(t) are lump-sum taxes

levied by the government on the rich young people at time t ; Hi(t) is the stock of

i ’s fiat currency at the end of period t ; Bi(t) is the stock of indexed government

interest-bearing debt (held by the rich of either country). The government does

not explicitly tax poor people, but might tax through an inflation tax. Each

government levies a lump-sum tax of Ti(t)/N on each young rich citizen of its

own country.

Poor people in both countries are free to hold whichever currency they

prefer. Rich people can hold debt of either government and can also store;

storage and both government debts bear a constant gross rate of return R .
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a. Define an equilibrium with valued fiat currencies (in both countries).

b. In a nonstochastic equilibrium, verify the following proposition: if an equilib-

rium exists in which both fiat currencies are valued, the exchange rate between

the two currencies must be constant over time.

c. Suppose that government policy in each country is characterized by specified

(exogenous) levels Gi(t) = Gi, Ti(t) = Ti , Bi(t) = 0, ∀t ≥ 1. (The remaining

elements of government policy adjust to satisfy the government budget con-

straints.) Assume that the exogenous components of policy have been set so

that an equilibrium with two valued fiat currencies exists. Under this descrip-

tion of policy, show that the equilibrium exchange rate is indeterminate.

d. Suppose that government policy in each country is described as follows:

Gi(t) = Gi, Ti(t) = Ti, Hi(t + 1) = Hi(1), Bi(t) = Bi(1) ∀t ≥ 1. Show that if

there exists an equilibrium with two valued fiat currencies, the exchange rate is

determinate.

e. Suppose that government policy in country 1 is specified in terms of exoge-

nous levels of s1 = [H1(t) − H1(t − 1)]/p1(t) ∀t ≥ 2, and G1(t) = G1 ∀t ≥
1. For country 2, government policy consists of exogenous levels of B2(t) =

B2(1), G2(t) = G2∀t ≥ 1. Show that if there exists an equilibrium with two

valued fiat currencies, then the exchange rate is determinate.

Exercise 9.7 Credit controls

Consider the following overlapping generations model. At each date t ≥ 1 there

appear N two-period-lived young people, said to be of generation t , who live

and consume during periods t and (t+ 1). At time t = 1 there exist N old

people who are endowed with H(0) units of paper “dollars,” which they offer to

supply inelastically to the young of generation 1 in exchange for goods. Let p(t)

be the price of the one good in the model, measured in dollars per time t good.

For each t ≥ 1, N/2 members of generation t are endowed with y > 0 units of

the good at t and 0 units at (t+ 1), whereas the remaining N/2 members of

generation t are endowed with 0 units of the good at t and y > 0 units when

they are old. All members of all generations have the same utility function:

u[cht (t), c
h
t (t+ 1)] = ln cht (t) + ln cht (t+ 1),

where cht (s) is the consumption of agent h of generation t in period s . The old

at t = 1 simply maximize ch0 (1). The consumption good is nonstorable. The

currency supply is constant through time, so H(t) = H(0), t ≥ 1.
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a. Define a competitive equilibrium without valued currency for this model.

Who trades what with whom?

b. In the equilibrium without valued fiat currency, compute competitive equi-

librium values of the gross return on consumption loans, the consumption al-

location of the old at t = 1, and that of the “borrowers” and “lenders” for

t ≥ 1.

c. Define a competitive equilibrium with valued currency. Who trades what

with whom?

d. Prove that for this economy there does not exist a competitive equilibrium

with valued currency.

e. Now suppose that the government imposes the restriction that lht (t)[1 +

r(t)] ≥ −y/4, where lht (t)[1 + r(t)] represents claims on (t+ 1)–period con-

sumption purchased (if positive) or sold (if negative) by household h of gener-

ation t . This is a restriction on the amount of borrowing. For an equilibrium

without valued currency, compute the consumption allocation and the gross rate

of return on consumption loans.

f. In the setup of part e, show that there exists an equilibrium with valued

currency in which the price level obeys the quantity theory equation p(t) =

qH(0)/N . Find a formula for the undetermined coefficient q . Compute the

consumption allocation and the equilibrium rate of return on consumption loans.

g. Are lenders better off in economy b or economy f? What about borrowers?

What about the old of period 1 (generation 0)?

Exercise 9.8 Inside money and real bills

Consider the following overlapping generations model of two-period-lived people.

At each date t ≥ 1 there are born N1 individuals of type 1 who are endowed

with y > 0 units of the consumption good when they are young and zero units

when they are old; there are also born N2 individuals of type 2 who are endowed

with zero units of the consumption good when they are young and Y > 0 units

when they are old. The consumption good is nonstorable. At time t = 1, there

are N old people, all of the same type, each endowed with zero units of the

consumption good and H0/N units of unbacked paper called “fiat currency.”

The populations of type 1 and 2 individuals, N1 and N2 , remain constant for all

t ≥ 1. The young of each generation are identical in preferences and maximize
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the utility function ln cht (t)+ln cht (t+ 1) where cht (s) is consumption in the sth

period of a member h of generation t .

a. Consider the equilibrium without valued currency (that is, the equilibrium

in which there is no trade between generations). Let [1+ r(t)] be the gross rate

of return on consumption loans. Find a formula for [1 + r(t)] as a function of

N1, N2, y , and Y .

b. Suppose that N1, N2, y , and Y are such that [1+r(t)] > 1 in the equilibrium

without valued currency. Then prove that there can exist no quantity-theory-

style equilibrium where fiat currency is valued and where the price level p(t)

obeys the quantity theory equation p(t) = q ·H0 , where q is a positive constant

and p(t) is measured in units of currency per unit good.

c. Suppose that N1, N2, y , and Y are such that in the nonvalued-currency

equilibrium 1 + r(t) < 1. Prove that there exists an equilibrium in which

fiat currency is valued and that there obtains the quantity theory equation

p(t) = q · H0 , where q is a constant. Construct an argument to show that

the equilibrium with valued currency is not Pareto superior to the nonvalued-

currency equilibrium.

d. Suppose that N1, N2, y , and Y are such that, in the preceding nonvalued-

currency economy, [1 + r(t)] < 1, there exists an equilibrium in which fiat

currency is valued. Let p̄ be the stationary equilibrium price level in that

economy. Now consider an alternative economy, identical with the preceding

one in all respects except for the following feature: a government each period

purchases a constant amount Lg of consumption loans and pays for them by

issuing debt on itself, called “inside money” MI , in the amount MI(t) = Lg·p(t).
The government never retires the inside money, using the proceeds of the loans

to finance new purchases of consumption loans in subsequent periods. The

quantity of outside money, or currency, remains H0 , whereas the “total high-

power money” is now H0 +MI(t).

(i) Show that in this economy there exists a valued-currency equilibrium in

which the price level is constant over time at p(t) = p̄ , or equivalently, with

p̄ = qH0 where q is defined in part c.

(ii) Explain why government purchases of private debt are not inflationary in

this economy.
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(iii) In many models, once-and-for-all government open-market operations in

private debt normally affect real variables and/or price level. What ac-

counts for the difference between those models and the one in this exercise?

Exercise 9.9 Social security and the price level

Consider an economy (“economy I”) that consists of overlapping generations of

two-period-lived people. At each date t ≥ 1 there is born a constant number

N of young people, who desire to consume both when they are young, at t ,

and when they are old, at (t+ 1). Each young person has the utility function

ln ct(t) + ln ct(t+ 1), where cs(t) is time t consumption of an agent born at

s . For all dates t ≥ 1, young people are endowed with y > 0 units of a single

nonstorable consumption good when they are young and zero units when they

are old. In addition, at time t = 1 there are N old people endowed in the

aggregate with H units of unbacked fiat currency. Let p(t) be the nominal

price level at t , denominated in dollars per time t good.

a. Define and compute an equilibrium with valued fiat currency for this econ-

omy. Argue that it exists and is unique. Now consider a second economy

(“economy II”) that is identical to economy I except that economy II possesses

a social security system. In particular, at each date t ≥ 1, the government taxes

τ > 0 units of the time t consumption good away from each young person and

at the same time gives τ units of the time t consumption good to each old

person then alive.

b. Does economy II possess an equilibrium with valued fiat currency? De-

scribe the restrictions on the parameter τ , if any, that are needed to ensure the

existence of such an equilibrium.

c. If an equilibrium with valued fiat currency exists, is it unique?

d. Consider the stationary equilibrium with valued fiat currency. Is it unique?

Describe how the value of currency or price level would vary across economies

with differences in the size of the social security system, as measured by τ .

Exercise 9.10 Seignorage

Consider an economy consisting of overlapping generations of two-period-lived

agents. At each date t ≥ 1, there are born N1 “lenders” who are endowed with

α > 0 units of the single consumption good when they are young and zero units

when they are old. At each date t ≥ 1, there are also born N2 “borrowers” who
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are endowed with zero units of the consumption good when they are young and

β > 0 units when they are old. The good is nonstorable, and N1 and N2 are

constant through time. The economy starts at time 1, at which time there are

N old people who are in the aggregate endowed with H(0) units of unbacked,

intrinsically worthless pieces of paper called dollars. Assume that α, β,N1 , and

N2 are such that
N2β

N1α
< 1.

Assume that everyone has preferences

u[cht (t), c
h
t (t+ 1)] = ln cht (t) + ln cht (t+ 1),

where cht (s) is consumption of time s good of agent h born at time t .

a. Compute the equilibrium interest rate on consumption loans in the equilib-

rium without valued currency.

b. Construct a brief argument to establish whether or not the equilibrium

without valued currency is Pareto optimal.

The economy also contains a government that purchases and destroys Gt

units of the good in period t , t ≥ 1. The government finances its purchases

entirely by currency creation. That is, at time t ,

Gt =
H(t) −H(t− 1)

p(t)
,

where [H(t) −H(t− 1)] is the additional dollars printed by the government at

t and p(t) is the price level at t . The government is assumed to increase H(t)

according to

H(t) = zH(t− 1), z ≥ 1,

where z is a constant for all time t ≥ 1.

At time t , old people who carried H(t − 1) dollars between (t − 1) and

t offer these H(t − 1) dollars in exchange for time t goods. Also at t the

government offers H(t) −H(t− 1) dollars for goods, so that H(t) is the total

supply of dollars at time t , to be carried over by the young into time (t+ 1).

c. Assume that 1/z > N2β/N1α . Show that under this assumption there exists

a continuum of equilibria with valued currency.
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d. Display the unique stationary equilibrium with valued currency in the form

of a “quantity theory” equation. Compute the equilibrium rate of return on

currency and consumption loans.

e. Argue that if 1/z < N2β/N1α , then there exists no valued-currency equilib-

rium. Interpret this result. (Hint: Look at the rate of return on consumption

loans in the equilibrium without valued currency.)

f. Find the value of z that maximizes the government’s Gt in a stationary

equilibrium. Compare this with the largest value of z that is compatible with

the existence of a valued-currency equilibrium.

Exercise 9.11 Unpleasant monetarist arithmetic

Consider an economy in which the aggregate demand for government currency

for t ≥ 1 is given by [M(t)p(t)]d = g[R1(t)] , where R1(t) is the gross rate of

return on currency between t and (t+ 1), M(t) is the stock of currency at t ,

and p(t) is the value of currency in terms of goods at t (the reciprocal of the

price level). The function g(R) satisfies

(1) g(R)(1 −R) = h(R) > 0 for R ∈ (R, 1),

where h(R) ≤ 0 for R < R,R ≥ 1, R > 0 and where h′(R) < 0 for R >

Rm , h′(R) > 0 for R < Rm h(Rm) > D , where D is a positive number to

be defined shortly. The government faces an infinitely elastic demand for its

interest-bearing bonds at a constant-over-time gross rate of return R2 > 1. The

government finances a budget deficit D , defined as government purchases minus

explicit taxes, that is constant over time. The government’s budget constraint

is

(2) D = p(t)[M(t) −M(t− 1)] +B(t) −B(t− 1)R2, t ≥ 1,

subject to B(0) = 0,M(0) > 0. In equilibrium,

(3) M(t)p(t) = g[R1(t)].

The government is free to choose paths of M(t) and B(t), subject to equations

(2) and (3).

a. Prove that, for B(t) = 0, for all t > 0, there exist two stationary equilibria

for this model.



Exercises 309

b. Show that there exist values of B > 0, such that there exist stationary

equilibria with B(t) = B , M(t)p(t) = Mp .

c. Prove a version of the following proposition: among stationary equilibria, the

lower the value of B , the lower the stationary rate of inflation consistent with

equilibrium. (You will have to make an assumption about Laffer curve effects

to obtain such a proposition.)

This problem displays some of the ideas used by Sargent and Wallace (1981).

They argue that, under assumptions like those leading to the proposition stated

in part c, the “looser” money is today [that is, the higher M(1) and the lower

B(1)], the lower the stationary inflation rate.

Exercise 9.12 Grandmont-Hall

Consider a nonstochastic, one-good overlapping generations model consisting of

two-period-lived young people born in each t ≥ 1 and an initial group of old

people at t = 1 who are endowed with H(0) > 0 units of unbacked currency

at the beginning of period 1. The one good in the model is not storable. Let

the aggregate first-period saving function of the young be time-invariant and be

denoted f [1 + r(t)] where [1 + r(t)] is the gross rate of return on consumption

loans between t and (t+ 1). The saving function is assumed to satisfy f(0) =

−∞ , f ′(1 + r) > 0, f(1) > 0.

Let the government pay interest on currency, starting in period 2 (to holders

of currency between periods 1 and 2). The government pays interest on currency

at a nominal rate of [1 + r(t)]p(t + 1)/p̄ , where [1 + r(t)] is the real gross rate

of return on consumption loans, p(t) is the price level at t , and p̄ is a target

price level chosen to satisfy

p̄ = H(0)/f(1).

The government finances its interest payments by printing new money, so that

the government’s budget constraint is

H(t+ 1) −H(t) =

{
[1 + r(t)]

p(t + 1)

p̄
− 1

}
H(t), t ≥ 1,

given H(1) = H(0) > 0. The gross rate of return on consumption loans in this

economy is 1 + r(t). In equilibrium, [1 + r(t)] must be at least as great as the

real rate of return on currency

1 + r(t) ≥ [1 + r(t)]p(t)/p̄ = [1 + r(t)]
p(t + 1)

p̄

p(t)

p(t+ 1)
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with equality if currency is valued,

1 + r(t) = [1 + r(t)]p(t)/p̄, 0 < p(t) <∞.

The loan market-clearing condition in this economy is

f [1 + r(t)] = H(t)/p(t).

a. Define an equilibrium.

b. Prove that there exists a unique monetary equilibrium in this economy and

compute it.

Exercise 9.13 Bryant-Keynes-Wallace

Consider an economy consisting of overlapping generations of two-period-lived

agents. There is a constant population of N young agents born at each date

t ≥ 1. There is a single consumption good that is not storable. Each agent born

in t ≥ 1 is endowed with w1 units of the consumption good when young and

with w2 units when old, where 0 < w2 < w1 . Each agent born at t ≥ 1 has

identical preferences ln cht (t) + ln cht (t+ 1), where cht (s) is time s consumption

of agent h born at time t . In addition, at time 1, there are alive N old people

who are endowed with H(0) units of unbacked paper currency and who want

to maximize their consumption of the time 1 good.

A government attempts to finance a constant level of government purchases

G(t) = G > 0 for t ≥ 1 by printing new base money. The government’s budget

constraint is

G = [H(t) −H(t− 1)]/p(t),

where p(t) is the price level at t , and H(t) is the stock of currency carried over

from t to (t+ 1) by agents born in t . Let g = G/N be government purchases

per young person. Assume that purchases G(t) yield no utility to private agents.

a. Define a stationary equilibrium with valued fiat currency.

b. Prove that, for g sufficiently small, there exists a stationary equilibrium with

valued fiat currency.

c. Prove that, in general, if there exists one stationary equilibrium with valued

fiat currency, with rate of return on currency 1+r(t) = 1+ r1 , then there exists
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at least one other stationary equilibrium with valued currency with 1 + r(t) =

1 + r2 6= 1 + r1 .

d. Tell whether the equilibria described in parts b and c are Pareto optimal,

among allocations among private agents of what is left after the government

takes G(t) = G each period. (A proof is not required here: an informal argument

will suffice.)

Now let the government institute a forced saving program of the following

form. At time 1, the government redeems the outstanding stock of currency

H(0), exchanging it for government bonds. For t ≥ 1, the government offers

each young consumer the option of saving at least F worth of time t goods in

the form of bonds bearing a constant rate of return (1+r2). A legal prohibition

against private intermediation is instituted that prevents two or more private

agents from sharing one of these bonds. The government’s budget constraint

for t ≥ 2 is

G/N = B(t) −B(t− 1)(1 + r2),

where B(t) ≥ F . Here B(t) is the saving of a young agent at t . At time t = 1,

the government’s budget constraint is

G/N = B(1) − H(0)

Np(1)
,

where p(1) is the price level at which the initial currency stock is redeemed at

t = 1. The government sets F and r2 .

Consider stationary equilibria with B(t) = B for t ≥ 1 and r2 and F

constant.

e. Prove that if g is small enough for an equilibrium of the type described in

part a to exist, then a stationary equilibrium with forced saving exists. (Either

a graphical argument or an algebraic argument is sufficient.)

f. Given g , find the values of F and r2 that maximize the utility of a repre-

sentative young agent for t ≥ 1.

g. Is the equilibrium allocation associated with the values of F and (1 + r2)

found in part f optimal among those allocations that give G(t) = G to the

government for all t ≥ 1? (Here an informal argument will suffice.)



Chapter 10
Ricardian Equivalence

10.1. Borrowing limits and Ricardian equivalence

This chapter studies whether the timing of taxes matters. Under some assump-

tions it does and under others it does not. The Ricardian doctrine describes

assumptions under which the timing of lump taxes does not matter. In this

chapter, we will study how the timing of taxes interacts with restrictions on the

ability of households to borrow. We study the issue in two equivalent settings:

(1) an infinite horizon economy with an infinitely lived representative agent; and

(2) an infinite horizon economy with a sequence of one-period-lived agents, each

of whom cares about its immediate descendant. We assume that the interest

rate is exogenously given. For example, the economy might be a small open

economy that faces a given interest rate determined in the international capital

market. Chapter 13 will describe a general equilibrium analysis of the Ricardian

doctrine where the interest rate is determined within the model.

The key findings of the chapter are that in the infinite horizon model, Ri-

cardian equivalence holds under what we earlier called the natural borrowing

limit, but not under more stringent ones. The natural borrowing limit is the

one that lets households borrow up to the capitalized value of their endow-

ment sequences. These results have counterparts in the overlapping generations

model, since that model is equivalent to an infinite horizon model with a no-

borrowing constraint. In the overlapping generations model, the no-borrowing

constraint translates into a requirement that bequests be nonnegative. Thus,

in the overlapping generations model, the domain of the Ricardian proposition

is restricted, at least relative to the infinite horizon model under the natural

borrowing limit.

– 312 –
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10.2. Infinitely lived agent economy

An economy consists of N identical households, each of which orders a stream

of consumption of a single good with preferences

∞∑

t=0

βtu(ct), (10.2.1)

where β ∈ (0, 1) and u(·) is a strictly increasing, strictly concave, twice-

differentiable one-period utility function. We impose the Inada condition

lim
c↓0

u′(c) = +∞.

This condition is important because we will be stressing the feature that c ≥ 0.

There is no uncertainty. The household can invest in a single risk-free asset

bearing a fixed gross one-period rate of return R > 1. The asset is either a

risk-free loan to foreigners or to the government. At time t , the household faces

the budget constraint

ct +R−1bt+1 ≤ yt + bt, (10.2.2)

where b0 is given. Throughout this chapter, we assume that Rβ = 1. Here

{yt}∞t=0 is a given nonstochastic nonnegative endowment sequence and
∑∞

t=0 β
tyt

<∞ .

We shall investigate two alternative restrictions on asset holdings {bt}∞t=0 .

One is that bt ≥ 0 for all t ≥ 0. This restriction states that the household

can lend but not borrow. The alternative restriction permits the household to

borrow, but only an amount that it is feasible to repay. To discover this amount,

set ct = 0 for all t in formula (10.2.2) and solve forward for bt to get

b̃t = −
∞∑

j=0

R−jyt+j , (10.2.3)

where we have ruled out Ponzi schemes by imposing the transversality condition

lim
T→∞

R−T bt+T = 0. (10.2.4)

Following Aiyagari (1994), we call b̃t the natural debt limit. Even with ct = 0,

the consumer cannot repay more than b̃t . Thus, our alternative restriction on

assets is

bt ≥ b̃t, (10.2.5)
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which is evidently weaker than bt ≥ 0.1

10.2.1. Solution to consumption/savings decision

Consider the household’s problem of choosing {ct, bt+1}∞t=0 to maximize ex-

pression (10.2.1) subject to (10.2.2) and bt+1 ≥ 0 for all t . The first-order

conditions for this problem are

u′(ct) ≥ βRu′(ct+1), ∀t ≥ 0; (10.2.6a)

and

u′(ct) > βRu′(ct+1) implies bt+1 = 0. (10.2.6b)

Because βR = 1, these conditions and the constraint (10.2.2) imply that ct+1 =

ct when bt+1 > 0, but when the consumer is borrowing constrained, bt+1 = 0

and yt + bt = ct < ct+1 . The solution evidently depends on the {yt} path, as

the following examples illustrate.

Example 1: Assume b0 = 0 and the endowment path {yt}∞t=0 = {yh, yl, yh, yl, . . .} ,

where yh > yl > 0. The present value of the household’s endowment is

∞∑

t=0

βtyt =

∞∑

t=0

β2t(yh + βyl) =
yh + βyl
1 − β2

.

The annuity value c̄ that has the same present value as the endowment stream

is given by
c̄

1 − β
=
yh + βyl
1 − β2

, or c̄ =
yh + βyl
1 + β

.

The solution to the household’s optimization problem is the constant consump-

tion stream ct = c̄ for all t ≥ 0, and using the budget constraint (10.2.2), we

can back out the associated savings scheme; bt+1 = (yh − yl)/(1 + β) for even

t , and bt+1 = 0 for odd t . The consumer is never borrowing constrained.2

Example 2: Assume b0 = 0 and the endowment path {yt}∞t=0 = {yl, yh, yl, yh, . . .} ,

where yh > yl > 0. The solution is c0 = yl and b1 = 0, and from period 1

1 We encountered a more general version of equation (10.2.5) in chapter 8 when we dis-

cussed Arrow securities.
2 Note bt = 0 does not imply that the consumer is borrowing constrained. He is borrowing

constrained if the Lagrange multiplier on the constraint bt ≥ 0 is not zero.
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onward, the solution is the same as in example 1. Hence, the consumer is bor-

rowing constrained the first period.3

Example 3: Assume b0 = 0 and yt = λt where 1 < λ < R . Notice that

λβ < 1. The solution with the borrowing constraint bt ≥ 0 is ct = λt, bt = 0

for all t ≥ 0. The consumer is always borrowing constrained.

Example 4: Assume the same b0 and endowment sequence as in example 3,

but now impose only the natural borrowing constraint (10.2.5). The present

value of the household’s endowment is

∞∑

t=0

βtλt =
1

1 − λβ
.

The household’s budget constraint for each t is satisfied at a constant consump-

tion level ĉ satisfying

ĉ

1 − β
=

1

1 − λβ
, or ĉ =

1 − β

1 − λβ
.

Substituting this consumption rate into formula (10.2.2) and solving forward

gives

bt =
1 − λt

1 − βλ
. (10.2.7)

The consumer issues more and more debt as time passes, and uses his rising

endowment to service it. The consumer’s debt always satisfies the natural debt

limit at t , namely, b̃t = −λt/(1 − βλ).

Example 5: Take the specification of example 4, but now impose λ < 1. Note

that the solution (10.2.7) implies bt ≥ 0, so that the constant consumption

path ct = ĉ in example 4 is now the solution even if the borrowing constraint

bt ≥ 0 is imposed.

3 Examples 1 and 2 illustrate a general result in chapter 16. Given a borrowing constraint

and a nonstochastic endowment stream, the impact of the borrowing constraint will not vanish

until the household reaches the period with the highest annuity value of the remainder of the

endowment stream.
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10.3. Government

Add a government to the model. The government purchases a stream {gt}∞t=0

per household and imposes a stream of lump-sum taxes {τt}∞t=0 on the house-

hold, subject to the sequence of budget constraints

Bt + gt = τt +R−1Bt+1, (10.3.1)

where Bt is one-period debt due at t , denominated in the time t consumption

good, that the government owes the households or foreign investors. Notice

that we allow the government to borrow, even though in one of the preceding

specifications, we did not permit the household to borrow. (If Bt < 0, the

government lends to households or foreign investors.) Solving the government’s

budget constraint forward gives the intertemporal constraint

Bt =

∞∑

j=0

R−j(τt+j − gt+j) (10.3.2)

for t ≥ 0, where we have ruled out Ponzi schemes by imposing the transversality

condition

lim
T→∞

R−TBt+T = 0.

10.3.1. Effect on household

We must now deduct τt from the household’s endowment in (10.2.2),

ct +R−1bt+1 ≤ yt − τt + bt. (10.3.3)

Solving this tax-adjusted budget constraint forward and invoking transversality

condition (10.2.4) yield

bt =

∞∑

j=0

R−j(ct+j + τt+j − yt+j). (10.3.4)

The natural debt limit is obtained by setting ct = 0 for all t in (10.3.4),

b̃t ≥
∞∑

j=0

R−j(τt+j − yt+j). (10.3.5)
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Notice how taxes affect b̃t [compare equations (10.2.3) and (10.3.5)].

We use the following definition:

Definition: Given initial conditions (b0, B0), an equilibrium is a household

plan {ct, bt+1}∞t=0 and a government policy {gt, τt, Bt+1}∞t=0 such that (a) the

government plan satisfies the government budget constraint (10.3.1), and (b)

given {τt}∞t=0 , the household’s plan is optimal.

We can now state a Ricardian proposition under the natural debt limit.

Proposition 1: Suppose that the natural debt limit prevails. Given initial

conditions (b0, B0), let {c̄t, b̄t+1}∞t=0 and {ḡt, τ̄t, B̄t+1}∞t=0 be an equilibrium.

Consider any other tax policy {τ̂t}∞t=0 satisfying

∞∑

t=0

R−tτ̂t =

∞∑

t=0

R−tτ̄t. (10.3.6)

Then {c̄t, b̂t+1}∞t=0 and {ḡt, τ̂t, B̂t+1}∞t=0 is also an equilibrium where

b̂t =

∞∑

j=0

R−j(c̄t+j + τ̂t+j − yt+j) (10.3.7)

and

B̂t =

∞∑

j=0

R−j(τ̂t+j − ḡt+j). (10.3.8)

Proof: The first point of the proposition is that the same consumption plan

{c̄t}∞t=0 , but adjusted borrowing plan {b̂t+1}∞t=0 , solve the household’s optimum

problem under the altered government tax scheme. Under the natural debt limit,

the household in effect faces a single intertemporal budget constraint (10.3.4).

At time 0, the household can be thought of as choosing an optimal consumption

plan subject to the single constraint,

b0 =

∞∑

t=0

R−t(ct − yt) +

∞∑

t=0

R−tτt.

Thus, the household’s budget set, and therefore its optimal plan, does not de-

pend on the timing of taxes, only their present value. The altered tax plan

leaves the household’s intertemporal budget set unaltered and therefore doesn’t
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affect its optimal consumption plan. Next, we construct the adjusted borrow-

ing plan {b̂t+1}∞t=0 by solving the budget constraint (10.3.3) forward to obtain

(10.3.7).4 The adjusted borrowing plan satisfies trivially the (adjusted) natural

debt limit in every period, since the consumption plan {c̄t}∞t=0 is a nonnegative

sequence.

The second point of the proposition is that the altered government tax

and borrowing plans continue to satisfy the government’s budget constraint. In

particular, we see that the government’s budget set at time 0 does not depend

on the timing of taxes, only their present value,

B0 =

∞∑

t=0

R−tτt −
∞∑

t=0

R−tgt.

Thus, under the altered tax plan with an unchanged present value of taxes,

the government can finance the same expenditure plan {ḡt}∞t=0 . The adjusted

borrowing plan {B̂t+1}∞t=0 is computed in a similar way as above to arrive at

(10.3.8).

4 It is straightforward to verify that the adjusted borrowing plan {b̂t+1}
∞
t=0 must satisfy

the transversality condition (10.2.4). In any period (k−1) ≥ 0, solving the budget constraint

(10.3.3) backward yields

bk =

k∑

j=1

Rj
[
yk−j − τk−j − ck−j

]
+ Rkb0.

Evidently, the difference between b̄k of the initial equilibrium and b̂k is equal to

b̄k − b̂k =

k∑

j=1

Rj
[
τ̂k−j − τ̄k−j

]
,

and after multiplying both sides by R1−k ,

R1−k
(
b̄k − b̂k

)
= R

k−1∑

t=0

R−t [τ̂t − τ̄t] .

The limit of the right side is zero when k goes to infinity due to condition (10.3.6), and hence,

the fact that the equilibrium borrowing plan {b̄t+1}
∞
t=0 satisfies transversality condition

(10.2.4) implies that so must {b̂t+1}
∞
t=0 .
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This proposition depends on imposing the natural debt limit, which is

weaker than the no-borrowing constraint on the household. Under the no-

borrowing constraint, we require that the asset choice bt+1 at time t satisfy

budget constraint (10.3.3) and not fall below zero. That is, under the no-

borrowing constraint, we have to check more than just a single intertemporal

budget constraint for the household at time 0. Changes in the timing of taxes

that obey equation (10.3.6) evidently alter the right side of equation (10.3.3)

and can, for example, cause a previously binding borrowing constraint no longer

to be binding, and vice versa. Binding borrowing constraints in either the ini-

tial {τ̄t}∞t=0 equilibrium or the new {τ̂t}∞t=0 equilibria eliminates a Ricardian

proposition as general as Proposition 1. More restricted versions of the propo-

sition evidently hold across restricted equivalence classes of taxes that do not

alter when the borrowing constraints are binding across the two equilibria being

compared.

Proposition 2: Consider an initial equilibrium with consumption path

{c̄t}∞t=0 in which bt+1 > 0 for all t ≥ 0. Let {τ̄t}∞t=0 be the tax rate in the

initial equilibrium, and let {τ̂t}∞t=0 be any other tax-rate sequence for which

b̂t =

∞∑

j=0

R−j(c̄t+j + τ̂t+j − yt+j) ≥ 0

for all t ≥ 0. Then {c̄t}∞t=0 is also an equilibrium allocation for the {τ̂t}∞t=0 tax

sequence.

We leave the proof of this proposition to the reader.
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10.4. Linked generations interpretation

Much of the preceding analysis with borrowing constraints applies to a setting

with overlapping generations linked by a bequest motive. Assume that there is

a sequence of one-period-lived agents. For each t ≥ 0 there is a one-period-lived

agent who values consumption and the utility of his direct descendant, a young

person at time t+ 1. Preferences of a young person at t are ordered by

u(ct) + βV (bt+1),

where u(c) is the same utility function as in the previous section, bt+1 ≥ 0 are

bequests from the time t person to the time t + 1 person, and V (bt+1) is the

maximized utility function of a time t+1 agent. The maximized utility function

is defined recursively by

V (bt) = max
ct,bt+1

{u(ct) + βV (bt+1)}∞t=0 (10.4.1)

where the maximization is subject to

ct + R−1bt+1 ≤ yt − τt + bt (10.4.2)

and bt+1 ≥ 0. The constraint bt+1 ≥ 0 requires that bequests cannot be

negative. Notice that a person cares about his direct descendant, but not vice

versa. We continue to assume that there is an infinitely lived government whose

taxes and purchasing and borrowing strategies are as described in the previous

section.

In consumption outcomes, this model is equivalent to the previous model

with a no-borrowing constraint. Bequests here play the role of savings bt+1

in the previous model. A positive savings condition bt+1 > 0 in the previous

version of the model becomes an “operational bequest motive” in the overlapping

generations model.

It follows that we can obtain a restricted Ricardian equivalence proposition,

qualified as in Proposition 2. The qualification is that the initial equilibrium

must have an operational bequest motive for all t ≥ 0, and that the new tax

policy must not be so different from the initial one that it renders the bequest

motive inoperative.
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10.5. Concluding remarks

The arguments in this chapter were cast in a setting with an exogenous interest

rate R and a capital market that is outside of the model. When we discussed

potential failures of Ricardian equivalence due to households facing no-borrowing

constraints, we were also implicitly contemplating changes in the government’s

outside asset position. For example, consider an altered tax plan {τ̂t}∞t=0 that

satisfies (10.3.6) and shifts taxes away from the future toward the present. A

large enough change will definitely ensure that the government is a lender in

early periods. But since the households are not allowed to become indebted,

the government must lend abroad and we can show that Ricardian equivalence

breaks down.

The readers might be able to anticipate the nature of the general equilibrium

proof of Ricardian equivalence in chapter 13. First, private consumption and

government expenditures must then be consistent with the aggregate endowment

in each period, ct+gt = yt , which implies that an altered tax plan cannot affect

the consumption allocation as long as government expenditures are kept the

same. Second, interest rates are determined by intertemporal marginal rates of

substitution evaluated at the equilibrium consumption allocation, as studied in

chapter 8. Hence, an unchanged consumption allocation implies that interest

rates are also unchanged. Third, at those very interest rates, it can be shown

that households would like to choose asset positions that exactly offset any

changes in the government’s asset holdings implied by an altered tax plan. For

example, in the case of the tax change contemplated in the preceding paragraph,

the households would demand loans exactly equal to the rise in government

lending generated by budget surpluses in early periods. The households would

use those loans to meet the higher taxes and thereby finance an unchanged

consumption plan.

The finding of Ricardian equivalence in the infinitely lived agent model is

a useful starting point for identifying alternative assumptions under which the

irrelevance result might fail to hold,5 such as our imposition of borrowing con-

straints that are tighter than the “natural debt limit.” Another deviation from

the benchmark model is finitely lived agents, as analyzed by Diamond (1965)

and Blanchard (1985). But as suggested by Barro (1974) and shown in this

chapter, Ricardian equivalence will still continue to hold if agents are altruistic

5 Seater (1993) reviews the theory and empirical evidence on Ricardian equivalence.
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toward their descendants and there is an operational bequest motive. Bern-

heim and Bagwell (1988) take this argument to its extreme and formulate a

model where all agents become interconnected because of linkages across dynas-

tic families, which is shown to render neutral all redistributive policies, including

distortionary taxes. But in general, replacing lump-sum taxes by distortionary

taxes is a sure way to undo Ricardian equivalence (see, e.g., Barsky, Mankiw,

and Zeldes, 1986). We will return to the question of the timing of distortionary

taxes in chapter 15. Kimball and Mankiw (1989) describe how incomplete mar-

kets can make the timing of taxes interact with a precautionary savings motive

in a way that does away with Ricardian equivalence. We take up precautionary

savings and incomplete markets in chapters 16 and 17. Finally, by allowing dis-

torting taxes to be history dependent, Bassetto and Kocherlakota (2004) attain

a Ricardian equivalence result for a variety of taxes.



Chapter 11

Fiscal Policies in the Growth Model

11.1. Introduction

This chapter studies the effects of technology and fiscal shocks on equilibrium

outcomes in a nonstochastic growth model. We exhibit some classic doctrines

about the effects of various taxes. We also use the model as a laboratory to

exhibit some numerical techniques for approximating equilibria and to display

the structure of dynamic models in which decision makers have perfect foresight

about future government decisions.

Following Hall (1971), we augment a nonstochastic version of the standard

growth model with a government that purchases a stream of goods and finances

itself with an array of distorting flat-rate taxes. We take government behavior as

exogenous,1 which means that for us a government is simply a list of sequences

for government purchases gt, t ≥ 0 and for taxes {τct, τit, τkt, τnt, τht}∞t=0 . Here

τct, τkt, τnt are, respectively, time-varying flat-rate rates on consumption, earn-

ings from capital, and labor earnings; τit is an investment tax credit; and τht

is a lump-sum tax (a “head tax” or “poll tax”).

Distorting taxes prevent the competitive equilibrium allocation from solving

a planning problem. To compute an equilibrium, we solve a system of nonlinear

difference equations consisting of the first-order conditions for decision makers

and the other equilibrium conditions. We solve the system first by using a

method known as shooting that produces very accurate solutions. Less accurate

but in some ways more revealing approximations can be found by following Hall

(1971), who solved a linear approximation to the equilibrium conditions. We

show how to apply the lag operators described by Sargent (1987a) to find and

represent the solution in a way that is especially helpful in studying the dynamic

effects of perfectly foreseen alterations in taxes and expenditures.2 The solution

1 In chapter 15, we take up a version of the model in which the government chooses taxes

to maximize the utility of a representative consumer.
2 By using lag operators, we extend Hall’s results to allow arbitrary fiscal policy paths.

– 323 –
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shows how current endogenous variables respond to paths of future exogenous

variables.

11.2. Economy

11.2.1. Preferences, technology, information

There is no uncertainty, and decision makers have perfect foresight. A represen-

tative household has preferences over nonnegative streams of a single consump-

tion good ct and leisure 1 − nt that are ordered by

∞∑

t=0

βtU(ct, 1 − nt), β ∈ (0, 1) (11.2.1)

where U is strictly increasing in ct and 1−nt , twice continuously differentiable,

and strictly concave. We’ll typically assume that U(c, 1 − n) = u(c) + v(1 −
n). Common alternative specifications in the real business cycle literature are

U(c, 1− n) = log c+α log(1− n) and U(c, 1− n) = log c+ α(1− n).3 We shall

also focus on another frequently studied special case that has v = 0 so that

U(c, 1 − n) = u(c).

The technology is

gt + ct + xt ≤ F (kt, nt) (11.2.2a)

kt+1 = (1 − δ)kt + xt (11.2.2b)

where δ ∈ (0, 1) is a depreciation rate, kt is the stock of physical capital, xt

is gross investment, and F (k, n) is a linearly homogeneous production func-

tion with positive and decreasing marginal products of capital and labor. It is

sometimes convenient to eliminate xt from (11.2.2) and express the technology

as

gt + ct + kt+1 ≤ F (kt, nt) + (1 − δ)kt. (11.2.3)

3 See Hansen (1985) for a comparison of these two specifications.
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11.2.2. Components of a competitive equilibrium

There is a competitive equilibrium with all trades occurring at time 0. The

household owns capital, makes investment decisions, and rents capital and labor

to a representative production firm. The representative firm uses capital and

labor to produce goods with the production function F (kt, nt). A price system

is a triple of sequences {qt, rt, wt}∞t=0 where qt is the time 0 pretax price of one

unit of investment or consumption at time t (xt or ct ), rt is the pretax price

at time 0 that the household receives from the firm for renting capital at time

t , and wt is the pretax price at time 0 that the household receives for renting

labor to the firm at time t .

We extend the definition of a competitive equilibrium in chapter 8 to include

a description of the government. We say that a government expenditure and

tax plan that satisfy a budget constraint is budget feasible. A set of competitive

equilibria is indexed by alternative budget-feasible government policies.

The household faces the budget constraint:

∞∑

t=0

{qt(1 + τct)ct + (1 − τit)qt[kt+1 − (1 − δ)kt]}

≤
∞∑

t=0

{rt(1 − τkt)kt + wt(1 − τnt)nt − qtτht} .
(11.2.4)

The government faces the budget constraint

∞∑

t=0

qtgt ≤
∞∑

t=0

{
τctqtct − τitqt[kt+1 − (1 − δ)kt]

+ rtτktkt + wtτntnt + qtτht

}
.

(11.2.5)

There is a sense in which we have given the government access to too many

kinds of taxes, because if lump-sum taxes were available, the government typi-

cally should not use any of the other potentially distorting flat-rate taxes. We

include all of these taxes because, like Hall (1971), we want a framework that is

sufficiently general to allow us to analyze how the various taxes distort produc-

tion and consumption decisions.
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11.2.3. Competitive equilibria with distorting taxes

A representative household chooses a sequence {ct, nt, kt+1}∞t=0 to maximize

(11.2.1) subject to (11.2.4). A representative firm chooses {kt, nt}∞t=0 to max-

imize
∑∞

t=0[qtF (kt, nt) − rtkt − wtnt] .
4 A budget-feasible government policy

is an expenditure plan {gt}∞t=0 and a tax plan that satisfy (11.2.5). A feasible

allocation is a sequence {ct, xt, nt, kt}∞t=0 that satisfies (11.2.3).

Definition: A competitive equilibrium with distorting taxes is a budget-

feasible government policy, a feasible allocation, and a price system such that,

given the price system and the government policy, the allocation solves the

household’s problem and the firm’s problem.

11.2.4. The household: no-arbitrage and asset-pricing formulas

We use a no-arbitrage argument to derive a restriction on prices and tax rates

across time from which there emerges a formula for the “user cost of capital”

(see Hall and Jorgenson, 1967). Collect terms in similarly dated capital stocks

and thereby rewrite the household’s budget constraint (11.2.4) as

∞∑

t=0

qt [(1 + τct)ct] ≤
∞∑

t=0

wt(1 − τnt)nt −
∞∑

t=0

qtτht

+

∞∑

t=1

[rt(1 − τkt) + qt(1 − τit)(1 − δ) − qt−1(1 − τi,t−1)] kt

+ [r0 (1 − τk0) + (1 − τi0)q0(1 − δ)] k0 − lim
T→∞

(1 − τiT )qTkT+1

(11.2.6)

The terms [r0(1 − τk0) + (1 − τi0)q0(1 − δ)]k0 and − limT→∞(1 − τiT )qTkT+1

remain after creating the weighted sum in kt ’s for t ≥ 1.

The household inherits a given k0 that it takes as an initial condition, and

it is free to choose any sequence {ct, nt, kt+1}∞t=0 that satisfy (11.2.6) where all

prices and tax rates are taken as given. The objective of the household is to

maximize lifetime utility (11.2.1) which is increasing in consumption {ct}∞t=0

and, for one of our preference specifications below, it is increasing in leisure

4 Note the contrast with the setup in chapter 12, which has two types of firms. Here we

assign to the household the physical investment decisions made by the type II firms of chapter

12.
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{1 − nt}∞t=0 . The household has no independent preferences over the sequence

of capital {kt+1}∞t=0 that serves only as a vehicle for achieving the household’s

goal of utility maximization.

Everything else equal, the household would like to see a large value on the

right side of (11.2.6), preferably plus infinity, which would enable it to purchase

unlimited amounts of consumption goods. Because resources are finite, we know

that the right side of the household’s budget constraint must be bounded in an

equilibrium. This fact leads to an important restriction on the price and tax

sequences. If the right side of the household’s budget constraint is to be bounded,

then the terms multiplying kt for t ≥ 1 must all be equal to zero. Because if any

one of these terms was strictly positive (negative) for some date t , the household

could make the right side of (11.2.6) arbitrarily large and positive by choosing an

arbitrarily large positive (negative) value of kt . On the one hand, if there is one

such term that is strictly positive for some date t , the household could purchase

an arbitrarily large capital stock kt assembled at time t−1 with a present-value

cost of qt−1(1−τi,t−1)kt , and then sell the rental services and the undepreciated

part of that capital stock to be delivered at time t , with a present-value income

of [rt(1−τkt)+qt(1−τit)(1−δ)]kt . If such a transaction yields a strictly positive

profit, it would constitute pure arbitrage and the right side of (11.2.6) would

become unbounded. On the other hand, if there is one term multiplying kt that

is strictly negative for some date t , the household can make the right side of

(11.2.6) arbitrarily large and positive by “short selling” capital, kt < 0. The

household would then turn to purchasers of capital assembled at time t− 1 and

sell “synthetic” units of capital to them. That is, such a transaction does not

involve any physical capital but the household is merely undertaking trades such

that the other party of the transaction incurs the same costs and incomes as

those associated with purchasing capital assembled at time t− 1. If such short

sales of capital yield strictly positive profits, it would constitute pure arbitrage

and the right side of (11.2.6) would become unbounded. Therefore, the terms

multiplying kt must equal zero for all t ≥ 1:

qt(1 − τit) = qt+1(1 − τit+1)(1 − δ) + rt+1(1 − τkt+1) (11.2.7)

for all t ≥ 0. These are zero-profit or no-arbitrage conditions. Unless these

no-arbitrage conditions hold, the household is not optimizing. We have derived

these conditions by using only the weak property that U(c, 1− n) is increasing

in consumption (i.e., that the household always prefers more to less).
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It remains to be determined how the household sets the last term on the

right side of (11.2.6), − limT→∞(1 − τiT )qTkT+1 . According to our preceding

argument, the household will not purchase capital so that this term is strictly

negative in the limit because that would reduce the right side of (11.2.6), and

hence diminish the household’s resources available for consumption. Instead,

the household would like to make this term strictly positive and unbounded, so

that the household can purchase unlimited amounts of consumption goods. But

the market would stop the household from undertaking such a short sale in the

limit since no party would like to be on the other side of the transaction. This

is obvious when considering a finite-horizon model where everyone would like to

short sell capital in the very last period because there would then be no future

period in which to fulfil the obligations of those short sales. Therefore, in our

infinite-horizon model, as a condition of optimality, we impose the terminal con-

dition that − limT→∞(1−τiT )qT kT+1 = 0. Once we impose formula (11.2.10a)

below that links qt to U1t , this terminal condition puts the following restriction

on the equilibrium allocation:

− lim
T→∞

(1 − τiT )βT
U1T

(1 + τcT )
kT+1 = 0. (11.2.8)

The household’s initial capital stock k0 is given. According to (11.2.6), its

value is [r0(1 − τk0) + (1 − τi0)q0(1 − δ)]k0 .

11.2.5. User cost of capital formula

The no-arbitrage conditions (11.2.7) can be rewritten as the following expression

for the “user cost of capital” rt+1 :

rt+1 =

(
1

1 − τkt+1

)
[qt(1 − τit) − qt+1(1 − τit+1) + δqt+1(1 − τit+1)] . (11.2.9)

The user cost of capital takes into account the rate of taxation of capital earn-

ings, the capital gain or loss from t to t+ 1, and an investment-credit-adjusted

depreciation cost.5

5 This is a discrete-time version of a continuous-time formula derived by Hall and Jorgenson

(1967).
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So long as the no-arbitrage conditions (11.2.7) prevail, households are indif-

ferent about how much capital they hold. The household’s first-order conditions

with respect to ct, nt are:

βtU1t = µqt(1 + τct) (11.2.10a)

βtU2t ≤ µwt(1 − τnt), = if 0 < nt < 1, (11.2.10b)

where µ is a nonnegative Lagrange multiplier on the household’s budget con-

straint (11.2.4). Multiplication of the price system by a positive scalar simply

rescales the multiplier µ , so that we pick a numeraire by setting µ to an arbi-

trary positive number.

11.2.6. Firm

Zero-profit conditions for the representative firm impose additional restrictions

on equilibrium prices and quantities. The present value of the firm’s profits is

∞∑

t=0

[qtF (kt, nt) − wtnt − rtkt].

Applying Euler’s theorem on linearly homogeneous functions to F (k, n), the

firm’s present value is:

∞∑

t=0

[(qtFkt − rt)kt + (qtFnt − wt)nt] .

No-arbitrage (or zero-profit) conditions are:

rt = qtFkt

wt = qtFnt.
(11.2.11)
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11.3. Computing equilibria

The definition of a competitive equilibrium and the concavity conditions that

we have imposed on preferences imply that an equilibrium is a price system

{qt, rt, wt} , a feasible budget policy {gt, τt} ≡ {gt, τct, τnt, τkt, τit, τht} , and an

allocation {ct, nt, kt+1} that solve the system of nonlinear difference equations

composed by (11.2.3), (11.2.7), (11.2.10), and (11.2.11) subject to the initial

condition that k0 is given and the terminal condition (11.2.8). We now study

how to solve this system of difference equations.

11.3.1. Inelastic labor supply

We’ll start with the following special case. (The general case is just a little more

complicated, and we’ll describe it below.) Set U(c, 1 − n) = u(c), so that the

household gets no utility from leisure, and set n = 1. As in chapter 14, we

define f(k) = F (k, 1) and express feasibility as

kt+1 = f(kt) + (1 − δ)kt − gt − ct. (11.3.1)

Notice that Fk(k, 1) = f ′(k) and Fn(k, 1) = f(k)−f ′(k)k . Substitute (11.2.10a),

(11.2.11), and (11.3.1) into (11.2.7) to get

u′(f(kt) + (1 − δ)kt − gt − kt+1)

(1 + τct)
(1 − τit)

− β
u′(f(kt+1) + (1 − δ)kt+1 − gt+1 − kt+2)

(1 + τct+1)
×

[(1 − τit+1)(1 − δ) + (1 − τkt+1)f
′(kt+1)] = 0.

(11.3.2)

Given the government policy sequences, (11.3.2) is a second-order difference
equation in capital. We can also express (11.3.2) as

u′(ct) = βu′(ct+1)
(1 + τct)

(1 + τct+1)

[
(1 − τit+1)

(1 − τit)
(1 − δ) +

(1 − τkt+1)

(1 − τit)
f ′(kt+1)

]
. (11.3.3)

To compute an equilibrium, we must find a solution of the difference equa-

tion (11.3.2) that satisfies two boundary conditions. As mentioned above, one

boundary condition is supplied by the given level of k0 and the other by (11.2.8).

To determine a particular terminal value k∞ , we restrict the path of government

policy so that it converges.
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11.3.2. The equilibrium steady state

The tax rates and government expenditures serve as the forcing functions for

the difference equations (11.3.1) and (11.3.3). Let zt = [ gt τit τkt τct ]
′

and write (11.3.2) as

H(kt, kt+1, kt+2; zt, zt+1) = 0. (11.3.4)

To ensure convergence to a steady state, we assume government policies that

are eventually constant, i.e., that satisfy

lim
t→∞

zt = z. (11.3.5)

When we actually solve our models, we’ll set a date T after which all components

of the forcing sequences that comprise zt are constant. A terminal steady-state

capital stock k evidently solves

H(k, k, k, z, z) = 0. (11.3.6)

For our model, we can solve (11.3.6) by hand. In a steady state, (11.3.3)

becomes

1 = β[(1 − δ) +
(1 − τk)

(1 − τi)
f ′(k)].

Letting β = 1
1+ρ , we can express this as

(ρ+ δ)

(
1 − τi
1 − τk

)
= f ′(k). (11.3.7)

Notice that an eventually constant consumption tax does not distort k vis-

a-vis its value in an economy without distorting taxes. When τi = τk = 0,

this becomes (ρ + δ) = f ′(k), which is a celebrated formula for the so-called

“augmented Golden Rule” capital-labor ratio. It is the asymptotic value of the

capital-labor ratio that would be chosen by a benevolent planner.
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11.3.3. Computing the equilibrium path with the shooting
algorithm

Having computed the terminal steady state, we are now in a position to apply

the shooting algorithm to compute an equilibrium path that starts from an arbi-

trary initial condition k0 , assuming a possibly time-varying path of government

policy. The shooting algorithm solves the two-point boundary value problem

by searching for an initial c0 that makes the Euler equation (11.3.2) and the

feasibility condition (11.2.3) imply that kS ≈ k , where S is a finite but large

time index meant to approximate infinity and k is the terminal steady value

associated with the policy being analyzed. We let T be the value of t after

which all components of zt are constant. Here are the steps of the algorithm.

1. Solve (11.3.4) for the terminal steady-state k that is associated with the

permanent policy vector z (i.e., find the solution of (11.3.7)).

2. Select a large time index S >> T and guess an initial consumption rate

c0 . (A good guess comes from the linear approximation to be described below.)

Compute u′(c0) and solve (11.3.1) for k1 .

3. For t = 0, use (11.3.3) to solve for u′(ct+1). Then invert u′ and compute

ct+1 . Use (11.3.1) to compute kt+2 .

4. Iterate on step 3 to compute candidate values k̂t, t = 1, . . . , S .

5. Compute k̂S − k .

6. If k̂S > k , raise c0 and compute a new k̂t, t = 1, . . . , S .

7. If k̂S < k , lower c0 .

8. In this way, search for a value of c0 that makes k̂S ≈ k .
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11.3.4. Other equilibrium quantities

After we solve (11.3.2) for an equilibrium {kt} sequence, we can recover other

equilibrium quantities and prices from the following equations:

ct = f(kt) + (1 − δ)kt − kt+1 − gt (11.3.8a)

qt = βtu′(ct)/(1 + τct) (11.3.8b)

rt/qt = f ′(kt) (11.3.8c)

wt/qt = [f(kt) − ktf
′(kt)] (11.3.8d)

Rt+1 =
(1 + τct)

(1 + τct+1)

[
(1 − τit+1)

(1 − τit)
(1 − δ)

+
(1 − τkt+1)

(1 − τit)
f ′(kt+1)

]
(11.3.8e)

st/qt = [(1 − τkt)f
′(kt) + (1 − δ)] (11.3.8f)

where Rt is the after-tax one-period gross interest rate between t and t + 1
measured in units of consumption goods at t + 1 per consumption good at t ,
and st is the per unit value of the capital stock at time t measured in units of
time t consumption. By dividing various wt, rt , and st by qt , we express prices
in units of time t goods. It is convenient to repeat (11.3.3) here:

u′ (ct) = βu′ (ct+1)Rt+1. (11.3.8g)

An equilibrium satisfies equations (11.3.8). In the case of constant relative risk

aversion (CRRA) utility u(c) = (1 − γ)−1c1−γ , γ ≥ 1, (11.3.8g ) implies

log

(
ct+1

ct

)
= γ−1 logβ + γ−1 logRt+1, (11.3.9)

which shows that the log of consumption growth varies directly with the log

of the gross after-tax rate of return on capital. Variations in distorting taxes

have effects on consumption and investment that are intermediated through this

equation, as several of our experiments below will highlight.
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11.3.5. Steady-state R and s/q

Using (11.3.7) and formulas (11.3.8e) and (11.3.8f ), respectively, we can de-

termine that steady state values of Rt+1 and st/qt are6

Rt+1 = (1 + ρ) (11.3.10)

st/qt = 1 + ρ− (ρ+ δ) τi. (11.3.11)

These formulas make sense. The ratio s/q is the price in units of time t con-

sumption of a unit of capital at time t . When τi = 0 in a steady state, s/q

equals the gross one-period risk-free interest rate.7 However, the effect of a

permanent investment tax credit is to lower the value of capital below 1 + ρ .

Notice the timing here. The linear technology (11.2.3) for converting output to-

day into capital tomorrow implies that the price in units of time t consumption

of a unit of time t+ 1 capital is unity.

11.3.6. Lump-sum taxes available

If the government has the ability to impose lump-sum taxes, then we can im-

plement the shooting algorithm for a specified g, τk, τi, τc , solve for equilibrium

prices and quantities, and then find an associated value for q · τh =
∑∞
t=0 qtτht

that balances the government budget. This calculation treats the present value

of lump-sum taxes as a residual that balances the government budget. In the

calculations presented later in this chapter, we shall assume that lump-sum taxes

are available and so shall use this procedure.

6 To compute steady states, we assume that all tax rates and government expenditures

are constant from some date T forward.
7 This is a version of the standard result that “Tobin’s q” is one in a one-sector model

without costs of adjusting capital.
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11.3.7. No lump-sum taxes available

If lump-sum taxes are not available, then an additional loop is required to com-

pute an equilibrium. In particular, we have to ensure that taxes and expendi-

tures are such that the government budget constraint (11.2.5) is satisfied at an

equilibrium price system with τht = 0 for all t ≥ 0. Braun (1994) and McGrat-

tan (1994b) accomplish this by employing an iterative algorithm that alters a

particular distorting tax until (11.2.5) is satisfied. The idea is first to compute

an equilibrium for one arbitrary tax policy, then to check whether the govern-

ment budget constraint is satisfied. If the government budget has a deficit in

present value, then either decrease some elements of the government expenditure

sequence or increase some elements of the tax sequence and try again. Because

there exist so many equilibria, the class of tax and expenditure processes has to

be restricted drastically to narrow the search for an equilibrium.8
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Figure 11.3.1: Response to foreseen once-and-for-all in-

crease in g at t = 10. From left to right, top to bottom:

k, c, R,w/q, s/q, r/q .

8 See chapter 15 for theories about how to choose taxes in socially optimal ways.
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crease in τc at t = 10. From left to right, top to bottom:

k, c, R,w/q, s/q, r/q .

11.4. A digression on back-solving

The shooting algorithm takes sequences for gt and the various tax rates as

given and finds paths of the allocation {ct, kt+1}∞t=0 and the price system that

solve the system of difference equations formed by (11.3.3) and (11.3.8). Thus,

the shooting algorithm views government policy as exogenous and the price

system and allocation as endogenous. Sims (1989) proposed another method of

solving the growth model that exchanges the roles of some of these exogenous

and endogenous variables. In particular, his back-solving approach takes a path

{ct}∞t=0 as given, and then proceeds as follows.

Step 1: Given k0 and sequences for the various tax rates, solve (11.3.3) for a

sequence {kt+1} .

Step 2: Given the sequences for {ct, kt+1} , solve the feasibility condition (11.3.8a)

for a sequence of government expenditures {gt}∞t=0 .

Step 3: Solve formulas (11.3.8b)–(11.3.8f ) for an equilibrium price system.

The present model can be used to illustrate other applications of back-

solving. For example, we could start with a given process for {qt} , use (11.3.8b)
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to solve for {ct} , and proceed as in steps 1 and 2 above to determine processes

for {kt+1} and {gt} , and then finally compute the remaining prices from the as

yet unused equations in (11.3.8).

Sims recommended this method because it adopts a flexible or “symmetric”

attitude toward exogenous and endogenous variables. Diaz-Giménez, Prescott,

Fitzgerald, and Alvarez (1992), Sargent and Smith (1997), and Sargent and

Velde (1999) have all used the method. We shall not use it in the remainder of

this chapter, but it is a useful method to have in our toolkit.9

11.5. Effects of taxes on equilibrium allocations and
prices

We use the model to analyze the effects of government expenditure and tax

sequences. We refer to τk, τc, τn, τi as distorting taxes and the lump-sum tax

τh as nondistorting. We can deduce the following outcomes from (11.3.8) and

(11.3.7).

1. Lump-sum taxes and Ricardian equivalence. Suppose that the distort-

ing taxes are all zero and that only lump-sum taxes are used to raise revenues.

Then the equilibrium allocation is identical with the one that solves a version of

a planning problem in which gt is taken as an exogenous stream that is deducted

from output. To verify this claim, notice that lump-sum taxes appear nowhere

in formulas (11.3.8), and that these equations are identical with the first-order

conditions and feasibility conditions for a planning problem. The timing of

lump-sum taxes is irrelevant because only the present value of taxes
∑∞
t=0 qtτht

appears in the budget constraints of the government and the household.

2. When the labor supply is inelastic, constant τc and τn are not

distorting. When the labor supply is inelastic, τn is not a distorting tax. A

constant level of τc is not distorting.

3. Variations in τc over time are distorting. They affect the path of

capital and consumption through equation (11.3.8g ).

9 Constantinides and Duffie (1996) used back-solving to reverse engineer a cross-section of

endowment processes that, with incomplete markets, would prompt households to consume

their endowments at a given stochastic process of asset prices.
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4. Capital taxation is distorting. Constant levels of both the capital tax

τk and the investment tax credit τi are distorting (see (11.3.8g ) and (11.3.7)).

The investment tax credit can be used to offset the effects of a tax on capital

income on the steady-state capital stock (see (11.3.7)).
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Figure 11.5.1: Response to foreseen once-and-for all in-

crease in τi at t = 10. From left to right, top to bottom:

k, c, R,w/q, s/q, r/q .

11.6. Transition experiments

Figures 11.3.1, 11.3.2, 11.5.1, 11.5.2, 11.7.1, and 11.7.2 show the results of apply-

ing the shooting algorithm to an economy with u(c) = (1−γ)−1c1−γ , f(k) = kα

with parameter values α = .33, δ = .2, γ = 2, β = .95 and an initial constant

level of g of .2. We initially set all distorting taxes to zero and consider per-

turbations of them that we describe in the experiments below.

Figures 11.3.1 to 11.5.2 show responses to foreseen once-and-for-all increases

in g , τc , τi , and τk , that occur at time T = 10, where t = 1 is the initial

time period. Foresight induces effects that precede the policy changes that

cause them. We start all of our experiments from an initial steady state that
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is appropriate for the pre-jump settings of all government policy variables. In

each panel, a dotted line displays a value associated with the steady state at the

initial constant values of the policy vector. A solid line depicts an equilibrium

path under the new policy. It starts from the value that was associated with

an initial steady state that prevailed before the policy change at T = 10 was

announced. Before date t = T = 10, the response of each variable is entirely due

to expectations about future policy changes. After date t = 10, the response

of each variable represents a purely transient response to a new stationary level

of the “forcing function” in the form of the exogenous policy variables. That

is, before t = T , the forcing function is changing as date T approaches; after

date T , the policy vector has attained its new permanent level, so that the only

sources of dynamics are transient.

Discounted future values of fiscal variables impinge on current outcomes,

where the discount rate in question is endogenous while departures of the capital

stock from its terminal steady state value set in place a force for it to decay

toward its steady -state rate at a particular rate. These two forces, discounting

of the future and transient decay back toward the terminal steady state, are

evident in the experiments portrayed in Figures 11.3.1–11.5.2. In section 11.7.5,

we express the decay rate as a function of the key curvature parameter γ in
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the one-period utility function u(c) = (1 − γ)−1c1−γ , and we note that the

endogenous rate at which future fiscal variables are discounted is tightly linked

to that decay rate.

Foreseen jump in gt . Figure 11.3.1 shows the effects of a foreseen permanent

increase in g at t = T = 10 that is financed by an increase in lump-sum tax. Al-

though the steady-state value of the capital stock is unaffected (this follows from

that fact that g disappears from the steady state version of the Euler equation

(11.3.2)), consumers make the capital stock vary over time. Consumers choose

immediately to increase their saving in response to the adverse wealth effect that

they suffer from the increase in lump-sum taxes that finances the permanently

higher level of government expenditures. If the government consumes more, the

household must consume less. The adverse wealth effect precedes the actual rise

in government expenditures because consumers care about the present value of

lump-sum taxes and are indifferent to their timing. Therefore, consumption falls

in anticipation of the increase in government expenditures. This leads to a grad-

ual build-up of capital in the dates between 0 and T , followed by a gradual fall

after T . The variation over time in the capital stock helps smooth consumption

over time, so that the main force at work is a general equilibrium version of the

consumption-smoothing motive featured in Milton Friedman’s permanent in-

come theory. The variation over time in the equilibrium path of the net-of-taxes

gross interest rate R reconciles the consumer to a consumption path that is not

completely smooth. According to (11.3.9), the gradual increase and then the

decrease in capital are inversely related to variations in the gross interest rate

that deter the household from wanting completely to smooth its consumption

over time.

Foreseen jump in τc . Figure 11.3.2 portrays the response to a foreseen in-

crease in the consumption tax. As we have remarked, with an inelastic labor

supply, the Euler equation (11.3.2) and the other equilibrium conditions show

that constant consumption taxes do not distort decisions, but that anticipated

changes in them do. Indeed, (11.3.2) or (11.3.3) indicates that a foreseen in-

crease in τct (i.e., a decrease in (1+τct)
(1+τct+1)

) operates like an increase in τkt .

Notice that while all variables in Figure 11.3.2 eventually return to their ini-

tial steady-state values, the anticipated increase in τct leads to an immediate

jump in consumption at time 1, followed by a consumption binge that sends

the capital stock downward until the date t = T = 10, at which τct rises. The
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fall in capital causes the gross after-tax interest rate to rise over time, which

via (11.3.9) requires the growth rate of consumption to rise until t = T . The

jump in τc at t = T = 10 causes the gross after-tax return on capital R to

be depressed below 1, which via (11.3.9) accounts for the drastic fall in con-

sumption at t = 10. From date t = T onward, the effects of the anticipated

distortion stemming from the fluctuation in τct are over, and the economy is

governed by the transient dynamic response associated with a capital stock that

is now below the appropriate terminal steady-state capital stock. From date T

onward, capital must rise. That requires austerity: consumption plummets at

date t = T = 10. As the interest rate gradually falls, consumption grows at a

diminishing rate along the path toward the terminal steady state.

Foreseen rise in investment tax credit τit . Figure 11.5.1 shows the con-

sequences of a foreseen permanent jump in the investment tax credit τi at

t = T = 10. All distorting tax rates are initially zero. As formula (11.3.7)

predicts, the eventual effect of the policy is to drive capital toward a higher

steady state. The increase in capital is accomplished by an immediate reduc-

tion in consumption, followed by further declines (notice that the interest rate is

falling) at an increasing absolute rate of decline until t = T = 10. At t = 9 (see

formula (11.3.8e)), there is an abrupt decline in Rt+1 , followed by an abrupt

increase at t = 10. As equation (11.3.9) confirms, these changes in Rt+1 that

are induced by the jump in the investment tax credit at t = 10 are associated

with a large drop in c at t = 9, followed by a sharp increase in its rate of growth

at t = 10. The jump in R at t = 10 is followed by a gradual decrease back to

its steady-state level as capital rises toward its higher steady-state level. Even-

tually consumption rises above its old steady-state value and approaches a new

higher steady state. This new steady state has too high a capital stock relative

to what a planner would choose for this economy (“capital overaccumulation”

has been ignited by the investment tax credit). Because the household discounts

the future, the reduction in consumption in the early periods is not adequately

balanced by the permanent increase in consumption later. Notice how s/q starts

falling at an increasing absolute rate prior to t = 10. This is due to the adverse

effect of the cheaper new future capital (it is cheaper because it benefits from

the investment tax credit) on the price of capital that was purchased before the

investment tax credit is put in place at t = 10.
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Foreseen jump in τkt . Figure 11.5.2 shows the response to a foreseen perma-

nent jump in τkt at t = T = 10. Because the path of government expenditures is

held fixed, the increase in τkt is accompanied by a reduction in the present value

of lump-sum taxes that leaves the government budget balanced. The increase

in τkt has effects that precede it. Capital starts declining immediately due to

an immediate rise in current consumption and a growing flow of consumption.

The after-tax gross rate of return on capital starts rising at t = 1 and increases

until t = 9. It falls precipitously at t = 10 (see formula (11.3.8e) because of the

foreseen jump in τk . Thereafter, R rises, as required by the transition dynamics

that propel kt toward its new lower steady state. Consumption is lower in the

new steady state because the new lower steady-state capital stock produces less

output. As revealed by formula (11.3.11), the steady-state value of capital s/q

is not altered by the permanent jump in τk , but volatility is put into its time

path by the foreseen increase in τk . The rise in s/q preceding the jump in τk is

entirely due to the falling level of k . The large drop in s/q at t = 10 is caused

by the contemporaneous jump in the tax on capital (see formula (11.3.8f )).

So far we have explored consequences of foreseen once-and-for-all changes

in government policy. Next we describe some experiments in which there is a

foreseen one-time change in a policy variable (a “pulse”).

Foreseen one-time pulse in g10 . Figure 11.7.1 shows the effects of a foreseen

one-time increase in gt at date t = 10 that is financed entirely by alterations in

lump sum taxes. Consumption drops immediately, then falls further over time

in anticipation of the one-time surge in g . Capital is accumulated before t = 10.

At t = T = 10, capital jumps downward because the government consumes it.

The reduction in capital is accompanied by a jump in the gross return on capital

above its steady-state value. The gross return R then falls toward its steady

rate level and consumption rises at a diminishing rate toward its steady-state

value. The value of existing capital s/q is depressed by the accumulation of

capital that precedes the pulse in g at g = 10, then jumps dramatically due

to the capital consumed by the government, and falls back toward its initial

steady-state value. This experiment highlights what again looks like a version

of a permanent income response to a foreseen increase in the resources available

for the public to spend (that is what the increase in g is about), with effects

that are modified by the general equilibrium adjustments of the gross return R .
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Foreseen one time pulse in τi10 . Figure 11.7.2 shows the response to a

foreseen one-time investment tax credit at t = 10. The most striking thing

about the response is the dramatic increase in capital at t = 10, as households

take advantage of the temporary boost in the after-tax rate of return R that

is induced by the pulse in τi . Consumption drops dramatically at t = 10 as

the rate of return on capital rises temporarily. Consumers want to smooth

out the drop in consumption by reducing consumption before t = 10, but the

equilibrium movements in the after-tax return R attenuate their incentive to

do so. After t = 10, consumption jumps in response to the jump in interest

rates. Thereafter, rising interest rates cause the (negative) rate of consumption

growth to rise toward zero as the initial steady state is attained once more.10

Notice the negative effects on the value of capital that precede the pulse in τi .

This experiment shows why most economists frown upon temporary investment

tax credits: they induce volatility in consumption that households dislike.

11.7. Linear approximation

The present model is simple enough that it is very easy to apply the shooting

algorithm. But for models with larger state spaces, it can be more difficult to

apply the method. For those models, a frequently used procedure is to obtain a

linear or log linear approximation to the difference equation for capital around

a steady state, then to solve it to get an approximation of the dynamics in the

vicinity of that steady state. The present model is a good laboratory for illus-

trating how to construct approximate linear solutions. In addition to providing

an easy way to approximate a solution, the method illuminates important fea-

tures of the solution by partitioning it into two parts:11 (1) a “feedback” part

that portrays the transient response of the system to an initial condition k0

that is away from an asymptotic steady state, and (2) a “feedforward” part that

shows the current effects of foreseen future alterations in tax and expenditure

policies.12

10 Steady-state values are unaffected by a one-time pulse.
11 Hall (1971) employed linear approximations to exhibit some of this structure.
12 Vector autoregressions embed the consequences of both backward-looking (transient) and

forward-looking (foresight) responses to government policies.
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Figure 11.7.1: Response to foreseen one-time pulse increase

in g at t = 10. From left to right, top to bottom: k, c, R,w/q, s/q, r/q .
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in τi at t = 10. From left to right, top to bottom: k, c, R,w/q, s/q, r/q .
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To obtain a linear approximation to the solution, perform the following

steps:13

1. Set the government policy zt = z , a constant level. Solve H(k, k, k, z, z) = 0

for a steady-state k .

2. Obtain a first-order Taylor series approximation around (k, z):

Hkt

(
kt − k

)
+Hkt+1

(
kt+1 − k

)
+Hkt+2

(
kt+2 − k

)

+Hzt
(zt − z) +Hzt+1 (zt+1 − z) = 0

(11.7.1)

3. Write the resulting system as

φ0kt+2 + φ1kt+1 + φ2kt = A0 +A1zt +A2zt+1 (11.7.2)

or

φ (L) kt+2 = A0 +A1zt +A2zt+1 (11.7.3)

where L is the lag operator (also called the backward shift operator) defined by

Lxt = xt−1 . Factor the characteristic polynomial on the left as

φ (L) = φ0 + φ1L+ φ2L
2 = φ0 (1 − λ1L) (1 − λ2L) . (11.7.4)

For most of the problems that we shall study, it will turn out that one of the λi ’s

will exceed unity and the other will be less than unity. We shall therefore adopt

the convention that |λ1| > 1 and |λ2| < 1. At this point, we ask the reader to

accept that the values of λi split in this way, and shall discuss why they do so.

Notice that equation (11.7.4) implies that φ2 = λ1λ2φ0 . To obtain the factor-

ization (11.7.4), we proceed as follows. Note that (1 − λiL) = −λi
(
L− 1

λi

)
.

Thus,

φ (L) = λ1λ2φ0

(
L− 1

λ1

)(
L− 1

λ2

)
= φ2

(
L− 1

λ1

)(
L− 1

λ2

)
(11.7.5)

because φ2 = λ1λ2φ0 . Equation (11.7.5) identifies 1
λ1
, 1
λ2

as the zeros of the

polynomial φ(z), i.e., λi = z−1
0 where φ(z0) = 0.14 We want to operate on

both sides of (11.7.3) with the inverse of (1−λ1L), but that inverse is unstable

13 For an extensive treatment of lag operators and their uses, see Sargent (1987a).
14 The Matlab roots command roots(phi) finds zeros of polynomials, but you must have

the polynomial ordered as φ = [φ2 φ1 φ0 ] .
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backward (i.e., the power series
∑∞

j=0 λ
j
1L

j has coefficients that diverge in higher

powers of L). Fortunately, however (1−λ1L) can be regarded as having a stable

inverse in the forward direction, i.e., in terms of the forward shift operator L−1 .

In particular, notice that (1−λ1L) = −λ1L(1−λ−1
1 L−1), so that we can express

(1 − λ1L)−1 as −λ1L
−1
∑∞

j=0 λ
−j
1 L−j . Using this result, we can rewrite φ(L)

as15

φ (L) = − 1

λ2
φ2

(
1 − λ−1

1 L−1
)
(1 − λ2L)L.

Represent equation (11.7.2) as

−λ−1
2 φ2L

(
1 − λ−1

1 L−1
)
(1 − λ2L)kt+2 = A0 +A1zt +A2zt+1. (11.7.6)

Operate on both sides of (11.7.6) by −(φ2/λ2)
−1(1 − λ−1

1 L−1)−1 to get the

following representation:16

(1 − λ2L) kt+1 =
−λ2φ

−1
2

1 − λ−1
1 L−1

[A0 +A1zt +A2zt+1] . (11.7.7)

This concludes the procedure.

Equation (11.7.7) is our linear approximation to the equilibrium kt se-

quence. It can be expressed as

kt+1 = λ2kt − λ2φ
−1
2

∞∑

j=0

(λ1)
−j

[A0 +A1zt+j +A2zt+j+1] . (11.7.8)

We can summarize the process of obtaining this approximation as being one

of solving stable roots backward and unstable roots forward. Solving the un-

stable root forward is a way of approximating the terminal condition (11.2.8).

This step corresponds to the step in the shooting algorithm that adjusts the

initial investment rate to ensure that the capital stock eventually approaches

the terminal steady-state capital stock.17

The term λ2kt is sometimes called the “feedback” part of the solution. The

coefficient λ2 measures the transient response or the speed with which capital

15 Justifications for these steps are described at length in Sargent (1987a) and with rigor

in Gabel and Roberts (1973).
16 We have thus solved the stable root backward and the unstable root forward.
17 The invariant subspace methods described in chapter 5 are also all about solving stable

roots backward and unstable roots forward.
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returns to a steady state if it starts away from it. The remaining terms on the

right side of (11.7.8) are sometimes called the “feedforward” parts. They depend

on the infinite future of the exogenous zt (which for us contain the components

of government policy) and measure the effect on the current capital stock kt

of perfectly foreseen paths of fiscal policy. The decay parameter λ−1
1 measures

the rate at which expectations of future fiscal policies are discounted in terms

of their effects on current investment decisions. To a linear approximation,

every rational expectations model has embedded within it both feedforward

and feedback parts. The decay parameters λ2 and λ−1
1 of the feedback and

feedforward parts are determined by the roots of the characteristic polynomial.

Equation (11.7.8) thus nicely exhibits the mixture of the pure foresight and the

pure transient responses that are reflected in our examples in Figures 11.3.1,

11.3.2, 11.5.1, 11.5.2. The feedback part captures the purely transient response

and the feedforward part captures the perfect foresight component.

11.7.1. Relationship between the λi ’s

It is a remarkable fact that if an equilibrium solves a planning problem, then

the roots are linked by λ1 = 1
βλ2

, where β ∈ (0, 1) is the planner’s discount

factor.18 In this case, the feedforward decay rate λ−1
1 = βλ2 . (A relationship

between the feedforward and feedback decay rates appears in the experiments

depicted in Figure 11.3.1 and Figure 11.3.2.) Therefore, when the equilibrium

allocation solves a planning problem, one of the λi ’s is less than 1√
β

and the

other exceeds 1√
β

(this follows because λ1λ2 = 1
β ).19 From this it follows that

one of the λi ’s, say λ1 , satisfies λ1 >
1√
β
> 1 and the other λi , say λ2 satisfies

λ2 < 1√
β

. Thus, for β close to 1, the condition λ1λ2 = 1
β almost implies

our earlier assumption that λ1λ2 = 1, but not quite. Our earlier assumption

that λ2 is less than unity is stronger than what can be shown to be true in

general for planning problems, but for many problems this assumption will hold.

Note, however, that having λ2 < 1√
β

is sufficient to allow permit our linear

18 See Sargent (1987a, chap. XI) for a discussion.
19 Notice that this means that the solution (11.7.8) remains valid for those divergent zt

processes, provided that they satisfy
∑∞

t=0 β
tz2jt < +∞ .
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approximation for kt to satisfy
∑∞
t=0 β

tk2
t < +∞ for all zt sequences that

satisfy
∑∞
t=0 β

tzt · zt < +∞ .

For equilibrium allocations that do not solve planning problems, it ceases

to be true that λ1λ2 = 1
β . In this case, the position of the zeros of the char-

acteristic polynomial can be used to assess the existence and uniqueness of an

equilibrium up to a linear approximation. If both λi ’s exceed 1√
β

, there exists

no equilibrium allocation for which
∑∞

t=0 β
tk2
t < ∞. If both λi ’s are less than

1√
β

, there exists a continuum of equilibria that satisfy that inequality. If the

λi ’s split, with one exceeding and the other being less than 1√
β

, there exists a

unique equilibrium.

11.7.2. Once-and-for-all jumps

Next we specialize (11.7.7) to capture some examples of foreseen policy changes

that we have studied above. Consider the special case treated by Hall (1971) in

which the j th component of zt follows the path

zjt =

{
0 if t ≤ T − 1

zj if t ≥ T
(11.7.9)

We define

vt ≡
∞∑

i=0

λ−i1 zt+i,j

=






(
1

λ1

)T−t
zj

1−
(

1
λ1

) if t ≤ T

1

1−
(

1
λ1

)zj if t ≥ T

(11.7.10)

ht ≡
∞∑

i=0

(
1

λ1

)i
zt+i+1,j

=





(
1

λ1

)T−(t+1)
zj

1−
(

1
λ1

) if t ≤ T − 1

1

1−
(

1
λ1

)zj if t ≥ T − 1.

(11.7.11)

Using these formulas, let the vector zt follow the path

zt =

{
0 if t ≤ T − 1

z if t ≥ T
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where z is a vector of constants. Then applying (11.7.10) and (11.7.11) to

(11.7.7) gives the formulas

kt+1 =






λ2kt − (φ0λ1)−1A0

1−
(

1
λ1

) − (φ0λ1)−1
(

1
λ1

)T−t

1−
(

1
λ1

) (A1 +A2λ1) z if t ≤ T − 1

λ2kt − (φ0λ1)−1

1−
(

1
λ1

) [A0 + (A1 +A2) z] if t ≥ T .

11.7.3. Simplification of formulas

These formulas can be simultaneously generalized and simplified by using the

following trick. Let zt be governed by the state-space system

xt+1 = Axxt (11.7.12a)

zt = Gzxt, (11.7.12b)

with initial condition x0 given. In chapter 2, we saw that many finite-dimensional

linear time series models could be represented in this form, so that we are ac-

commodating a large class of tax and expenditure processes. Then notice that

(
A1

1 − λ−1
1 L−1

)
zt = A1Gz

(
I − λ−1

1 Ax
)−1

xt (11.7.13a)

(
A2

1 − λ−1
1 L−1

)
zt+1 = A2Gz

(
I − λ−1

1 Ax
)−1

Axxt (11.7.13b)

Substituting these expressions into (11.7.8) gives

kt+1 =λ2kt − λ2φ
−1
2

[
(1 − λ−1

1 )−1A0 +A1Gz(I − λ−1
1 Ax)

−1xt

+A2Gz(I − λ−1
1 Ax)

−1Axxt
]
. (11.7.13c)

Taken together, system (11.7.13) gives a complete description of the joint evo-

lution of the exogenous state variables xt driving zt (our government policy

variables) and the capital stock. System (11.7.13) concisely displays the cross-

equation restrictions that are the hallmark of rational expectations models: non-

linear functions of the parameter occurring in Gz , Az in the law of motion for

the exogenous processes appear in the equilibrium representation (11.7.13c) for

the endogenous state variables.
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We can easily use the state space system (11.7.13) to capture the special

case (11.7.9). In particular, to portray xj,t+1 = xj+1,t , set the T × T matrix

A to be

A =

[
0T−1×1 IT−1×T−1

01×T−1 1

]
(11.7.14)

and take the initial condition x0 = [ 0 0 · · · 0 1 ]
′
. To represent an element

of zt that jumps once and for all from 0 to zj at T = 0, set the j th component

of Gz equal to Gzj = [ zj 0 · · · 0 ].

11.7.4. A one-time pulse

We can modify the transition matrix (11.7.14) to model a one-time pulse in a

component of zt that occurs at and only at t = T . To do this, we simply set

A =

[
0T−1×1 IT−1×T−1

01×T−1 0

]
. (11.7.15)

11.7.5. Convergence rates and anticipation rates

Equation (11.7.8) shows that up to a linear approximation, the feedback co-

efficient λ2 equals the geometric rate at which the model returns to a steady

state after a transient displacement away from a steady state. For our bench-

mark values of our other parameters δ = .2, β = .95, α = .33 and all distorting

taxes set to zero, we can compute that λ2 is the following function of the utility

curvature parameter γ that appears in u(c) = (1 − γ)−1c1−γ :20

λ2 =
γ

a1γ−1 + a2 + a3(γ−1 + a4γ−2 + a5)
1
2

where a1 = .975, a2 = .0329, a3 = .0642, a4 = .00063, a5 = .0011. Figure 11.7.3

plots this function. When γ = 0, the period utility function is linear and the

household’s willingness to substitute consumption over time is unlimited. In

this case, λ2 = 0, which means that in response to a perturbation of the capital

stock away from a steady state, the return to a steady state is immediate.

20 We used the Matlab symbolic toolkit to compute this expression.
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Furthermore, as mentioned above, because there are no distorting taxes in the

initial steady state, we know that λ1 = 1
βλ2

, so that according to (11.7.8), the

feedforward response to future z ’s is a discounted sum that decays at rate βλ2 .

Thus, when γ = 0, anticipations of future z ’s have no effect on current k . This

is the other side of the coin of the immediate adjustment associated with the

feedback part.

As the curvature parameter γ increases, λ1 increases, more rapidly at first,

more slowly later. As γ increases, the household values a smooth consumption

path more and more highly. Higher values of γ impart to the equilibrium capital

sequence both a more sluggish feedback response and a feedforward response

that puts relatively more weight on prospective values of the z ’s in the more

distant future.
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λ 2
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Figure 11.7.3: Feedback coefficient λ2 as a function γ ,

evaluated at α = .33, β = .95, δ = .2, g = .2.
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11.8. Elastic labor supply

We return to the more general specification that allows a possibly nonzero labor
supply elasticity by specifying U(c, 1−n) to include a preference for leisure. The
linear approximation method applies equally well to this more general setting
with just one additional step. Now we have to carry along equilibrium conditions
for both the intertemporal evolution of capital and the labor-leisure choice.
These are the two difference equations:

(1 − τit)

(1 + τct)
U1(F (kt, nt) + (1 − δ)kt − gt − kt+1, 1 − nt)

= β(1 + τct+1)
−1U1(F (kt+1, nt+1) + (1 − δ)kt+1 − gt+1 − kt+2, 1 − nt+1)

× [(1 − τit+1)(1 − δ) + (1 − τkt+1)Fk(kt+1, nt+1)]
(11.8.1)

U2(F (kt, nt) + (1 − δ)kt − gt − kt+1, 1 − nt)

U1(F (kt, nt) + (1 − δ)kt − gt − kt+1, 1 − nt)

=
(1 − τnt)

(1 + τct)
Fn(nt, kt).

(11.8.2)

We obtain a linear approximation to this dynamical system by proceeding as

follows. First, find steady-state values (k, n) by solving the two steady-state

versions of equations (11.8.1), (11.8.2). Then take the following linear approx-

imations to (11.8.1), (11.8.2), respectively, around the steady state:

Hkt
(kt − k) +Hkt+1(kt+1 − k) +Hnt+1(nt+1 − n) +Hkt+2(kt+2 − k)

+Hnt
(nt − n) +Hzt

(zt − z) +Hzt+1(zt+1 − z) = 0
(11.8.3)

Gk(kt − k) +Gnt
(nt − n) +Gkt+1 (kt+1 − k) +Gz(zt − z) = 0 (11.8.4)

Solve (11.8.4) for (nt − n) as functions of the remaining terms, substitute into

(11.8.3) to get a version of equation (11.7.2), and proceed as before with a

difference equation of the form (11.3.4).
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11.8.1. Steady-state calculations

To compute a steady state for this version of the model, assume that government

expenditures and all of the flat-rate taxes are constant over time. Steady-state

versions of (11.8.1), (11.8.2) are

1 = β[(1 − δ) +
(1 − τk)

(1 − τi)
Fk(k, n)] (11.8.5)

U2

U1
=

(1 − τn)

(1 + τc)
Fn(k, n). (11.8.6)

The linear homogeneity of F (k, n) means that equation (11.8.5) by itself deter-

mines the steady-state capital-labor ratio k
n . In particular, where k̃ = k

n , notice

that F (k, n) = nf(k̃) and Fk(k, n) = f ′(k̃). Then, letting β = 1
1+ρ , (11.8.5)

can be expressed as

(ρ+ δ)
(1 − τi)

(1 − τk)
= f ′(k̃), (11.8.7)

an equation that determines a steady-state capital-labor ratio k̃ . An increase

in (1−τi)
(1−τk) decreases the capital-labor ratio. Notice that the steady-state capital-

labor ratio is independent of τc, τn . However, given k̃ , the consumption and

labor tax rates influence the steady-state levels of consumption and labor via

(11.8.5). Formula (11.8.5) reveals how the two tax instruments operate in the

same way (i.e., distort the same labor-leisure margin).

If we define τc = τn+τc

1+τc
and τk = τk−τi

1−τk
, then it follows that (1−τn)

(1+τc)
= 1−τc

and (1−τi)
(1−τk) = 1 + τk . The wedge 1 − τc distorts the steady-state labor-leisure

decision via (11.8.6) and the wedge 1+τk distorts the steady-state capital-labor

ratio via (11.8.7).
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11.8.2. A digression on accuracy: Euler equation errors

It is important to estimate the accuracy of approximations. One simple diag-

nostic tool is to take a candidate solution for a sequence ct, kt+1 , substitute

them into the two Euler equations (11.8.1) and (11.8.2), and call the devia-

tions between the left sides and the right sides the Euler equation errors.21 An

accurate method makes these errors small.22

Figure 11.8.1 plots the consumption Euler equation errors that we obtained

when we used a linear approximation to study the consequences of a foreseen

jump in g (the experiment recorded in Figure 11.3.1). Although qualitatively

the responses that the linear approximation recovers are indistinguishable from

figure 11.3.1 (we don’t display them), the Euler equation errors for the linear

approximation are substantially larger than for the shooting method (we don’t

show the Euler equation errors for the shooting method because they are so

minuscule that they couldn’t be detected on the graph).

11.9. Growth

It is straightforward to alter the model to allow for exogenous growth. We

modify the production function to be

Yt = F (Kt, Atnt) (11.9.1)

where Yt is aggregate output, Nt is total employment, At is labor-augmenting

technical change, and F (K,AN) is the same linearly homogeneous production

function as before. We assume that At follows the process

At+1 = µt+1At (11.9.2)

and will usually but not always assume that µt+1 = µ > 1. We exploit the

linear homogeneity of (11.9.1) to express the production function as

yt = f(kt) (11.9.3)

21 For more about this method, see Den Haan and Marcet (1994) and Judd (1998).
22 Calculating Euler equation errors, but for a different purpose, goes back a long time. In

chapter 2 of The General Theory of Interest, Prices, and Money , John Maynard Keynes noted

that plugging in data (not a candidate simulation) into (11.8.2) would produce big residuals.

Keynes therefore proposed to replace classical labor supply theory with the assumption that

nominal wages are exogenous.
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Figure 11.8.1: Error in consumption Euler equation for lin-

ear approximation for response to foreseen increase in g at

t = 10.

where f(k) = F (k, 1) and now kt = Kt

ntAt
, yt = Yt

ntAt
. We say that kt and

yt are measured per unit of “effective labor” Atnt . We also let ct = Ct

Atnt
and

gt = Gt

Atnt
where Ct and Gt are total consumption and total government expen-

ditures, respectively. We consider the special case in which labor is inelastically

supplied. Then feasibility can be summarized by the following modified version

of (11.3.1):

kt+1 = µ−1
t+1[f(kt) + (1 − δ)kt − gt − ct]. (11.9.4)

Noting that per capita consumption is ctAt , we obtain the following counterpart

to equation (11.3.3):

u′(ctAt) =βu′(ct+1At+1)
(1 + τct)

(1 + τct+1)[
(1 − τit+1)

(1 − τit)
(1 − δ) +

(1 − τkt+1)

(1 − τit)
f ′(kt+1)

]
.

(11.9.5)

We assume the power utility function u′(c) = c−γ , which makes the Euler

equation become

(ctAt)
−γ = β(ct+1At+1)

−γRt+1,



356 Fiscal Policies in the Growth Model

where Rt+1 continues to be defined by (11.3.8e), except that now kt is capital

per effective unit of labor. The preceding equation can be represented as

(
ct+1

ct

)γ
= βµ−γ

t+1Rt+1. (11.9.6)

In a steady state, ct+1 = ct . Then the steady-state version of the Euler equation

(11.9.5) is

1 = µ−γβ[(1 − δ) +
(1 − τk)

(1 − τi)
f ′(k)], (11.9.7)

which can be solved for the steady-state capital stock. It is easy to compute

that the steady-state level of capital per unit of effective labor satisfies

f ′(k) =
(1 − τi)

(1 − τk)
[(1 + ρ)µγ − (1 − δ)], (11.9.8)

that the steady-state gross return on capital is

R = (1 + ρ)µγ , (11.9.9)

and that the steady-state value of capital s/q is

s/q = (1 − τi)(1 + ρ)µγ + τi(1 − δ). (11.9.10)

Equation (11.9.9) immediately shows that ceteris paribus , a jump in the rate

of technical change raises the steady-state net of taxes gross rate of return on

capital, while equation (11.9.10) can be used to show that an increase in the

rate of technical change also increases the steady-state value of claims on next

period’s capital.

Next we apply the shooting algorithm to compute equilibria. We augment

the vector of forcing variables zt by including µt , so that it becomes zt =

[ gt τit τkt τct µt ]
′
, where gt is understood to be measured in effective

units of labor, then proceed as before.

Foreseen jump in productivity growth at t = 10 . Figure 11.9.1 shows

effects of a permanent increase from .02 to .025 in the productivity growth

rate µt at t = 10. This figure and also Figure 11.9.2 now measure c and

k in effective units of labor. The steady-state Euler equation (11.9.7) guides

main features of the outcomes, and implies that a permanent increase in µ

will lead to a decrease in the steady-state value of capital per unit of effective
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labor. Because capital is more efficient, even with less of it, consumption per

capita can be raised, and that is what individuals care about. Consumption

jumps immediately because people are wealthier. The increased productivity of

capital spurred by the increase in µ leads to an increase in the after-tax gross

return on capital R . Perfect foresight makes the effects of the increase in the

growth of capital precede it.

Immediate (unforeseen) jump in productivity growth at t = 1 . Figure

11.9.2 shows effects of an immediate jump in µ at t = 1. It is instructive to

compare these with the effects of the foreseen increase in Figure 11.9.1. In Figure

11.9.2, the paths of all variables are entirely dominated by the feedback part

of the solution, while before t = 10 those in Figure 11.9.1 have contributions

from the feedforward part. The absence of feedforward effects makes the paths

of all variables in Figure 11.9.2 smooth. Consumption per effective unit of

labor jumps immediately then declines smoothly toward its steady state as the

economy moves to a lower level of capital per unit of effective labor. The after-

tax gross return on capital R once again comoves with the consumption growth

rate to verify the Euler equation (11.9.7).

11.10. Concluding remarks

In chapter 12 we shall describe a stochastic version of the basic growth model

and alternative ways of representing its competitive equilibrium.23 Stochastic

and nonstochastic versions of the growth model are widely used throughout

aggregative economics to study a range of policy questions. Brock and Mirman

(1972), Kydland and Prescott (1982), and many others have used a stochastic

version of the model to approximate features of the business cycle. In much of

the earlier literature on real business cycle models, the phrase “features of the

business cycle” has meant “particular moments of some aggregate time series

that have been filtered in a particular way to remove trends.” Lucas (1990) uses

a nonstochastic model like the one in this chapter to prepare rough quantitative

23 It will be of particular interest to learn how to achieve a recursive representation of an

equilibrium by finding an appropriate formulation of a state vector in terms of which to cast

an equilibrium. Because there are endogenous state variables in the growth model, we shall

have to extend the method used in chapter 8.
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Figure 11.9.1: Response to foreseen once-and-for-all in-

crease in rate of growth of productivity µ at t = 10. From

left to right, top to bottom: k, c, R,w/q, s/q, r/q , where now

k, c are measured in units of effective unit of labor.

estimates of the eventual consequences of lowering taxes on capital and raising

those on consumption or labor. Prescott (2002) uses a version of the model in

this chapter with leisure in the utility function together with some illustrative

(high) labor supply elasticities to construct the argument that in the last two

decades, Europe’s economic activity has been depressed relative to that of the

United States because Europe has taxed labor more highly that the United

States. Ingram, Kocherlakota, and Savin (1994) and Hall (1997) use actual data

to construct the errors in the Euler equations associated with stochastic versions

of the basic growth model and interpret them not as computational errors, as

in the procedure recommended in section 11.8.2, but as measures of additional

shocks that have to be added to the basic model to make it fit the data. In

the basic stochastic growth model described in chapter 12, the technology shock

is the only shock, but it cannot by itself account for the discrepancies that

emerge in fitting all of the model’s Euler equations to the data. A message of

Ingram, Kocherlakota, and Savin (1994) and Hall (1997) is that more shocks are

required to account for the data. Wen (1998) and Otrok (2001) build growth
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Figure 11.9.2: Response to increase in rate of growth of

productivity µ at t = 0. From left to right, top to bottom:

k, c, R,w/q, s/q, r/q , where now k, c are measured in units of

effective unit of labor.

models with more shocks and additional sources of dynamics, fit them to U.S.

time series using likelihood function-based methods, and discuss the additional

shocks and sources of data that are required to match the data. See Christiano,

Eichenbaum, and Evans (2003) and Christiano, Motto, and Rostagno (2003) for

papers that add a number of additional shocks and measure their importance.

Greenwood, Hercowitz, and Krusell (1997) introduced what seems to be an

important additional shock in the form of a technology shock that impinges

directly on the relative price of investment goods. Jonas Fisher (2003) develops

econometric evidence attesting to the importance of this shock in accounting for

aggregate fluctuations.

Schmitt-Grohe and Uribe (2004b) and Kim and Kim (2003) warn that the

linear and log linear approximations described in this chapter can be treach-

erous when they are used to compare the welfare under alternative policies of

economies, like the ones described in this chapter, in which distortions prevent
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equilibrium allocations from being optimal ones. They describe ways of at-

taining locally more accurate welfare comparisons by constructing higher order

approximations to decision rules and welfare functions.

A. Log linear approximations

Following Christiano (1990), a widespread practice is to obtain log linear rather

than linear approximations. Here is how this would be done for the model of

this chapter.

Let log kt = k̃t so that kt = exp k̃t ; similarly, let log gt = g̃t . Represent zt

as zt = [ exp(g̃t) τit τkt τct ]
′

(note that only gt has been replaced by it’s

log here). Then proceed as follows to get a log linear approximation.

1. Compute the steady state as before. Set the government policy zt = z , a

constant level. Solve H(exp(k̃∞), exp(k̃∞), exp(k̃∞), z, z) = 0 for a steady state

k̃∞ . (Of course, this will give the same steady state for the original unlogged

variables as we got earlier.)

2. Take first-order Taylor series approximation around (k̃∞, z):

Hk̃t
(k̃t − k̃∞) +Hk̃t+1

(k̃t+1 − k̃∞) +Hk̃t+2
(k̃t+2 − k̃∞)

+Hzt
(zt − z) +Hzt+1(zt+1 − z) = 0.

(11.A.1)

(But please remember here that the first component of zt is now g̃t .)

3. Write the resulting system as

φ0k̃t+2 + φ1k̃t+1 + φ2k̃t = A0 +A1zt +A2zt+1 (11.A.2)

or

φ(L)k̃t+2 = A0 +A1zt +A2zt+1 (11.A.3)

where L is the lag operator (also called the backward shift operator). Solve

the linear difference equation (11.A.3) exactly as before, but for the sequence

{k̃t+1} .

4. Compute kt = exp(k̃t), and also remember to exponentiate g̃t , then use

equations (11.3.8) to compute the associated prices and quantities. Compute

the Euler equation errors as before.
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Exercises

Exercise 11.1 Tax reform: I

Consider the following economy populated by a government and a representative

household. There is no uncertainty, and the economy and the representative

household and government within it last forever. The government consumes a

constant amount gt = g > 0, t ≥ 0. The government also sets sequences for

two types of taxes, {τct, τht}∞t=0 . Here τct, τht are, respectively, a possibly time-

varying flat-rate tax on consumption and a time-varying lump-sum or “head”

tax. The preferences of the household are ordered by

∞∑

t=0

βtu(ct),

where β ∈ (0, 1) and u(·) is strictly concave, increasing, and twice continuously

differentiable. The feasibility condition in the economy is

gt + ct + kt+1 ≤ f(kt) + (1 − δ)kt

where kt is the stock of capital owned by the household at the beginning of time

t and δ ∈ (0, 1) is a depreciation rate. At time 0, there are complete markets

for dated commodities. The household faces the budget constraint:

∞∑

t=0

{qt[(1 + τct)ct + kt+1 − (1 − δ)kt]} ≤
∞∑

t=0

{rtkt + wt − qtτht}

where we assume that the household inelastically supplies one unit of labor,

and qt is the price of date t consumption goods, rt is the rental rate of date t

capital, and wt is the wage rate of date t labor. Capital is neither taxed nor

subsidized.

A production firm rents labor and capital. The production function is

f(k)n , where f ′ > 0, f ′′ < 0. The value of the firm is

∞∑

t=0

[qtf(kt)nt − wtnt − rtktnt],

where kt is the firm’s capital-labor ratio and nt is the amount of labor it hires.

The government sets gt exogenously and must set τct, τht to satisfy the

budget constraint:
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(1)

∞∑

t=0

qt(ctτct + τht) =

∞∑

t=0

qtgt.

a. Define a competitive equilibrium.

b. Suppose that historically the government had unlimited access to lump-

sum taxes and availed itself of them. Thus, for a long time the economy had

gt = g > 0, τct = 0. Suppose that this situation had been expected to go on

forever. Tell how to find the steady-state capital-labor ratio for this economy.

c. In the economy depicted in b, prove that the timing of lump-sum taxes is

irrelevant.

d. Let k̄0 be the steady value of kt that you found in part b. Let this be the

initial value of capital at time t = 0 and consider the following experiment.

Suddenly and unexpectedly, a court decision rules that lump-sum taxes are ille-

gal and that starting at time t = 0, the government must finance expenditures

using the consumption tax τct . The value of gt remains constant at g . Policy

advisor number 1 proposes the following tax policy: find a constant consumption

tax that satisfies the budget constraint (1), and impose it from time 0 onward.

Please compute the new steady-state value of kt under this policy. Also, get as

far as you can in analyzing the transition path from the old steady state to the

new one.

e. Policy advisor number 2 proposes the following alternative policy. Instead of

imposing the increase in τct suddenly, he proposes to ease the pain by postponing

the increase for 10 years. Thus, he/she proposes to set τct = 0 for t = 0, . . . , 9,

then to set τct = τ c for t ≥ 10. Please compute the steady-state level of capital

associated with this policy. Can you say anything about the transition path to

the new steady-state kt under this policy?

f. Which policy is better, the one recommended in d or the one in e?

Exercise 11.2 Tax reform: II

Consider the following economy populated by a government and a representative

household. There is no uncertainty, and the economy and the representative

household and government within it last forever. The government consumes

a constant amount gt = g > 0, t ≥ 0. The government also sets sequences
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of two types of taxes, {τct, τkt}∞t=0 . Here τct, τkt are, respectively, a possibly

time-varying flat-rate tax on consumption and a time-varying flat-rate tax on

earnings from capital. The preferences of the household are ordered by

∞∑

t=0

βtu(ct),

where β ∈ (0, 1) and u(·) is strictly concave, increasing, and twice continuously

differentiable. The feasibility condition in the economy is

gt + ct + kt+1 ≤ f(kt) + (1 − δ)kt

where kt is the stock of capital owned by the household at the beginning of time

t and δ ∈ (0, 1) is a depreciation rate. At time 0, there are complete markets

for dated commodities. The household faces the budget constraint:

∞∑

t=0

{qt[(1 + τct)ct + kt+1 − (1 − δ)kt]}

≤
∞∑

t=0

{rt(1 − τkt)kt + wt}

where we assume that the household inelastically supplies one unit of labor,

and qt is the price of date t consumption goods, rt is the rental rate of date t

capital, and wt is the wage rate of date t labor.

A production firm rents labor and capital. The value of the firm is

∞∑

t=0

[qtf(kt)nt − wtnt − rtktnt],

where here kt is the firm’s capital-labor ratio and nt is the amount of labor it

hires.

The government sets {gt} exogenously and must set the sequences {τct, τkt}
to satisfy the budget constraint:

(1)

∞∑

t=0

(qtctτct + rtktτkt) =

∞∑

t=0

qtgt.

a. Define a competitive equilibrium.
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b. Assume an initial situation in which from time t ≥ 0 onward, the government

finances a constant stream of expenditures gt = g entirely by levying a constant

tax rate τk on capital and a zero consumption tax. Tell how to find steady-state

levels of capital, consumption, and the rate of return on capital.

c. Let k̄0 be the steady value of kt that you found in part b. Let this be the

initial value of capital at time t = 0 and consider the following experiment.

Suddenly and unexpectedly, a new party comes into power that repeals the tax

on capital, sets τk = 0 forever, and finances the same constant level of g with a

flat-rate tax on consumption. Tell what happens to the new steady-state values

of capital, consumption, and the return on capital.

d. Someone recommends comparing the two alternative policies of (1) relying

completely on the taxation of capital as in the initial equilibrium and (2) relying

completely on the consumption tax, as in our second equilibrium, by compar-

ing the discounted utilities of consumption in steady state, i.e., by comparing
1

1−βu(c) in the two equilibria, where c is the steady-state value of consumption.

Is this a good way to measure the costs or gains of one policy vis-a-vis the other?

Exercise 11.3 Anticipated productivity shift

An infinitely lived representative household has preferences over a stream of

consumption of a single good that are ordered by

∞∑

t=0

βtu(ct), β ∈ (0, 1)

where u is a strictly concave, twice continuously differentiable, one-period utility

function, β is a discount factor, and ct is time t consumption. The technology

is:
ct + xt ≤ f(kt)nt

kt+1 = (1 − δ)kt + ψtxt

where for t ≥ 1

ψt =

{
1 for t < 4

2 for t ≥ 4.

Here f(kt)nt is output, where f > 0, f ′ > 0, f ′′ < 0, kt is capital per unit of

labor input, and nt is labor input. The household supplies one unit of labor

inelastically. The initial capital stock k0 is given and is owned by the represen-

tative household. In particular, assume that k0 is at the optimal steady value
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for k presuming that ψt had been equal to 1 forever. There is no uncertainty.

There is no government.

a. Formulate the planning problem for this economy in the space of sequences

and form the pertinent Lagrangian. Find a formula for the optimal steady-state

level of capital. How does a permanent increase in ψ affect the steady values of

k, c , and x?

b. Formulate the planning problem for this economy recursively (i.e., compose

a Bellman equation for the planner). Be careful to give a complete description

of the state vector and its law of motion. (“Finding the state is an art.”)

c. Formulate an (Arrow-Debreu) competitive equilibrium with time 0 trades,

assuming the following decentralization. Let the household own the stocks of

capital and labor and in each period let the household rent them to the firm. Let

the household choose the investment rate each period. Define an appropriate

price system and compute the first-order necessary conditions for the household

and for the firm.

d. What is the connection between a solution of the planning problem and the

competitive equilibrium in part c? Please link the prices in part c to correspond-

ing objects in the planning problem.

e. Assume that k0 is given by the steady-state value that corresponds to the

assumption that ψt had been equal to 1 forever, and had been expected to

remain equal to 1 forever. Qualitatively describe the evolution of the economy

from time 0 on. Does the jump in ψ at t = 4 have any effects that precede it?



Chapter 12
Recursive Competitive Equilibria

12.1. Endogenous aggregate state variable

For pure endowment stochastic economies, chapter 8 described two types of com-

petitive equilibria, one in the style of Arrow and Debreu with markets that con-

vene at time 0 and trade a complete set of history-contingent securities, another

with markets that meet each period and trade a complete set of one-period-ahead

state-contingent securities called Arrow securities. Though their price systems

and trading protocols differ, both types of equilibria support identical equilib-

rium allocations. Chapter 8 described how to transform the Arrow-Debreu price

system into one for pricing Arrow securities. The key step in transforming an

equilibrium with time 0 trading into one with sequential trading was to account

for how individuals’ wealth evolve as time passes in a time 0 trading economy.

In a time 0 trading economy, individuals do not make any trades other than

those executed in period 0, but the present value of those portfolios change as

time passes and as uncertainty gets resolved. So in period t after some history

st , we used the Arrow-Debreu prices to compute the value of an individual’s

purchased claims to current and future goods net of his outstanding liabilities.

We could then show that these wealth levels (and the associated consumption

choices) could also be attained in a sequential-trading economy where there are

only markets in one-period Arrow securities that reopen in each period.

In chapter 8 we also demonstrated how to obtain a recursive formulation

of the equilibrium with sequential trading. This required us to assume that

individuals’ endowments were governed by a Markov process. Under that as-

sumption we could identify a state vector in terms of which the Arrow securities

could be cast. This (aggregate) state vector then became a component of the

state vector for each individual’s problem. This transformation of price systems

is easy in the pure exchange economies of chapter 8 because in equilibrium, the

relevant state variable, wealth, is a function solely of the current realization

of the exogenous Markov state variable. The transformation is more subtle in

economies in which part of the aggregate state is endogenous in the sense that it

– 366 –
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emerges from the history of equilibrium interactions of agents’ decisions. In this

chapter, we use the basic stochastic growth model (sometimes also called the

real business cycle model) as a laboratory for moving from an equilibrium with

time 0 trading to a sequential equilibrium with trades of Arrow securities.1

We also formulate a recursive competitive equilibrium with trading in Arrow

securities by using a version of the “Big K , little k” trick that is often used in

macroeconomics.

12.2. The stochastic growth model

Here we spell out the basic ingredients of the stochastic growth model: prefer-

ences, endowment, technology, and information. The environment is the same

as in chapter 11 except that we now allow for a stochastic technology level. In

each period t ≥ 0, there is a realization of a stochastic event st ∈ S . Let the

history of events up to time t be denoted st = [st, st−1, . . . , s0] . The uncon-

ditional probability of observing a particular sequence of events st is given by

a probability measure πt(s
t). We write conditional probabilities as πτ (s

τ |st),
which is the probability of observing sτ conditional on the realization of st .

In this chapter, we assume that the state s0 in period 0 is nonstochastic, and

hence π0(s0) = 1 for a particular s0 ∈ S . We use st as a commodity space in

which goods are differentiated by histories.

A representative household has preferences over nonnegative streams of

consumption ct(s
t) and leisure `t(s

t) that are ordered by

∞∑

t=0

∑

st

βtu[ct(s
t), `t(s

t)]πt(s
t) (12.2.1)

where β ∈ (0, 1) and u is strictly increasing in its two arguments, twice contin-

uously differentiable, strictly concave, and satisfies the Inada conditions

lim
c→0

uc(c, `) = lim
`→0

u`(c, `) = ∞.

1 The stochastic growth model was formulated and fully analyzed by Brock and Mirman

(1972). It is a workhorse for studying macroeconomic fluctuations. Kydland and Prescott

(1982) used the framework to study quantitatively the importance of persistent technology

shocks for business cycle fluctuations. Other researchers have used the stochastic growth

model as a point of departure when exploring the implications of injecting various frictions

into that otherwise frictionless environment.
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In each period, the representative household is endowed with one unit of

time that can be devoted to leisure `t(s
t) or labor nt(s

t):

1 = `t(s
t) + nt(s

t). (12.2.2)

The only other endowment is a capital stock k0 at the beginning of period 0.

The technology is

ct(s
t) + xt(s

t) ≤ At(s
t)F (kt(s

t−1), nt(s
t)), (12.2.3a)

kt+1(s
t) = (1 − δ)kt(s

t−1) + xt(s
t), (12.2.3b)

where F is a twice continuously differentiable, constant-returns-to-scale pro-

duction function with inputs capital kt(s
t−1) and labor nt(s

t), and At(s
t)

is a stochastic process of Harrod-neutral technology shocks. Outputs are the

consumption good ct(s
t) and the investment good xt(s

t). In (12.2.3b), the

investment good augments a capital stock that is depreciating at the rate δ .

Negative values of xt(s
t) are permissible, which means that the capital stock

can be reconverted into the consumption good.

We assume that the production function satisfies standard assumptions of

positive but diminishing marginal products,

Fi(k, n) > 0, Fii(k, n) < 0, for i = k, n;

and the Inada conditions,

lim
k→0

Fk(k, n) = lim
n→0

Fn(k, n) = ∞,

lim
k→∞

Fk(k, n) = lim
n→∞

Fn(k, n) = 0.

Since the production function has constant returns to scale, we can define

F (k, n) ≡ nf(k̂) where k̂ ≡ k

n
. (12.2.4)

Another property of a linearly homogeneous function F (k, n) is that its first

derivatives are homogeneous of degree 0, and thus the first derivatives are func-

tions only of the ratio k̂ . In particular, we have

Fk(k, n) =
∂ nf (k/n)

∂ k
= f ′(k̂), (12.2.5a)

Fn(k, n) =
∂ nf (k/n)

∂ n
= f(k̂) − f ′(k̂)k̂. (12.2.5b)
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12.3. Lagrangian formulation of the planning problem

The planner chooses an allocation {ct(st), `t(st), xt(st), nt(st), kt+1(s
t)}∞t=0 to

maximize (12.2.1) subject to (12.2.2) and (12.2.3), the initial capital stock k0 ,

and the stochastic process for the technology level At(s
t). To solve this planning

problem, we form the Lagrangian

L =

∞∑

t=0

∑

st

βtπt(s
t){u(ct(st), 1 − nt(s

t))

+ µt(s
t)[At(s

t)F (kt(s
t−1), nt(s

t)) + (1 − δ)kt(s
t−1) − ct(s

t) − kt+1(s
t)]}

where µt(s
t) is a process of Lagrange multipliers on the technology constraint.

First-order conditions with respect to ct(s
t) , nt(s

t), and kt+1(s
t), respectively,

are

uc
(
st
)

= µt(s
t), (12.3.1a)

u`
(
st
)

= uc
(
st
)
At(s

t)Fn
(
st
)
, (12.3.1b)

uc
(
st
)
πt(s

t) = β
∑

st+1|st

uc
(
st+1

)
πt+1

(
st+1

)

[
At+1

(
st+1

)
Fk
(
st+1

)
+ (1 − δ)

]
, (12.3.1c)

where the summation over st+1|st means that we sum over all possible histories

s̃t+1 such that s̃t = st .

12.4. Time 0 trading: Arrow-Debreu securities

In the style of Arrow and Debreu, we can support the allocation that solves

the planning problem by a competitive equilibrium with time 0 trading of a

complete set of date- and history-contingent securities. Trades occur among a

representative household and two types of representative firms.2

We let [q0, w0, r0, pk0] be a price system where pk0 is the price of a unit of

the initial capital stock, and each of q0 , w0 , and r0 is a stochastic process of

2 One can also support the allocation that solves the planning problem with a less de-

centralized setting with only the first of our two types of firms, and in which the decision for

making physical investments is assigned to the household. We assign that decision to a second

type of firm because we want to price more items, in particular, the capital stock.
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prices for output and for renting labor and capital, respectively, and the time

t component of each is indexed by the history st . A representative household

purchases consumption goods from a type I firm and sells labor services to the

type I firm that operates the production technology (12.2.3a). The household

owns the initial capital stock k0 and at date 0 sells it to a type II firm. The

type II firm operates the capital storage technology (12.2.3b), purchases new

investment goods xt from a type I firm, and rents stocks of capital back to the

type I firm.

We now describe the problems of the representative household and the two

types of firms in the economy with time 0 trading.

12.4.1. Household

The household maximizes

∑

t

∑

st

βtu
[
ct(s

t), 1 − nt(s
t)
]
πt(s

t) (12.4.1)

subject to

∞∑

t=0

∑

st

q0t (s
t)ct(s

t) ≤
∞∑

t=0

∑

st

w0
t (s

t)nt(s
t) + pk0k0. (12.4.2)

First-order conditions with respect to ct(s
t) and nt(s

t) , respectively, are

βtuc
(
st
)
πt(s

t) = ηq0t (s
t), (12.4.3a)

βtu`
(
st
)
πt(s

t) = ηw0
t (s

t), (12.4.3b)

where η > 0 is a multiplier on the budget constraint (12.4.2).
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12.4.2. Firm of type I

The representative firm of type I operates the production technology (12.2.3a)

with capital and labor that it rents at market prices. For each period t and

each realization of history st , the firm enters into state-contingent contracts at

time 0 to rent capital kIt (s
t) and labor services nt(s

t). The type I firm seeks

to maximize

∞∑

t=0

∑

st

{
q0t (s

t)
[
ct(s

t) + xt(s
t)
]
− r0t (s

t)kIt
(
st
)
− w0

t (s
t)nt(s

t)
}

(12.4.4)

subject to

ct(s
t) + xt(s

t) ≤ At(s
t)F

(
kIt
(
st
)
, nt(s

t)
)
. (12.4.5)

After substituting (12.4.5) into (12.4.4) and invoking (12.2.4), the firm’s ob-

jective function can be expressed alternatively as

∞∑

t=0

∑

st

nt(s
t)
{
q0t (s

t)At(s
t)f
(
k̂It
(
st
))

− r0t (s
t)k̂It

(
st
)
− w0

t (s
t)
}

(12.4.6)

and the maximization problem can then be decomposed into two parts. First,

conditional on operating the production technology in period t and history st ,

the firm solves for the profit-maximizing capital-labor ratio, denoted kI?t (st).

Second, given that capital-labor ratio kI?t (st), the firm determines the profit-

maximizing level of its operation by solving for the optimal employment level,

denoted n?t (s
t).

The firm finds the profit-maximizing capital-labor ratio by maximizing the

expression in curly brackets in (12.4.6). The first-order condition with respect

to k̂It (s
t) is

q0t (s
t)At(s

t)f ′
(
k̂It
(
st
))

− r0t (s
t) = 0 . (12.4.7)

At the optimal capital-labor ratio k̂I?t (st) that satisfies (12.4.7), the firm eval-

uates the expression in curly brackets in (12.4.6) in order to determine the

optimal level of employment nt(s
t). In particular, nt(s

t) is optimally set equal

to zero or infinity if the expression in curly brackets in (12.4.6) is strictly nega-

tive or strictly positive, respectively. However, if the expression in curly brackets

is zero in some period t and history st , the firm would be indifferent to the level

of nt(s
t), since profits are then equal to zero for all levels of operation in that
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period and state. Here, we summarize the optimal employment decision by us-

ing equation (12.4.7) to eliminate r0t (s
t) in the expression in curly brackets in

(12.4.6);

if
{
q0t (s

t)At(s
t)
[
f
(
k̂I?t
(
st
))

− f ′
(
k̂I?t

(
st
))

k̂I?t
(
st
)]

− w0
t (s

t)
}






< 0, then n?t (st) = 0;

= 0, then n?t (st) is indeterminate;

> 0, then n?t (st) = ∞.

(12.4.8)

In an equilibrium, both kIt (s
t) and nt(s

t) are strictly positive and finite, so

expressions (12.4.7) and (12.4.8) imply the following equilibrium prices:

q0t (s
t)At(s

t)Fk
(
st
)

= r0t (s
t) (12.4.9a)

q0t (s
t)At(s

t)Fn
(
st
)

= w0
t (s

t) (12.4.9b)

where we have invoked (12.2.5).

12.4.3. Firm of type II

The representative firm of type II operates technology (12.2.3b) to transform

output into capital. The type II firm purchases capital at time 0 from the house-

hold sector and thereafter invests in new capital, earning revenues by renting

capital to the type I firm. It maximizes

−pk0kII0 +

∞∑

t=0

∑

st

{
r0t (s

t)kIIt
(
st−1

)
− q0t (s

t)xt(s
t)
}

(12.4.10)

subject to

kIIt+1

(
st
)

= (1 − δ) kIIt
(
st−1

)
+ xt

(
st
)
. (12.4.11)

Note that the firm’s capital stock in period 0, kII0 , is bought without any un-

certainty about the rental price in that period while the investment in capital

for a future period t , kIIt (st−1), is conditioned on the realized history st−1 .

Thus, the type II firm manages the risk associated with technology constraint

(12.2.3b) that states that capital must be assembled one period prior to be-

coming an input for production. In contrast, the type I firm of the previous

subsection can choose how much capital kIt (s
t) to rent in period t conditioned

on history st .
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After substituting (12.4.11) into (12.4.10) and rearranging, the type II

firm’s objective function can be written as

kII0
{
−pk0 + r00 (s0) + q00 (s0) (1 − δ)

}
+

∞∑

t=0

∑

st

kIIt+1

(
st
)

·
{
−q0t

(
st
)

+
∑

st+1|st

[
r0t+1

(
st+1

)
+ q0t+1

(
st+1

)
(1 − δ)

]
}
, (12.4.12)

where the firm’s profit is a linear function of investments in capital. The profit-

maximizing level of the capital stock kIIt+1(s
t) in expression (12.4.12) is equal to

zero or infinity if the associated multiplicative term in curly brackets is strictly

negative or strictly positive, respectively. However, for any expression in curly

brackets in (12.4.12) that is zero, the firm would be indifferent to the level

of kIIt+1(s
t), since profits then equal zero for all levels of investment. In an

equilibrium, kII0 and kIIt+1(s
t) are strictly positive and finite, so each expression

in curly brackets in (12.4.12) must equal zero, and hence equilibrium prices

must satisfy

pk0 = r00 (s0) + q00 (s0) (1 − δ) , (12.4.13a)

q0t
(
st
)

=
∑

st+1|st

[
r0t+1

(
st+1

)
+ q0t+1

(
st+1

)
(1 − δ)

]
. (12.4.13b)

12.4.4. Equilibrium prices and quantities

According to equilibrium conditions (12.4.9), each input in the production tech-

nology is paid its marginal product, and hence profit maximization of the type I

firm ensures an efficient allocation of labor services and capital. But nothing is

said about the equilibrium quantities of labor and capital. Profit maximization

of the type II firm imposes no-arbitrage restrictions (12.4.13) across prices pk0

and {r0t (st), q0t (st)} . But nothing is said about the specific equilibrium value of

an individual price. To solve for equilibrium prices and quantities, we turn to

the representative household’s first-order conditions (12.4.3).

After substituting (12.4.9b) into the household’s first-order condition (12.4.3b),

we obtain

βtu`
(
st
)
πt(s

t) = ηq0t
(
st
)
At
(
st
)
Fn
(
st
)
; (12.4.14a)

and then by substituting (12.4.13b) and (12.4.9a) into (12.4.3a),



374 Recursive Competitive Equilibria

βtuc
(
st
)
πt(s

t) = η
∑

st+1|st

[
r0t+1

(
st+1

)
+ q0t+1

(
st+1

)
(1 − δ)

]

= η
∑

st+1|st

q0t+1

(
st+1

) [
At+1

(
st+1

)
Fk
(
st+1

)
+ (1 − δ)

]
. (12.4.14b)

Next, we use q0t (s
t) = βtuc(s

t)πt(s
t)/η as given by the household’s first-order

condition (12.4.3a) and the corresponding expression for q0t+1(s
t+1) to substi-

tute into (12.4.14a) and (12.4.14b), respectively. This step produces expres-

sions identical to the planner’s first-order conditions (12.3.1b) and (12.3.1c),

respectively. In this way, we have verified that the allocation in the competitive

equilibrium with time 0 trading is the same as the allocation that solves the

planning problem.

Given the equivalence of allocations, it is standard to compute the com-

petitive equilibrium allocation by solving the planning problem since the latter

problem is a simpler one. We can compute equilibrium prices by substituting

the allocation from the planning problem into the household’s and firms’ first-

order conditions. All relative prices are then determined, and in order to pin

down absolute prices, we would also have to pick a numeraire. Any such nor-

malization of prices is tantamount to setting the multiplier η on the household’s

present value budget constraint equal to an arbitrary positive number. For ex-

ample, if we set η = 1, we are measuring prices in units of marginal utility of

the time 0 consumption good. Alternatively, we can set q00(s0) = 1 by setting

η = uc(s0). We can compute q0t (s
t) from (12.4.3a), w0

t (s
t) from (12.4.3b),

and r0t (s
t) from (12.4.9a). Finally, we can compute pk0 from (12.4.13a) to get

pk0 = r00(s0) + q00(s0)(1 − δ).
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12.4.5. Implied wealth dynamics

Even though trades are only executed at time 0 in the Arrow-Debreu market

structure, we can study how the representative household’s wealth evolves over

time. For that purpose, after a given history st , we convert all prices, wages,

and rental rates that are associated with current and future deliveries so that

they are expressed in terms of time t , history st consumption goods, i.e., we

change the numeraire:

qtτ (sτ ) ≡ q0τ (sτ )

q0t (st)
= βτ−t

u′ [cτ (sτ )]

u′ [ct (st)]
πτ
(
sτ |st

)
, (12.4.15a)

wtτ (sτ ) ≡ w0
τ (sτ )

q0t (st)
, (12.4.15b)

rtτ (sτ ) ≡ r0τ (sτ )

q0t (st)
. (12.4.15c)

In chapter 8 we asked the question, what is the implied wealth of a house-

hold at time t after history st when excluding the endowment stream? Here

we ask the some question except that we now instead of endowments exclude

the value of labor. For example, the household’s net claim to delivery of goods

in a future period τ ≥ t , contingent on history sτ , is given by [qtτ (s
τ )cτ (s

τ ) −
wtτ (s

τ )nτ (s
τ )] , as expressed in terms of time t , history st consumption goods.

Thus, the household’s wealth, or the value of all its current and future net

claims, expressed in terms of the date t , history st consumption good, is

Υt(s
t) ≡

∞∑

τ=t

∑

sτ |st

{
qtτ (s

τ )cτ (s
τ ) − wtτ (s

τ )nτ (s
τ )
}

=

∞∑

τ=t

∑

sτ |st

{
qtτ (s

τ )
[
Aτ (s

τ )F (kτ (s
τ−1), nτ (s

τ ))

+ (1 − δ)kτ (s
τ−1) − kτ+1(s

τ )
]
− wtτ (s

τ )nτ (s
τ )
}

=

∞∑

τ=t

∑

sτ |st

{
qtτ (s

τ )
[
Aτ (s

τ )
(
Fk(s

τ )kτ (s
τ−1) + Fn(s

τ )nτ (s
τ )
)

+ (1 − δ)kτ (s
τ−1) − kτ+1(s

τ )
]
− wtτ (s

τ )nτ (s
τ )
}

=

∞∑

τ=t

∑

sτ |st

{
rtτ (s

τ )kτ (s
τ−1) + qtτ (s

τ )
[
(1 − δ)kτ (s

τ−1) − kτ+1(s
τ )
]}
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= rtt(s
t)kt(s

t−1) + qtt(s
t)(1 − δ)kt(s

t−1)

+

∞∑

τ=t+1

∑

sτ−1|st

{ ∑

sτ |sτ−1

[
rtτ (s

τ ) + qtτ (s
τ )(1 − δ)

]
− qtτ−1(s

τ−1)

}
kτ (s

τ−1)

=
[
rtt(s

t) + (1 − δ)
]
kt(s

t−1), (12.4.16)

where the first equality uses the equilibrium outcome that consumption is equal

to the difference between production and investment in each period, the second

equality follows from Euler’s theorem on linearly homogeneous functions,3 the

third equality invokes equilibrium input prices in (12.4.9), the fourth equality is

merely a rearrangement of terms, and the final, fifth equality acknowledges that

qtt(s
t) = 1 and that each term in curly brackets is zero because of equilibrium

price condition (12.4.13b).

12.5. Sequential trading: Arrow securities

As in chapter 8, we now demonstrate that sequential trading in one-period Arrow

securities provides an alternative market structure that preserves the allocation

from the time 0 trading equilibrium. In the production economy with sequential

trading, we will also have to include markets for labor and capital services that

reopen in each period.

We guess that at time t after history st , there exist a wage rate w̃t(s
t),

a rental rate r̃t(s
t), and Arrow security prices Q̃t(st+1|st). The pricing kernel

Q̃t(st+1|st) is to be interpreted as follows: Q̃t(st+1|st) gives the price of one

unit of time t + 1 consumption, contingent on the realization st+1 at t + 1,

when the history at t is st .

3 According to Euler’s theorem on linearly homogeneous functions, our constant-returns-

to-scale production function satisfies

F (k, n) = Fk(k, n) k + Fn(k, n)n.
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12.5.1. Household

At each date t ≥ 0 after history st , the representative household buys con-

sumption goods c̃t(s
t), sells labor services ñt(s

t), and trades claims to date

t+ 1 consumption, whose payment is contingent on the realization of st+1 . Let

ãt(s
t) denote the claims to time t consumption that the household brings into

time t in history st . Thus, the household faces a sequence of budget constraints

for t ≥ 0, where the time t , history st budget constraint is

c̃t(s
t) +

∑

st+1

ãt+1(st+1, s
t)Q̃t(st+1|st) ≤ w̃t(s

t)ñt(s
t) + ãt(s

t), (12.5.1)

where {ãt+1(st+1, s
t)} is a vector of claims on time t + 1 consumption, one

element of the vector for each value of the time t+ 1 realization of st+1 .

To rule out Ponzi schemes, we must impose borrowing constraints on the

household’s asset position. We could follow the approach of chapter 8 and com-

pute state-contingent natural debt limits, where the counterpart to the earlier

present value of the household’s endowment stream would be the present value

of the household’s time endowment. Alternatively, we here just impose that the

household’s indebtedness in any state next period, −ãt+1(st+1, s
t), is bounded

by some arbitrarily large constant. Such an arbitrary debt limit works well for

the following reason. As long as the household is constrained so that it can-

not run a true Ponzi scheme with an unbounded budget constraint, equilibrium

forces will ensure that the representative household willingly holds the market

portfolio. In the present setting, we can for example set that arbitrary debt

limit equal to zero, as will become clear as we go along.

Let ηt(s
t) and νt(s

t; st+1) be the nonnegative Lagrange multipliers on the

budget constraint (12.5.1) and the borrowing constraint with an arbitrary debt

limit of zero, respectively, for time t and history st . The Lagrangian can then

be formed as

L =
∞∑

t=0

∑

st

{
βtu(c̃t(s

t), 1 − ñt(s
t))πt(s

t)

+ ηt(s
t)
[
w̃t(s

t)ñt(s
t) + ãt(s

t) − c̃t(s
t) −

∑

st+1

ãt+1(st+1, s
t)Q̃t(st+1|st)

]

+ νt(s
t; st+1)ãt+1(s

t+1)
}
,

for a given initial wealth level ã0 . In an equilibrium, the representative house-

hold will choose interior solutions for {c̃t(st), ñt(st)}∞t=0 because of the assumed
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Inada conditions. The Inada conditions on the utility function ensure that the

household will set neither c̃t(s
t) nor `t(s

t) equal to zero, i.e., ñt(s
t) < 1. The

Inada conditions on the production function guarantee that the household will

always find it desirable to supply some labor, ñt(s
t) > 0. Given these interior

solutions, the first-order conditions for maximizing L with respect to c̃t(s
t),

ñt(s
t) and {ãt+1(st+1, s

t)}st+1 are

βtuc(c̃t(s
t), 1 − ñt(s

t))πt(s
t) − ηt(s

t) = 0 , (12.5.2a)

−βtu`(c̃t(st), 1 − ñt(s
t))πt(s

t) + ηt(s
t)w̃t(s

t) = 0 , (12.5.2b)

−ηt(st)Q̃t(st+1|st) + νt(s
t; st+1) + ηt+1(st+1, s

t) = 0 , (12.5.2c)

for all st+1 , t , st . Next, we proceed under the conjecture that the arbitrary debt

limit of zero will not be binding, and hence the Lagrange multipliers νt(s
t; st+1)

are all equal to zero. After setting those multipliers equal to zero in equation

(12.5.2c), the first-order conditions imply the following conditions on the opti-

mal choices of consumption and labor:

w̃t(s
t) =

u`(c̃t(s
t), 1 − ñt(s

t))

uc(c̃t(st), 1 − ñt(st))
, (12.5.3a)

Q̃t(st+1|st) = β
uc(c̃t+1(s

t+1), 1 − ñt+1(s
t+1))

uc(c̃t(st), 1 − ñt(st))
πt(s

t+1|st), (12.5.3b)

for all t , st , and st+1 .

12.5.2. Firm of type I

At each date t ≥ 0 after history st , a type I firm is a production firm that

chooses a quadruple {c̃t(st), x̃t(st), k̃It (st), ñt(st)} to solve a static optimum

problem:

max
{
c̃t(s

t) + x̃t(s
t) − r̃t(s

t)k̃It (s
t) − w̃t(s

t)ñt(s
t)
}

(12.5.4)

subject to

c̃t(s
t) + x̃t(s

t) ≤ At(s
t)F (k̃It (s

t), ñt(s
t)). (12.5.5)

The zero-profit conditions are

r̃t(s
t) = At(s

t)Fk(s
t), (12.5.6a)

w̃t(s
t) = At(s

t)Fn(st). (12.5.6b)
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If conditions (12.5.6) are violated, the type I firm either makes infinite profits by

hiring infinite capital and labor, or else it makes negative profits for any positive

output level, and therefore shuts down. If conditions (12.5.6) are satisfied, the

firm makes zero profits and its size is indeterminate. The firm of type I is

willing to produce any quantities of c̃t(s
t) and x̃t(s

t) that the market demands,

provided that conditions (12.5.6) are satisfied.

12.5.3. Firm of type II

A type II firm transforms output into capital, stores capital, and earns its rev-

enues by renting capital to the type I firm. Because of the technological assump-

tion that capital can be converted back into the consumption good, we can with-

out loss of generality consider a two-period optimization problem where a type

II firm decides how much capital k̃IIt+1(s
t) to store at the end of period t after

history st in order to earn a stochastic rental revenue r̃t+1(s
t+1) k̃IIt+1(s

t) and

liquidation value (1−δ) k̃IIt+1(s
t) in the following period. The firm finances itself

by issuing state-contingent debt to the households, so future income streams can

be expressed in today’s values by using prices Q̃t(st+1|st). Thus, at each date

t ≥ 0 after history st , a type II firm chooses k̃IIt+1(s
t) to solve the optimum

problem

max k̃IIt+1(s
t)
{
−1 +

∑

st+1

Q̃t(st+1|st)
[
r̃t+1(s

t+1) + (1 − δ)
]}
. (12.5.7)

The zero-profit condition is

1 =
∑

st+1

Q̃t(st+1|st)
[
r̃t+1(s

t+1) + (1 − δ)
]
. (12.5.8)

The size of the type II firm is indeterminate. So long as condition (12.5.8) is

satisfied, the firm breaks even at any level of k̃IIt+1(s
t). If condition (12.5.8) is not

satisfied, either it can earn infinite profits by setting k̃IIt+1(s
t) to be arbitrarily

large (when the right side exceeds the left), or it earns negative profits for any

positive level of capital (when the right side falls short of the left), and so chooses

to shut down.
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12.5.4. Equilibrium prices and quantities

We leave it to the reader to follow the approach taken in chapter 8 to show the

equivalence of allocations attained in the sequential equilibrium and the time

0 equilibrium, {c̃t(st), ˜̀t(st), x̃t(st), ñt(st), k̃t+1(s
t)}∞t=0 = {ct(st), `t(st), xt(st),

nt(s
t), kt+1(s

t)}∞t=0 . The trick is to guess that the prices in the sequential equi-

librium satisfy

Q̃t(st+1|st) = qtt+1(s
t+1), (12.5.9a)

w̃t(s
t) = wtt(s

t), (12.5.9b)

r̃t(s
t) = rtt(s

t). (12.5.9c)

The other set of guesses is that the representative household chooses asset port-

folios given by ãt+1(st+1, s
t) = Υt+1(s

t+1) for all st+1 . When showing that the

household can afford these asset portfolios together with the prescribed quanti-

ties of consumption and leisure, we will find that the required initial wealth is

equal to

ã0 = [r00(s0) + (1 − δ)]k0 = pk0k0,

i.e., the household in the sequential equilibrium starts out at the beginning of

period 0 owning the initial capital stock, which is then sold to a type II firm at

the same competitive price as in the time 0 trading equilibrium.

12.5.5. Financing a type II firm

A type II firm finances purchases of k̃IIt+1(s
t) units of capital in period t after

history st by issuing one-period state-contingent claims that promise to pay

[
r̃t+1(s

t+1) + (1 − δ)
]
k̃IIt+1(s

t)

consumption goods tomorrow in state st+1 . In units of today’s time t consump-

tion good, these payouts are worth

∑

st+1

Q̃t(st+1|st)
[
r̃t+1(s

t+1) + (1 − δ)
]
k̃IIt+1(s

t)

(by virtue of (12.5.8)). The firm breaks even by issuing these claims. Thus, the

firm of type II is entirely owned by its creditor, the household, and it earns zero

profits.



Recursive formulation 381

Note that the economy’s end-of-period wealth as embodied in k̃IIt+1(s
t) in

period t after history st is willingly held by the representative household. This

follows immediately from fact that the household’s desired beginning-of-period

wealth next period is given by ãt+1(s
t+1) and is equal to Υt+1(s

t+1), as given

by (12.4.16). Thus, the equilibrium prices entice the representative household

to enter each future period with a strictly positive net asset level that is equal

to the value of the type II firm. We have then confirmed the correctness of

our earlier conjecture that the arbitrary debt limit of zero is not binding in the

household’s optimization problem.

12.6. Recursive formulation

Following the approach taken in chapter 8, we have established that the equi-

librium allocations are the same in the Arrow-Debreu economy with complete

markets at time 0 and in a sequential-trading economy with complete one-period

Arrow securities. This finding holds for an arbitrary technology process At(s
t),

defined as a measurable function of the history of events st which in turn are

governed by some arbitrary probability measure πt(s
t). At this level of general-

ity, all prices {Q̃t(st+1|st), w̃t(st), r̃t(st)} and the capital stock kt+1(s
t) in the

sequential-trading economy depend on the history st . That is, these objects are

time-varying functions of all past events {sτ}tτ=0 .

In order to obtain a recursive formulation and solution to both the social

planning problem and the sequential-trading equilibrium, we make the following

specialization of the exogenous forcing process for the technology level.
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12.6.1. Technology is governed by a Markov process

Let the stochastic event st be governed by a Markov process, [s ∈ S, π(s′|s),
π0(s0)] . We keep our earlier assumption that the state s0 in period 0 is non-

stochastic and hence π0(s0) = 1 for a particular s0 ∈ S . The sequences of

probability measures πt(s
t) on histories st are induced by the Markov process

via the recursions

πt(s
t) = π(st|st−1)π(st−1|st−2) . . . π(s1|s0)π0(s0).

Next, we assume that the aggregate technology level At(s
t) in period t is a

time-invariant measurable function of its level in the last period and the current

stochastic event st , i.e., At(s
t) = A

(
At−1(s

t−1), st
)
. For example, here we will

proceed with the multiplicative version

At(s
t) = stAt−1(s

t−1) = s0 s1 · · · stA−1,

given the initial value A−1 .

12.6.2. Aggregate state of the economy

The specialization of the technology process enables us to adapt the recursive

construction of chapter 8 to incorporate additional components of the state of

the economy. Besides information about the current value of the stochastic

event s , we need to know last period’s technology level, denoted A , in order to

determine current technology level, sA , and to forecast future technology levels.

This additional element A in the aggregate state vector does not constitute any

conceptual change from what we did in chapter 8. We are merely including one

more state variable that is a direct mapping from exogenous stochastic events,

and it does not depend on any endogenous outcomes.

But we also need to expand the aggregate state vector with an endogenous

component of the state of the economy, namely, the beginning-of-period capital

stock K . Given the new state vector X ≡ [K A s] , we are ready to explore

recursive formulations of both the planning problem and the sequential-trading

equilibrium. This state vector is a complete summary of the economy’s current

position. It is all that is needed for a planner to compute an optimal alloca-

tion and it is all that is needed for the “invisible hand” to call out prices and

implement the first-best allocation as a competitive equilibrium.
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We proceed as follows. First, we display the Bellman equation associated

with a recursive formulation of the planning problem. Second, we use the same

state vector X for the planner’s problem as a state vector in which to cast

the Arrow securities in a competitive economy with sequential trading. Then

we define a competitive equilibrium and show how the prices for the sequential

equilibrium are embedded in the decision rules and the value function of the

planning problem.

12.7. Recursive formulation of the planning problem

We use capital letters C,N,K to denote objects in the planning problem that

correspond to c, n, k , respectively, in the household’s and firms’ problems. We

shall eventually equate them, but not until we have derived an appropriate

formulation of the household’s and firms’ problems in a recursive competitive

equilibrium. The Bellman equation for the planning problem is

v(K,A, s) = max
C,N,K′

{
u(C, 1 −N) + β

∑

s′

π(s′|s)v(K ′, A′, s′)

}
(12.7.1)

subject to

K ′ + C ≤ AsF (K,N) + (1 − δ)K, (12.7.2a)

A′ = As. (12.7.2b)

Using the definition of the state vector X = [K A s] , we denote the optimal

policy functions as

C = ΩC(X), (12.7.3a)

N = ΩN (X), (12.7.3b)

K ′ = ΩK(X). (12.7.3c)

Equations (12.7.2b), (12.7.3c), and the Markov transition density π(s′|s) induce

a transition density Π(X ′|X) on the state X .

For convenience, define the functions

Uc(X) ≡ uc(Ω
C(X), 1 − ΩN (X)), (12.7.4a)

U`(X) ≡ u`(Ω
C(X), 1 − ΩN (X)), (12.7.4b)

Fk(X) ≡ Fk(K,Ω
N (X)), (12.7.4c)

Fn(X) ≡ Fn(K,ΩN(X)). (12.7.4d)
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The first-order conditions for the planner’s problem can be represented as4

U`(X) = Uc(X)AsFn(X), (12.7.5a)

1 = β
∑

X′

Π(X ′|X)
Uc(X

′)

Uc(X)
[A′s′FK(X ′) + (1 − δ)]. (12.7.5b)

12.8. Recursive formulation of sequential trading

We seek a competitive equilibrium with sequential trading of one-period-ahead

state-contingent securities (i.e., Arrow securities). To do this, we must use a

“Big K , little k” trick.

12.8.1. A “Big K , little k” trick

Relative to the setup described in chapter 8, we have augmented the time t

state of the economy by both last period’s technology level At−1 and the current

aggregate value of the endogenous state variable Kt . We assume that decision

makers act as if their decisions do not affect current or future prices. In a

sequential market setting, prices depend on the state, of which Kt is part. Of

course, in the aggregate, decision makers choose the motion of Kt , so that we

require a device that makes them ignore this fact when they solve their decision

problems (we want them to behave as perfectly competitive price takers, not

monopolists). This consideration induces us to carry long both “Big K ” and

“little k” in our computations. Big K is an endogenous state variable5 that is

used to index prices. Big K is a component of the state that agents regard as

beyond their control when solving their optimum problems. Values of little k

are chosen by firms and consumers. While we distinguish k and K when posing

4 We are using the envelope condition

vK(K,A, s) = Uc(X)[AsFk(X) + (1 − δ)].

5 More generally, Big K can be a vector of endogenous state variables that impinge on

equilibrium prices.
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the decision problems of the household and firms, to impose equilibrium we set

K = k after firms and consumers have optimized.

12.8.2. Price system

To decentralize the economy in terms of one-period Arrow securities, we need a

description of the aggregate state in terms of which one-period state-contingent

payoffs are defined. We proceed by guessing that the appropriate description

of the state is the same vector X that constitutes the state for the plan-

ning problem. We temporarily forget about the optimal policy functions for

the planning problem and focus on a decentralized economy with sequential

trading and one-period prices that depend on X . We specify price functions

r(X), w(X), Q(X ′|X), that represent, respectively, the rental price of capital,

the wage rate for labor, and the price of a claim to one unit of consumption next

period when next period’s state is X ′ and this period’s state is X . (Forgive

us for recycling the notation for r and w from the previous sections on the

formulation of history-dependent competitive equilibria with commodity space

st .) The prices are all measured in units of this period’s consumption good. We

also take as given an arbitrary candidate for the law of motion for K :

K ′ = G(X). (12.8.1)

Equation (12.8.1) together with (12.7.2b) and a given subjective transition den-

sity π̂(s′|s) induce a subjective transition density Π̂(X ′|X) for the state X . For

now, G and π̂(s′|s) are arbitrary. We wait until later to impose other equilib-

rium conditions, including rational expectations in the form of some restrictions

on G and π̂ .
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12.8.3. Household problem

The perceived law of motion (12.8.1) for K and the induced transition Π̂(X ′|X)

of the state describe the beliefs of a representative household. The Bellman

equation of the household is

J(a,X) = max
c,n,a(X′)

{
u(c, 1 − n) + β

∑

X′

J(a(X ′), X ′)Π̂(X ′|X)

}
(12.8.2)

subject to

c+
∑

X′

Q(X ′|X)a(X ′) ≤ w(X)n+ a. (12.8.3)

Here a represents the wealth of the household denominated in units of current

consumption goods and a(X ′) represents next period’s wealth denominated in

units of next period’s consumption good. Denote the household’s optimal policy

functions as

c = σc(a,X), (12.8.4a)

n = σn(a,X), (12.8.4b)

a(X ′) = σa(a,X ;X ′). (12.8.4c)

Let

uc(a,X) ≡ uc(σ
c(a,X), 1 − σn(a,X)), (12.8.5a)

u`(a,X) ≡ u`(σ
c(a,X), 1 − σn(a,X)). (12.8.5b)

Then we can represent the first-order conditions for the household’s problem as

u`(a,X) = uc(a,X)w(X), (12.8.6a)

Q(X ′|X) = β
uc(σ

a(a,X ;X ′), X ′)

uc(a,X)
Π̂(X ′|X). (12.8.6b)
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12.8.4. Firm of type I

Recall from subsection 12.5.2 the static optimum problem of a type I firm in

a sequential equilibrium. In the recursive formulation of that equilibrium, the

optimum problem of a type I firm can be written as

max
c,x,k,n

{c+ x− r(X)k − w(X)n} (12.8.7)

subject to

c+ x ≤ AsF (k, n). (12.8.8)

The zero-profit conditions are

r(X) = AsFk(k, n), (12.8.9a)

w(X) = AsFn(k, n). (12.8.9b)

12.8.5. Firm of type II

Recall from subsection 12.5.3 the optimum problem of a type II firm in a sequen-

tial equilibrium. In the recursive formulation of that equilibrium, the optimum

problem of a type II firm can be written as

max
k′

k′

{
−1 +

∑

X′

Q(X ′|X) [r(X ′) + (1 − δ)]

}
. (12.8.10)

The zero-profit condition is

1 =
∑

X′

Q(X ′|X) [r(X ′) + (1 − δ)] . (12.8.11)
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12.9. Recursive competitive equilibrium

So far, we have taken the price functions r(X), w(X), Q(X ′|X) and the per-

ceived law of motion (12.8.1) for K ′ and the associated induced state transition

probability Π̂(X ′|X) as given arbitrarily. We now impose equilibrium condi-

tions on these objects and make them outcomes of the analysis.6

When solving their optimum problems, the household and firms take the

endogenous state variable K as given. However, we want K to be determined

by the equilibrium interactions of households and firms. Therefore, we impose

K = k after solving the optimum problems of the household and the two types

of firms. Imposing equality afterward makes the household and the firms be

price takers.

12.9.1. Equilibrium restrictions across decision rules

We shall soon define an equilibrium as a set of pricing functions, a perceived

law of motion for the K ′ , and an associated Π̂(X ′|X) such that when the firms

and the household take these as given, the household’s and firms’ decision rules

imply the law of motion for K (12.8.1) after substituting k = K and other

market clearing conditions. We shall remove the arbitrary nature of both G

and π̂ and therefore also Π̂ and thereby impose rational expectations.

We now proceed to find the restrictions that this notion of equilibrium

imposes across agents’ decision rules, the pricing functions, and the perceived

law of motion (12.8.1). If the state-contingent debt issued by the type II firm

is to match that demanded by the household, we must have

a(X ′) = [r(X ′) + (1 − δ)]K ′, (12.9.1a)

and consequently beginning-of-period assets in a household’s budget constraint

(12.8.3) have to satisfy

a = [r(X) + (1 − δ)]K. (12.9.1b)

By substituting equations (12.9.1) into a household’s budget constraint

(12.8.3), we get
∑

X′

Q(X ′|X)[r(X ′) + (1 − δ)]K ′

6 An important function of the rational expectations hypothesis is to remove agents’ ex-

pectations in the form of π̂ and Π̂ from the list of free parameters of the model.
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= [r(X) + (1 − δ)]K + w(X)n− c. (12.9.2)

Next, by recalling equilibrium condition (12.8.11) and the fact that K ′ is a

predetermined variable when entering next period, it follows that the left side

of (12.9.2) is equal to K ′ . After also substituting equilibrium prices (12.8.9)

into the right side of (12.9.2), we obtain

K ′ = [AsFk(k, n) + (1 − δ)]K +AsFn(k, n)n− c

= AsF (K,σn(a,X)) + (1 − δ)K − σc(a,X), (12.9.3)

where the second equality invokes Euler’s theorem on linearly homogeneous

functions and equilibrium conditions K = k , N = n = σn(a,X) and C = c =

σc(a,X). To express the right side of equation (12.9.3) solely as a function of

the current aggregate state X = [K A s] , we also impose equilibrium condition

(12.9.1b)

K ′ = AsF (K,σn([r(X) + (1 − δ)]K,X))

+ (1 − δ)K − σc([r(X) + (1 − δ)]K,X). (12.9.4)

Given the arbitrary perceived law of motion (12.8.1) for K ′ that underlies the

household’s optimum problem, the right side of (12.9.4) is the actual law of

motion for K ′ that is implied by the household’s and firms’ optimal decisions.

In equilibrium, we want G in (12.8.1) not to be arbitrary but to be an outcome.

We want to find an equilibrium perceived law of motion (12.8.1). By way of

imposing rational expectations, we require that the perceived and actual laws

of motion be identical. Equating the right sides of (12.9.4) and the perceived

law of motion (12.8.1) gives

G(X) =AsF (K,σn([r(X) + (1 − δ)]K,X))

+ (1 − δ)K − σc([r(X) + (1 − δ)]K,X). (12.9.5)

Please remember that the right side of this equation is itself implicitly a func-

tion of G , so that (12.9.5) is to be regarded as instructing us to find a fixed

point equation of a mapping from a perceived G and a price system to an ac-

tual G . This functional equation requires that the perceived law of motion for

the capital stock G(X) equals the actual law of motion for the capital stock

that is determined jointly by the decisions of the household and the firms in a

competitive equilibrium.
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Definition: A recursive competitive equilibrium with Arrow securities is a

price system r(X), w(X), Q(X ′|X), a perceived law of motion K ′ = G(X) and

associated induced transition density Π̂(X ′|X), and a household value function

J(a,X) and decision rules σc(a,X), σn(a, x), σa(a,X ;X ′) such that:

a. Given r(X), w(X), Q(X ′|X), Π̂(X ′|X), the functions σc(a,X), σn(a,X),

σa(a,X ;X ′) and the value function J(a,X) solve the household’s optimum

problem;

b. For all X , r(X) = AFk

(
K,σn([r(X) + (1 − δ)]K,X)

)
, and

w(X) = AFn

(
K,σn([r(X) + (1 − δ)]K,X)

)
;

c. Q(X ′|X) and r(X) satisfy (12.8.11);

d. The functions G(X), r(X), σc(a,X), σn(a,X) satisfy (12.9.5);

e. π̂ = π .

Item a enforces optimization by the household, given the prices it faces and

its expectations. Item b requires that the type I firm break even at every capital

stock and at the labor supply chosen by the household. Item c requires that the

type II firm break even. Market clearing is implicit when item d requires that

the perceived and actual laws of motion of capital are equal. Item e and the

equality of the perceived and actual G imply that Π̂ = Π. Thus, items d and

e impose rational expectations.

12.9.2. Using the planning problem

Rather than directly attacking the fixed point problem (12.9.5) that is the heart

of the equilibrium definition, we’ll guess a candidate G as well as a price system,

then describe how to verify that they form an equilibrium. As our candidate for

G , we choose the decision rule (12.7.3c) for K ′ from the planning problem. As

sources of candidates for the pricing functions, we again turn to the planning

problem and choose:

r(X) = AFk(X), (12.9.6a)

w(X) = AFn(X), (12.9.6b)

Q(X ′|X) = βΠ(X ′|X)
Uc(X

′)

Uc(X)
[A′s′FK(X ′) + (1 − δ)]. (12.9.6c)
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In an equilibrium it will turn out that the household’s decision rules for con-

sumption and labor supply will match those chosen by the planner:7

ΩC(X) = σc([r(X) + (1 − δ)]K,X), (12.9.7a)

ΩN (X) = σn([r(X) + (1 − δ)]K,X). (12.9.7b)

The key to verifying these guesses is to show that the first-order conditions

for both types of firms and the household are satisfied at these guesses. We

leave the details to an exercise. Here we are exploiting some consequences

of the welfare theorems, transported this time to a recursive setting with an

endogenous aggregate state variable.

12.10. Concluding remarks

The notion of a recursive competitive equilibrium was introduced by Lucas and

Prescott (1971) and Mehra and Prescott (1979). The application in this chapter

is in the spirit of those papers but differs substantially in details. In particular,

neither of those papers worked with Arrow securities, while the focus of this

chapter has been to manage an endogenous state vector in terms of which it is

appropriate to cast Arrow securities.

7 The two functional equations (12.9.7) state restrictions that a recursive competitive

equilibrium imposes across the household’s decision rules σ and the planner’s decision rules

Ω.



Chapter 13

Asset Pricing

13.1. Introduction

Chapter 8 showed how an equilibrium price system for an economy with a com-

plete markets model could be used to determine the price of any redundant

asset. That approach allowed us to price any asset whose payoff could be syn-

thesized as a measurable function of the economy’s state. We could use either

the Arrow-Debreu time 0 prices or the prices of one-period Arrow securities to

price redundant assets.

We shall use this complete markets approach again later in this chapter.

However, we begin with another frequently used approach, one that does not

require the assumption that there are complete markets. This approach spells

out fewer aspects of the economy and assumes fewer markets, but nevertheless

derives testable intertemporal restrictions on prices and returns of different as-

sets, and also across those prices and returns and consumption allocations. This

approach uses only the Euler equations for a maximizing consumer, and supplies

stringent restrictions without specifying a complete general equilibrium model.

In fact, the approach imposes only a subset of the restrictions that would be

imposed in a complete markets model. As we shall see, even these restrictions

have proved difficult to reconcile with the data, the equity premium being a

widely discussed example.

Asset-pricing ideas have had diverse ramifications in macroeconomics. In

this chapter, we describe some of these ideas, including the important Modigliani-

Miller theorem asserting the irrelevance of firms’ asset structures. We describe

a closely related kind of Ricardian equivalence theorem. We describe various

ways of representing the equity premium puzzle, and an idea of Mankiw (1986)

that one day may help explain it.1

1 See Duffie (1996) for a comprehensive treatment of discrete- and continuous-time asset-

pricing theories. See Campbell, Lo, and MacKinlay (1997) for a summary of recent work on

empirical implementations.

– 392 –
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13.2. Asset Euler equations

We now describe the optimization problem of a single agent who has the oppor-

tunity to trade two assets. Following Hansen and Singleton (1983), the house-

hold’s optimization by itself imposes ample restrictions on the comovements of

asset prices and the household’s consumption. These restrictions remain true

even if additional assets are made available to the agent, and so do not depend

on specifying the market structure completely. Later we shall study a general

equilibrium model with a large number of identical agents. Completing a gen-

eral equilibrium model may impose additional restrictions, but will leave intact

individual-specific versions of the ones to be derived here.

The agent has wealth At > 0 at time t and wants to use this wealth to

maximize expected lifetime utility,

Et

∞∑

j=0

βju(ct+j), 0 < β < 1, (13.2.1)

where Et denotes the mathematical expectation conditional on information

known at time t , β is a subjective discount factor, and ct+j is the agent’s

consumption in period t + j . The utility function u(·) is concave, strictly in-

creasing, and twice continuously differentiable.

To finance future consumption, the agent can transfer wealth over time

through bond and equity holdings. One-period bonds earn a risk-free real gross

interest rate Rt , measured in units of time t + 1 consumption good per time

t consumption good. Let Lt be gross payout on the agent’s bond holdings

between periods t and t + 1, payable in period t + 1 with a present value of

R−1
t Lt at time t . The variable Lt is negative if the agent issues bonds and

thereby borrows funds. The agent’s holdings of equity shares between periods t

and t+1 are denoted Nt , where a negative number indicates a short position in

shares. We impose the borrowing constraints Lt ≥ −bL and Nt ≥ −bN , where

bL ≥ 0 and bN ≥ 0.2 A share of equity entitles the owner to its stochastic

dividend stream yt . Let pt be the share price in period t net of that period’s

dividend. The budget constraint becomes

ct +R−1
t Lt + ptNt ≤ At, (13.2.2)

2 See chapters 8 and 17 for further discussions of natural and ad hoc borrowing constraints.
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and next period’s wealth is

At+1 = Lt + (pt+1 + yt+1)Nt. (13.2.3)

The stochastic dividend is the only source of exogenous fundamental uncer-

tainty, with properties to be specified as needed later. The agent’s maximization

problem is then a dynamic programming problem with the state at t being At

and current and past y ,3 and the controls being Lt and Nt . At interior solu-

tions, the Euler equations associated with controls Lt and Nt are

u′(ct)R
−1
t = Etβu

′(ct+1), (13.2.4)

u′(ct)pt = Etβ(yt+1 + pt+1)u
′(ct+1). (13.2.5)

These Euler equations give a number of insights into asset prices and consump-

tion. Before turning to these, we first note that an optimal solution to the agent’s

maximization problem must also satisfy the following transversality conditions:4

lim
k→∞

Etβ
ku′(ct+k)R

−1
t+kLt+k = 0, (13.2.6)

lim
k→∞

Etβ
ku′(ct+k)pt+kNt+k = 0. (13.2.7)

Heuristically, if any of the expressions in equations (13.2.6) and (13.2.7)

were strictly positive, the agent would be overaccumulating assets so that a

higher expected lifetime utility could be achieved by, for example, increasing

consumption today. The counterpart to such nonoptimality in a finite horizon

model would be that the agent dies with positive asset holdings. For reasons like

those in a finite horizon model, the agent would be happy if the two conditions

(13.2.6) and (13.2.7) could be violated on the negative side. But the market

would stop the agent from financing consumption by accumulating the debts

that would be associated with such violations of (13.2.6) and (13.2.7). No

other agent would want to make those loans.

3 Current and past y ’s enter as information variables. How many past y ’s appear in the

Bellman equation depends on the stochastic process for y .
4 For a discussion of transversality conditions, see Benveniste and Scheinkman (1982) and

Brock (1982).
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13.3. Martingale theories of consumption and stock
prices

In this section, we briefly recall some early theories of asset prices and consump-

tion, each of which is derived by making special assumptions about either Rt or

u′(c) in equations (13.2.4) and (13.2.5). These assumptions are too strong to be

consistent with much empirical evidence, but they are instructive benchmarks.

First, suppose that the risk-free interest rate is constant over time, Rt =

R > 1, for all t . Then equation (13.2.4) implies that

Etu
′(ct+1) = (βR)−1u′(ct), (13.3.1)

which is Robert Hall’s (1978) result that the marginal utility of consumption

follows a univariate linear first-order Markov process, so that no other variables

in the information set help to predict (to Granger cause) u′(ct+1), once lagged

u′(ct) has been included.5

As an example, with the constant-relative-risk-aversionutility function u(ct) =

(1 − γ)−1c1−γt , equation (13.3.1) becomes

(βR)−1 = Et

(
ct+1

ct

)−γ

.

Using aggregate data, Hall tested implication (13.3.1) for the special case of

quadratic utility by testing for the absence of Granger causality from other

variables to ct .

Efficient stock markets are sometimes construed to mean that the price

of a stock ought to follow a martingale. Euler equation (13.2.5) shows that a

number of simplifications must be made to get a martingale property for the

stock price. We can transform the Euler equation

Etβ(yt+1 + pt+1)
u′(ct+1)

u′(ct)
= pt

by noting that for any two random variables x, z , we have the formula Etxz =

EtxEtz + covt(x, z), where covt(x, z) ≡ Et(x − Etx)(z − Etz). This formula

5 See Granger (1969) for his definition of causality. A random process zt is said not to

cause a random process xt if E(xt+1|xt, xt−1, . . . , zt, zt−1, . . .) = E(xt+1|xt, xt−1, . . .) . The

absence of Granger causality can be tested in several ways. A direct way is to compute the two

regressions mentioned in the preceding definition and test for their equality. An alternative

test was described by Sims (1972).
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defines the conditional covariance covt(x, z). Applying this formula in the pre-

ceding equation gives

βEt(yt+1 + pt+1)Et
u′(ct+1)

u′(ct)
+ βcovt

[
(yt+1 + pt+1) ,

u′(ct+1)

u′(ct)

]
= pt. (13.3.2)

To obtain a martingale theory of stock prices, it is necessary to assume, first,

that Etu
′(ct+1)/u

′(ct) is a constant, and second, that

covt

[
(yt+1 + pt+1) ,

u′(ct+1)

u′(ct)

]
= 0.

These conditions are obviously very restrictive and will only hold under very

special circumstances. For example, a sufficient assumption is that agents are

risk neutral, so that u(ct) is linear in ct and u′(ct) becomes independent of ct .

In this case, equation (13.3.2) implies that

Etβ(yt+1 + pt+1) = pt. (13.3.3)

Equation (13.3.3) states that, adjusted for dividends and discounting, the share

price follows a first-order univariate Markov process and that no other variables

Granger cause the share price. These implications have been tested extensively

in the literature on efficient markets.6

We also note that the stochastic difference equation (13.3.3) has the class

of solutions

pt = Et

∞∑

j=1

βjyt+j + ξt

(
1

β

)t
, (13.3.4)

where ξt is any random process that obeys Etξt+1 = ξt (that is, ξt is a “martin-

gale”). Equation (13.3.4) expresses the share price pt as the sum of discounted

expected future dividends and a “bubble term” unrelated to any fundamentals.

In the general equilibrium model that we will describe later, this bubble term

always equals zero.

6 For a survey of this literature, see Fama (1976a). See Samuelson (1965) for the theory

and Roll (1970) for an application to the term structure of interest rates.
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13.4. Equivalent martingale measure

This section describes adjustments for risk and dividends that convert an asset

price into a martingale. We return to the setting of chapter 8 and assume

that the state st that evolves according to a Markov chain with transition

probabilities π(st+1|st). Let an asset pay a stream of dividends {d(st)}t≥0 . The

cum-dividend7 time t price of this asset, a(st), can be expressed recursively as

a(st) = d(st) + β
∑

st+1

u′[cit+1(st+1)]

u′[cit(st)]
a(st+1)π(st+1|st). (13.4.1)

Notice that this equation can be written

a(st) = d(st) +R−1
t

∑

st+1

a(st+1)π̃(st+1|st) (13.4.2)

or

a(st) = d(st) +R−1
t Ẽta(st+1),

where

R−1
t = R−1

t (st) ≡ β
∑

st+1

u′[cit+1(st+1)]

u′[cit(st)]
π(st+1|st) (13.4.3)

and Ẽ is the mathematical expectation with respect to the distorted transition

density

π̃(st+1|st) = Rtβ
u′[cit+1(st+1)]

u′[cit(st)]
π(st+1|st). (13.4.4a)

Notice that R−1
t is the reciprocal of the gross one-period risk-free interest rate,

as given by equation (13.2.4). The transformed transition probabilities are

rendered probabilities—that is, made to sum to 1—through the multiplication

by βRt in equation (13.4.4a). The transformed or “twisted” transition measure

π̃(st+1|st) can be used to define the twisted measure

π̃t(s
t) = π̃(st|st−1) . . . π̃(s1|s0)π̃(s0). (13.4.4b)

For example,

π̃(st+2, st+1|st) = Rt(st)Rt+1(st+1)β
2 u

′[cit+2(st+2)]

u′[cit(st)]
π(st+2|st+1)π(st+1|st).

7 Cum-dividend means that the person who owns the asset at the end of time t is entitled

to the time t dividend.
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The twisted measure π̃t(s
t) is called an equivalent martingale measure. We

explain the meaning of the two adjectives. “Equivalent” means that π̃ assigns

positive probability to any event that is assigned positive probability by π , and

vice versa. The equivalence of π and π̃ is guaranteed by the assumption that

u′(c) > 0 in (13.4.4a).8

We now turn to the adjective “martingale.” To understand why this term

is applied to (13.4.4a), consider the particular case of an asset with dividend

stream dT = d(sT ) and dt = 0 for t < T . Using the arguments in chapter 8

or iterating on equation (13.4.1), the cum-dividend price of this asset can be

expressed as

aT (sT ) = d(sT ), (13.4.5a)

at(st) = Est
βT−t u

′[ciT (sT )]

u′[cit(st)]
aT (sT ), (13.4.5b)

where Est
denotes the conditional expectation under the π probability measure.

Now fix t < T and define the “deflated” or “interest-adjusted” process

ãt+j =
at+j

RtRt+1 . . . Rt+j−1
, (13.4.6)

for j = 1, . . . , T − t . It follows directly from equations (13.4.5) and (13.4.4)

that

Ẽtãt+j = ãt(st) (13.4.7)

where ãt(st) = a(st) − d(st). Equation (13.4.7) asserts that relative to the

twisted measure π̃ , the interest-adjusted asset price is a martingale: using the

twisted measure, the best prediction of the future interest-adjusted asset price

is its current value.

Thus, when the equivalent martingale measure is used to price assets, we

have so-called risk-neutral pricing. Notice that in equation (13.4.2) the adjust-

ment for risk is absorbed into the twisted transition measure. We can write

equation (13.4.7) as

Ẽ[a(st+1)|st] = Rt[a(st) − d(st)], (13.4.8)

8 The existence of an equivalent martingale measure implies both the existence of a positive

stochastic discount factor (see the discussion of Hansen and Jagannathan bounds later in this

chapter), and the absence of arbitrage opportunities; see Kreps (1979) and Duffie (1996).
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where Ẽ is the expectation operator for the twisted transition measure. Equa-

tion (13.4.8) is another way of stating that, after adjusting for risk-free interest

and dividends, the price of the asset is a martingale relative to the equivalent

martingale measure.

Under the equivalent martingale measure, asset pricing reduces to calcu-

lating the conditional expectation of the stream of dividends that defines the

asset. For example, consider a European call option written on the asset de-

scribed earlier that is priced by equations (13.4.5). The owner of the call option

has the right but not the obligation to the “asset” at time T at a price K . The

owner of the call will exercise this option only if aT ≥ K . The value at T of

the option is therefore YT = max(0, aT − K) ≡ (aT − K)+ . The price of the

option at t < T is then

Yt = Ẽt

[
(aT −K)+

RtRt+1 · · ·Rt+T−1

]
. (13.4.9)

Black and Scholes (1973) used a particular continuous-time specification of π̃

that made it possible to solve equation (13.4.9) analytically for a function Yt .

Their solution is known as the Black-Scholes formula for option pricing.

13.5. Equilibrium asset pricing

The preceding discussion of the Euler equations (13.2.4) and (13.2.5) leaves

open how the economy, for example, generates the constant gross interest rate

assumed in Hall’s work. We now explore equilibrium asset pricing in a simple

representative agent endowment economy, Lucas’s asset-pricing model.9 We

imagine an economy consisting of a large number of identical agents with pref-

erences as specified in expression (13.2.1). The only durable good in the econ-

omy is a set of identical “trees,” one for each person in the economy. At the

beginning of period t , each tree yields fruit or dividends in the amount yt . The

fruit is not storable, but the tree is perfectly durable. Each agent starts life at

time zero with one tree.

9 See Lucas (1978). Also see the important early work by Stephen LeRoy (1971, 1973).

Breeden (1979) was an early work on the consumption-based capital-asset-pricing model.
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The dividend yt is assumed to be governed by a Markov process and the

dividend is the sole state variable st of the economy, i.e., st = yt . The time-

invariant transition probability distribution function is given by Prob{st+1 ≤
s′|st = s} = F (s′, s).

All agents maximize expression (13.2.1) subject to the budget constraint

(13.2.2)–(13.2.3) and transversality conditions (13.2.6)–(13.2.7). In an equi-

librium, asset prices clear the markets. That is, the bond holdings of all agents

sum to zero, and their total stock positions are equal to the aggregate number

of shares. As a normalization, let there be one share per tree.

Due to the assumption that all agents are identical with respect to both

preferences and endowments, we can work with a representative agent.10 Lu-

cas’s model shares features with a variety of representative agent asset-pricing

models (see Brock, 1982, and Altug, 1989, for example). These use versions of

stochastic optimal growth models to generate allocations and price assets.

Such asset-pricing models can be constructed by the following steps:

1. Describe the preferences, technology, and endowments of a dynamic economy,

then solve for the equilibrium intertemporal consumption allocation. Sometimes

there is a particular planning problem whose solution equals the competitive

allocation.

2. Set up a competitive market in some particular asset that represents a specific

claim on future consumption goods. Permit agents to buy and sell at equilibrium

asset prices subject to particular borrowing and short-sales constraints. Find an

agent’s Euler equation, analogous to equations (13.2.4) and (13.2.5), for this

asset.

3. Equate the consumption that appears in the Euler equation derived in step 2

to the equilibrium consumption derived in step 1. This procedure will give the

asset price at t as a function of the state of the economy at t .

In our endowment economy, a planner that treats all agents the same would like

to maximize E0

∑∞
t=0 β

tu(ct) subject to ct ≤ yt . Evidently the solution is to

set ct equal to yt . After substituting this consumption allocation into equations

(13.2.4) and (13.2.5), we arrive at expressions for the risk-free interest rate and

10 In chapter 8, we showed that some heterogeneity is also consistent with the notion of a

representative agent.
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the share price:

u′(yt)R
−1
t = Etβu

′(yt+1), (13.5.1)

u′(yt)pt = Etβ(yt+1 + pt+1)u
′(yt+1). (13.5.2)

13.6. Stock prices without bubbles

Using recursions on equation (13.5.2) and the law of iterated expectations, which

states that EtEt+1(·) = Et(·), we arrive at the following expression for the

equilibrium share price:

u′(yt)pt = Et

∞∑

j=1

βju′(yt+j)yt+j + Et lim
k→∞

βku′(yt+k)pt+k. (13.6.1)

Moreover, equilibrium share prices have to be consistent with market clear-

ing; that is, agents must be willing to hold their endowments of trees for-

ever. It follows immediately that the last term in equation (13.6.1) must be

zero. Suppose to the contrary that the term is strictly positive. That is, the

marginal utility gain of selling shares, u′(yt)pt , exceeds the marginal utility

loss of holding the asset forever and consuming the future stream of dividends,

Et
∑∞

j=1 β
ju′(yt+j)yt+j . Thus, all agents would like to sell some of their shares

and the price would be driven down. Analogously, if the last term in equa-

tion (13.6.1) were strictly negative, we would find that all agents would like

to purchase more shares and the price would necessarily be driven up. We can

therefore conclude that the equilibrium price must satisfy

pt = Et

∞∑

j=1

βj
u′(yt+j)

u′(yt)
yt+j , (13.6.2)

which is a generalization of equation (13.3.4) in which the share price is an

expected discounted stream of dividends but with time-varying and stochastic

discount rates.

Note that asset bubbles could also have been ruled out by directly referring

to transversality condition (13.2.7) and market clearing. In an equilibrium,

the representative agent holds the per capita outstanding number of shares.
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(We have assumed one tree per person and one share per tree.) After divid-

ing transversality condition (13.2.7) by this constant time-invariant number of

shares and replacing ct+k by equilibrium consumption yt+k , we arrive at the

implication that the last term in equation (13.6.1) must vanish.11

Moreover, after invoking our assumption that the endowment follows a

Markov process, it follows that the equilibrium price in equation (13.6.2) can

be expressed as a function of the current state st,

pt = p(st). (13.6.3)

13.7. Computing asset prices

We now turn to three examples in which it is easy to calculate an asset-pricing

function by solving the expectational difference equation (13.5.2).

13.7.1. Example 1: logarithmic preferences

Take the special case of equation (13.6.2) that emerges when u(ct) = ln ct .

Then equation (13.6.2) becomes

pt =
β

1 − β
yt. (13.7.1)

Equation (13.7.1) is our asset-pricing function. It maps the state of the economy

at t , yt , into the price of a Lucas tree at t .

11 Brock (1982) and Tirole (1982) use the transversality condition when proving that asset

bubbles cannot exist in economies with a constant number of infinitely lived agents. However,

Tirole (1985) shows that asset bubbles can exist in equilibria of overlapping generations models

that are dynamically inefficient, that is, when the growth rate of the economy exceeds the equi-

librium rate of return. O’Connell and Zeldes (1988) derive the same result for a dynamically

inefficient economy with a growing number of infinitely lived agents. Abel, Mankiw, Summers,

and Zeckhauser (1989) provide international evidence suggesting that dynamic inefficiency is

not a problem in practice.
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13.7.2. Example 2: a finite-state version

Mehra and Prescott (1985) consider a discrete-state version of Lucas’s one-kind-

of-tree model. Let dividends assume the n possible distinct values [σ1, σ2, . . . ,

σn] . Let dividends evolve through time according to a Markov chain, with

prob{yt+1 = σl|yt = σk} = Pkl > 0.

The (n × n) matrix P with element Pkl is called a stochastic matrix. The

matrix satisfies
∑n

l=1 Pkl = 1 for each k . Express equation (13.5.2) of Lucas’s

model as

ptu
′(yt) = βEtpt+1u

′(yt+1) + βEtyt+1u
′(yt+1). (13.7.2)

Express the price at t as a function of the state σk at t , pt = p(σk). Define

ptu
′(yt) = p(σk)u

′(σk) ≡ vk , k = 1, . . . , n . Also define αk = βEtyt+1u
′(yt+1) =

β
∑n

l=1 σlu
′(σl)Pkl . Then equation (13.7.2) can be expressed as

p(σk)u
′(σk) = β

n∑

l=1

p(σl)u
′(σl)Pkl + β

n∑

l=1

σlu
′(σl)Pkl

or

vk = αk + β

n∑

l=1

Pklvl,

or in matrix terms, v = α + βPv , where v and α are column vectors. The

equation can be represented as (I − βP )v = α . This equation has a unique

solution given by12

v = (I − βP )−1α. (13.7.3)

The price of the asset in state σk—call it pk—can then be found from pk =

vk/[u
′(σk)] . Notice that equation (13.7.3) can be represented as

v = (I + βP + β2P 2 + . . .)α

or

12 Uniqueness follows from the fact that, because P is a nonnegative matrix with row sums

all equaling unity, the eigenvalue of maximum modulus P has modulus unity. The maximum

eigenvalue of βP then has modulus β . (This point follows from Frobenius’s theorem.) The

implication is that (I − βP )−1 exists and that the expansion I + βP + β2P 2 + . . . converges

and equals (I − βP )−1 .
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p(σk) = pk =
∑

l

(I + βP + β2P 2 + . . .)kl
αl

u′(σk)
,

where (I + βP + β2P 2 + . . .)kl is the (k, l) element of the matrix (I + βP +

β2P 2 + . . .). We ask the reader to interpret this formula in terms of a geometric

sum of expected future variables.

13.7.3. Example 3: asset pricing with growth

Let’s price a Lucas tree in a pure endowment economy with ct = yt and

yt+1 = λt+1yt , where λt is Markov with transition matrix P . Let pt be the ex-

dividend price of the Lucas tree. Assume the CRRA utility u(c) = c1−γ/(1−γ).
Evidently, the price of the Lucas tree satisfies

pt = Et

[
β

(
ct+1

ct

)−γ

(pt+1 + yt+1)

]
.

Dividing both sides by yt and rearranging gives

pt
yt

= Et

[
β(λt+1)

1−γ

(
pt+1

yt+1
+ 1

)]

or

wi = β
∑

j

Pijλ
1−γ
j (wj + 1), (13.7.4)

where wi represents the price-dividend ratio. Equation (13.7.4) was used by

Mehra and Prescott (1985) to compute equilibrium prices.
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13.8. The term structure of interest rates

We will now explore the term structure of interest rates by pricing bonds with

different maturities.13 We continue to assume that the time t state of the

economy is the current dividend on a Lucas tree yt = st , which is Markov with

transition F (s′, s). The risk-free real gross return between periods t and t+ j

is denoted Rjt , measured in units of time (t + j) consumption good per time

t consumption good. Thus, R1t replaces our earlier notation Rt for the one-

period gross interest rate. At the beginning of t , the return Rjt is known with

certainty and is risk free from the viewpoint of the agents. That is, at t , R−1
jt is

the price of a perfectly sure claim to one unit of consumption at time t+ j . For

simplicity, we only consider such zero-coupon bonds, and the extra subscript j

on gross earnings Ljt now indicates the date of maturity. The subscript t still

refers to the agent’s decision to hold the asset between period t and t+ 1.

As an example with one- and two-period safe bonds, the budget constraint

and the law of motion for wealth in (13.2.2) and (13.2.3) are augmented as

follows,

ct +R−1
1t L1t +R−1

2t L2t + ptNt ≤ At, (13.8.1)

At+1 = L1t +R−1
1t+1L2t + (pt+1 + yt+1)Nt. (13.8.2)

Even though safe bonds represent sure claims to future consumption, these assets

are subject to price risk prior to maturity. For example, two-period bonds from

period t , L2t , are traded at the price R−1
1t+1 in period t+1, as shown in wealth

expression (13.8.2). At time t , an agent who buys such assets and plans to sell

them next period would be uncertain about the proceeds, since R−1
1t+1 is not

known at time t . The price R−1
1t+1 follows from a simple arbitrage argument,

since, in period t+1, these assets represent identical sure claims to time (t+2)

consumption goods as newly issued one-period bonds in period t + 1. The

variable Ljt should therefore be understood as the agent’s net holdings between

periods t and t + 1 of bonds that each pay one unit of consumption good at

time t+ j , without identifying when the bonds were initially issued.

Given wealth At and current dividend yt = st , let v(At, st) be the opti-

mal value of maximizing expression (13.2.1) subject to equations (13.8.1) and

(13.8.2), the asset-pricing function for trees pt = p(st), the stochastic process

13 Dynamic asset-pricing theories for the term structure of interest rates have been devel-

oped by Cox, Ingersoll, and Ross (1985a, 1985b) and by LeRoy (1982).
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F (st+1, st), and stochastic processes for R1t and R2t . The Bellman equation

can be written as

v(At, st) = max
L1t,L2t,Nt

{
u
[
At −R−1

1t L1t −R−1
2t L2t − p(st)Nt

]

+βEtv
(
L1t +R−1

1t+1L2t + [p(st+1) + st+1]Nt, st+1

)}
,

where we have substituted for consumption ct and wealth At+1 from formulas

(13.8.1) and (13.8.2), respectively. The first-order necessary conditions with

respect to L1t and L2t are

u′(ct)R
−1
1t = βEtv1 (At+1, st+1) , (13.8.3)

u′(ct)R
−1
2t = βEt

[
v1 (At+1, st+1)R

−1
1t+1

]
. (13.8.4)

After invoking Benveniste and Scheinkman’s result and equilibrium allocation

ct = yt(= st), we arrive at the following equilibrium rates of return

R−1
1t = βEt

[
u′(st+1)

u′(st)

]
≡ R1(st)

−1, (13.8.5)

R−1
2t = βEt

[
u′(st+1)

u′(st)
R−1

1t+1

]
= β2Et

[
u′(st+2)

u′(st)

]
≡ R2(st)

−1, (13.8.6)

where the second equality in (13.8.6) is obtained by using (13.8.5) and the law

of iterated expectations. Because of our Markov assumption, interest rates can

be written as time-invariant functions of the economy’s current state st . The

general expression for the price at time t of a bond that yields one unit of the

consumption good in period t+ j is

R−1
jt = βjEt

[
u′(st+j)

u′(st)

]
. (13.8.7)

The term structure of interest rates is commonly defined as the collection of

yields to maturity for bonds with different dates of maturity. In the case of

zero-coupon bonds, the yield to maturity is simply

R̃jt ≡ R
1/j
jt = β−1

{
u′(st) [Etu

′(st+j)]
−1
}1/j

. (13.8.8)

As an example, let us assume that dividends are independently and identically

distributed over time. The yields to maturity for a j -period bond and a k -period

bond are then related as follows:

R̃jt = R̃kt

{
u′(st) [Eu′(s)]

−1
} k−j

kj

.



The term structure of interest rates 407

The term structure of interest rates is therefore upward sloping whenever u′(st)

is less than Eu′(s), that is, when consumption is relatively high today with a

low marginal utility of consumption, and agents would like to save for the future.

In an equilibrium, the short-term interest rate is therefore depressed if there is

a diminishing marginal rate of physical transformation over time or, as in our

model, there is no investment technology at all.

A classical theory of the term structure of interest rates is that long-

term interest rates should be determined by expected future short-term interest

rates. For example, the pure expectations theory hypothesizes that R−1
2t =

R−1
1t EtR

−1
1t+1 . Let us examine if this relationship holds in our general equilib-

rium model. From equation (13.8.6) and by using equation (13.8.5), we obtain

R−1
2t = βEt

[
u′(st+1)

u′(st)

]
EtR

−1
1t+1 + covt

[
β
u′(st+1)

u′(st)
, R−1

1t+1

]

= R−1
1t EtR

−1
1t+1 + covt

[
β
u′(st+1)

u′(st)
, R−1

1t+1

]
, (13.8.9)

which is a generalized version of the pure expectations theory, adjusted for the

risk premium covt[βu
′(st+1)/u

′(st), R
−1
1t+1] . The formula implies that the pure

expectations theory holds only in special cases. One special case occurs when

utility is linear in consumption, so that u′(st+1)/u
′(st) = 1. In this case, R1t ,

given by equation (13.8.5), is a constant, equal to β−1 , and the covariance term

is zero. A second special case occurs when there is no uncertainty, so that the

covariance term is zero for that reason. Recall that the first special case of

risk neutrality is the same condition that suffice to eradicate the risk premium

appearing in equation (13.3.2) and thereby sustain a martingale theory for a

stock price.
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13.9. State-contingent prices

Thus far, this chapter has taken a different approach to asset pricing than we

took in chapter 8. Recall that in chapter 8 we described two alternative com-

plete markets models, one with once-and-for-all trading at time 0 of date- and

history-contingent claims, the other with sequential trading of a complete set of

one-period Arrow securities. After these state-contingent prices had been com-

puted, we were able to price any asset whose payoffs were linear combinations

of the basic state-contingent commodities, just by taking a weighted sum. That

approach would work easily for the Lucas tree economy, which by its simple

structure with a representative agent can readily be cast as an economy with

complete markets. The pricing formulas that we derived in chapter 8 apply to

the Lucas tree economy, adjusting only for the way we have altered the specifi-

cation of the Markov process describing the state of the economy.

Thus, in chapter 8, we gave formulas for a pricing kernel for j -step-ahead

state-contingent claims. In the notation of that chapter, we called Qj(st+j |st)
the price when the time t state is st of one unit of consumption in state st+j .

In this chapter we have chosen to let the state be governed by a continuous-

state Markov process. But we continue to use the notation Qj(sj |s) to denote

the j -step-ahead state-contingent price. We have the following version of the

formula from chapter 8 for a j -period contingent claim

Qj(sj |s) = βj
u′(sj)

u′(s)
f j(sj , s), (13.9.1)

where the j -step-ahead transition function obeys

f j(sj , s) =

∫
f(sj , sj−1)f

j−1(sj−1, s)dsj−1, (13.9.2)

and

prob{st+j ≤ s′|st = s} =

∫ s′

−∞

f j(w, s)dw.

In subsequent sections, we use the state-contingent prices to give exposi-

tions of several important ideas, including the Modigliani-Miller theorem and a

Ricardian theorem.
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13.9.1. Insurance premium

We shall now use the contingent claims prices to construct a model of insurance.

Let qα(s) be the price in current consumption goods of a claim on one unit of

consumption next period, contingent on the event that next period’s dividends

fall below α . We think of the asset being priced as “crop insurance,” a claim

to consumption when next period’s crops fall short of α per tree.

From the preceding section, we have

qα(s) = β

∫ α

0

u′(s′)

u′(s)
f(s′, s)ds′. (13.9.3)

Upon noting that
∫ α

0

u′(s′)f(s′, s)ds′ = prob{st+1 ≤ α|st = s} E{u′(st+1) | st+1 ≤ α, st = s},

we can represent the preceding equation as

qα(s) =
β

u′(s)
prob{st+1 ≤ α|st = s} E{u′(st+1) | st+1 ≤ α, st = s}. (13.9.4)

Notice that, in the special case of risk neutrality [u′(s) is a constant], equation

(13.9.4) collapses to

qα(s) = β prob{st+1 ≤ α|st = s},

which is an intuitively plausible formula for the risk-neutral case. When u′′ < 0

and st ≥ α , equation (13.9.4) implies that qα(s) > βprob{st+1 ≤ α|st = s}
(because then E{u′(st+1)|st+1 ≤ α, st = s} > u′(st) for st ≥ α). In other

words, when the representative consumer is risk averse (u′′ < 0) and when

st ≥ α , the price of crop insurance qα(s) exceeds the “actuarially fair” price of

βprob{st+1 ≤ α|st = s} .

Another way to represent equation (13.9.3) that is perhaps more convenient

for purposes of empirical testing is

1 =
β

u′(st)
E
[
u′(st+1)Rt(α)

∣∣st
]

(13.9.5)

where

Rt(α) =

{
0 if st+1 > α

1/qα(st) if st+1 ≤ α.
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13.9.2. Man-made uncertainty

In addition to pricing assets with returns made risky by nature, we can use the

model to price arbitrary man-made lotteries as demonstrated by Lucas (1982).

Suppose that there is a market for one-period lottery tickets paying a stochas-

tic prize ω in next period, and let h(ω, s′, s) be a probability density for ω ,

conditioned on s′ and s . The price of a lottery ticket in state s is denoted

qL(s). To obtain an equilibrium expression for this price, we follow the steps

in section 13.5, and include purchases of lottery tickets in the agent’s budget

constraint. (Quantities are negative if the agent is selling lottery tickets.) Then

by reasoning similar to that leading to the arbitrage pricing formulas of chapter

8, we arrive at the lottery ticket price formula:

qL(s) = β

∫ ∫
u′(s′)

u′(s)
ωh(ω, s′, s)f(s′, s)dω ds′. (13.9.6)

Notice that if ω and s′ are independent, the integrals of equation (13.9.6) can

be factored and, recalling equation (13.8.5), we obtain

qL(s) = β

∫
u′(s′)

u′(s)
f(s′, s) ds′ ·

∫
ωh(ω, s)dω = R1(s)

−1E{ω|s}. (13.9.7)

Thus, the price of a lottery ticket is the price of a sure claim to one unit of

consumption next period, times the expected payoff on a lottery ticket. There

is no risk premium, since in a competitive market no one is in a position to

impose risk on anyone else, and no premium need be charged for risks not

borne.

13.9.3. The Modigliani-Miller theorem

The Modigliani and Miller theorem14 asserts circumstances under which the

total value (stocks plus debt) of a firm is independent of the firm’s financial

structure, that is, the particular evidences of indebtedness or ownership that it

issues. Following Hirshleifer (1966) and Stiglitz (1969), the Modigliani-Miller

theorem can be proved easily in a setting with complete state-contingent mar-

kets.

14 See Modigliani and Miller (1958).
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Suppose that an agent starts a firm at time t with a tree as its sole asset,

and then immediately sells the firm to the public by issuing N number of shares

and B number of bonds as follows. Each bond promises to pay off r per period,

and r is chosen so that rB is less than all possible realizations of future crops

yt+j . After payments to bondholders, the owners of issued shares are entitled to

the residual crop. Thus, the dividend of an issued share is equal to (yt+j−rB)/N

in period t + j . Let pBt and pNt be the equilibrium prices of an issued bond

and share, respectively, which can be obtained by using the contingent claims

prices,

pBt =

∞∑

j=1

∫
rQj(st+j |st)dst+j , (13.9.8)

pNt =
∞∑

j=1

∫
yt+j − rB

N
Qj(st+j |st)dst+j . (13.9.9)

The total value of issued bonds and shares is then

pBt B + pNt N =

∞∑

j=1

∫
yt+jQj(st+j |st)dst+j , (13.9.10)

which, by equations (13.6.2) and (13.9.1), is equal to the tree’s initial value pt .

Equation (13.9.10) exhibits the Modigliani-Miller proposition that the value of

the firm, that is, the total value of the firm’s bonds and equities, is independent

of the number of bonds B outstanding. The total value of the firm is also

independent of the coupon rate r .

The total value of the firm is independent of the financing scheme because

the equilibrium prices of issued bonds and shares adjust to reflect the riskiness

inherent in any mix of liabilities. To illustrate these equilibrium effects, let us

assume that u(ct) = ln ct and yt+j is i.i.d. over time so that Et(yt+j) = E(y),

and y−1
t+j is also i.i.d. for all j ≥ 1. With logarithmic preferences, the price of a

tree pt is given by equation (13.7.1), and the other two asset prices are now

pBt =
∞∑

j=1

Et

[
rβj

u′(st+j)

u′(st)

]
=

β

1 − β
rE(y−1)yt, (13.9.11)

pNt =
∞∑

j=1

Et

[
yt+j − rB

N
βj
u′(st+j)

u′(st)

]
=

β

1 − β

[
1 − rBE(y−1)

] yt
N
, (13.9.12)
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where we have used equations (13.9.8), (13.9.9), and (13.9.1) and yt = st .

(The expression [1 − rBE(y−1)] is positive because rB is less than the lowest

possible realization of y .) As can be seen, the price of an issued share depends

negatively on the number of bonds B and the coupon r , and also the number

of shares N . We now turn to the expected rates of return on different assets,

which should be related to their riskiness. First, notice that, with our special

assumptions, the expected capital gains on issued bonds and shares are all equal

to that of the underlying tree asset,

Et

[
pBt+1

pBt

]
= Et

[
pNt+1

pNt

]
= Et

[
pt+1

pt

]
= Et

[
yt+1

yt

]
. (13.9.13)

It follows that any differences in expected total rates of return on assets must

arise from the expected yields due to next period’s dividends and coupons. Use

equations (13.7.1), (13.9.11), and (13.9.12) to get

r

pBt
=
{[

1 − Et(yt+1)Et(y
−1
t+1)

]
+ Et(yt+1)Et(y

−1
t+1)

} r

pBt

=
1 − E(y)E(y−1)

E(y−1)pt
+
Et(yt+1)

pt
< Et

[
yt+1

pt

]
, (13.9.14)

Et

[
(yt+1 − rB) /N

pNt

]

=
{[

1 − rBE(y−1)
]
+ rBE(y−1)

}
Et

[
(yt+1 − rB) /N

pNt

]

=
Et (yt+1 − rB)

pt
+
rBE(y−1)Et (yt+1 − rB)

[1 − rBE(y−1)] pt

=
Et(yt+1)

pt
+
rB
[
E(y−1)E(y) − 1

]

[1 − rBE(y−1)] pt
> Et

[
yt+1

pt

]
, (13.9.15)

where the two inequalities follow from Jensen’s inequality, which states that

E(y−1) > [E(y)]−1 for any random variable y . Thus, from equations (13.9.13)–

(13.9.15), we can conclude that the firm’s bonds (shares) earn a lower (higher)

expected rate of return as compared to the underlying asset. Moreover, equation

(13.9.15) shows that the expected rate of return on the issued shares is positively

related to payments to bondholders rB . In other words, equity owners demand

a higher expected return from a more leveraged firm because of the greater risk

borne.
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13.10. Government debt

13.10.1. The Ricardian proposition

We now use a version of Lucas’s tree model to describe the Ricardian proposition

that tax financing and bond financing of a given stream of government expen-

ditures are equivalent.15 This proposition may be viewed as an application of

the Modigliani-Miller theorem to government finance and obtains under circum-

stances in which the government is essentially like a firm in the constraints that

it confronts with respect to its financing decisions.

We add to Lucas’s model a government that spends current output ac-

cording to a nonnegative stochastic process {gt} that satisfies gt < yt for all

t . The variable gt denotes per capita government expenditures at t . For an-

alytical convenience we assume that gt is thrown away, giving no utility to

private agents. The state st = (yt, gt) of the economy is now a vector in-

cluding the dividend yt and government expenditures gt . We assume that

yt and gt are jointly described by a Markov process with transition density

f(st+1, st) = f({yt+1, gt+1}, {yt, gt}) where

prob{yt+1 ≤ y′, gt+1 ≤ g′|yt = y, gt = g} =

∫ y′

0

∫ g′

0

f ({z, w}, {y, g})dw dz.

To emphasize that the dividend yt and government expenditures gt are solely

functions of the current state st , we will use the notation yt = y(st) and

gt = g(st).

The government finances its expenditures by issuing one-period debt that

is permitted to be state contingent, and with a stream of lump-sum per capita

taxes {τt} , a stream that we assume is a stochastic process expressible at time

t as a function of st = (yt, gt) and any debt from last period. A general way of

capturing that taxes and new issues of debt depend upon the current state st and

the government’s beginning-of-period debt, is to index both these government

15 An article by Robert Barro (1974) promoted strong interest in the Ricardian proposition.

Barro described the proposition in a context distinct from the present one but closely related

to it. Barro used an overlapping generations model but assumed altruistic agents who cared

about their descendants. Restricting preferences to ensure an operative bequest motive, Barro

described an overlapping generations structure that is equivalent to a model with an infinitely

lived representative agent. See chapter 10 for more on Ricardian equivalence.
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instruments by the history of all past states, st = [s0, s1, . . . , st] . Hence, τt(s
t)

is the lump-sum per capita tax in period t , given history st , and bt(st+1|st)
is the amount of (t+ 1) goods that the government promises at t to deliver,

provided the economy is in state st+1 at (t+ 1), where this issue of debt is also

indexed by the history st . In other words, we are adopting the “commodity

space” st as we also did in chapter 8. For example, we let ct(s
t) denote the

representative agent’s consumption at time t , after history st .

We can here apply the three steps outlined earlier to construct equilib-

rium prices. Since taxation is lump sum without any distortionary effects, the

competitive equilibrium consumption allocation still equals that of a planning

problem where all agents are assigned the same Pareto weight. Thus, the social

planning problem for our purposes is to maximize E0

∑∞
t=0 β

tu(ct) subject to

ct ≤ yt− gt , whose solution is ct = yt− gt which can alternatively be written as

ct(s
t) = y(st) − g(st). Proceeding as we did in earlier sections, the equilibrium

share price, interest rates, and state-contingent claims prices are described by

p(st) = Et

∞∑

j=1

βj
u′(y(st+j) − g(st+j))

u′(y(st) − g(st))
y(st+j), (13.10.1)

Rj(st)
−1 = βjEt

u′(y(st+j) − g(st+j))

u′(y(st) − g(st))
, (13.10.2)

Qj(st+j |st) = βj
u′(y(st+j) − g(st+j))

u′(y(st) − g(st))
f j(st+j , st), (13.10.3)

where f j(st+j , st) is the j -step-ahead transition function that, for j ≥ 2, obeys

equation (13.9.2). It also useful to compute another set of state-contingent

claims prices from chapter 8,

qtt+j(s
t+j) = Q1(st+j |st+j−1)Q1(st+j−1|st+j−2) . . . Q1(st+1|st)

= βj
u′(y(st+j) − g(st+j))

u′(y(st) − g(st))
f(st+j, st+j−1)

· f(st+j−1, st+j−2) · · · f(st+1, st). (13.10.4)

Here qtt+j(s
t+j) is the price of one unit of consumption delivered at time t+ j ,

history st+j , in terms of date-t , history-st consumption good. Expression

(13.10.4) can be derived from an arbitrage argument or an Euler equation eval-

uated at the equilibrium allocation. Notice that equilibrium prices (13.10.1)–

(13.10.4) are independent of the government’s tax and debt policy. Our next
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step in showing Ricardian equivalence is to demonstrate that the private agents’

budget sets are also invariant to government financing decisions.

Turning first to the government’s budget constraint, we have

g(st) = τt(s
t) +

∫
Q1(st+1|st)bt(st+1|st)dst+1 − bt−1(st|st−1), (13.10.5)

where bt(st+1|st) is the amount of (t+ 1) goods that the government promises

at t to deliver, provided the economy is in state st+1 at (t+ 1), where this quan-

tity is indexed by the history st at the time of issue. If the government decides

to issue only one-period risk-free debt, for example, we have bt(st+1|st) = bt(s
t)

for all st+1 , so that

∫
Q1(st+1|st)bt(st)dst+1 = bt(s

t)

∫
Q1(st+1|st)dst+1 = bt(s

t)/R1(st).

Equation (13.10.5) then becomes

g(st) = τt(s
t) + bt(s

t)/R1(st) − bt−1(s
t−1). (13.10.6)

Equation (13.10.6) is a standard form of the government’s budget constraint

under conditions of certainty.

We can write the budget constraint (13.10.5) in the form

bt−1(st|st−1) = τt(s
t) − g(st) +

∫
Q1(st+1|st)bt(st+1|st)dst+1. (13.10.7)

Then we multiply the corresponding budget constraint in period t + 1 by

Q1(st+1|st) and integrate over st+1 ,

∫
Q1(st+1|st)bt(st+1|st)dst+1 =

∫
Q1(st+1|st)

[
τt+1(s

t+1) − g(st+1)
]
dst+1

+

∫ ∫
Q1(st+1|st)Q1(st+2|st+1)bt+1(st+2|st+1)dst+2dst+1,

=

∫
qtt+1(s

t+1)
[
τt+1(s

t+1) − g(st+1)
]
d(st+1|st)

+

∫
qtt+2(s

t+2)bt+1(st+2|st+1)d(st+2|st), (13.10.8)

where we have introduced the following notation for taking multiple integrals,

∫
x(st+j)d(st+j |st) ≡

∫ ∫
. . .

∫
x(st+j)dst+j dst+j−1 . . . dst+1.
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Expression (13.10.8) can be substituted into budget constraint (13.10.7) by

eliminating the bond term
∫
Q1(st+1|st)bt(st+1|st)dst+1 . After repeated sub-

stitutions of consecutive budget constraints, we eventually arrive at the present

value budget constraint16

bt−1(st|st−1) = τt(s
t) − g(st)

+
∞∑

j=1

∫
qtt+j(s

t+j)
[
τt+j(s

t+j) − g(st+j)
]
d(st+j |st)

= τt(s
t) − g(st) −

∞∑

j=1

∫
Qj(st+j |st)g(st+j)dst+j

+

∞∑

j=1

∫
qtt+j(s

t+j)τt+j(s
t+j)d(st+j |st) (13.10.9)

as long as

lim
k→∞

∫
qtt+k+1(s

t+k+1)bt+k(st+k+1|st+k)d(st+k+1|st) = 0. (13.10.10)

A strictly positive limit of equation (13.10.10) can be ruled out by using the

transversality conditions for private agents’ holdings of government bonds that

we here denote bdt (st+1|st). (The superscript d stands for demand and dis-

tinguishes the variable from government’s supply of bonds.) Next, we simply

assume away the case of a strictly negative limit of expression (13.10.10), since

it would correspond to a rather uninteresting situation where the government

accumulates “paper claims” against the private sector by setting taxes higher

than needed for financial purposes. Thus, equation (13.10.9) states that the

value of government debt maturing at time t equals the present value of the

stream of government surpluses.

It is a key implication of the government’s present value budget constraint

(13.10.9) that all government debt has to be backed by future primary surpluses

[τt+j(s
t+j) − g(st+j)] , i.e., government debt is the capitalized value of govern-

ment net-of-interest surpluses. A government that starts out with a positive debt

16 The second equality follows from the expressions for j -step-ahead contingent- claim-

pricing functions in (13.10.3) and (13.10.4), and exchanging orders of integration.
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must run a primary surplus for some state realization in some future period. It

is an implication of the fact that the economy is dynamically efficient.17

We now turn to a private agent’s budget constraint at time t ,

ct(s
t) + τt(s

t) + p(st)Nt(s
t) +

∫
Q1(st+1|st)bdt (st+1|st)dst+1

≤ [p(st) + y(st)]Nt−1(s
t−1) + bdt−1(st|st−1). (13.10.11)

We multiply the corresponding budget constraint in period t+1 by Q1(st+1|st)
and integrate over st+1 . The resulting expression is substituted into equation

(13.10.11) by eliminating the purchases of government bonds in period t . The

two consolidated budget constraints become

ct(s
t) + τt(s

t) +

∫ [
ct+1(s

t+1) + τt+1(s
t+1)

]
Q1(st+1|st)dst+1

+

{
p(st) −

∫
[p(st+1) + y(st+1)]Q1(st+1|st)dst+1

}
Nt(s

t)

+

∫
p(st+1)Nt+1(s

t+1)Q1(st+1|st)dst+1

+

∫ ∫
Q1(st+1|st)Q1(st+2|st+1)b

d
t+1(st+2|st+1)dst+2dst+1

≤ [p(st) + y(st)]Nt−1(s
t−1) + bdt−1(st|st−1), (13.10.12)

where the expression in braces is zero by an arbitrage argument. When con-

tinuing the consolidation of all future budget constraints, we eventually find

that

ct(s
t) + τt(s

t) +

∞∑

j=1

∫ [
ct+j(s

t+j) + τt+j(s
t+j)

]
qtt+j(s

t+j)d(st+j |st)

≤ [p(st) + y(st)]Nt−1(s
t−1) + bdt−1(st|st−1), (13.10.13)

where we have imposed limits equal to zero for the two terms involving Nt+k(s
t+k)

and bdt+k(st+k+1|st+k) when k goes to infinity. The two terms vanish because of

transversality conditions and the reasoning in the preceding paragraph. Thus,

17 In contrast, compare to our analysis in chapter 9 where we demonstrated that unbacked

government debt or fiat money can be valued by private agents when the economy is dynam-

ically inefficient. These different findings are related to the question of whether or not there

can exist asset bubbles. See footnote 11.
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equation (13.10.13) states that the present value of the stream of consumption

and taxes cannot exceed the agent’s initial wealth at time t .

Finally, we substitute the government’s present value budget constraint

(13.10.9) into that of the representative agent (13.10.13) by eliminating the

present value of taxes. Thereafter, we invoke equilibrium conditions Nt−1(s
t−1) =

1 and bdt−1(st|st−1) = bt−1(st|st−1) and we use the equilibrium expressions for

prices (13.10.1) and (13.10.3) to express p(st) as the sum of all future dividends

discounted by the j -step-ahead pricing kernel Qj(st+j |st). The result is

ct(s
t) +

∞∑

j=1

∫
ct+j(s

t+j)qtt+j(s
t+j)d(st+j |st)

≤ y(st) − g(st) +
∞∑

j=1

∫
[y(st+j) − g(st+j)]Qj(st+j |st)dst+j . (13.10.14)

Given that equilibrium prices have been shown to be independent of the gov-

ernment’s tax and debt policy, the implication of formula (13.10.14) is that the

representative agent’s budget set is also invariant to government financing deci-

sions. Having no effects on prices and private agents’ budget constraints, taxes

and government debt do not affect private consumption decisions.18

We can summarize this discussion with the following proposition:

Ricardian Proposition: Equilibrium consumption and prices depend

only on the stochastic process for output yt and government expenditure gt .

18 We have indexed choice variables by the history st which is the commodity space for this

economy. But it is instructive to verify that private agents will not choose history-dependent

consumption when facing equilibrium prices (13.10.4). At time t after history st , an agent’s

first-order with respect to ct+j(s
t+j) is given by

u′
(
ct(s

t)
)
qtt+j(s

t+j) = βju′
(
ct+j(s

t+j )
)
f(st+j , st+j−1)

· f(st+j−1, st+j−2) . . . f(st+1, st).

After dividing this expression by the corresponding first-order condition with respect to

ct+j(s̃
t+j) where s̃t = st and s̃t+j = st+j , and invoking (13.10.4), we obtain

1 =
u′
(
ct+j(s

t+j)
)

u′
(
ct+j(s̃

t+j)
) =⇒ ct+j(s

t+j) = ct+j(s̃
t+j).

Hence, the agent finds it optimal to choose ct+j(s
t+j ) = ct+j(s̃

t+j) whenever st+j = s̃t+j ,

regardless of the history leading up to that state in period t+ j .
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In particular, consumption and state-contingent prices are both independent of

the stochastic process τt for taxes.

In this model, the choices of the time pattern of taxes and government

bond issues have no effect on any “relevant” equilibrium price or quantity. The

reason is that, as indicated by equations (13.10.5) and (13.10.9), larger deficits

(gt− τt), accompanied by larger values of government debt bt(st+1), now signal

future government surpluses. The agents in this model accumulate these govern-

ment bond holdings and expect to use their proceeds to pay off the very future

taxes whose prospects support the value of the bonds. Notice also that, given

the stochastic process for (yt, gt), the way in which the government finances its

deficits (or invests its surpluses) is irrelevant. Thus, it does not matter whether

it borrows using short-term, long-term, safe, or risky instruments. This irrele-

vance of financing is an application of the Modigliani-Miller theorem. Equation

(13.10.9) may be interpreted as stating that the present value of the government

is independent of such financing decisions.

The next section elaborates on the significance that future government sur-

pluses in equation (13.10.9) are discounted with contingent claims prices and

not the risk-free interest rate, even though the government may choose to issue

only safe debt. This distinction is made clear by using equations (13.10.4) and

(13.10.2) to rewrite equation (13.10.9) as follows,

bt−1(st) = τt − gt +

∞∑

j=1

Et

[
βj
u′(yt+j − gt+j)

u′(yt − gt)
(τt+j − gt+j)

]

= τt − gt +

∞∑

j=1

{
R−1
jt Et[τt+j − gt+j]

+ covt

[
βj
u′(yt+j − gt+j)

u′(yt − gt)
, τt+j − gt+j

]}
. (13.10.15)
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13.10.2. No Ponzi schemes

Bohn (1995) considers a nonstationary discrete-state-space version of Lucas’s

tree economy to demonstrate the importance of using a proper criterion when

assessing long-run sustainability of fiscal policy, that is, determining whether the

government’s present-value budget constraint and the associated transversality

condition are satisfied as in equations (13.10.9) and (13.10.10) of the earlier

model. The present-value budget constraint says that any debt at time t must

be repaid with future surpluses because the transversality condition rules out

Ponzi schemes—financial trading strategies that involve rolling over an initial

debt with interest forever.

At each date t , there is now a finite set of possible states of nature, and st is

the history of all past realizations, including the current one. Let πt+j(s
t+j |st)

be the probability of a history st+j , conditional on history st having been

realized up until time t . The dividend of a tree in period t is denoted yt(s
t) > 0,

and can depend on the whole history of states of nature. The stochastic process

is such that a private agent’s expected utility remains bounded for any fixed

fraction c ∈ (0, 1] of the stream yt(s
t), implying

lim
j→∞

Etβ
ju′ (ct+j) ct+j = 0 (13.10.16)

for ct = c · yt(st).19
Bohn (1995) examines the following government policy. Government spend-

ing is a fixed fraction (1 − c) = gt/yt of income. The government issues safe

one-period debt so that the ratio of end-of-period debt to income is constant

at some level b = R−1
1t bt/yt , i.e., bt(s

t) = R1t b yt(s
t). Given any initial debt,

taxes can then be computed from budget constraint (13.10.6). It is intuitively

clear that this policy can be sustained forever, but let us formally show that the

government’s transversality condition holds in any period t , given history st ,

lim
j→∞

∑

st+j+1|st

q̃tt+j+1

(
st+j+1

)
bt+j

(
st+j

)
= 0, (13.10.17)

19 Expected lifetime utility is bounded if the sequence of “remainders” converges to zero,

0 = lim
k→∞

Et

∞∑

j=k

βju
(
ct+j

)
≥ lim
k→∞

Et

∞∑

j=k

βj
{
u′
(
ct+j

)
ct+j

}
≥ 0,

where the first inequality is implied by concavity of u(·) . We obtain equation (13.10.16)

because u′(ct+j)ct+j is positive at all dates.
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where the summation over st+j |st means that we sum over all possible histories

s̃t+j such that s̃t = st , and q̃tt+j(s
t+j) is the price at t , given history st , of

a unit of consumption good to be delivered in period t + j , contingent on the

realization of history st+j . In an equilibrium, we have

q̃tt+j
(
st+j

)
= βj

u′
[
c · yt+j

(
st+j

)]

u′ [c · yt (st)]
πt+j

(
st+j |st

)
. (13.10.18)

After substituting equation (13.10.18), the debt policy, and ct = c · yt into the

left-hand side of equation (13.10.17),

lim
j→∞

Et

[
βj+1 u

′ (ct+j+1)

u′ (ct)
R1,t+j b

ct+j
c

]

= lim
j→∞

EtEt+j

[
βj
u′ (ct+j)

u′ (ct)
β
u′ (ct+j+1)

u′ (ct+j)
R1,t+j b

ct+j
c

]

=
b

c u′ (ct)
lim
j→∞

Et
[
βju′ (ct+j) ct+j

]
= 0.

The first of these equalities invokes the law of iterated expectations; the sec-

ond equality uses the equilibrium expression for the one-period interest rate,

which is still given by expression (13.10.2); and the final equality follows from

(13.10.16). Thus, we have shown that the government’s transversality condition

and therefore its present-value budget constraint are satisfied.

Bohn (1995) cautions us that this conclusion of fiscal sustainability might

erroneously be rejected if we instead use the risk-free interest rate to com-

pute present values. To derive expressions for the safe interest rate, we assume

that preferences are given by the constant relative risk-aversion utility function

u(ct) = (c1−γt − 1)/(1− γ), and the dividend yt grows at the rate ỹt = yt/yt−1

which is i.i.d. with mean E(ỹ). Thus, risk-free interest rates given by equation

(13.10.2) become

R−1
jt = Et



βj
(

j∏

i=1

ỹt+i

)−γ


 =

j∏

i=1

E
(
βỹ−γ

)
= R−j

1 ,

where R1 is the time-invariant one-period risk-free interest rate. That is, the

term structure of interest rates obeys the pure expectations theory, since interest

rates are nonstochastic. (The analogue to expression (13.8.9) for this economy

would therefore be one where the covariance term is zero.)
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For the sake of the argument, we now compute the expected value of future

government debt discounted at the safe interest rate and take the limit

lim
j→∞

Et

( bt+j
Rj+1,t

)
= lim

j→∞
Et

(R1,t+j byt+j
Rj+1,t

)

= lim
j→∞

Et

(R1 byt
∏j
i=1 ỹt+i

Rj+1
1

)

= byt lim
j→∞

[E(ỹ)

R1

]j
=





0, if R1 > E(ỹ);

byt, if R1 = E(ỹ);

∞, if R1 < E(ỹ).

(13.10.19)

The limit is infinity if the expected growth rate of dividends E(ỹ) exceeds the

risk-free rate R1 . The level of the safe interest rate depends on risk aversion

and on the variance of dividend growth. This dependence is best illustrated

with an example. Suppose there are two possible states of dividend growth

that are equally likely to occur with a mean of 1 percent, E(ỹ) − 1 = .01,

and let the subjective discount factor be β = .98. Figure 13.10.1 depicts the

equilibrium interest rate R1 as a function of the standard deviation of dividend

growth and the coefficient of relative risk aversion γ . For γ = 0, agents are risk

neutral, so the interest rate is given by β−1 ≈ 1.02 regardless of the amount

of uncertainty. When making agents risk averse by increasing γ , there are two

opposing effects on the equilibrium interest rate. On the one hand, higher risk

aversion implies also that agents are less willing to substitute consumption over

time. Therefore, there is an upward pressure on the interest rate to make agents

accept an upward-sloping consumption profile. This fact completely explains the

positive relationship between R1 and γ when the standard deviation of growth

is zero, that is, when deterministic growth is 1 percent. On the other hand,

higher risk aversion in an uncertain environment means that agents attach a

higher value to sure claims to future consumption, which tends to increase the

bond price R−1
1 . As a result, Figure 13.10.1 shows how the risk-free interest

R1 falls below the expected gross growth rate of the economy when agents

are sufficiently risk averse and the standard deviation of dividend growth is

sufficiently large.20

20 A risk-free interest rate less than the growth rate would indicate dynamic inefficiency

in a deterministic steady state but not necessarily in a stochastic economy. Our model here

of an infinitely lived representative agent is dynamically efficient. For discussions of dynamic

inefficiency, see Diamond (1965) and Romer (1996, chap. 2).



Government debt 423

0

0.02

0.04

0.06

0.08

0.1 0
1

2
3

4
5

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

Rel. risk aversionStand. dev. of growth

R
is

k−
fr

ee
 in

te
re

st
 r

at
e

Figure 13.10.1: The risk-free interest rate R1 as a function

of the coefficient of relative risk aversion γ and the standard

deviation of dividend growth. There are two states of divi-

dend growth that are equally likely to occur with a mean of

1 percent, E(ỹ)− 1 = .01, and the subjective discount factor

is β = .98.

If R1 ≤ E(ỹ) so that the expected value of future debt discounted at the

safe interest rate does not converge to zero in equation (13.10.19), it follows

that the expected sum of all future government surpluses discounted at the

safe interest rate in equation (13.10.15) falls short of the initial debt. In fact,

our example is then associated with negative expected surpluses at all future

horizons,

Et (τt+j − gt+j) = Et (bt+j−1 − bt+j/R1,t+j) = Et [(R1 − ỹt+j) byt+j−1]

= [R1 − E (ỹ)] b [E (ỹ)]
j−1

yt





> 0, if R1 > E (ỹ);

= 0, if R1 = E (ỹ);

< 0, if R1 < E (ỹ);

(13.10.20)

where the first equality invokes budget constraint (13.10.6). Thus, for R1 ≤
E(ỹ), the sum of covariance terms in equation (13.10.15) must be positive. The

described debt policy also clearly has this implication where, for example, a low

realization of ỹt+j implies a relatively high marginal utility of consumption and
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at the same time forces taxes up in order to maintain the targeted debt-income

ratio in the face of a relatively low yt+j .

As pointed out by Bohn (1995), this example illustrates the problem with

empirical studies, such as Hamilton and Flavin (1986), Wilcox (1989), Hansen,

Roberds and Sargent (1991), Gali (1991), and Roberds (1996), which rely on

safe interest rates as discount factors when assessing the sustainability of fiscal

policy. Such an approach would only be justified if future government surpluses

were uncorrelated with future marginal utilities so that the covariance terms

in equation (13.10.15) would vanish. This condition is trivially true in a non-

stochastic economy or if agents are risk neutral; otherwise, it is difficult, in

practice, to imagine a tax and spending policy that is uncorrelated with the

difference between aggregate income and government spending that determines

the marginal utility of consumption.

13.11. Interpretation of risk-aversion parameter

The next section will describe the equity premium puzzle. The equity premium

depends on the consumer’s willingness to bear risks, as determined by the cur-

vature of a one-period utility function. To understand why the measured equity

premium is a puzzle, it is important to interpret a parameter that measures cur-

vature in terms of an experiment about choices between gambles. Economists’

prejudice that reasonable values of the coefficient of relative risk aversion must

be below 3 comes from such experiments.

The asset-pricing literature often uses the constant relative risk-aversion

utility function

u (c) = (1 − γ)
−1
c1−γ .

Note that

γ =
−cu′′ (c)
u′ (c)

,

which is the individual’s coefficient of relative risk aversion.

We want to interpret the parameter γ in terms of a preference for avoiding

risk. Following Pratt (1964), consider offering two alternatives to a consumer

who starts off with risk-free consumption level c : he can receive c − π with

certainty or a lottery paying c−y with probability .5 and c+y with probability
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.5. For given values of y and c , we want to find the value of π = π(y, c) that

leaves the consumer indifferent between these two choices. That is, we want to

find the function π(y, c) that solves

u [c− π (y, c)] = .5u (c+ y) + .5u (c− y) . (13.11.1)

For given values of c, y , we can solve the nonlinear equation (13.11.1) for π .

Alternatively, for small values of y , we can appeal to Pratt’s local argument.

Taking a Taylor series expansion of u(c− π) gives21

u (c− π) = u (c) − πu′ (c) +O
(
π2
)
. (13.11.2)

Taking a Taylor series expansion of u(c+ ỹ) gives

u (c+ ỹ) = u (c) + ỹu′ (c) +
1

2
ỹ2u′′ (c) +O

(
ỹ3
)
, (13.11.3)

where ỹ is the random variable that takes value y with probability .5 and −y
with probability .5. Taking expectations on both sides gives

Eu (c+ ỹ) = u (c) +
1

2
y2u′′ (c) + o

(
y2
)
. (13.11.4)

Equating formulas (13.11.2) and (13.11.4) and ignoring the higher-order terms

gives

π (y, c) ≈ 1

2
y2

[−u′′ (c)
u′ (c)

]
.

For the constant relative risk-aversion utility function, we have

π (y, c) ≈ 1

2
y2 γ

c
.

This can be expressed as

π/y =
1

2
γ (y/c) . (13.11.5)

The left side is the premium that the consumer is willing to pay to avoid a fair

bet of size y ; the right side is one-half γ times the ratio of the size of the bet y

to his initial consumption level c .

21 Here O(·) means terms of order at most (·) , while o(·) means terms of smaller order

than (·) .
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Following Cochrane (1997), think of confronting someone with initial con-

sumption of $50,000 per year with a 50–50 chance of winning or losing y dollars.

How much would the person be willing to pay to avoid that risk? For c = 50, 000,

we calculated π from equation (13.11.1) for values of y = 10, 100, 1, 000, 5, 000

(see Table 13.11.1). A common reaction to these premiums is that for values of

γ even as high as 5, they are too big. This result is one important source of

macroeconomists’ prejudice that γ should not be much higher than 2 or 3.

γ \ y 10 100 1,000 5,000
2 .02 .2 20 500
5 .05 5 50 1,217
10 .1 1 100 2,212

Table 13.11.1: Risk premium π(y, c) for various values of

y and γ

13.12. The equity premium puzzle

Mehra and Prescott (1985) describe an empirical problem for the representa-

tive agent model of this chapter. For plausible parameterizations of the utility

function, the model cannot explain the large differential in average yields on rel-

atively riskless bonds and risky equity in the U.S. data over the 90-year period

1889–1978, as depicted in Table 13.12.1. The average real yield on the Stan-

dard & Poor’s 500 index was 7 percent, while the average yield on short-term

debt was only 1 percent. As pointed out by Kocherlakota (1996a), the theory is

qualitatively correct in predicting a positive equity premium, but it fails quan-

titatively because stocks are not sufficiently riskier than bonds to rationalize a

spread of 6 percentage points.22

22 For recent reviews and possible resolutions of the equity premium puzzle, see Aiyagari

(1993), Kocherlakota (1996a), and Cochrane (1997).
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Mean Variance-Covariance
1 + rst+1 1 + rbt+1 ct+1/ct

1 + rst+1 1.070 0.0274 0.00104 0.00219
1 + rbt+1 1.010 0.00308 −0.000193
ct+1/ct 1.018 0.00127

Table 13.12.1: Summary statistics for U.S. annual data,

1889–1978. The quantity 1+rst+1 is the real return to stocks,

1 + rbt+1 is the real return to relatively riskless bonds, and

ct+1/ct is the growth rate of per capita real consumption

of nondurables and services. Source: Kocherlakota (1996a,

Table 1), who uses the same data as Mehra and Prescott

(1985).

Rather than calibrating a general equilibrium model as in Mehra and Prescott

(1985), we proceed in the fashion of Hansen and Singleton (1983) and demon-

strate the equity premium puzzle by studying unconditional averages of Euler

equations under assumptions of log normal returns. Let the real rates of return

on stocks and bonds between periods t and t + 1 be denoted 1 + rst+1 and

1 + rbt+1 , respectively. In our Lucas tree model, these numbers would be given

by 1 + rst+1 = (yt+1 + pt+1)/pt and 1 + rbt+1 = R1t . Concerning the real rate of

return on bonds, we now use time subscript t+1 to allow for uncertainty at time

t about its realization. Since the numbers in Table 13.12.1 are computed on the

basis of nominal bonds, real bond yields are subject to inflation uncertainty. To

allow for such uncertainty and to switch notation, we rewrite Euler equations

(13.2.4) and (13.2.5) as

1 = βEt

[(
1 + rit+1

) u′ (ct+1)

u′ (ct)

]
, for i = s, b. (13.12.1)

Departing from our earlier general equilibrium approach, we now postulate

exogenous stochastic processes for both endowments (consumption) and rates

of return,

ct+1

ct
= c̄4exp

{
εc,t+1 − σ2

c/2
}
, (13.12.2)

1 + rit+1 =
(
1 + r̄i

)
exp

{
εi,t+1 − σ2

i /2
}
, for i = s, b, (13.12.3)
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where exp is the exponential function and {εc,t+1, εs,t+1, εb,t+1} are jointly nor-

mally distributed with zero means and variances {σ2
c , σ

2
s , σ

2
b} . Thus, the loga-

rithm of consumption growth and the logarithms of rates of return are jointly

normally distributed. When the logarithm of a variable is normally distributed

with some mean µ and variance σ2 , the formula for the mean of the untrans-

formed variable is exp(µ+ σ2/2). Thus, the mean of consumption growth and

the means of real yields on stocks and bonds are here equal to c̄4 , 1 + r̄s , and

1 + r̄b , respectively.

As in the previous section, preferences are assumed to be given by the

constant relative risk-aversion utility function u(ct) = (c1−γt − 1)/(1 − γ). Af-

ter substituting this utility function and the stochastic processes (13.12.2) and

(13.12.3) into equation (13.12.1), we take unconditional expectations of equa-

tion (13.12.1). By the law of iterated expectations, the result is

1 = βE

[
(
1 + rit+1

)(ct+1

ct

)−γ
]
,

= β
(
1 + r̄i

)
c̄−γ4 E

{
exp

[
εi,t+1 − σ2

i /2 − γ
(
εc,t+1 − σ2

c/2
)]}

= β
(
1 + r̄i

)
c̄−γ4 exp

[
(1 + γ) γσ2

c/2 − γ cov (εi, εc)
]
,

for i = s, b, (13.12.4)

where the second equality follows from the expression in braces being log nor-

mally distributed and the application of the preceding formula for computing

its mean. Taking logarithms of equation (13.12.4) yields

log
(
1 + r̄i

)
= −log (β) + γlog (c̄4) − (1 + γ)γσ2

c/2 + γ cov (εi, εc) ,

for i = s, b. (13.12.5)

It is informative to interpret equation (13.12.5) for the risk-free interest rate

in the model of the section on Bohn’s model under the auxiliary assumption

of log normally distributed dividend growth, so that equilibrium consumption

growth is given by equation (13.12.2). Since interest rates are time invariant,

we have cov(εb, εc) = 0. In the case of risk-neutral agents (γ = 0), equation

(13.12.5) has the familiar implication that the interest rate is equal to the inverse

of the subjective discount factor β , regardless of any uncertainty. In the case

of deterministic growth (σ2
c = 0), the second term of equation (13.12.5) says

that the safe interest rate is positively related to the coefficient of relative risk
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aversion γ , as we also found in the example of Figure 13.10.1. Likewise, the

downward pressure on the interest rate due to uncertainty in Figure 13.10.1

shows up as the third term of equation (13.12.5). Since the term involves the

square of γ , the safe interest rate must eventually be a decreasing function of

the coefficient of relative risk aversion when σ2
c > 0.

We now turn to the equity premium by taking the difference between the

expressions for the rates of return on stocks and bonds, as given by equation

(13.12.5),

log (1 + r̄s) − log
(
1 + r̄b

)
= γ [cov (εs, εc) − cov (εb, εc)] . (13.12.6)

Using the approximation log(1+r) ≈ r , and noting that the covariance between

consumption growth and real yields on bonds in Table 13.12.1 is virtually zero,

we can write the theory’s interpretation of the historical equity premium as

r̄s − r̄b ≈ γ cov (εs, εc) . (13.12.7)

After approximating cov(εs, εc) with the covariance between consumption growth

and real yields on stocks in Table 13.12.1, equation (13.12.7) states that an eq-

uity premium of 6 percent would require a γ of 27. Kocherlakota (1996a, p.

52) summarizes the prevailing view that “a vast majority of economists believe

that values of [γ ] above ten (or, for that matter, above five) imply highly im-

plausible behavior on the part of individuals.” That statement is a reference to

the argument of Pratt, described in the preceding section. This constitutes the

equity premium puzzle. Mehra and Prescott (1985) and Weil (1989) point out

that an additional part of the puzzle relates to the low historical mean of the

riskless rate of return. According to equation (13.12.5) for bonds, a high γ is

needed to rationalize an average risk-free rate of only 1 percent given historical

consumption data and the standard assumption that β is less than 1.23

23 For β < 0.99, equation (13.12.5) for bonds with data from Table 13.12.1 produces a

coefficient of relative risk aversion of at least 27. If we use the lower variance of the growth

rate of U.S. consumption in post–World War II data, the implied γ exceeds 200, as noted by

Aiyagari (1993).
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13.13. Market price of risk

Gallant, Hansen, and Tauchen (1990) and Hansen and Jagannathan (1991) in-

terpret the equity premium puzzle in terms of the high “market price of risk”

implied by time series data on asset returns. The market price of risk is defined

in terms of asset prices and their one-period payoffs. Let qt be the time t price

of an asset bearing a one-period payoff pt+1 . A household’s Euler equation for

holdings of this asset can be represented as

qt = Et (mt+1pt+1) (13.13.1)

where mt+1 = βu′(ct+1)
u′(ct)

serves as a stochastic discount factor for discounting

the stochastic payoff pt+1 . Using the definition of a conditional covariance,

equation (13.13.1) can be written

qt = Etmt+1Etpt+1 + covt (mt+1, pt+1) .

Applying the Cauchy-Schwarz inequality24 to the covariance term in the pre-

ceding equation gives

qt
Etmt+1

≥ Etpt+1 −
(
σt (mt+1)

Etmt+1

)
σt (pt+1) , (13.13.2)

where σt denotes a conditional standard deviation. The bound in (13.13.2) is

attained by securities that are on the efficient mean-standard deviation frontier.

Notice that Etmt+1 is the reciprocal of the gross one-period risk-free return;

this can be seen by setting pt+1 ≡ 1 in (13.13.1). Thus, the left side of (13.13.2)

is the price of a security relative to the price of a risk free security. In expression

(13.13.2), the term
(
σt(mt+1)
Etmt+1

)
is called the market price of risk. According to

expression (13.13.2), it provides an estimate of the rate at which the price of a

security falls with an increase in the conditional standard deviation of its payoff.

Gallant, Hansen, and Tauchen (1990) and Hansen and Jagannathan (1991)

used asset prices and returns alone to estimate the market price of risk, without

imposing the link to consumption data implied by any particular specification of

a stochastic discount factor. Their version of the equity premium puzzle is that

the market price of risk implied by the asset market data alone is much higher

24 The Cauchy-Schwarz inequality is
|covt(mt+1,pt+1)|
σt(mt+1)σt(pt+1)

≤ 1.
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than can be reconciled with the aggregate consumption data, say, with a specifi-

cation that mt+1 = β
(
ct+1

ct

)−γ
. Aggregate consumption is not volatile enough

to make the standard deviation of the object high enough for the reasonable

values of γ that we have discussed.

In the next section, we describe how Hansen and Jagannathan coaxed evi-

dence about the market price of risk from asset prices and one-period returns.

13.14. Hansen-Jagannathan bounds

Our earlier exposition of the equity premium puzzle based on the log normal

specification of returns was highly parametric, being tied to particular specifi-

cations of preferences and the distribution of asset returns. Hansen and Jagan-

nathan (1991) described a nonparametric way of summarizing the equity pre-

mium puzzle. Their work can be regarded as substantially generalizing Robert

Shiller’s and Stephen LeRoy’s earlier work on variance bounds to handle stochas-

tic discount factors.25 We present one of Hansen and Jagannathan’s bounds.

Hansen and Jagannathan are interested in restricting asset prices possibly

in more general settings than we have studied so far. We have described a theory

that prices assets in terms of a particular “stochastic discount factor,” defined as

mt+1 = β u
′(ct+1)
u′(ct)

. The theory asserted that the price at t of an asset with one-

period payoff pt+1 is Etmt+1pt+1 . Hansen and Jagannathan were interested in

more general models, in which the stochastic discount factor could assume other

forms.

Following Hansen and Jagannathan, let xj be a random payoff on a security.

Let there be J basic securities, so j = 1, . . . , J . Thus, let x ∈ IRJ be a random

vector of payoffs on the basic securities. Assume that the J × J matrix Exx′

exists. Also assume that a J × 1 vector q of prices on the basic securities is

observed, where the j th component of q is the price of the j th component of

the payoff vector x . Consider forming portfolios of the primitive securities. We

want to determine the relationship of the prices of portfolios to the prices of

the basic securities from which they have been formed. With this in mind, let

c ∈ IRJ be a vector of portfolio weights. The return on a portfolio with weights

c is c · x .

25 See Hansen’s (1982a) early call for such a generalization.
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Define the space of payouts attainable from portfolios of the basic securities:

P ≡
{
p : p = c · x for some c ∈ IRJ

}
.

We want to price portfolios, that is, payouts, in P . We seek a price functional

π mapping P into IR : π : P → IR . Because q is observed, we insist that

q = π(x), that is, qj = π(xj).

Note that π(c · x) is the value of a portfolio costing c · q . The law of one

price asserts that the value of a portfolio equals what it costs:

c · q = π (c · x) .

The law of one price states that the pricing functional π is linear on P .

An aspect of the law of one price is that π(c · x) depends on c · x , not on

c . If any other portfolio has return c · x , it should also be priced at π(c · x).
Thus, two portfolios with the same payoff have the same price:

π (c1 · x) = π (c2 · x) if c1 · x = c2 · x.

If the x ’s are returns, then q = 1 , the unit vector, and

π (c · x) = c · 1.

13.14.1. Inner product representation of the pricing kernel

If y is a scalar random variable, E(yx) is the vector whose j th component

is E(yxj). The cross-moments E(yx) are called the inner product of x and

y . According to the Riesz representation theorem, a linear functional can be

represented as the inner product of the random payoff with some scalar random

variable y . This random variable is called a stochastic discount factor. Thus, a

stochastic discount factor is a scalar random variable y that makes the following

equation true:

π (p) = E (yp) ∀p ∈ P. (13.14.1)

For example, the vector of prices of the primitive securities, q , satisfies

q = E (yx) . (13.14.2)
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Because it implies that the pricing functional is linear, the law of one price

implies that there exists a stochastic discount factor. In fact, there exist many

stochastic discount factors. Hansen and Jagannathan sought to characterize

admissible discount factors.

Note

cov (y, p) = E (yp) − E (y)E (p) ,

which implies that the price functional can be represented as

π (p) = E (y)E (p) + cov (y, p) .

This expresses the price of a portfolio as the expected return times the expected

discount factor plus the covariance between the return and the discount factor.

Notice that the expected discount factor is simply the price of a sure scalar

payoff of unity:

π (1) = E (y) .

The linearity of the pricing functional leaves open the possibility that prices

of some portfolios are negative. This would open up arbitrage opportunities.

David Kreps (1979) showed that the principle that the price system should

offer no arbitrage opportunities requires that the stochastic discount factor be

strictly positive. For most of this section, we shall not impose the principle of no

arbitrage, just the law of one price. Thus, we do not require stochastic discount

factors to be positive.

13.14.2. Classes of stochastic discount factors

In previous sections we constructed structural models of the stochastic discount

factor. In particular, for the stochastic discount factor, our theories typically

advocated

y = mt ≡
βu′ (ct+1)

u′ (ct)
, (13.14.3)

the intertemporal substitution of consumption today for consumption tomorrow.

For a particular utility function, this specification leads to a parametric form

of the stochastic discount factor that depends on the random consumption of a

particular consumer or set of consumers.
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Hansen and Jagannathan want to approach the data with a class of stochas-

tic discount factors. To begin, Hansen and Jagannathan note that one candidate

for a stochastic discount factor is

y∗ = x′ (Exx′)
−1
q. (13.14.4)

This can be verified directly, by substituting into equation (13.14.2) and veri-

fying that q = E(y∗x).

Besides equation (13.14.4), many other stochastic discount factors work,

in the sense of pricing the random returns x correctly, that is, recovering q as

their price. It can be verified directly that any other y that satisfies

y = y∗ + e

is also a stochastic discount factor, where e is orthogonal to x . Let Y be the

space of all stochastic discount factors.

13.14.3. A Hansen-Jagannathan bound

Given data on q and the distribution of returns x , Hansen and Jagannathan

wanted to infer properties of y while imposing no more structure than linearity

of the pricing functional (the law of one price). Imposing only this, they con-

structed bounds on the first and second moments of stochastic discount factors

y that are consistent with a given distribution of payoffs on a set of primitive

securities. For y ∈ Y , here is how they constructed one of their bounds.

Let y be an unobserved stochastic discount factor. Though y is unobserv-

able, we can represent it in terms of the population linear regression26

y = a+ x′b+ e (13.14.5)

where e is orthogonal to x and

b = [cov (x, x)]−1 cov (x, y)

a = Ey − Ex′b.

Here cov(x, x) = E(xx)′ − E(x)E(x)′ . We have data that allow us to estimate

the second-moment matrix of x , but no data on y and therefore on cov(x, y).

26 See chapter 2 for the definition and construction of a population linear regression.
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But we do have data on q , the vector of security prices. So Hansen and Jagan-

nathan proceeded indirectly to use the data on q, x to infer something about y .

Notice that q = E(yx) implies cov(x, y) = q − E(y)E(x). Therefore

b = [cov (x, x)]
−1

[q − E (y)E (x)] . (13.14.6)

Thus, given a guess about E(y), asset returns and prices can be used to estimate

b . Because the residuals in equation (13.14.5) are orthogonal to x ,

var (y) = var (x′b) + var (e) .

Therefore

[var (x′b)]
.5 ≤ σ (y) , (13.14.7)

where σ(y) denotes the standard deviation of the random variable y . This is the

lower bound on the standard deviation of all27 stochastic discount factors with

prespecified mean E(y). For various specifications, Hansen and Jagannathan

used expressions (13.14.6) and (13.14.7) to compute the bound on σ(y) as a

function of E(y), tracing out a frontier of admissible stochastic discount factors

in terms of their means and standard deviations.

Here are two such specifications. First, recall that a (gross) return for an

asset with price q and payoff x is defined as z = x/q . A return is risk free if

z is constant (not random). Then note that if there is an asset with risk-free

return zRF ∈ x , it follows that E(yzRF ) = zRFEy = 1, and therefore Ey is a

known constant. Then there is only one point on the frontier that is of interest,

the one with the known E(y). If there is no risk-free asset, we can calculate a

different bound for every specified value of E(y).

Second, take a case where E(y) is not known because there is no risk-free

payout in the set of returns. Suppose, for example, that the data set consists of

“excess returns.” Let xs be a return on a stock portfolio and xb be a return on

a risk-free bond. Let z = xs − xb be the excess return. Then

E [yz] = 0.

Thus, for an excess return, q = 0, so formula (13.14.6) becomes28

b = − [cov (z, z)]−1E (y)E (z) .

27 The stochastic discount factors are not necessarily positive. Hansen and Jagannathan

(1991) derive another bound that imposes positivity.
28 This formula follows from var(b′z) = b′cov(z, z)b .
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Then

var (z′b) = E (y)
2
E (z)

′
[
cov (z, z)

−1
]
E (z) .

Therefore, the Hansen-Jagannathan bound becomes

σ (y) ≥
[
E (z)

′
cov (z, z)

−1
E (z)

].5
E (y) . (13.14.8)

In the special case of a scalar excess return, (13.14.8) becomes

σ (y)

E (y)
≥ E (z)

σ (z)
. (13.14.9)

The left side, the ratio of the standard deviation of the discount factor to its

mean, is called the market price of risk. Thus, the bound (13.14.9) says that the

market price of risk is at least E(z)
σ(z) . The ratio E(z)

σ(z) thus determines a straight-

line frontier in the [E(y), σ(y)] plane above which the stochastic discount factor

must reside.

For a set of returns, q = 1 and equation (13.14.6) becomes

b = [cov (x, x)]−1 [1 − E (y)E (x)] . (13.14.10)

The bound is computed by solving equation (13.14.10) and

√
b′cov (x, x) b ≤ σ (y) . (13.14.11)

In more detail, we compute the bound for various values of E(y) by using

equation (13.14.10) to compute b , then using that b in expression (13.14.11)

to compute the lower bound on σ(y).

Cochrane and Hansen (1992) used data on two returns, the real return

on a value-weighted NYSE stock return and the real return on U.S. Trea-

sury bills. They used the excess return of stocks over Treasury bills to com-

pute bound (13.14.8) and both returns to compute equation (13.14.10). The

bound (13.14.10) is a parabola, while formula (13.14.8) is a straight line in the

[E(y), σ(y)] plane.
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13.14.4. The Mehra-Prescott data

In exercise 13.1 , we ask you to calculate the Hansen-Jagannathan bounds for

the annual U.S. time series studied by Mehra and Prescott. Figures 13.14.1 and

13.14.2 describe the basic data and the bounds that you should find.29

Figure 13.14.1 plots annual gross real returns on stocks and bills in the

United States for 1889 to 1979, and Figure 13.14.2 plots the annual gross rate of

consumption growth. Notice the extensive variability around the mean returns

of (1.01, 1.069) apparent in Figure 13.14.1.
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Figure 13.14.1: Scatter plot of gross real stock returns (y

axis) against real Treasury bill return (x-axis), annual data,

1889–1979. The circle denotes the mean vector (1.010, 1.069).

Figure 13.14.3 plots the Hansen-Jagannathan bounds for these data, ob-

tained by treating the sample second moments as population moments in the

preceding formulas. For β = .99, we have also plotted the mean and stan-

dard deviation of the candidate stochastic discount factor βλ−γt , where λt is

the gross rate of consumption growth and γ is the coefficient of relative risk

aversion. Figure 13.14.3 plots the mean and standard deviation of candidate

discount factors for γ = 0 (the square), γ = 7.5 (the circle), γ = 15 (the dia-

mond), and γ = 22.5 (the triangle). Notice that it takes a high value of γ to

29 These bounds were computed using the Matlab programs hjbnd1.m and hjbnd2.m.
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Figure 13.14.2: U.S. annual consumption growth, 1889–

1979.

bring the stochastic discount factor within the bounds for these data. This is

Hansen and Jagannathan’s statement of the equity premium puzzle.
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Figure 13.14.3: Hansen-Jagannathan bounds for excess re-

turn of stock over bills (dotted line) and the stock and bill

returns (solid line), U.S. annual data, 1889–1979.
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13.15. Factor models

In the two previous sections we saw the equity premium puzzle that follows upon

imposing that the stochastic discount factor be taken as βλ−γt , where λt is the

gross growth rate of consumption between t and t+1 and γ is the coefficient of

relative risk aversion. In response to this puzzle, or empirical failure, researchers

have resorted to “factor models.” These preserve the law of one price and often

the no-arbitrage principle, but they abandon the link between the stochastic

discount factor and the consumption process. They posit a model-free process

for the stochastic discount factor, and use the overidentifying restrictions from

the household’s Euler equations from a set of N returns Rit+1, i = 1, . . . , N , to

let the data tell what the factors are.

Thus, suppose that we have a time series of data on returns Ri,t+1 . The

Euler equations are

EtMt+1Rit+1 = 1, (13.15.1)

for some stochastic discount factor Mt+1 that is unobserved by the econometri-

cian. Posit the model

log (Mt+1) = α0 +
k∑

j=1

αjfjt+1 (13.15.2)

where the k factors fjt are governed by the stochastic processes

fjt+1 = βj0 +
m∑

h=1

βjhfj,t+1−h + ajt+1, (13.15.3)

where ajt+1 is a Gaussian error process with specified covariance matrix. This

model keeps Mt+1 positive. The factors fjt+1 may or may not be observed.

Whether they are observed can influence the econometric procedures that are

feasible. If we substitute equations (13.15.2) and (13.15.3) into equation (13.15.1)

we obtain the N sets of moment restrictions

Et

{
exp
[
α0 +

k∑

j=1

αj
(
βj0 +

m∑

h=1

βjhfj,t+1−h + ajt+1

)]
Rit+1

}
= 1. (13.15.4)

If current and lagged values of the factors fjt are observed, these conditions

can be used to estimate the coefficients αj , βjh by the generalized method of

moments. If the factors are not observed, by making the further assumption
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that the logs of returns are jointly normally distributed and by exploiting the

assumption that the errors ajt are Gaussian, analytic solutions for Ri,t+1 as a

function of current and lagged values of the k factors can be attained, and these

can be used to form a likelihood function.30

This structure is known as an affine factor model. The term affine describes

the function (13.15.3) (linear plus a constant). This kind of model has been used

extensively to study the term structure of interest rates. There the returns are

taken to be a vector of one-period holding-period yields on bonds of different

maturities.31

13.16. Heterogeneity and incomplete markets

As Hansen and Jagannathan (1991) and the preceding analysis of the log linear

model both indicate, the equity premium reflects restrictions across returns and

consumption imposed by Euler equations. These restrictions do not assume

complete markets. A complete markets assumption might enter indirectly, to

justify using aggregate consumption growth to measure the intertemporal rate

of substitution.

The equity premium puzzle is that data on asset returns and aggregate con-

sumption say that the equity premium is much larger than is predicted by Euler

equations for asset holdings with a plausible coefficient of relative risk aversion

γ . Gregory Mankiw (1986) posited a pattern of systematically varying spreads

across individual’s intertemporal rates of substitution that could magnify the

theoretical equity premium. Mankiw’s mechanism requires (a) incomplete mar-

kets, (b) a precautionary savings motive, in the sense of convex marginal utilities

30 Sometimes even if the factors are unobserved, it is possible to deduce good enough

estimates of them to proceed as though they are observed. Thus, in their empirical term-

structure model, Chen and Scott (1993) and Dai and Singleton (2000) set the number of

factors k equal to the number of yields studied. Letting Rt be the k× 1 vector of yields and

ft the k× 1 vector of factors, they can solve equation (13.15.1) for an expression of the form

R = g0 +g1ft , from which Chen and Scott could deduce ft = g−1
1 (Rt−g0) to get observable

factors. See Gong and Remolona (1997) for a discrete-time affine term-structure model.
31 See Piazzesi (2000) for an ambitious factor model of the term structure where some of

the factors are interpreted in terms of a monetary policy authority’s rule for setting a short

rate.
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of consumption, and (c) a negative covariance between the cross-sectional vari-

ance of consumption and the aggregate level of consumption. To magnify the

quantitative importance of Mankiw’s mechanism, it helps if there are (d) highly

persistent endowment processes.

We shall study incomplete markets and precautionary savings models in

chapters 16 and 17. But it is pertinent to sketch Mankiw’s idea here. Consider a

heterogeneous consumer economy. Let M(git) be the stochastic discount factor

generated by consumer i ’s Euler equations, say, M(git) = βg−γit , where β is a

constant discount factor, git is consumer i ’s gross growth rate of consumption,

and γ is the coefficient of relative risk aversion in a constant relative risk aversion

utility function. Here M(git) is consumer i ’s intertemporal rate of substitution

between consumption at t − 1 and consumption at t evaluated at the random

growth rate ci,t/ci,t−1 = git . With complete markets, M(git) = M(gjt) for

all i, j . This equality follows from the household’s first-order conditions with

complete markets (see Rubinstein, 1974). However, with incomplete markets,

the M(git)’s need not be equal across consumers. Mankiw used this fact to

magnify the theoretical value of the equity premium.

Mankiw assumed that consumers share the same function M , but that the

gross rate of consumption growth varies across households and that the cross-

section distribution of g across households varies across time.32 Thus, assume

Prob(git ≤ G) = Ft(G) and define the first moment of the cross-sectional dis-

tribution at time t as µ1t =
∫
gFt(d g). Also define higher moments µjt of git

about the mean by µjt =
∫

(g − µ1t)
jFt(d g).

Mankiw considered the consequences of time variation in the cross-section

distribution of personal stochastic discount factors M(git). Mankiw assumed

an incomplete markets setting in which for each household i , the following Euler

equations hold for a risk-free gross return Rft from t − 1 to t and an excess

return of stocks over a bond, Rxt :

Ei,t−1 [RftM (git)] = 1

Ei,t−1 [RxtM (git)] = 0,

where Ei,t−1 is an expectation operator conditioned on person i ’s information

at date t−1. Taking unconditional expectations and applying the law of iterated

32 For a setting in which the cross section of Mit ’s varies over time, see the model of

Krusell and Smith (1998) described in chapter 17. In these incomplete markets models, the

cross-section distribution of wealth at a given date is among the state variables for the economy.
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expectations gives the following unconditional versions of these Euler equations:

E [RftM (git)] = 1 (13.16.1a)

E [RxtM (git)] = 0. (13.16.1b)

Equations (13.16.1) express the idea that in an incomplete markets setting,

any individual household’s marginal rate of substitution M(git) is a legitimate

stochastic discount factor. It follows that any linear combination of households’

M(git)’s, in particular, the cross-section mean
∫
M(git)dF (git), is also a legit-

imate stochastic discount factor. Therefore, (13.16.1) implies that

E

[
Rft

∫
M (git) dFt (git)

]
= 1 (13.16.2a)

E

[
Rxt

∫
M (git) dFt (git)

]
= 0. (13.16.2b)

Following Mankiw (1986) and Cogley (1999), use the second-order Taylor series

approximation

M (git) ≈M (µ1t) +M ′ (µ1t) (git − µ1t) +
1

2
M ′′ (µ1t) (git − µ1t)

2
. (13.16.3)

This implies the approximation

∫
M (git) dFt (git) = M (µ1t) +

1

2
M ′′ (µ1t)µ2t,

which leads to the following approximation of (13.16.2):

ERt

[
M (µ1t) +

1

2
M ′′ (µ1t)µ2t

]
= 1 (13.16.4a)

ERxt

[
M (µ1t) +

1

2
M ′′ (µ1t)µ2t

]
= 1. (13.16.4b)

For the risk-free return Rft , equation (13.16.4a) implies

ERft =
1

E
[
M (µ1t) + 1

2M
′′ (µ1t)µ2t

] .

For an excess return, (13.16.4b) and the definition of a covariance imply

E (Rxt) =
−cov

[
Rxt,M (µ1t) + 1

2M
′′ (µ1t)µ2t

]

E
[
M (µ1t) + 1

2M
′′ (µ1t)µ2t

] . (13.16.5)
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When M ′′(µ1t)µ2t = 0, equation (13.16.5) collapses to a version of the

standard formula for the equity premium in a representative agent model. When

M ′′(µ1t) > 0 (that is, when marginal utility is convex and when the variance

µ2t of the cross-section of distribution of git ’s covaries inversely with the excess

return), the expected excess return is higher. Thus, variations in the cross-

section heterogeneity of stochastic discount factors can potentially boost the

equity premium under three conditions: (a) convexity of the marginal utility of

consumption, which implies that M ′′ > 0; (b) an inverse correlation between

excess returns and the cross-section second moment of the cross-section distri-

bution of git ; and (c) sufficient dispersion in the cross-section distribution of git

to make the covariance large in absolute magnitude.

The third aspect is relevant because in many incomplete markets settings,

households can achieve much risk sharing and intertemporal consumption smooth-

ing by frequently trading a small number of assets (sometimes only one asset).

See the Bewley models of chapter 17. In Bewley models, households each have

an idiosyncratic endowment process that follows an identically distributed but

household-specific Markov process. Households use purchases of an asset to

smooth endowment fluctuations. Their ability to do so depends on the rate

of return of the asset and the persistence of their endowment shocks. Broadly

speaking, the more persistent are the endowment shocks, the more difficult it is

to self-insure, and therefore the larger is the cross-section variation in M(git)

that emerges. Thus, higher persistence in the endowment shock process en-

hances the mechanism described by Mankiw.

Constantinides and Duffie (1996)33 reverse engineer a general equilibrium

with incomplete markets that features Mankiw’s mechanism. Their economy is

arranged so that no trade occurs in equilibrium, and it generates the volatility

of the cross-section distribution of consumption growth as well as the negative

covariation between excess returns and the cross-section dispersion of consump-

tion growth required to activate Mankiw’s mechanism. An important feature of

Constantinides and Duffie’s example is that each household’s endowment process

is very persistent (it is a random walk).

Storesletten, Telmer, and Yaron (1998) are pursuing ideas from Mankiw

and Constantinides and Duffie by using evidence from the panel study of income

dynamics (PSID) to estimate the persistence of endowment shocks. They use a

33 Also see Attanasio and Weber (1993) for important elements of the argument of this

section.



444 Asset Pricing

different econometric specification than that of Heaton and Lucas (1996), who

found limited persistence in endowments from the PSID data, limited enough

to shut down Mankiw’s mechanism. Cogley (1999) checked the contribution

of the covariance term in equation (13.16.5) using data from the Consumer

Expenditure Survey, and found what he interpreted as weak support for the

idea. The cross-section covariance found by Cogley has the correct sign but is

not very large.

13.17. Concluding remarks

Chapter 8 studied asset pricing within a complete markets setting and intro-

duced some arbitrage pricing arguments. This chapter has given more applica-

tions of arbitrage pricing arguments, for example, in deriving Modigliani-Miller

and Ricardian irrelevance theorems. We have gone beyond chapter 8 in studying

how, in the spirit of Hansen and Singleton (1983), consumer optimization alone

puts restrictions on asset returns and consumption, without requiring complete

markets or a fully articulated general equilibrium model. At various points in

this chapter, we have alluded to incomplete markets models. In chapters 17 and

19, we describe other ingredients of such models.

Exercises

Exercise 13.1 Hansen-Jagannathan bounds

Consider the following annual data for annual gross returns on U.S. stocks and

U.S. Treasury bills from 1890 to 1979. These are the data used by Mehra and

Prescott. The mean returns are µ = [ 1.07 1.02 ] and the covariance matrix of

returns is

[
.0274 .00104

.00104 .00308

]
.

a. For data on the excess return of stocks over bonds, compute Hansen and

Jagannathan’s bound on the stochastic discount factor y . Plot the bound for

E(y) on the interval [.9, 1.02].

b. Using data on both returns, compute and plot the bound for E(y) on the

interval [.9, 1.02]. Plot this bound on the same figure as you used in part a.
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c. At (ftp://zia.stanford.edu/pub/sargent/webdocs/matlab), there is a Matlab

file epdata.m with Kydland and Prescott’s time series. The series epdata(:,4) is

the annual growth rate of aggregate consumption ct/ct−1 . Assume that β = .99

and that mt = βu′(ct)/u
′(ct−1), where u(·) is the CRRA utility function. For

the three values of γ = 0, 5, 10, compute the standard deviation and mean of

mt and plot them on the same figure as in part b. What do you infer from

where the points lie?

Exercise 13.2 The term structure and regime switching, donated by

Rodolfo Manuelli

Consider a pure exchange economy where the stochastic process for consumption

is given by

ct+1 = ct exp [α0 − α1st + εt+1] ,

where

(i) α0 > 0, α1 > 0, and α0 − α1 > 0.

(ii) εt is a sequence of i.i.d. random variables distributed N(µ, τ2). Note: given

this specification, it follows that E[eε] = exp[µ+ τ2/2].

(iii) st is a Markov process independent from εt that can take only two values,

{0, 1} . The transition probability matrix is completely summarized by

Prob [st+1 = 1|st = 1] = π (1) ,

Prob [st+1 = 0|st = 0] = π (0) .

(iv) The information set at time t ,Ωt , contains {ct−j, st−j , εt−j ; j ≥ 0} .

There is a large number of individuals with the following utility function

U = E0

∞∑

t=0

βtu (ct),

where u(c) = c(1−σ)/(1 − σ). Assume that σ > 0 and 0 < β < 1. As usual,

σ = 1 corresponds to the log utility function.

a. Compute the “short-term” (one-period) interest rate.

b. Compute the “long-term” (two-period) interest rate measured in the same

time units as the rate you computed in a. (That is, take the appropriate square

root.)
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c. Note that the log of the rate of growth of consumption is given by

log (ct+1) − log (ct) = α0 − α1st + εt+1.

Thus, the conditional expectation of this growth rate is just α0 − α1st + µ .

Note that when st = 0, growth is high, and when st = 1, growth is low. Thus,

loosely speaking, we can identify st = 0 with the peak of the cycle (or good

times) and st = 1 with the trough of the cycle (or bad times). Assume µ > 0.

Go as far as you can describing the implications of this model for the cyclical

behavior of the term structure of interest rates.

d. Are short term rates pro- or countercyclical?

e. Are long rates pro- or countercyclical? If you cannot give a definite answer to

this question, find conditions under which they are either pro- or countercyclical,

and interpret your conditions in terms of the “permanence” (you get to define

this) of the cycle.

Exercise 13.3 Growth slowdowns and stock market crashes, donated

by Rodolfo Manuelli34

Consider a simple one-tree pure exchange economy. The only source of con-

sumption is the fruit that grows on the tree. This fruit is called dividends by

the tribe inhabiting this island. The stochastic process for dividend dt is de-

scribed as follows: If dt is not equal to dt−1 , then dt+1 = γdt with probability

π , and dt+1 = dt with probability (1 − π). If in any pair of periods j and

j + 1, dj = dj+1 , then for all t > j , dt = dj . In words, if not stopped, the

process grows at a rate γ in every period. However, once it stops growing for

one period, it remains constant forever after. Let d0 equal 1.

Preferences over stochastic processes for consumption are given by

U = E0

∞∑

t=0

βtu (ct),

where u(c) = c(1−σ)/(1 − σ). Assume that σ > 0, 0 < β < 1, γ > 1, and

βγ(1−σ) < 1.

a. Define a competitive equilibrium in which shares to this tree are traded.

34 See also Joseph Zeira (1999).
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b. Display the equilibrium process for the price of shares in this tree pt as a

function of the history of dividends. Is the price process a Markov process in

the sense that it depends just on the last period’s dividends?

c. Let T be the first time in which dT−1 = dT = γ(T−1) . Is pT−1 > pT ?

Show conditions under which this is true. What is the economic intuition for

this result? What does it say about stock market declines or crashes?

d. If this model is correct, what does it say about the behavior of the aggregate

value of the stock market in economies that switched from high to low growth

(e.g., Japan)?

Exercise 13.4 The term structure and consumption, donated by Rodolfo

Manuelli

Consider an economy populated by a large number of identical households. The

(common) utility function is
∞∑

t=0

βtu (ct) ,

where 0 < β < 1, and u(x) = x1−θ)/(1 − θ), for some θ > 0. (If θ = 1, the

utility is logarithmic.) Each household owns one tree. Thus, the number of

households and the number of trees coincide. The amount of consumption that

grows in a tree satisfies

ct+1 = c∗cϕt εt+1,

where 0 < ϕ < 1, and εt is a sequence of i.i.d. log normal random variables

with mean 1, and variance σ2 . Assume that, in addition to shares in trees, in

this economy bonds of all maturities are traded.

a. Define a competitive equilibrium.

b. Go as far as you can calculating the term structure of interest rates, R̃jt ,

for j = 1, 2, . . ..

c. Economist A argues that economic theory predicts that the variance of the log

of short-term interest rates (say, one-period) is always lower than the variance

of long-term interest rates, because short rates are “riskier.” Do you agree?

Justify your answer.

d. Economist B claims that short-term interest rates, i.e., j = 1, are “more

responsive” to the state of the economy, i.e., ct , than are long-term interest

rates, i.e., j large. Do you agree? Justify your answer.
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e. Economist C claims that the Fed should lower interest rates because whenever

interest rates are low, consumption is high. Do you agree? Justify your answer.

f. Economist D claims that in economies in which output (consumption in our

case) is very persistent (ϕ ≈ 1), changes in output (consumption) do not affect

interest rates. Do you agree? Justify your answer and, if possible, provide

economic intuition for your argument.



Chapter 14

Economic Growth

14.1. Introduction

This chapter describes basic nonstochastic models of sustained economic growth.

We begin by describing a benchmark exogenous growth model where sustained

growth is driven by exogenous growth in labor productivity. Then we turn

our attention to several endogenous growth models where sustained growth of

labor productivity is somehow chosen by the households in the economy. We

describe several models that differ in whether the equilibrium market economy

matches what a benevolent planner would choose. Where the market outcome

doesn’t match the planner’s outcome, there can be room for welfare-improving

government interventions. The objective of the chapter is to shed light on the

mechanisms at work in different models. We try to facilitate comparison by

using the same production function for most of our discussion while changing

the meaning of one of its arguments.

Paul Romer’s work has been an impetus to the revived interest in the theory

of economic growth. In the spirit of Arrow’s (1962) model of learning by doing,

Romer (1986) presents an endogenous growth model where the accumulation of

capital (or knowledge) is associated with a positive externality on the available

technology. The aggregate of all agents’ holdings of capital is positively related

to the level of technology, which in turn interacts with individual agents’ sav-

ings decisions and thereby determines the economy’s growth rate. Thus, the

households in this economy are choosing how fast the economy is growing, but

they do so in an unintentional way. The competitive equilibrium growth rate

falls short of the socially optimal one.

Another approach to generating endogenous growth is to assume that all

production factors are reproducible. Following Uzawa (1965), Lucas (1988)

formulates a model with accumulation of both physical and human capital. The

joint accumulation of all inputs ensures that growth will not come to a halt even

though each individual factor in the final-good production function is subject

– 449 –



450 Economic Growth

to diminishing returns. In the absence of externalities, the growth rate in the

competitive equilibrium coincides in this model with the social optimum.

Romer (1987) constructs a model where agents can choose to engage in

research that produces technological improvements. Each invention represents

a technology for producing a new type of intermediate input that can be used in

the production of final goods without affecting the marginal product of existing

intermediate inputs. The introduction of new inputs enables the economy to ex-

perience sustained growth even though each intermediate input taken separately

is subject to diminishing returns. In a decentralized equilibrium, private agents

will expend resources on research only if they are granted property rights over

their inventions. Under the assumption of infinitely lived patents, Romer solves

for a monopolistically competitive equilibrium that exhibits the classic tension

between static and dynamic efficiency. Patents and the associated market power

are necessary for there to be research and new inventions in a decentralized

equilibrium, while the efficient production of existing intermediate inputs would

require marginal-cost pricing, that is, the abolition of granted patents. The

monopolistically competitive equilibrium is characterized by a smaller supply of

each intermediate input and a lower growth rate than would be socially optimal.

Finally, we revisit the question of when nonreproducible factors may not

pose an obstacle to growth. Rebelo (1991) shows that even if there are non-

reproducible factors in fixed supply in a neoclassical growth model, sustained

growth is possible if there is a “core” of capital goods that is produced with-

out the direct or indirect use of the nonreproducible factors. Because of the

ever-increasing relative scarcity of a nonreproducible factor, Rebelo finds that

its price increases over time relative to a reproducible factor. Romer (1990)

assumes that research requires the input of labor and not only goods as in his

earlier model (1987). Now, if labor is in fixed supply and workers’ innate pro-

ductivity is constant, it follows immediately that growth must asymptotically

come to an halt. To make sustained growth feasible, we can take a cue from our

earlier discussion. One modeling strategy would be to introduce an externality

that enhances researchers’ productivity, and an alternative approach would be to

assume that researchers can accumulate human capital. Romer adopts the first

type of assumption, and we find it instructive to focus on its role in overcoming

a barrier to growth that nonreproducible labor would otherwise pose.
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14.2. The economy

The economy has a constant population of a large number of identical agents

who order consumption streams {ct}∞t=0 according to

∞∑

t=0

βtu (ct) , with β ∈ (0, 1) and u (c) =
c1−σ − 1

1 − σ
for σ ∈ [0,∞) , (14.2.1)

and σ = 1 is taken to be logarithmic utility.1 Lowercase letters for quanti-

ties, such as ct for consumption, are used to denote individual variables, and

uppercase letters stand for aggregate quantities.

For most part of our discussion of economic growth, the production function

takes the form

F (Kt, Xt) = Xtf
(
K̂t

)
, where K̂t ≡

Kt

Xt
. (14.2.2)

That is, the production function F (K,X) exhibits constant returns to scale in

its two arguments, which via Euler’s theorem on linearly homogeneous functions

implies

F (K,X) = F1 (K,X)K + F2 (K,X)X, (14.2.3)

where Fi(K,X) is the derivative with respect to the ith argument (and Fii(K,X)

will be used to denote the second derivative with respect to the ith argument).

The input Kt is physical capital with a rate of depreciation equal to δ . New

capital can be created by transforming one unit of output into one unit of cap-

ital. Past investments are reversible. It follows that the relative price of capital

in terms of the consumption good must always be equal to 1. The second ar-

gument Xt captures the contribution of labor. Its precise meaning will differ

among the various setups that we will examine.

We assume that the production function satisfies standard assumptions of

positive but diminishing marginal products,

Fi (K,X) > 0, Fii (K,X) < 0, for i = 1, 2;

and the Inada conditions,

lim
K→0

F1 (K,X) = lim
X→0

F2 (K,X) = ∞,

lim
K→∞

F1 (K,X) = lim
X→∞

F2 (K,X) = 0,

1 By virtue of L’Hôpital’s rule, the limit of (c1−σ − 1)/(1 − σ) is log(c) as σ goes to 1.
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which imply

lim
K̂→0

f ′
(
K̂
)

= ∞, lim
K̂→∞

f ′
(
K̂
)

= 0. (14.2.4)

We will also make use of the mathematical fact that a linearly homogeneous

function F (K,X) has first derivatives Fi(K,X) homogeneous of degree 0; thus,

the first derivatives are only functions of the ratio K̂ . In particular, we have

F1 (K,X) =
∂ Xf (K/X)

∂ K
= f ′

(
K̂
)
, (14.2.5a)

F2 (K,X) =
∂ Xf (K/X)

∂ X
= f

(
K̂
)
− f ′

(
K̂
)
K̂. (14.2.5b)

14.2.1. Balanced growth path

We seek additional technological assumptions to generate market outcomes with

steady-state growth of consumption at a constant rate 1 + µ = ct+1/ct . The

literature uses the term “balanced growth path” to denote a situation where

all endogenous variables grow at constant (but possibly different) rates. Along

such a steady-state growth path (and during any transition toward the steady

state), the return to physical capital must be such that households are willing

to hold the economy’s capital stock.

In a competitive equilibrium where firms rent capital from the agents, the

rental payment rt is equal to the marginal product of capital,

rt = F1 (Kt, Xt) = f ′
(
K̂t

)
. (14.2.6)

Households maximize utility given by equation (14.2.1) subject to the sequence

of budget constraints

ct + kt+1 = rtkt + (1 − δ) kt + χt, (14.2.7)

where χt stands for labor-related budget terms. The first-order condition with

respect to kt+1 is

u′ (ct) = βu′ (ct+1) (rt+1 + 1 − δ) . (14.2.8)

After using equations (14.2.1) and (14.2.6) in equation (14.2.8), we arrive at

the following equilibrium condition:
(
ct+1

ct

)σ
= β

[
f ′
(
K̂t+1

)
+ 1 − δ

]
. (14.2.9)
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We see that a constant consumption growth rate on the left side is sustained in

an equilibrium by a constant rate of return on the right side. It was also for

this reason that we chose the class of utility functions in equation (14.2.1) that

exhibits a constant intertemporal elasticity of substitution. These preferences

allow for balanced growth paths.2

Equation (14.2.9) makes clear that capital accumulation alone cannot sus-

tain steady-state consumption growth when the labor input Xt is constant over

time, Xt = L . Given the second Inada condition in equations (14.2.4), the

limit of the right side of equation (14.2.9) is β(1−δ) when K̂ approaches infin-

ity. The steady state with a constant labor input must therefore be a constant

consumption level and a capital-labor ratio K̂? given by

f ′
(
K̂?
)

= β−1 − (1 − δ) . (14.2.10)

In chapter 5 we derived a closed-form solution for the transition dynamics toward

such a steady state in the case of logarithmic utility, a Cobb-Douglas production

function, and δ = 1.

14.3. Exogenous growth

As in Solow’s (1956) classic article, the simplest way to ensure steady-state

consumption growth is to postulate exogenous labor-augmenting technological

change at the constant rate 1 + µ ≥ 1,

Xt = AtL, with At = (1 + µ)At−1,

where L is a fixed stock of labor. Our conjecture is then that both consumption

and physical capital will grow at that same rate 1 + µ along a balanced growth

path. The same growth rate of Kt and At implies that the ratio K̂ and therefore

the marginal product of capital remain constant in the steady state. A time-

invariant rate of return is in turn consistent with households choosing a constant

growth rate of consumption, given the assumption of isoelastic preferences.

2 To ensure well-defined maximization problems, a maintained assumption throughout the

chapter is that parameters are such that any derived consumption growth rate 1+µ yields finite

lifetime utility; i.e., the implicit restriction on parameter values is that β(1+µ)1−σ < 1. To see

that this condition is needed, substitute the consumption sequence {ct}
∞
t=0 = {(1+µ)tc0}

∞
t=0

into equation (14.2.1).
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Evaluating equation (14.2.9) at a steady state, the optimal ratio K̂? is

given by

(1 + µ)σ = β
[
f ′
(
K̂?
)

+ 1 − δ
]
. (14.3.1)

While the steady-state consumption growth rate is exogenously given by 1 +µ ,

the endogenous steady-state ratio K̂? is such that the implied rate of return on

capital induces the agents to choose a consumption growth rate of 1+µ . As can

be seen, a higher degree of patience (a larger β ), a higher willingness intertem-

porally to substitute (a lower σ ), and a more durable capital stock (a lower

δ ) each yield a higher ratio K̂? , and therefore more output (and consumption)

at a point in time, but the growth rate remains fixed at the rate of exogenous

labor-augmenting technological change. It is straightforward to verify that the

competitive equilibrium outcome is Pareto optimal, since the private return to

capital coincides with the social return.

Physical capital is compensated according to equation (14.2.6), and labor

is also paid its marginal product in a competitive equilibrium,

wt = F2 (Kt, Xt)
dXt

dL
= F2 (Kt, Xt) At. (14.3.2)

So, by equation (14.2.3), we have

rtKt + wtL = F (Kt, AtL) .

Factor payments are equal to total production, which is the standard result of a

competitive equilibrium with constant-returns-to-scale technologies. However,

it is interesting to note that if At were a separate production factor, there could

not exist a competitive equilibrium, since factor payments based on marginal

products would exceed total production. In other words, the dilemma would

then be that the production function F (Kt, AtL) exhibits increasing returns to

scale in the three “inputs” Kt , At , and L , which is not compatible with the

existence of a competitive equilibrium. This problem is to be kept in mind as

we now turn to one way to endogenize economic growth.
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14.4. Externality from spillovers

Inspired by Arrow’s (1962) paper on learning by doing, Romer (1986) suggests

that economic growth can be endogenized by assuming that technology grows

because of aggregate spillovers coming from firms’ production activities. The

problem alluded to in the previous section, that a competitive equilibrium fails

to exist in the presence of increasing returns to scale, is avoided by letting

technological advancement be external to firms.3 As an illustration, we assume

that firms face a fixed labor productivity that is proportional to the current

economy-wide average of physical capital per worker.4 In particular,

Xt = K̄tL, where K̄t =
Kt

L
.

The competitive rental rate of capital is still given by equation (14.2.6), but we

now trivially have K̂t = 1, so equilibrium condition (14.2.9) becomes

(
ct+1

ct

)σ
= β [f ′ (1) + 1 − δ] . (14.4.1)

Note first that this economy has no transition dynamics toward a steady state.

Regardless of the initial capital stock, equation (14.4.1) determines a time-

invariant growth rate. To ensure a positive growth rate, we require the param-

eter restriction β[f ′(1) + 1 − δ] ≥ 1. A second critical property of the model is

that the economy’s growth rate is now a function of preference and technology

parameters.

The competitive equilibrium is no longer Pareto optimal, since the private

return on capital falls short of the social rate of return, with the latter return

given by

dF
(
Kt,

Kt
L L

)

dKt
= F1 (Kt,Kt) + F2 (Kt,Kt) = f (1) , (14.4.2)

3 Arrow (1962) focuses on learning from experience that is assumed to get embodied in

capital goods, while Romer (1986) postulates spillover effects of firms’ investments in knowl-

edge. In both analyses, the productivity of a given firm is a function of an aggregate state

variable, either the economy’s stock of physical capital or stock of knowledge.
4 This specific formulation of spillovers is analyzed in a rarely cited paper by Frankel

(1962).
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where the last equality follows from equations (14.2.5). This higher social rate

of return enters a planner’s first-order condition, which then also implies a higher

optimal consumption growth rate,

(
ct+1

ct

)σ
= β [f (1) + 1 − δ] . (14.4.3)

Let us reconsider the suboptimality of the decentralized competitive equilib-

rium. Since the agents and the planner share the same objective of maximizing

utility, we are left with exploring differences in their constraints. For a given

sequence of the spillover {K̄t}∞t=0 , the production function F (kt, K̄tlt) exhibits

constant returns to scale in kt and lt . So, once again, factor payments in a

competitive equilibrium will be equal to total output, and optimal firm size

is indeterminate. Therefore, we can consider a representative agent with one

unit of labor endowment who runs his own production technology, taking the

spillover effect as given. His resource constraint becomes

ct + kt+1 = F
(
kt, K̄t

)
+ (1 − δ) kt = K̄tf

(
kt
K̄t

)
+ (1 − δ) kt,

and the private gross rate of return on capital is equal to f ′(kt/K̄t) + 1 − δ .

After invoking the equilibrium condition kt = K̄t , we arrive at the competitive

equilibrium return on capital f ′(1)+1−δ that appears in equation (14.4.1). In

contrast, the planner maximizes utility subject to a resource constraint where

the spillover effect is internalized,

Ct +Kt+1 = F

(
Kt,

Kt

L
L

)
+ (1 − δ)Kt = [f (1) + 1 − δ]Kt.
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14.5. All factors reproducible

14.5.1. One-sector model

An alternative approach to generating endogenous growth is to assume that all

factors of production are producible. Remaining within a one-sector economy,

we now assume that human capital Xt can be produced in the same way as

physical capital but rates of depreciation might differ. Let δX and δK be the

rates of depreciation of human capital and physical capital, respectively.

The competitive equilibrium wage is equal to the marginal product of hu-

man capital

wt = F2 (Kt, Xt) . (14.5.1)

Households maximize utility subject to budget constraint (14.2.7) where the

term χt is now given by

χt = wtxt + (1 − δX)xt − xt+1.

The first-order condition with respect to human capital becomes

u′ (ct) = βu′ (ct+1) (wt+1 + 1 − δX) . (14.5.2)

Since both equations (14.2.8) and (14.5.2) must hold, the rates of return on the

two assets have to obey

F1 (Kt+1, Xt+1) − δK = F2 (Kt+1, Xt+1) − δX ,

and after invoking equations (14.2.5),

f
(
K̂t+1

)
−
(
1 + K̂t+1

)
f ′
(
K̂t+1

)
= δX − δK , (14.5.3)

which uniquely determines a time-invariant competitive equilibrium ratio K̂? ,

as a function solely of depreciation rates and parameters of the production

function.5

5 The left side of equation (14.5.3) is strictly increasing, since the derivative with respect

to K̂ is −(1 + K̂)f ′′(K̂) > 0. Thus, there can only be one solution to equation (14.5.3) and
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After solving for f ′(K̂?) from equation (14.5.3) and substituting into equa-

tion (14.2.9), we arrive at an expression for the equilibrium growth rate

(
ct+1

ct

)σ
= β



f
(
K̂?
)

1 + K̂?
+ 1 − δX + K̂?δK

1 + K̂?


 . (14.5.4)

As in the previous model with an externality, the economy here is void of any

transition dynamics toward a steady state. But this implication now critically

hinges on investments being reversible so that the initial stocks of physical cap-

ital and human capital are inconsequential. In contrast to the previous model,

the present competitive equilibrium is Pareto optimal because there is no longer

any discrepancy between private and social rates of return.6

The problem of optimal taxation with commitment (see chapter 15) is stud-

ied for this model of endogenous growth by Jones, Manuelli, and Rossi (1993),

who adopt the assumption of irreversible investments.

existence is guaranteed because the left side ranges from minus infinity to plus infinity. The

limit of the left side when K̂ approaches zero is f(0)−lim
K̂→0

f ′(K̂) , which is equal to minus

infinity by equations (14.2.4) and the fact that f(0) = 0. (Barro and Sala-i-Martin (1995)

show that the Inada conditions and constant returns to scale imply that all production factors

are essential, i.e., f(0) = 0.) To establish that the left side of equation (14.5.3) approaches

plus infinity when K̂ goes to infinity, we can define the function g as F (K,X) = Kg(X̂)

where X̂ ≡ X/K and derive an alternative expression for the left side of equation (14.5.3),

(1 + X̂)g′(X̂) − g(X̂) , for which we take the limit when X̂ goes to zero.
6 It is instructive to compare the present model with two producible factors, F (K,X) , to

the previous setup with one producible factor and an externality, F̃ (K,X) with X = K̄L .

Suppose the present technology is such that K̂? = 1 and δK = δX , and the two different

setups are equally productive; i.e., we assume that F (K,X) = F̃ (2K, 2X) , which implies

f(K̂) = 2f̃(K̂) . We can then verify that the present competitive equilibrium growth rate

in equation (14.5.4) is the same as the planner’s solution for the previous setup in equation

(14.4.3).
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14.5.2. Two-sector model

Following Uzawa (1965), Lucas (1988) explores endogenous growth in a two-

sector model with all factors being producible. The resource constraint in the

goods sector is

Ct +Kt+1 = Kα
t (φtXt)

1−α + (1 − δ)Kt, (14.5.5a)

and the linear technology for accumulating additional human capital is

Xt+1 −Xt = A (1 − φt)Xt, (14.5.5b)

where φt ∈ [0, 1] is the fraction of human capital employed in the goods sector,

and (1 − φt) is devoted to human capital accumulation. (Lucas provides an

alternative interpretation that we will discuss later.)

We seek a balanced growth path where consumption, physical capital, and

human capital grow at constant rates (but not necessarily the same ones) and

the fraction φ stays constant over time. Let 1 + µ be the growth rate of

consumption, and equilibrium condition (14.2.9) becomes

(1 + µ)
σ

= β
(
αKα−1

t [φXt]
1−α

+ 1 − δ
)
. (14.5.6)

That is, along the balanced growth path, the marginal product of physical capi-

tal must be constant. With the assumed Cobb-Douglas technology, the marginal

product of capital is proportional to the average product, so that by dividing

equation (14.5.5a) through by Kt and applying equation (14.5.6) we obtain

Ct
Kt

+
Kt+1

Kt
=

(1 + µ)
σ
β−1 − (1 − α) (1 − δ)

α
. (14.5.7)

By definition of a balanced growth path, Kt+1/Kt is constant, so equation

(14.5.7) implies that Ct/Kt is constant; that is, the capital stock must grow at

the same rate as consumption.

Substituting Kt = (1 + µ)Kt−1 into equation (14.5.6),

(1 + µ)
σ − β (1 − δ) = βα [(1 + µ)Kt−1]

α−1
[φXt]

1−α
,

and dividing by the similarly rearranged equation (14.5.6) for period t− 1, we

arrive at

1 = (1 + µ)
α−1

[
Xt

Xt−1

]1−α
,
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which directly implies that human capital must also grow at the rate 1+µ along

a balanced growth path. Moreover, by equation (14.5.5b), the growth rate is

1 + µ = 1 +A (1 − φ) , (14.5.8)

so it remains to determine the steady-state value of φ .

The equilibrium value of φ has to be such that a unit of human capital

receives the same factor payment in both sectors; that is, the marginal products

of human capital must be the same,

ptA = (1 − α)Kα
t [φXt]

−α
,

where pt is the relative price of human capital in terms of the composite con-

sumption/capital good. Since the ratio Kt/Xt is constant along a balanced

growth path, it follows that the price pt must also be constant over time. Fi-

nally, the remaining equilibrium condition is that the rates of return on human

and physical capital be equal,

pt (1 +A)

pt−1
= αKα−1

t [φXt]
1−α + 1 − δ,

and after invoking a constant steady-state price of human capital and equilib-

rium condition (14.5.6), we obtain

1 + µ = [β (1 +A)]
1/σ

. (14.5.9)

Thus, the growth rate is positive as long as β(1+A) ≥ 1, but feasibility requires

also that solution (14.5.9) fall below 1+A , which is the maximum growth rate of

human capital in equation (14.5.5b). This parameter restriction, [β(1+A)]1/σ <

(1 + A), also ensures that the growth rate in equation (14.5.9) yields finite

lifetime utility.

As in the one-sector model, there is no discrepancy between private and

social rates of return, so the competitive equilibrium is Pareto optimal. Lucas

(1988) does allow for an externality (in the spirit of our earlier section) where

the economy-wide average of human capital per worker enters the production

function in the goods sector, but, as he notes, the externality is not needed to

generate endogenous growth.

Lucas provides an alternative interpretation of the technologies in equations

(14.5.5). Each worker is assumed to be endowed with one unit of time. The time
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spent in the goods sector is denoted φt , which is multiplied by the agent’s human

capital xt to arrive at the efficiency units of labor supplied. The remaining time

is spent in the education sector with a constant marginal productivity of Axt

additional units of human capital acquired. Even though Lucas’s interpretation

does introduce a nonreproducible factor in the form of a time endowment, the

multiplicative specification makes the model identical to an economy with only

two factors that are both reproducible. One section ahead we will study a setup

with a nonreproducible factor that has some nontrivial implications.

14.6. Research and monopolistic competition

Building on Dixit and Stiglitz’s (1977) formulation of the demand for differen-

tiated goods and the extension to differentiated inputs in production by Ethier

(1982), Romer (1987) studied an economy with an aggregate resource constraint

of the following type:

Ct +

∫ At+1

0

Zt+1 (i) di+ (At+1 −At)κ = L1−α

∫ At

0

Zt (i)
α

di, (14.6.1)

where one unit of the intermediate input Zt+1(i) can be produced from one unit

of output at time t , and Zt+1(i) is used in production in the following period

t+ 1. The continuous range of inputs at time t , i ∈ [0, At] , can be augmented

for next period’s production function at the constant marginal cost κ .

In the allocations that we are about to study, the quantity of an interme-

diate input will be the same across all existing types, Zt(i) = Zt for i ∈ [0, At] .

The resource constraint (14.6.1) can then be written as

Ct +At+1Zt+1 + (At+1 −At)κ = L1−αAtZ
α
t . (14.6.2)

If At were constant over time, say, let At = 1 for all t , we would just have

a parametric example of an economy yielding a no-growth steady state given

by equation (14.2.10) with δ = 1. Hence, growth can only be sustained by

allocating resources to a continuous expansion of the range of inputs. But this

approach poses a barrier to the existence of a competitive equilibrium, since

the production relationship L1−αAtZ
α
t exhibits increasing returns to scale in

its three “inputs.” Following Judd’s (1985a) treatment of patents in a dynamic
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setting of Dixit and Stiglitz’s (1977) model of monopolistic competition, Romer

(1987) assumes that an inventor of a new intermediate input obtains an infinitely

lived patent on that design. As the sole supplier of an input, the inventor can

recoup the investment cost κ by setting a price of the input above its marginal

cost.

14.6.1. Monopolistic competition outcome

The final-goods sector is still assumed to be characterized by perfect competition

because it exhibits constant returns to scale in the labor input L and the existing

continuous range of intermediate inputs Zt(i). Thus, a competitive outcome

prescribes that each input is paid its marginal product,

wt = (1 − α)L−α

∫ At

0

Zt (i)
α

di, (14.6.3)

pt (i) = αL1−α Zt (i)
α−1

, (14.6.4)

where pt(i) is the price of intermediate input i at time t in terms of the final

good.

Let 1 + Rm be the steady-state interest rate along the balanced growth

path that we are seeking. In order to find the equilibrium invention rate of new

inputs, we first compute the profits from producing and selling an existing input

i . The profit at time t is equal to

πt (i) = [pt (i) − (1 +Rm)]Zt (i) , (14.6.5)

where the cost of supplying one unit of the input i is one unit of the final

good acquired in the previous period; that is, the cost is the intertemporal

price 1 + Rm . The first-order condition of maximizing the profit in equation

(14.6.5) is the familiar expression that the monopoly price pt(i) should be set

as a markup above marginal cost, 1 +Rm , and the markup is inversely related

to the absolute value of the demand elasticity of input i , |εt(i)| :

pt (i) =
1 +Rm

1 + εt (i)
−1 , (14.6.6)

εt (i) =

[
∂ pt (i)

∂ Zt (i)

Zt (i)

pt (i)

]−1

< 0.
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The constant marginal cost, 1 +Rm , and the constant-elasticity demand curve

(14.6.4), εt(i) = −(1 − α)−1 , yield a time-invariant monopoly price, which,

substituted into demand curve (14.6.4), results in a time-invariant equilibrium

quantity of input i :

pt (i) =
1 +Rm
α

, (14.6.7a)

Zt (i) =

(
α2

1 +Rm

)1/(1−α)

L ≡ Zm. (14.6.7b)

By substituting equation (14.6.7) into equation (14.6.5), we obtain an input

producer’s steady-state profit flow,

πt (i) = (1 − α)α1/(1−α)

(
α

1 + Rm

)α/(1−α)

L ≡ Ωm (Rm) . (14.6.8)

In an equilibrium with free entry, the cost κ of inventing a new input must

be equal to the discounted stream of future profits associated with being the

sole supplier of that input,
∞∑

t=1

(1 +Rm)
−t

Ωm (Rm) =
Ωm (Rm)

Rm
; (14.6.9)

that is,

Rmκ = Ωm (Rm) . (14.6.10)

The profit function Ωm(R) is positive, strictly decreasing in R , and convex,

as depicted in Figure 14.6.1. It follows that there exists a unique intersection

between Ω(R) and Rκ that determines Rm . Using the corresponding version

of equilibrium condition (14.2.9), the computed interest rate Rm characterizes

a balanced growth path with
(
ct+1

ct

)σ
= β (1 +Rm) , (14.6.11)

as long as 1+Rm ≥ β−1 ; that is, the technology must be sufficiently productive

relative to the agents’ degree of impatience.7 It is straightforward to verify that

the range of inputs must grow at the same rate as consumption in a steady state.

After substituting the constant quantity Zm into resource constraint (14.6.2)

and dividing by At , we see that a constant At+1/At implies that Ct/At stays

constant; that is, the range of inputs must grow at the same rate as consumption.

7 If the computed value 1 +Rm falls short of β−1 , the technology does not present suffi-

cient private incentives for new inventions, so the range of intermediate inputs stays constant

over time, and the equilibrium interest rate equals β−1 .
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Figure 14.6.1: Interest rates in a version of Romer’s (1987)

model of research and monopolistic competition. The dot-

ted line is the linear relationship κR , while the solid and

dashed curves depict Ωm(R) and Ωs(R), respectively. The

intersection between κR and Ωm(R) [Ωs(R)] determines the

interest rate along a balanced growth path for the laissez-faire

economy (planner allocation), as long as R ≥ β−1 − 1. The

parameterization is α = 0.9, κ = 0.3, and L = 1.

Note that the solution to equation (14.6.10) exhibits positive scale effects

where a larger labor force L implies a higher interest rate and therefore a higher

growth rate in equation (14.6.11). The reason is that a larger economy enables

input producers to profit from a larger sales volume in equation (14.6.7b), which

spurs more inventions until the discounted stream of profits of an input is driven

down to the invention cost κ by means of the higher equilibrium interest rate.

In other words, it is less costly for a larger economy to expand its range of inputs

because the cost of an additional input is smaller in per capita terms.
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14.6.2. Planner solution

Let 1 + Rs be the social rate of interest along an optimal balanced growth

path. We analyze the planner problem in two steps. First, we establish that the

socially optimal supply of an input i is the same across all existing inputs and

constant over time. Second, we derive 1 + Rs and the implied optimal growth

rate of consumption.

For a given social interest rate 1 + Rs and a range of inputs [0, At] , the

planner would choose the quantities of intermediate inputs that maximize

L1−α

∫ At

0

Zt (i)
α di− (1 +Rs)

∫ At

0

Zt (i) di,

with the following first-order condition with respect to Zt(i):

Zt (i) =

(
α

1 +Rs

)1/(1−α)

L ≡ Zs. (14.6.12)

Thus, the quantity of an intermediate input is the same across all inputs and

constant over time. Hence, the planner’s problem is simplified to one where

utility function (14.2.1) is maximized subject to resource constraint (14.6.2)

with quantities of intermediate inputs given by equation (14.6.12). The first-

order condition with respect to At+1 is then

(
ct+1

ct

)σ
= β

L1−αZαs + κ

Zs + κ
= β (1 +Rs) , (14.6.13)

where the last equality merely invokes the definition of 1 + Rs as the social

marginal rate of intertemporal substitution, β−1(ct+1/ct)
σ . After substituting

equation (14.6.12) into equation (14.6.13) and rearranging the last equality, we

obtain

Rsκ = (1 − α)

(
α

1 +Rs

)α/(1−α)

L ≡ Ωs (Rs) . (14.6.14)

The solution to this equation, 1+Rs , is depicted in Figure 14.6.1, and existence

is guaranteed in the same way as in the case of 1 +Rm .

We conclude that the social rate of return 1+Rs and therefore the optimal

growth rate exceed the laissez-faire outcome, since the function Ωs(R) lies above

the function Ωm(R),

Ωm (R) = α1/(1−α)Ωs (R) . (14.6.15)
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We can also show that the laissez-faire supply of an input falls short of the

socially optimal one:

Zm < Zs ⇐⇒ α
1 +Rs
1 +Rm

< 1. (14.6.16)

To establish condition (14.6.16), divide equation (14.6.7b) by equation (14.6.12).

Thus, the laissez-faire equilibrium is characterized by a smaller supply of each

intermediate input and a lower growth rate than would be socially optimal.

These inefficiencies reflect the fact that suppliers of intermediate inputs do not

internalize the full contribution of their inventions, and so their monopolistic

pricing results in less than socially efficient quantities of inputs.

14.7. Growth in spite of nonreproducible factors

14.7.1. “Core” of capital goods produced without nonreproducible
inputs

It is not necessary that all factors be producible in order to experience sustained

growth through factor accumulation in the neoclassical framework. Instead,

Rebelo (1991) shows that the critical requirement for perpetual growth is the

existence of a “core” of capital goods that is produced with constant returns

technologies and without the direct or indirect use of nonreproducible factors.

Here we will study the simplest version of his model with a single capital good

that is produced without any input of the economy’s constant labor endowment.

Jones and Manuelli (1990) provide a general discussion of convex models of

economic growth and highlight the crucial feature that the rate of return to

accumulated capital must remain bounded above the inverse of the subjective

discount factor in spite of any nonreproducible factors in production.

Rebelo (1991) analyzes the competitive equilibrium for the following tech-

nology:

Ct = L1−α (φtKt)
α , (14.7.1a)

It = A (1 − φt)Kt, (14.7.1b)

Kt+1 = (1 − δ)Kt + It, (14.7.1c)
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where φt ∈ [0, 1] is the fraction of capital employed in the consumption goods

sector and (1 − φt) is employed in the linear technology producing investment

goods It . In a competitive equilibrium, the rental price of capital rt (in terms

of consumption goods) is equal to the marginal product of capital, which then

has to be the same across the two sectors (as long as they both are operating):

rt = αL1−α (φtKt)
α−1 = ptA, (14.7.2)

where pt is the relative price of capital in terms of consumption goods.

Along a steady-state growth path with a constant φ , we can compute the

growth rate of capital by substituting equation (14.7.1b) into equation (14.7.1c)

and dividing by Kt ,

Kt+1

Kt
= (1 − δ) +A (1 − φ) ≡ 1 + ρ (φ) . (14.7.3)

Given the growth rate of capital, 1 + ρ(φ), it is straightforward to compute

other rates of change:

pt+1

pt
= [1 + ρ (φ)]α−1 , (14.7.4a)

Ct+1

Ct
=
pt+1It+1

ptIt
=
pt+1Kt+1

ptKt
= [1 + ρ (φ)]α . (14.7.4b)

Since the values of investment goods and the capital stock in terms of consump-

tion goods grow at the same rate as consumption, [1+ρ(φ)]α , this common rate

is also the steady-state growth rate of the economy’s net income, measured as

Ct + ptIt − δptKt .

Agents maximize utility given by condition (14.2.1) subject to budget con-

straint (14.2.7) modified to incorporate the relative price pt ,

ct + ptkt+1 = rtkt + (1 − δ) ptkt + χt. (14.7.5)

The first-order condition with respect to capital is
(
ct+1

ct

)σ
= β

(1 − δ) pt+1 + rt+1

pt
. (14.7.6)

After substituting rt+1 = pt+1A from equation (14.7.2) and steady-state rates

of change from equation (14.7.4) into equation (14.7.6), we arrive at the fol-

lowing equilibrium condition:

[1 + ρ (φ)]
1−α(1−σ)

= β (1 − δ +A) . (14.7.7)
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Thus, the growth rate of capital and therefore the growth rate of consumption

are positive as long as

β (1 − δ +A) ≥ 1. (14.7.8a)

Moreover, the maintained assumption of this chapter that parameters are such

that derived growth rates yield finite lifetime utility, β(ct+1/ct)
1−σ < 1, imposes

here the parameter restriction β[β(1 − δ +A)]α(1−σ)/[1−α(1−σ)] < 1, which can

be simplified to read

β (1 − δ +A)
α(1−σ)

< 1. (14.7.8b)

Given that conditions (14.7.8) are satisfied, there is a unique equilibrium value

of φ because the left side of equation (14.7.7) is monotonically decreasing in

φ ∈ [0, 1] and it is strictly greater (smaller) than the right side for φ = 0

(φ = 1). The outcome is socially efficient because private and social rates of

return are the same as in the previous models with all factors reproducible.

14.7.2. Research labor enjoying an externality

Romer’s (1987) model includes labor as a fixed nonreproducible factor, but

similar to the last section, an important assumption is that this nonreproducible

factor is not used in the production of inventions that expand the input variety

(which constitutes a kind of reproducible capital in that model). In his sequel,

Romer (1990) assumes that the input variety At is expanded through the effort

of researchers rather than the resource cost κ in terms of final goods. Suppose

that we specify this new invention technology as

At+1 −At = η (1 − φt)L,

where (1−φt) is the fraction of the labor force employed in the research sector

(and φt is working in the final-goods sector). After dividing by At , it becomes

clear that this formulation cannot support sustained growth, since new inven-

tions bounded from above by ηL must become a smaller fraction of any growing

range At . Romer solves this problem by assuming that researchers’ productivity

grows with the range of inputs (i.e., an externality as discussed previously):

At+1 −At = ηAt (1 − φt)L,
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so the growth rate of At is

At+1

At
= 1 + η (1 − φt)L. (14.7.9)

When seeking a balanced growth path with a constant φ , we can use the

earlier derivations, since the optimization problem of monopolistic input pro-

ducers is the same as before. After replacing L in equations (14.6.7b) and

(14.6.8) by φL , the steady-state supply of an input and the profit flow of an

input producer are

Zm =

(
α2

1 +Rm

)1/(1−α)

φL, (14.7.10a)

Ωm (Rm) = (1 − α)α1/(1−α)

(
α

1 +Rm

)α/(1−α)

φL. (14.7.10b)

In an equilibrium, agents must be indifferent between earning the wage

in the final-goods sector equal to the marginal product of labor and being a

researcher who expands the range of inputs by ηAt and receives the associated

discounted stream of profits in equation (14.6.9):

(1 − α) (φL)
−α

AtZ
α
m = ηAt

Ωm (Rm)

Rm
.

The substitution of equation (14.7.10) into this expression yields

φ =
Rm
αηL

, (14.7.11)

which, used in equation (14.7.9), determines the growth rate of the input range,

At+1

At
= 1 + ηL− Rm

α
. (14.7.12)

Thus, the maximum feasible growth rate in equation (14.7.9), that is, 1 + ηL

with φ = 0, requires an interest rate Rm = 0, while the growth vanishes as Rm

approaches αηL .

As previously, we can show that both consumption and the input range

must grow at the same rate along a balanced growth path. It then remains
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to determine which consumption growth rate given by equation (14.7.12), is

supported by Euler equation (14.6.11):

1 + ηL− Rm
α

= [β (1 +Rm)]1/σ . (14.7.13)

The left side of equation (14.7.13) is monotonically decreasing in Rm , and the

right side is increasing. It is also trivially true that the left side is strictly

greater than the right side for Rm = 0. Thus, a unique solution exists as long

as the technology is sufficiently productive, in the sense that β(1 + αηL) > 1.

This parameter restriction ensures that the left side of equation (14.7.13) is

strictly less than the right side at the interest rate Rm = αηL corresponding to

a situation with zero growth, since no labor is allocated to the research sector,

φ = 1.

Equation (14.7.13) shows that this alternative model of research shares the

scale implications described earlier; that is, a larger economy in terms of L has

a higher equilibrium interest rate and therefore a higher growth rate. It can also

be shown that the laissez-faire outcome continues to produce a smaller quantity

of each input and to yield a lower growth rate than what is socially optimal. An

additional source of underinvestment is now that agents who invent new inputs

do not take into account that their inventions will increase the productivity of

all future researchers.

14.8. Concluding comments

This chapter has focused on the mechanical workings of endogenous growth

models, with only limited reference to the motivation behind assumptions. For

example, we have examined how externalities might enter models to overcome

the onset of diminishing returns from nonreproducible factors without referring

too much to the authors’ interpretation of those externalities. The formalism of

models is of course silent on why the assumptions are made, but the conceptual

ideas behind the models contain valuable insights. In the last setup, Paul Romer

argues that input designs represent excludable factors in the monopolists’ pro-

duction of inputs but the input variety A is also an aggregate stock of knowledge

that enters as a nonexcludable factor in the production of new inventions. That

is, the patent holder of an input type has the sole right to produce and sell that
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particular input, but she cannot stop inventors from studying the input design

and learning knowledge that helps to invent new inputs. This multiple use of an

input design hints at the nonrival nature of ideas and technology (i.e., a nonrival

object has the property that its use by one person in no way limits its use by

another). Romer (1990, p. S75) emphasizes this fundamental nature of technol-

ogy and its implication; “If a nonrival good has productive value, then output

cannot be a constant-returns-to-scale function of all its inputs taken together.

The standard replication argument used to justify homogeneity of degree one

does not apply because it is not necessary to replicate nonrival inputs.” Thus,

an endogenous growth model that is driven by technological change must be one

where the advancement enters the economy as an externality or the assumption

of perfect competition must be abandoned. Besides technological change, an

alternative approach in the endogenous growth literature is to assume that all

production factors are reproducible, or that there is a “core” of capital goods

produced without the direct or indirect use of nonreproducible factors.

As we have seen, much of the effort in the endogenous growth literature is

geared toward finding the proper technology specification. Even though growth

is an endogenous outcome in these models, its manifestation ultimately hinges on

technology assumptions. In the case of the last setup, as pointed out by Romer

(1990, p. S84), “Linearity in A is what makes unbounded growth possible, and

in this sense, unbounded growth is more like an assumption than a result of the

model.” It follows that various implications of the analyses stand and fall with

the assumptions on technology. For example, the preceding model of research

and monopolistic competition implies that the laissez-faire economy grows at a

slower rate than the social optimum, but Benassy (1998) shows how this result

can be overturned if the production function for final goods on the right side of

equation (14.6.1) is multiplied by the input range raised to some power ν , Aνt .

It then becomes possible that the laissez-faire growth rate exceeds the socially

optimal rate because the new production function disentangles input producers’

market power, determined by the parameter α , and the economy’s returns to

specialization, which is here also related to the parameter ν .

Segerstrom, Anant, and Dinopoulos (1990), Grossman and Helpman (1991),

and Aghion and Howitt (1992) provide early attempts to explore endogenous

growth arising from technologies that allow for product improvements and there-

fore product obsolescence. These models open the possibility that the laissez-

faire growth rate is excessive because of a business-stealing effect, where agents
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fail to internalize the fact that their inventions exert a negative effect on incum-

bent producers. As in the models of research by Romer (1987, 1990) covered in

this chapter, these other technologies exhibit scale effects, so that increases in

the resources devoted to research imply faster economic growth. Charles Jones

(1995), Young (1998), and Segerstrom (1998) criticize this feature and propose

assumptions on technology that do not give rise to scale effects.

Exercises

Exercise 14.1 Government spending and investment, donated by Rodolfo

Manuelli

Consider the following economy. There is a representative agent who has pref-

erences given by
∞∑

t=0

βtu (ct) ,

where the function u is differentiable, increasing, and strictly concave. The

technology in this economy is given by

ct + xt + gt ≤ f (kt, gt) ,

kt+1 ≤ (1 − δ) kt + xt,

(ct, kt+1, xt) ≥ (0, 0, 0) ,

and the initial condition k0 > 0, given. Here kt and gt are capital per worker

and government spending per worker. The function f is assumed to be strictly

concave, increasing in each argument, twice differentiable, and such that the par-

tial derivative with respect to both arguments converge to zero as the quantity

of them grows without bound.

a. Describe a set of equations that characterize an interior solution to the

planner’s problem when the planner can choose the sequence of government

spending.

b. Describe the steady state for the “general” specification of this economy. If

necessary, make assumptions to guarantee that such a steady state exists.



Exercises 473

c. Go as far as you can describing how the steady-state levels of capital per

worker and government spending per worker change as a function of the discount

factor.

d. Assume that the technology level can vary. More precisely, assume that the

production function is given by f(k, g, z) = zkαgη , where 0 < α < 1, 0 < η < 1,

and α+ η < 1. Go as far as you can describing how the investment/GDP ratio

and the government spending/GDP ratio vary with the technology level z at

the steady state.

Exercise 14.2 Productivity and employment, donated by Rodolfo Manuelli

Consider a basic growth economy with one modification. Instead of assuming

that the labor supply is fixed at 1, we include leisure in the utility function. To

simplify, we consider the total endowment of time to be 1. With this modifica-

tion, preferences and technology are given by

∞∑

t=0

βtu (ct, 1 − nt) ,

ct + xt + gt ≤ zf (kt, nt) ,

kt+1 ≤ (1 − δ) kt + xt.

In this setting, nt is the number of hours worked by the representative household

at time t . The rest of the time, 1 − nt , is consumed as leisure. The functions

u and f are assumed to be strictly increasing in each argument, concave, and

twice differentiable. In addition, f is such that the marginal product of capital

converges to zero as the capital stock goes to infinity for any given value of

labor, n .

a. Describe the steady state of this economy. If necessary, make additional

assumptions to guarantee that it exists and is unique. If you make additional

assumptions, go as far as you can giving an economic interpretation of them.

b. Assume that f(k, n) = kαn1−α and u(c, 1 − n) = [cµ(1 − n)1−µ]1−σ/(1 −

σ) . What is the effect of changes in the technology (say increases in z ) on

employment and output per capita?

c. Consider next an increase in g . Are there conditions under which an increase

in g will result in an increase in the steady-state k/n ratio? How about an
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increase in the steady-state level of output per capita? Go as far as you can

giving an economic interpretation of these conditions. (Try to do this for general

f(k, n) functions with the appropriate convexity assumptions, but if this proves

too hard, use the Cobb-Douglas specification.)

Exercise 14.3 Vintage capital and cycles, donated by Rodolfo Manuelli

Consider a standard one-sector optimal growth model with only one difference:

If kt+1 new units of capital are built at time t , these units remain fully produc-

tive (i.e., they do not depreciate) until time t+2, at which point they disappear.

Thus, the technology is given by

ct + kt+1 ≤ zf (kt + kt−1) .

a. Formulate the optimal growth problem.

b. Show that, under standard conditions, a steady state exists and is unique.

c. A researcher claims that with the unusual depreciation pattern, it is possible

that the economy displays cycles. By this he means that, instead of a steady

state, the economy will converge to a period two sequence like (co, ce, co, ce, . . .)

and (ko, ke, ko, ke, . . .), where co (ko ) indicates consumption (investment) in

odd periods, and ce (ke ) indicates consumption (investment) in even periods.

Go as far as you can determining whether this can happen. If it is possible, try

to provide an example.

Exercise 14.4 Excess capacity, donated by Rodolfo Manuelli

In the standard growth model, there is no room for varying the rate of utilization

of capital. In this problem, you will explore how the nature of the solution is

changed when variable rates of capital utilization are allowed.

As in the standard model, there is a representative agent with preferences given

by
∞∑

t=0

βtu (ct) , 0 < β < 1.

It is assumed that u is strictly increasing, concave, and twice differentiable.

Output depends on the actual number of machines used at time t , κt . Thus,

the aggregate resource constraint is

ct + xt ≤ zf (κt) ,
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where the function f is strictly increasing, concave, and twice differentiable. In

addition, f is such that the marginal product of capital converges to zero as

the stock goes to infinity. Capital that is not used does not depreciate. Thus,

capital accumulation satisfies

kt+1 ≤ (1 − δ)κt + (kt − κt) + xt,

where we require that the number of machines used, κt , is no greater than the

number of machines available, kt , or kt ≥ κt . This specification captures the

idea that if some machines are not used, kt − κt > 0, they do not depreciate.

a. Describe the planner’s problem and analyze, as thoroughly as you can, the

first-order conditions. Discuss your results.

b. Describe the steady state of this economy. If necessary, make additional

assumptions to guarantee that it exists and is unique. If you make additional

assumptions, go as far as you can giving an economic interpretation of them.

c. What is the optimal level of capacity utilization in this economy in the steady

state?

d. Is this model consistent with the view that cross-country differences in output

per capita are associated with differences in capacity utilization?

Exercise 14.5 Heterogeneity and growth, donated by Rodolfo Manuelli

Consider an economy populated by a large number of households indexed by i .

The utility function of household i is

∞∑

t=0

βtui (cit) ,

where 0 < β < 1, and ui is differentiable, increasing and strictly concave.

Note that although we allow the utility function to be “household specific,” all

households share the same discount factor. All households are endowed with

one unit of labor that is supplied inelastically.

Assume that in this economy capital markets are perfect and that house-

holds start with initial capital given by ki0 > 0. Let total capital in the economy

at time t be denoted kt and assume that total labor is normalized to 1.

Assume that there is a large number of firms that produce output using

capital and labor. Each firm has a production function given by F (k, n) which
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is increasing, differentiable, concave, and homogeneous of degree 1. Firms max-

imize the present discounted value of profits. Assume that initial ownership of

firms is uniformly distributed across households.

a. Define a competitive equilibrium.

b. Discuss (i) and (ii) and justify your answer. Be as formal as you can.

(i) Economist A argues that the steady state of this economy is unique and

independent of the ui functions, while B says that without knowledge of

the ui functions it is impossible to calculate the steady-state interest rate.

(ii) Economist A says that if k0 is the steady-state aggregate stock of capital,

then the pattern of “consumption inequality” will mirror exactly the pattern

of “initial capital inequality” (i.e., ki0 ), even though capital markets are

perfect. Economist B argues that for all k0 , in the long run, per capita

consumption will be the same for all households.

c. Assume that the economy is at the steady state. Describe the effects of the

following three policies.

(i) At time zero, capital is redistributed across households (i.e., some people

must surrender capital and others get their capital).

(ii) Half of the households are required to pay a lump-sum tax. The proceeds

of the tax are used to finance a transfer program to the other half of the

population.

(iii) Two-thirds of the households are required to pay a lump-sum tax. The

proceeds of the tax are used to finance the purchase of a public good, say

g , which does not enter in either preferences or technology.

Exercise 14.6 Taxes and growth, donated by Rodolfo Manuelli

Consider a simple two-planner economy. The first planner picks “tax rates,” τt ,

and makes transfers to the representative agent, vt . The second planner takes

the tax rates and the transfers as given. That is, even though we know the

connection between tax rates and transfers, the second planner does not, he or

she takes the sequence of tax rates and transfers as given and beyond his or her

control when solving for the optimal allocation. Thus, the problem faced by the
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second planner (the only one we will analyze for now) is

max

∞∑

t=0

βtu (ct)

subject to
ct + xt + gt − vt ≤ (1 − τt) f (kt) ,

kt+1 ≤ (1 − δ) kt + xt,

(ct, kt+1, xt) ≥ (0, 0, 0) ,

and the initial condition k0 > 0, given. The functions u and f are assumed to

be strictly increasing, concave, and twice differentiable. In addition, f is such

that the marginal product of capital converges to zero as the capital stock goes

to infinity.

a. Assume that 0 < τt = τ < 1, that is, the tax rate is constant. Assume that

vt = τf(kt) (remember that we know this, but the planner takes vt as given at

the time he or she maximizes). Show that there exists a steady state, and that

for any initial condition k0 > 0 the economy converges to the steady state.

b. Assume now that the economy has reached the steady state you analyzed in

a. The first planner decides to change the tax rate to 0 < τ ′ < τ . (Of course,

the first planner and we know that this will result in a change in vt ; however,

the second planner, the one that maximizes, acts as if vt is a given sequence

that is independent of his or her decisions.) Describe the new steady state as

well as the dynamic path followed by the economy to reach this new steady

state. Be as precise as you can about consumption, investment and output.

c. Consider now a competitive economy in which households, but not firms,

pay income tax at rate τt on both labor and capital income. In addition, each

household receives a transfer, vt , that it takes to be given and independent of its

own actions. Let the aggregate per capita capital stock be kt . Then, balanced

budget on the part of the government implies vt = τt(rtkt + wt, nt), where rt

and wt are the rental prices of capital and labor, respectively. Assume that the

production function is F (k, n), with F homogeneous of degree 1, concave, and

“nice.” Go as far as you can describing the impact of the change described in b

on the equilibrium interest rate.



Chapter 15

Optimal Taxation with Commitment

15.1. Introduction

This chapter formulates a dynamic optimal taxation problem called a Ramsey

problem with a solution called a Ramsey plan. The government’s goal is to max-

imize households’ welfare subject to raising set revenues through distortionary

taxation. When designing an optimal policy, the government takes into account

the equilibrium reactions by consumers and firms to the tax system. We first

study a nonstochastic economy, then a stochastic economy.

The model is a competitive equilibrium version of the basic neoclassical

growth model with a government that finances an exogenous stream of govern-

ment purchases. In the simplest version, the production factors are raw labor

and physical capital on which the government levies distorting flat-rate taxes.

The problem is to determine the optimal sequences for the two tax rates. In

a nonstochastic economy, Chamley (1986) and Judd (1985b) show in related

settings that if an equilibrium has an asymptotic steady state, then the optimal

policy is eventually to set the tax rate on capital to zero. This remarkable result

asserts that capital income taxation serves neither efficiency nor redistributive

purposes in the long run. This conclusion is robust to whether the government

can issue debt or must run a balanced budget in each period. However, if the

tax system is incomplete, the limiting value of optimal capital tax can be differ-

ent from zero. To illustrate this possibility, we follow Correia (1996), and study

a case with an additional fixed production factor that cannot be taxed by the

government.

In a stochastic version of the model with complete markets, we find in-

determinacy of state-contingent debt and capital taxes. Infinitely many plans

implement the same competitive equilibrium allocation. For example, two al-

ternative extreme cases are (1) that the government issues risk-free bonds and

lets the capital tax rate depend on the current state, or (2) that it fixes the

capital tax rate one period ahead and lets debt be state contingent. While the

– 478 –



Introduction 479

state-by-state capital tax rates cannot be pinned down, an optimal plan does

determine the current market value of next period’s tax payments across states

of nature. Dividing by the current market value of capital income gives a mea-

sure that we call the ex ante capital tax rate. If there exists a stationary Ramsey

allocation, Zhu (1992) shows that there are two possible outcomes. For some

special utility functions, the Ramsey plan prescribes a zero ex ante capital tax

rate that can be implemented by setting a zero tax on capital income. But

except for special classes of preferences, Zhu concludes that the ex ante capital

tax rate should vary around zero, in the sense that there is a positive measure

of states with positive tax rates and a positive measure of states with negative

tax rates. Chari, Christiano, and Kehoe (1994) perform numerical simulations

and conclude that there is a quantitative presumption that the ex ante capital

tax rate is approximately zero.

To gain further insight into optimal taxation and debt policies, we turn to

Lucas and Stokey (1983) who analyze a model without physical capital. Ex-

amples of deterministic and stochastic government expenditure streams bring

out the important role of government debt in smoothing tax distortions over

both time and states. State-contingent government debt is used as a form of

“insurance policy” that allows the government to smooth taxes over states. In

this complete markets model, the current value of the government’s debt re-

flects the current and likely future path of government expenditures rather than

anything about its past. This feature of an optimal debt policy is especially

apparent when government expenditures follow a Markov process because then

the beginning-of-period state-contingent government debt is a function only of

the current state and hence there are no lingering effects of past government

expenditures. Aiyagari, Marcet, Sargent, and Seppälä (2002) alter that feature

of optimal policy in Lucas and Stokey’s model by assuming that the govern-

ment can only issue risk-free debt. Not having access to state-contingent debt

constrains the government’s ability to smooth taxes over states and allows past

values of government expenditures to have persistent effects on both future tax

rates and debt levels. Based on an analogy from the savings problem of chapter

16 to an optimal taxation problem, Barro (1979) had thought that tax revenues

would be a martingale cointegrated with government debt. This conjecture is

one of dramatic persistent effects of government expenditures, none of which

are present in the Ramsey plan for Lucas and Stokey’s model. Aiyagari et. al.’s
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suspension of complete markets in Lucas and Stokey’s environment goes a long

way toward rationalizing the outcomes Barro had suspected.

Returning to a nonstochastic setup, Jones, Manuelli, and Rossi (1997) aug-

ment the model by allowing human capital accumulation. They make the partic-

ular assumption that the technology for human capital accumulation is linearly

homogeneous in a stock of human capital and a flow of inputs coming from

current output. Under this special constant returns assumption, they show that

a zero limiting tax applies also to labor income; that is, the return to human

capital should not be taxed in the limit. Instead, the government should resort

to a consumption tax. But even this consumption tax, and therefore all taxes,

should be zero in the limit for a particular class of preferences where it is op-

timal for the government under a transition period to amass so many claims

on the private economy that the interest earnings suffice to finance government

expenditures. While these successive results on optimal taxation require ever

more stringent assumptions, the basic prescription for a zero capital tax in a

nonstochastic steady state is an immediate implication of a standard constant-

returns-to-scale production technology, competitive markets, and a complete set

of flat-rate taxes.

Throughout the chapter we maintain the assumption that the government

can commit to future tax rates.

15.2. A nonstochastic economy

An infinitely lived representative household likes consumption, leisure streams

{ct, `t}∞t=0 that give higher values of

∞∑

t=0

βtu (ct, `t) , β ∈ (0, 1) (15.2.1)

where u is increasing, strictly concave, and three times continuously differen-

tiable in c and ` . The household is endowed with one unit of time that can be

used for leisure `t and labor nt :

`t + nt = 1. (15.2.2)

The single good is produced with labor nt and capital kt . Output can

be consumed by households, used by the government, or used to augment the
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capital stock. The technology is

ct + gt + kt+1 = F (kt, nt) + (1 − δ) kt, (15.2.3)

where δ ∈ (0, 1) is the rate at which capital depreciates and {gt}∞t=0 is an

exogenous sequence of government purchases. We assume a standard concave

production function F (k, n) that exhibits constant returns to scale. By Euler’s

theorem, linear homogeneity of F implies

F (k, n) = Fkk + Fnn. (15.2.4)

Let uc be the derivative of u(ct, `t) with respect to consumption; u` is

the derivative with respect to ` . We use uc(t) and Fk(t) and so on to denote

the time t values of the indicated objects, evaluated at an allocation to be

understood from the context.

15.2.1. Government

The government finances its stream of purchases {gt}∞t=0 by levying flat-rate,

time-varying taxes on earnings from capital at rate τkt and from labor at rate

τnt . The government can also trade one-period bonds, sequential trading of

which suffices to accomplish any intertemporal trade in a world without uncer-

tainty. Let bt be government indebtedness to the private sector, denominated in

time t-goods, maturing at the beginning of period t . The government’s budget

constraint is

gt = τkt rtkt + τnt wtnt +
bt+1

Rt
− bt, (15.2.5)

where rt and wt are the market-determined rental rate of capital and the wage

rate for labor, respectively, denominated in units of time t goods, and Rt is the

gross rate of return on one-period bonds held from t to t+1. Interest earnings

on bonds are assumed to be tax exempt; this assumption is innocuous for bond

exchanges between the government and the private sector.
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15.2.2. Households

The representative household maximizes expression (15.2.1) subject to the fol-

lowing sequence of budget constraints:

ct + kt+1 +
bt+1

Rt
= (1 − τnt )wtnt +

(
1 − τkt

)
rtkt + (1 − δ) kt + bt. (15.2.6)

With βtλt as the Lagrange multiplier on the time t budget constraint, the

first-order conditions are

ct: uc (t) = λt, (15.2.7)

nt: u` (t) = λt (1 − τnt )wt, (15.2.8)

kt+1: λt = βλt+1

[(
1 − τkt+1

)
rt+1 + 1 − δ

]
, (15.2.9)

bt+1: λt
1

Rt
= βλt+1. (15.2.10)

Substituting equation (15.2.7) into equations (15.2.8) and (15.2.9), we obtain

u` (t) = uc (t) (1 − τnt )wt, (15.2.11a)

uc (t) = βuc (t+ 1)
[(

1 − τkt+1

)
rt+1 + 1 − δ

]
. (15.2.11b)

Moreover, equations (15.2.9) and (15.2.10) imply

Rt =
(
1 − τkt+1

)
rt+1 + 1 − δ, (15.2.12)

which is a condition not involving any quantities that the household is free to

adjust. Because only one financial asset is needed to accomplish all intertem-

poral trades in a world without uncertainty, condition (15.2.12) constitutes a

no-arbitrage condition for trades in capital and bonds that ensures that these

two assets have the same rate of return. This no-arbitrage condition can be ob-

tained by consolidating two consecutive budget constraints; constraint (15.2.6)

and its counterpart for time t + 1 can be merged by eliminating the common

quantity bt+1 to get

ct +
ct+1

Rt
+
kt+2

Rt
+

bt+2

RtRt+1
= (1 − τnt )wtnt

+

(
1 − τnt+1

)
wt+1nt+1

Rt
+

[(
1 − τkt+1

)
rt+1 + 1 − δ

Rt
− 1

]
kt+1

+
(
1 − τkt

)
rtkt + (1 − δ) kt + bt, (15.2.13)
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where the left side is the use of funds and the right side measures the resources at

the household’s disposal. If the term multiplying kt+1 is not zero, the household

can make its budget set unbounded by either buying an arbitrarily large kt+1

when (1 − τkt+1)rt+1 + 1 − δ > Rt , or, in the opposite case, by selling capital

short with an arbitrarily large negative kt+1 . In such arbitrage transactions,

the household would finance purchases of capital or invest the proceeds from

short sales in the bond market between periods t and t + 1. Thus, to ensure

the existence of a competitive equilibrium with bounded budget sets, condition

(15.2.12) must hold.

If we continue the process of recursively using successive budget constraints

to eliminate successive bt+j terms, begun in equation (15.2.13), we arrive at

the household’s present-value budget constraint,

∞∑

t=0

(
t−1∏

i=0

R−1
i

)
ct =

∞∑

t=0

(
t−1∏

i=0

R−1
i

)
(1 − τnt )wtnt

+
[(

1 − τk0
)
r0 + 1 − δ

]
k0 + b0, (15.2.14)

where we have imposed the transversality conditions

lim
T→∞

(
T−1∏

i=0

R−1
i

)
kT+1 = 0, (15.2.15)

lim
T→∞

(
T−1∏

i=0

R−1
i

)
bT+1

RT
= 0. (15.2.16)

As discussed in chapter 13, the household would not like to violate these transver-

sality conditions by choosing kt+1 or bt+1 to be larger, because alternative feasi-

ble allocations with higher consumption in finite time would yield higher lifetime

utility. A consumption/savings plan that made either expression negative would

not be possible because the household would not find anybody willing to be on

the lending side of the implied transactions.
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15.2.3. Firms

In each period, the representative firm takes (rt, wt) as given, rents capital and

labor from households, and maximizes profits,

Π = F (kt, nt) − rtkt − wtnt. (15.2.17)

The first-order conditions for this problem are

rt = Fk (t) , (15.2.18a)

wt = Fn (t) . (15.2.18b)

In words, inputs should be employed until the marginal product of the last

unit is equal to its rental price. With constant returns to scale, we get the

standard result that pure profits are zero and the size of an individual firm is

indeterminate.

An alternative way of establishing the equilibrium conditions for the rental

price of capital and the wage rate for labor is to substitute equation (15.2.4)

into equation (15.2.17) to get

Π = [Fk (t) − rt] kt + [Fn (t) − wt]nt.

If the firm’s profits are to be nonnegative and finite, the terms multiplying kt

and nt must be zero; that is, condition (15.2.18) must hold. These conditions

imply that in any equilibrium, Π = 0.

15.3. The Ramsey problem

We shall use symbols without subscripts to denote the one-sided infinite sequence

for the corresponding variable, e.g., c ≡ {ct}∞t=0 .

Definition: A feasible allocation is a sequence (k, c, `, g) that satisfies equa-

tion (15.2.3).

Definition: A price system is a 3-tuple of nonnegative bounded sequences

(w, r,R).
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Definition: A government policy is a 4-tuple of sequences (g, τk, τn, b).

Definition: A competitive equilibrium is a feasible allocation, a price system,

and a government policy such that (a) given the price system and the govern-

ment policy, the allocation solves both the firm’s problem and the household’s

problem; and (b) given the allocation and the price system, the government

policy satisfies the sequence of government budget constraints (15.2.5).

There are many competitive equilibria, indexed by different government

policies. This multiplicity motivates the Ramsey problem.

Definition: Given k0 and b0 , the Ramsey problem is to choose a competitive

equilibrium that maximizes expression (15.2.1).

To make the Ramsey problem interesting, we always impose a restriction

on τk0 , for example, by taking it as given at a small number, say, 0. This

approach rules out taxing the initial capital stock via a so-called capital levy

that would constitute a lump-sum tax, since k0 is in fixed supply. One often

imposes other restrictions on τkt , t ≥ 1, namely, that they be bounded above

by some arbitrarily given numbers. These bounds play an important role in

shaping the near-term temporal properties of the optimal tax plan, as discussed

by Chamley (1986) and explored in computational work by Jones, Manuelli, and

Rossi (1993). In the analysis that follows, we shall impose the bound on τkt only

for t = 0.1

1 According to our assumption on the technology in equation (15.2.3), capital is reversible

and can be transformed back into the consumption good. Thus, the capital stock is a fixed

factor for only one period at a time, so τk0 is the only tax that we need to restrict to ensure

an interesting Ramsey problem.
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15.4. Zero capital tax

Following Chamley (1986), we formulate the Ramsey problem as if the govern-

ment chooses the after-tax rental rate of capital r̃t , and the after-tax wage rate

w̃t :

r̃t ≡
(
1 − τkt

)
rt,

w̃t ≡ (1 − τnt )wt.

Using equations (15.2.18) and (15.2.4), Chamley expresses government tax rev-

enues as

τkt rtkt + τnt wtnt = (rt − r̃t) kt + (wt − w̃t)nt

= Fk (t) kt + Fn (t)nt − r̃tkt − w̃tnt

= F (kt, nt) − r̃tkt − w̃tnt.

Substituting this expression into equation (15.2.5) consolidates the firm’s first-

order conditions with the government’s budget constraint. The government’s

policy choice is also constrained by the aggregate resource constraint (15.2.3)

and the household’s first-order conditions (15.2.11). The Ramsey problem in

Lagrangian form becomes

L =

∞∑

t=0

βt
{
u (ct, 1 − nt)

+ Ψt

[
F (kt, nt) − r̃tkt − w̃tnt +

bt+1

Rt
− bt − gt

]

+ θt [F (kt, nt) + (1 − δ) kt − ct − gt − kt+1]

+ µ1t [u` (t) − uc (t) w̃t]

+ µ2t [uc (t) − βuc (t+ 1) (r̃t+1 + 1 − δ)]
}
, (15.4.1)

where Rt = r̃t+1 + 1 − δ , as given by equation (15.2.12). Note that the house-

hold’s budget constraint is not explicitly included because it is redundant when

the government satisfies its budget constraint and the resource constraint holds.

The first-order condition with respect to kt+1 is

θt = β {Ψt+1 [Fk (t+ 1) − r̃t+1] + θt+1 [Fk (t+ 1) + 1 − δ]} . (15.4.2)
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The equation has a straightforward interpretation. A marginal increment of

capital investment in period t increases the quantity of available goods at time

t+ 1 by the amount [Fk(t+ 1)+ 1− δ] , which has a social marginal value θt+1 .

In addition, there is an increase in tax revenues equal to [Fk(t+1)− r̃t+1] , which

enables the government to reduce its debt or other taxes by the same amount.

The reduction of the “excess burden” equals Ψt+1[Fk(t + 1) − r̃t+1] . The sum

of these two effects in period t + 1 is discounted by the discount factor β and

set equal to the social marginal value of the initial investment good in period t ,

which is given by θt .

Suppose that government expenditures stay constant after some period T ,

and assume that the solution to the Ramsey problem converges to a steady state;

that is, all endogenous variables remain constant. Using equation (15.2.18a),

the steady-state version of equation (15.4.2) is

θ = β [Ψ (r − r̃) + θ (r + 1 − δ)] . (15.4.3)

Now with a constant consumption stream, the steady-state version of the house-

hold’s optimality condition for the choice of capital in equation (15.2.11b) is

1 = β (r̃ + 1 − δ) . (15.4.4)

A substitution of equation (15.4.4) into equation (15.4.3) yields

(θ + Ψ) (r − r̃) = 0. (15.4.5)

Since the marginal social value of goods θ is strictly positive and the marginal

social value of reducing government debt or taxes Ψ is nonnegative, it follows

that r must be equal to r̃ , so that τk = 0. This analysis establishes the

following celebrated result, versions of which were attained by Chamley (1986)

and Judd (1985b).

Proposition 1: If there exists a steady-state Ramsey allocation, the asso-

ciated limiting tax rate on capital is zero.

Its ability to borrow and lend a risk-free one period asset makes it feasible

for the government to amass a stock of claims on the private economy that is

so large that eventually the interest earnings suffice to finance the stream of
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government expenditures.2 Then it can set all tax rates to zero. It should be

emphasized that this is not the force that underlies the above result that τk

should be zero asymptotically. The zero-capital-tax outcome would prevail even

if we were to prohibit the government from borrowing or lending by requiring

it to run a balanced budget in each period. To see this, notice that if we had

set bt and bt+1 equal to zero in equation (15.4.1), nothing would change in our

derivation of the conclusion that τk = 0. Thus, even when the government must

perpetually raise positive revenues from some source each period, it remains

optimal eventually to set τk to zero.

15.5. Limits to redistribution

The optimality of a limiting zero capital tax extends to an economy with het-

erogeneous agents, as mentioned by Chamley (1986) and explored in depth by

Judd (1985b). Assume a finite number of different classes of agents, N , and for

simplicity, let each class be the same size. The consumption, labor supply, and

capital stock of the representative agent in class i are denoted cit , n
i
t , and kit ,

respectively. The utility function might also depend on the class, ui(cit, 1−nit),

but the discount factor is assumed to be identical across all agents.

The government can make positive class-specific lump-sum transfers Sit ≥
0, but there are no lump-sum taxes. As before, the government must rely on flat-

rate taxes on earnings from capital and labor. We assume that the government

has a social welfare function that is a positively weighted average of individual

utilities with weight αi ≥ 0 on class i . Without affecting the limiting result for

the capital tax, we assume that the government runs a balanced budget. The

Lagrangian of the government’s optimization problem becomes

L =

∞∑

t=0

βt

{
N∑

i=1

αiui
(
cit, 1 − nit

)

+ Ψt [F (kt, nt) − r̃tkt − w̃tnt − gt − St]

+ θt [F (kt, nt) + (1 − δ) kt − ct − gt − kt+1]

2 Below we shall describe a stochastic economy in which the government cannot issue

state-contingent debt. For that economy, such a policy would actually be the optimal one.
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+

N∑

i=1

εit
[
w̃tn

i
t + r̃tk

i
t + (1 − δ) kit + Sit − cit − kit+1

]

+

N∑

i=1

µi1t
[
ui` (t) − uic (t) w̃t

]

+

N∑

i=1

µi2t
[
uic (t) − βuic (t+ 1) (r̃t+1 + 1 − δ)

]
}
, (15.5.1)

where xt ≡ ∑N
i=1 x

i
t , for x = c, n, k, S . Here we have to include the budget

constraints and the first-order conditions for each class of agents.

The social marginal value of an increment in the capital stock depends

now on whose capital stock is augmented. The Ramsey problem’s first-order

condition with respect to kit+1 is

θt + εit = β
{
Ψt+1 [Fk (t+ 1) − r̃t+1] + θt+1 [Fk (t+ 1) + 1 − δ]

+ εit+1 (r̃t+1 + 1 − δ)
}
. (15.5.2)

If an asymptotic steady state exists in equilibrium, the time-invariant version of

this condition becomes

θ + εi [1 − β (r̃ + 1 − δ)] = β [Ψ (r − r̃) + θ (r + 1 − δ)] . (15.5.3)

Since the steady-state condition (15.4.4) holds for each individual household,

the term multiplying εi is zero, and we can once again deduce condition (15.4.5)

asserting that the limiting capital tax must be zero in any convergent Pareto-

efficient tax program.

Judd (1985b) discusses one extreme version of heterogeneity with two classes

of agents. Agents of class 1 are workers who do not save, so their budget con-

straint is

c1t = w̃tn
1
t + S1

t .

Agents of class 2 are capitalists who do not work, so their budget constraint is

c2t + k2
t+1 = r̃tk

2
t + (1 − δ) k2

t + S2
t .

Since this setup is also covered by the preceding analysis, a limiting zero capital

tax remains optimal if there is a steady state. This fact implies, for example,
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that if the government only values the welfare of workers (α1 > α2 = 0), there

will not be any recurring redistribution in the limit. Government expenditures

will be financed solely by levying wage taxes on workers.

It is important to keep in mind that the results pertain only to the limiting

steady state. Our analysis is silent about how much redistribution is accom-

plished in the transition period.

15.6. Primal approach to the Ramsey problem

In the formulation of the Ramsey problem in expression (15.4.1), Chamley

reduced a pair of taxes (τkt , τ
n
t ) and a pair of prices (rt, wt) to just one pair of

numbers (r̃t, w̃t) by utilizing the firm’s first-order conditions and equilibrium

outcomes in factor markets. In a similar spirit, we will now eliminate all prices

and taxes so that the government can be thought of as directly choosing a feasible

allocation, subject to constraints that ensure the existence of prices and taxes

such that the chosen allocation is consistent with the optimization behavior of

households and firms. This primal approach to the Ramsey problem, as opposed

to the dual approach in which tax rates are viewed as governmental decision

variables, is used in Lucas and Stokey’s (1983) analysis of an economy without

capital. Here we will follow the setup of Jones, Manuelli, and Rossi (1997).

It is useful to compare our primal approach to the Ramsey problem with

the formulation in (15.4.1). First, we will now consider only the case when the

government is free to trade in the bond market. The constraints with Lagrange

multipliers Ψt in (15.4.1) can therefore be replaced with a single present-value

budget constraint for either the government or the representative household.

(One of them is redundant, since we are also imposing the aggregate resource

constraint.) The problem simplifies nicely if we choose the present-value budget

constraint of the household (15.2.14), in which future capital stocks have been

eliminated with the use of no-arbitrage conditions. For convenience, we repeat

the household’s present-value budget constraint here:

∞∑

t=0

q0t ct =

∞∑

t=0

q0t (1 − τnt )wtnt +
[(

1 − τk0
)
r0 + 1 − δ

]
k0 + b0 . (15.6.1)



Primal approach to the Ramsey problem 491

In equation (15.6.1), q0t is the Arrow-Debreu price given by

q0t =
t−1∏

i=0

R−1
i , ∀t ≥ 1; (15.6.2)

with the numeraire q00 = 1. Second, we use two constraints in expression

(15.4.1) to replace prices q0t and (1 − τnt )wt in equation (15.6.1) with the

household’s marginal rates of substitution.

A stepwise summary of the primal approach is as follows:

1. Obtain the first-order conditions of the household’s and the firm’s prob-

lems, as well as any arbitrage pricing conditions. Solve these conditions for

{q0t , rt, wt, τkt , τnt }∞t=0 as functions of the allocation {ct, nt, kt+1}∞t=0 .

2. Substitute these expressions for taxes and prices in terms of the allocation

into the household’s present-value budget constraint. This is an intertemporal

constraint involving only the allocation.

3. Solve for the Ramsey allocation by maximizing expression (15.2.1) subject

to equation (15.2.3) and the “implementability condition” derived in step 2.

4. After the Ramsey allocation is solved, use the formulas from step 1 to find

taxes and prices.

15.6.1. Constructing the Ramsey plan

We now carry out the steps outlined in the preceding list of instructions.

Step 1. Let λ be a Lagrange multiplier on the household’s budget constraint

(15.6.1). The first-order conditions for the household’s problem are

ct: βtuc (t) − λq0t = 0,

nt: − βtu` (t) + λq0t (1 − τnt )wt = 0.

With the numeraire q00 = 1, these conditions imply

q0t = βt
uc (t)

uc (0)
, (15.6.3a)

(1 − τnt )wt =
u` (t)

uc (t)
. (15.6.3b)
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As before, we can derive the arbitrage condition (15.2.12), which now reads

q0t
q0t+1

=
(
1 − τkt+1

)
rt+1 + 1 − δ. (15.6.4)

Profit maximization and factor market equilibrium imply equations (15.2.18).

Step 2. Substitute equations (15.6.3) and r0 = Fk(0) into equation (15.6.1), so

that we can write the household’s budget constraint as

∞∑

t=0

βt [uc (t) ct − u` (t)nt] −A = 0, (15.6.5)

where A is given by

A = A
(
c0, n0, τ

k
0

)
= uc (0)

{[(
1 − τk0

)
Fk (0) + 1 − δ

]
k0 + b0

}
. (15.6.6)

Step 3. The Ramsey problem is to maximize expression (15.2.1) subject to

equation (15.6.5) and the feasibility constraint (15.2.3). As before, we proceed

by assuming that government expenditures are small enough that the problem

has a convex constraint set and that we can approach it using Lagrangian meth-

ods. In particular, let Φ be a Lagrange multiplier on equation (15.6.5) and

define

V (ct, nt,Φ) = u (ct, 1 − nt) + Φ [uc (t) ct − u` (t)nt] . (15.6.7)

Then form the Lagrangian

J =
∞∑

t=0

βt {V (ct, nt,Φ) + θt [F (kt, nt) + (1 − δ) kt

−ct − gt − kt+1]} − ΦA, (15.6.8)

where {θt}∞t=0 is a sequence of Lagrange multipliers. For given k0 and b0 , we

fix τk0 and maximize J with respect to {ct, nt, kt+1}∞t=0 . First-order conditions
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for this problem are3

ct: Vc (t) = θt, t ≥ 1

nt: Vn (t) = −θtFn (t) , t ≥ 1

kt+1: θt = βθt+1 [Fk (t+ 1) + 1 − δ] , t ≥ 0

c0: Vc (0) = θ0 + ΦAc,

n0: Vn (0) = −θ0Fn (0) + ΦAn.

These conditions become

Vc (t) = βVc (t+ 1) [Fk (t+ 1) + 1 − δ] , t ≥ 1 (15.6.9a)

Vn (t) = −Vc (t)Fn (t) , t ≥ 1 (15.6.9b)

Vc (0) − ΦAc = βVc (1) [Fk (1) + 1 − δ] , (15.6.9c)

Vn (0) = [ΦAc − Vc (0)]Fn (0) + ΦAn. (15.6.9d)

To these we add equations (15.2.3) and (15.6.5), which we repeat here for

convenience:

ct + gt + kt+1 = F (kt, nt) + (1 − δ) kt, t ≥ 0 (15.6.10a)
∞∑

t=0

βt [uc (t) ct − u` (t)nt] −A = 0. (15.6.10b)

We seek an allocation {ct, nt, kt+1}∞t=0 , and a multiplier Φ that satisfies the

system of difference equations formed by equations (15.6.9)–(15.6.10).4

Step 4: After an allocation has been found, obtain q0t from equation (15.6.3a),

rt from equation (15.2.18a), wt from equation (15.2.18b), τnt from equation

(15.6.3b), and finally τkt from equation (15.6.4).

3 Comparing the first-order condition for kt+1 to the earlier one in equation (15.4.2),

obtained under Chamley’s alternative formulation of the Ramsey problem, note that the La-

grange multiplier θt is different across formulations. Specifically, the present specification of

the objective function V subsumes parts of the household’s present-value budget constraint.

To bring out this difference, a more informative notation would be to write Vj(t,Φ) for j = c, n

rather than just Vj(t) .
4 This system of nonlinear equations can be solved iteratively. First, fix Φ, and solve

equations (15.6.9) and (15.6.10a) for an allocation. Then check the implementability condi-

tion (15.6.10b), and increase or decrease Φ depending on whether the budget is in deficit or

surplus.
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15.6.2. Revisiting a zero capital tax

Consider the special case in which there is a T ≥ 0 for which gt = g for all

t ≥ T . Assume that there exists a solution to the Ramsey problem and that it

converges to a time-invariant allocation, so that c, n , and k are constant after

some time. Then because Vc(t) converges to a constant, the stationary version

of equation (15.6.9a) implies

1 = β (Fk + 1 − δ) . (15.6.11)

Now because ct is constant in the limit, equation (15.6.3a) implies that
(
q0t /q

0
t+1

)

→ β−1 as t→ ∞ . Then the no-arbitrage condition for capital (15.6.4) becomes

1 = β
[(

1 − τk
)
Fk + 1 − δ

]
. (15.6.12)

Equalities (15.6.11) and (15.6.12) imply that τk = 0.

15.7. Taxation of initial capital

Thus far, we have set τk0 at zero (or some other small fixed number). Now

suppose that the government is free to choose τk0 . The derivative of J in

equation (15.6.8) with respect to τk0 is

∂J

∂τk0
= Φuc (0)Fk (0) k0, (15.7.1)

which is strictly positive for all τk0 as long as Φ > 0. The nonnegative Lagrange

multiplier Φ measures the utility costs of raising government revenues through

distorting taxes. Without distortionary taxation, a competitive equilibrium

would attain the first-best outcome for the representative household, and Φ

would be equal to zero, so that the household’s (or equivalently, by Walras’

Law, the government’s) present-value budget constraint would not exert any

additional constraining effect on welfare maximization beyond what is present

in the economy’s technology. In contrast, when the government has to use some

of the tax rates {τnt , τkt+1}∞t=0 , the multiplier Φ is strictly positive and reflects

the welfare cost of the distorted margins, implicit in the present-value budget

constraint (15.6.10b), which govern the household’s optimization behavior.
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By raising τk0 and thereby increasing the revenues from lump-sum taxation

of k0 , the government reduces its need to rely on future distortionary taxation,

and hence the value of Φ falls. In fact, the ultimate implication of condition

(15.7.1) is that the government should set τk0 high enough to drive Φ down

to zero. In other words, the government should raise all revenues through a

time 0 capital levy, then lend the proceeds to the private sector and finance

government expenditures by using the interest from the loan; this would enable

the government to set τnt = 0 for all t ≥ 0 and τkt = 0 for all t ≥ 1.5

15.8. Nonzero capital tax due to incomplete taxation

The result that the limiting capital tax should be zero hinges on a complete

set of flat-rate taxes. The consequences of incomplete taxation are illustrated

by Correia (1996), who introduces an additional production factor zt in fixed

supply zt = Z that cannot be taxed, τzt = 0.

The new production function F (kt, nt, zt) exhibits constant returns to scale

in all of its inputs. Profit maximization implies that the rental price of the new

factor equals its marginal product:

pzt = Fz (t) .

The only change to the household’s present-value budget constraint (15.6.1) is

that a stream of revenues is added to the right side:

∞∑

t=0

q0t p
z
tZ.

5 The scheme may involve τk0 > 1 for high values of {gt}
∞
t=0 and b0 . However, such a

scheme cannot be implemented if the household could avoid the tax liability by not renting

out its capital stock at time 0. The government would then be constrained to choose τk0 ≤ 1.

In the rest of the chapter, we do not impose that τkt ≤ 1. If we were to do so, an extra

constraint in the Ramsey problem would be

uc (t) ≥ β (1 − δ) uc (t+ 1) ,

which can be obtained by substituting equation (15.6.3a) into equation (15.6.4).
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Following our scheme of constructing the Ramsey plan, step 2 yields the

following implementability condition:
∞∑

t=0

βt {uc (t) [ct − Fz (t)Z] − u` (t)nt} −A = 0, (15.8.1)

where A remains defined by equation (15.6.6). In step 3 we formulate

V (ct, nt, kt,Φ) = u (ct, 1 − nt)

+ Φ {uc (t) [ct − Fz (t)Z] − u` (t)nt} . (15.8.2)

In contrast to equation (15.6.7), kt enters now as an argument in V because

of the presence of the marginal product of the factor Z (but we have chosen to

suppress the quantity Z itself, since it is in fixed supply).

Except for these changes of the functions F and V , the Lagrangian of the

Ramsey problem is the same as equation (15.6.8). The first-order condition

with respect to kt+1 is

θt = βVk (t+ 1) + βθt+1 [Fk (t+ 1) + 1 − δ] . (15.8.3)

Assuming the existence of a steady state, the stationary version of equation

(15.8.3) becomes

1 = β (Fk + 1 − δ) + β
Vk
θ
. (15.8.4)

Condition (15.8.4) and the no-arbitrage condition for capital (15.6.12) imply

an optimal value for τk :

τk =
Vk
θFk

=
ΦucZ

θFk
Fzk.

As discussed earlier, in a second-best solution with distortionary taxation, Φ >

0, so the limiting tax rate on capital is zero only if Fzk = 0. Moreover, the sign

of τk depends on the direction of the effect of capital on the marginal product

of the untaxed factor Z . If k and Z are complements, the limiting capital tax

is positive, and it is negative in the case where the two factors are substitutes.

Other examples of a nonzero limiting capital tax are presented by Stiglitz

(1987) and Jones, Manuelli, and Rossi (1997), who assume that two types of

labor must be taxed at the same tax rate. Once again, the incompleteness of

the tax system makes the optimal capital tax depend on how capital affects the

marginal products of the other factors.
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15.9. A stochastic economy

We now turn to optimal taxation in a stochastic version of our economy. With

the notation of chapter 8, we follow the setups of Zhu (1992) and Chari, Chris-

tiano, and Kehoe (1994). The stochastic state st at time t determines an exoge-

nous shock both to the production function F (·, ·, st) and to government pur-

chases gt(st). We use the history of events st to define history-contingent com-

modities: ct(s
t), `t(s

t), and nt(s
t) are the household’s consumption, leisure,

and labor at time t given history st , and kt+1(s
t) denotes the capital stock

carried over to next period t+ 1. Following our earlier convention, uc(s
t) and

Fk(s
t) and so on denote the values of the indicated objects at time t for history

st , evaluated at an allocation to be understood from the context.

The household’s preferences are ordered by

∞∑

t=0

∑

st

βtπt
(
st
)
u
[
ct
(
st
)
, `t
(
st
)]
. (15.9.1)

The production function has constant returns to scale in labor and capital.

Feasibility requires that

ct
(
st
)

+ gt (st) + kt+1

(
st
)

= F
[
kt
(
st−1

)
, nt
(
st
)
, st
]
+ (1 − δ) kt

(
st−1

)
. (15.9.2)

15.9.1. Government

Given history st at time t , the government finances its exogenous purchase

gt(st) and any debt obligation by levying flat-rate taxes on earnings from capital

at rate τkt (st) and from labor at rate τnt (st), and by issuing state-contingent

debt. Let bt+1(st+1|st) be government indebtedness to the private sector at the

beginning of period t + 1 if event st+1 is realized. This state-contingent asset

is traded in period t at the price pt(st+1|st), in terms of time t goods. The

government’s budget constraint becomes

gt (st) =τkt
(
st
)
rt
(
st
)
kt
(
st−1

)
+ τnt

(
st
)
wt
(
st
)
nt
(
st
)

+
∑

st+1

pt
(
st+1|st

)
bt+1

(
st+1|st

)
− bt

(
st|st−1

)
, (15.9.3)
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where rt(s
t) and wt(s

t) are the market-determined rental rate of capital and

the wage rate for labor, respectively.

15.9.2. Households

The representative household maximizes expression (15.9.1) subject to the fol-

lowing sequence of budget constraints:

ct
(
st
)

+ kt+1

(
st
)

+
∑

st+1

pt
(
st+1|st

)
bt+1

(
st+1|st

)

=
[
1 − τkt

(
st
)]
rt
(
st
)
kt
(
st−1

)
+
[
1 − τnt

(
st
)]
wt
(
st
)
nt
(
st
)

+ (1 − δ) kt
(
st−1

)
+ bt

(
st|st−1

)
∀t. (15.9.4)

The first-order conditions for this problem imply

u` (s
t)

uc (st)
=
[
1 − τnt

(
st
)]
wt
(
st
)
, (15.9.5a)

pt
(
st+1|st

)
=β

πt+1

(
st+1

)

πt (st)

uc
(
st+1

)

uc (st)
, (15.9.5b)

uc
(
st
)

=βEt

{
uc
(
st+1

)

·
[(

1 − τkt+1

(
st+1

))
rt+1

(
st+1

)
+ 1 − δ

]}
, (15.9.5c)

where Et is the mathematical expectation conditional on information available

at time t , i.e., history st :

Etxt+1

(
st+1

)
=
∑

st+1|st

πt+1

(
st+1

)

πt (st)
xt+1

(
st+1

)

=
∑

st+1|st

πt+1

(
st+1|st

)
xt+1

(
st+1

)
,

where the summation over st+1|st means that we sum over all possible histories

s̃t+1 such that s̃t = st .

Corresponding to the no-arbitrage condition (15.2.12) in the nonstochastic

economy, conditions (15.9.5b) and (15.9.5c) imply

1 =
∑

st+1

pt
(
st+1|st

) {[
1 − τkt+1

(
st+1

)]
rt+1

(
st+1

)
+ 1 − δ

}
. (15.9.6)
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And once again, this no-arbitrage condition can be obtained by consolidating

the budget constraints of two consecutive periods. Multiply the time t+ 1 ver-

sion of equation (15.9.4) by pt(st+1|st) and sum over all realizations st+1 . The

resulting expression can be substituted into equation (15.9.4) by eliminating∑
st+1

pt(st+1|st)bt+1(st+1|st). Then, to rule out arbitrage transactions in cap-

ital and state-contingent assets, the term multiplying kt+1(s
t) must be zero;

this approach amounts to imposing condition (15.9.6). Similar no-arbitrage

arguments were made in chapters 8 and 13.

As before, by repeated substitution of one-period budget constraints, we

can obtain the household’s present-value budget constraint:

∞∑

t=0

∑

st

q0t
(
st
)
ct
(
st
)

=

∞∑

t=0

∑

st

q0t
(
st
) [

1 − τnt
(
st
)]
wt
(
st
)
nt
(
st
)

+
[(

1 − τk0
)
r0 + 1 − δ

]
k0 + b0, (15.9.7)

where we denote time 0 variables by the time subscript 0. The price system

q0t (s
t) conforms to the following formula, versions of which were displayed in

chapter 8:

q0t+1

(
st+1

)
= pt

(
st+1|st

)
q0t
(
st
)

= βt+1πt+1

(
st+1

) uc
(
st+1

)

uc (s0)
. (15.9.8)

Alternatively, equilibrium price (15.9.8) can be computed from the first-order

conditions for maximizing expression (15.9.1) subject to equation (15.9.7) (and

choosing the numeraire q00 = 1). Furthermore, the no-arbitrage condition

(15.9.6) can be expressed as

q0t
(
st
)

=
∑

st+1|st

q0t+1

(
st+1

)

·
{[

1 − τkt+1

(
st+1

)]
rt+1

(
st+1

)
+ 1 − δ

}
. (15.9.9)

In deriving the present-value budget constraint (15.9.7), we imposed two

transversality conditions that specify that for any infinite history s∞

lim q0t
(
st
)
kt+1

(
st
)

= 0, (15.9.10a)

lim
∑

st+1

q0t+1

(
{st+1, s

t}
)
bt+1

(
st+1|st

)
= 0, (15.9.10b)
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where the limits are taken over sequences of histories st contained in the infinite

history s∞ .

15.9.3. Firms

The static maximization problem of the representative firm remains the same

as before. Thus, in a competitive equilibrium, production factors are paid their

marginal products:

rt
(
st
)

= Fk
(
st
)
, (15.9.11a)

wt
(
st
)

= Fn
(
st
)
. (15.9.11b)

15.10. Indeterminacy of state-contingent debt and
capital taxes

Consider a feasible government policy {gt(st), τkt (st), τnt (st), bt+1(st+1|st); ∀st ,
st+1}t≥0 with an associated competitive allocation {ct(st), nt(st), kt+1(s

t); ∀st}t≥0 .

Note that the labor tax is uniquely determined by equations (15.9.5a) and

(15.9.11b). However, there are infinitely many plans for state-contingent debt

and capital taxes that can implement a particular competitive allocation.

Intuition for the indeterminacy of state-contingent debt and capital taxes

can be gleaned from the household’s first-order condition (15.9.5c), which states

that capital tax rates affect the household’s intertemporal allocation by changing

the current market value of after-tax returns on capital. If a different set of

capital taxes induces the same current market value of after-tax returns on

capital, then they will also be consistent with the same competitive allocation.

It remains only to verify that the change of capital tax receipts in different states

can be offset by restructuring the government’s issue of state-contingent debt.

Zhu (1992) shows how such feasible alternative policies can be constructed.

Let {εt(st); ∀st}t≥0 be a random process such that

Etuc
(
st+1

)
εt+1

(
st+1

)
rt+1

(
st+1

)
= 0. (15.10.1)

We can then construct an alternative policy for capital taxes and state-contingent

debt, {τ̂kt (st), b̂t+1(st+1|st); ∀st, st+1}t≥0 , as follows:

τ̂k0 = τk0 , (15.10.2a)
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τ̂kt+1

(
st+1

)
= τkt+1

(
st+1

)
+ εt+1

(
st+1

)
, (15.10.2b)

b̂t+1

(
st+1|st

)
= bt+1

(
st+1|st

)
+ εt+1

(
st+1

)
rt+1

(
st+1

)
kt+1

(
st
)
, (15.10.2c)

for t ≥ 0. Compared to the original fiscal policy, we can verify that this alter-

native policy does not change the following:

1. The household’s intertemporal consumption choice, governed by first-order

condition (15.9.5c).

2. The current market value of all government debt issued at time t , when

discounted with the equilibrium expression for pt(st+1|st) in equation (15.9.5b).

3. The government’s revenue from capital taxation net of maturing government

debt in any state st+1 .

Thus, the alternative policy is feasible and leaves the competitive allocation

unchanged.

Since there are infinitely many ways of constructing sequences of random

variables {εt(st)} that satisfy equation (15.10.1), it follows that the competitive

allocation can be implemented by many different plans for capital taxes and

state-contingent debt. It is instructive to consider two special cases where there

is no uncertainty one period ahead about one of the two policy instruments. We

first take the case of risk-free one-period bonds. In period t , the government

issues bonds that promise to pay b̄t+1(s
t) at time t+ 1 with certainty. Let the

amount of bonds be such that their present market value is the same as that for

the original fiscal plan,

∑

st+1

pt
(
st+1|st

)
b̄t+1

(
st
)

=
∑

st+1

pt
(
st+1|st

)
bt+1

(
st+1|st

)
.

After invoking the equilibrium expression for prices (15.9.5b), we can solve for

the constant b̄t+1(s
t)

b̄t+1

(
st
)

=
Etuc

(
st+1

)
bt+1 (st+1|st)

Etuc (st+1)
. (15.10.3)

The change in capital taxes needed to offset this shift to risk-free bonds is then

implied by equation (15.10.2c):

εt+1

(
st+1

)
=
b̄t+1 (st) − bt+1 (st+1|st)
rt+1 (st+1) kt+1 (st)

. (15.10.4)
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We can check that equations (15.10.3) and (15.10.4) describe a permissible

policy by substituting these expressions into equation (15.10.1) and verifying

that the restriction is indeed satisfied.

Next, we examine a policy where the capital tax is not contingent on the

realization of the current state but is already set in the previous period. Let

τ̄t+1(s
t) be the capital tax rate in period t + 1, conditional on information

at time t . We choose τ̄t+1(s
t) so that the household’s first-order condition

(15.9.5c) is unaffected:

Et
{
uc
(
st+1

) [(
1 − τ̄kt+1

(
st
))
rt+1

(
st+1

)
+ 1 − δ

]}

= Et
{
uc
(
st+1

) [(
1 − τkt+1

(
st+1

))
rt+1

(
st+1

)
+ 1 − δ

]}
,

which gives

τ̄kt+1

(
st
)

=
Etuc

(
st+1

)
τkt+1

(
st+1

)
rt+1

(
st+1

)

Etuc (st+1) rt+1 (st+1)
. (15.10.5)

Thus, the alternative policy in equations (15.10.2) with capital taxes known one

period in advance is accomplished by setting

εt+1

(
st+1

)
= τ̄kt+1

(
st
)
− τkt+1

(
st+1

)
.

15.11. The Ramsey plan under uncertainty

We now ask what competitive allocation should be chosen by a benevolent gov-

ernment; that is, we solve the Ramsey problem for the stochastic economy.

The computational strategy is in principle the same given in our recipe for a

nonstochastic economy.

Step 1, in which we use private first-order conditions to solve for prices and

taxes in terms of the allocation, has already been accomplished with equations

(15.9.5a), (15.9.8), (15.9.9), and (15.9.11). In step 2, we use these expres-

sions to eliminate prices and taxes from the household’s present-value budget

constraint (15.9.7), which leaves us with

∞∑

t=0

∑

st

βtπt
(
st
) [
uc
(
st
)
ct
(
st
)
− u`

(
st
)
nt
(
st
)]

−A = 0, (15.11.1)
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where A is still given by equation (15.6.6). Proceeding to step 3, we define

V
[
ct
(
st
)
, nt
(
st
)
,Φ
]

=u
[
ct
(
st
)
, 1 − nt

(
st
)]

+Φ
[
uc
(
st
)
ct
(
st
)
− u`

(
st
)
nt
(
st
)]
, (15.11.2)

where Φ is a Lagrange multiplier on equation (15.11.1). Then form the La-

grangian

J =

∞∑

t=0

∑

st

βtπt(s
t)
{
V [ct(s

t), nt(s
t),Φ]

+ θt(s
t)
[
F
(
kt(s

t−1), nt(s
t), st

)
+ (1 − δ)kt(s

t−1)

− ct(s
t) − gt(st) − kt+1(s

t)
]}

− ΦA, (15.11.3)

where {θt(st); ∀st}t≥0 is a sequence of Lagrange multipliers. For given k0 and

b0 , we fix τk0 and maximize J with respect to {ct(st), nt(st), kt+1(s
t); ∀st}t≥0 .

The first-order conditions for the Ramsey problem are

ct
(
st
)
: Vc

(
st
)

= θt
(
st
)
, t ≥ 1;

nt
(
st
)
: Vn

(
st
)

= −θt
(
st
)
Fn
(
st
)
, t ≥ 1;

kt+1

(
st
)
: θt

(
st
)

= β
∑

st+1|st

πt+1

(
st+1

)

πt (st)
θt+1

(
st+1

)

·
[
Fk
(
st+1

)
+ 1 − δ

]
, t ≥ 0;

where we have left out the conditions for c0 and n0 , which are different because

they include terms related to the initial stocks of capital and bonds. The first-

order conditions for the problem imply, for t ≥ 1,

Vc
(
st
)

= βEtVc
(
st+1

) [
Fk
(
st+1

)
+ 1 − δ

]
, (15.11.4a)

Vn
(
st
)

= −Vc
(
st
)
Fn
(
st
)
. (15.11.4b)

These expressions reveal an interesting property of the Ramsey allocation. If the

stochastic process s is Markov, equations (15.11.4) suggest that the allocations

from period 1 onward can be described by time-invariant allocation rules c(s, k),

n(s, k), and k′(s, k).6

6 To emphasize that the second-best allocation depends critically on the extent to which

the government has to resort to distortionary taxation, we might want to include the constant

Φ as an explicit argument in c(s, k) , n(s, k) , and k′(s, k) .
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15.12. Ex ante capital tax varies around zero

In a nonstochastic economy, we proved that if the equilibrium converges to a

steady state, then the optimal limiting capital tax is zero. The counterpart to

a steady state in a stochastic economy is a stationary equilibrium. Therefore,

we now assume that the process on s follows a Markov process with transition

probabilities π(s′|s) ≡ Prob(st+1 = s′|st = s). As noted in the previous section,

this assumption implies that the allocation rules are time-invariant functions of

(s, k). If the economy converges to a stationary equilibrium, the stochastic

process {st, kt} is a stationary, ergodic Markov process on the compact set

S× [0, k̄] where S is a finite set of possible realizations for st and k̄ is an upper

bound on the capital stock.7

Because of the indeterminacy of state-contingent government debt and cap-

ital taxes, it is not possible uniquely to characterize a stationary distribution of

realized capital tax rates, but we can study the ex ante capital tax rate defined

as

τ̄kt+1

(
st
)

=

∑
st+1

pt (st+1|st) τkt+1

(
st+1

)
rt+1

(
st+1

)
∑
st+1

pt (st+1|st) rt+1 (st+1)
. (15.12.1)

That is, the ex ante capital tax rate is the ratio of current market value of

taxes on capital income to the present market value of capital income. After

invoking the equilibrium price of equation (15.9.5b), we see that this expression

is identical to equation (15.10.5). Recall that equation (15.10.5) resolved the

indeterminacy of the Ramsey plan by pinning down a unique fixed capital tax

rate for period t + 1 conditional on information at time t . It follows that

the alternative interpretation of τ̄kt+1(s
t) in equation (15.12.1) as the ex ante

capital tax rate offers a unique measure across the multiplicity of capital tax

schedules under the Ramsey plan. Moreover, it is quite intuitive that one way

for the government to tax away, in present value terms, a fraction τ̄kt+1(s
t) of

next period’s capital income is to set a constant tax rate exactly equal to that

number.

Let P∞(·) be the probability measure over the outcomes in such a station-

ary equilibrium. We now state the proposition of Zhu (1992) that the ex ante

capital tax rate in a stationary equilibrium either equals zero or varies around

zero.

7 An upper bound on the capital stock can be constructed as follows:

k̄ = max{k̄ (s) : F
[
k̄ (s) , 1, s

]
= δk̄ (s) ; s ∈ S}.
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Proposition 2: If there exists a stationary Ramsey allocation, the ex ante

capital tax rate is such that

(a) either P∞(τ̄kt = 0) = 1, or P∞(τ̄kt > 0) > 0 and P∞(τ̄kt < 0) > 0;

(b) P∞(τ̄kt = 0) = 1 if and only if P∞[Vc(ct, nt,Φ)/uc(ct, `t) = Λ] = 1 for some

constant Λ.

A sketch of the proof is provided in the next subsection. Let us just add here

that the two possibilities with respect to the ex ante capital tax rate are not

vacuous. One class of utilities that imply P∞(τ̄kt = 0) = 1 is

u (ct, `t) =
c1−σt

1 − σ
+ v (`t) ,

for which the ratio Vc(ct, nt,Φ)/uc(ct, `t) is equal to [1+Φ(1−σ)] , which plays

the role of the constant Λ required by Proposition 2. Chari, Christiano, and

Kehoe (1994) solve numerically for Ramsey plans when the preferences do not

satisfy this condition. In their simulations, the ex ante tax on capital income

remains approximately equal to zero.

To revisit Chamley (1986) and Judd’s (1985b) result on the optimality of

a zero capital tax in a nonstochastic economy, it is trivially true that the ratio

Vc(ct, nt,Φ)/uc(ct, `t) is constant in a nonstochastic steady state. In a stationary

equilibrium of a stochastic economy, Proposition 2 extends this result: for some

utility functions, the Ramsey plan prescribes a zero ex ante capital tax rate

that can be implemented by setting a zero tax on capital income. But except

for such special classes of preferences, Proposition 2 states that the ex ante

capital tax rate should fluctuate around zero, in the sense that P∞(τ̄kt > 0) > 0

and P∞(τ̄kt < 0) > 0.
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15.12.1. Sketch of the proof of Proposition 2

Note from equation (15.12.1) that τ̄kt+1(s
t) ≥ (≤) 0 if and only if

∑

st+1

pt
(
st+1|st

)
τkt+1

(
st+1

)
rt+1

(
st+1

)
≥ (≤) 0,

which, together with equation (15.9.6), implies

1 ≤ (≥)
∑

st+1

pt
(
st+1|st

) [
rt+1

(
st+1

)
+ 1 − δ

]
.

Substituting equations (15.9.5b) and (15.9.11a) into this expression yields

uc
(
st
)
≤ (≥)βEtuc

(
st+1

) [
Fk
(
st+1

)
+ 1 − δ

]
(15.12.2)

if and only if τ̄kt+1(s
t) ≥ (≤) 0.

Define

H
(
st
)
≡ Vc (st)

uc (st)
. (15.12.3)

Using equation (15.11.4a), we have

uc
(
st
)
H
(
st
)

= βEtuc
(
st+1

)
H
(
st+1

) [
Fk
(
st+1

)
+ 1 − δ

]
. (15.12.4)

By formulas (15.12.2) and (15.12.4), τ̄kt+1(s
t) ≥ (≤) 0 if and only if

H
(
st
)
≥ (≤)

Etω
(
st+1

)
H
(
st+1

)

Etω (st+1)
, (15.12.5)

where ω(st+1) ≡ uc(s
t+1)[Fk(s

t+1) + 1 − δ] .

Since a stationary Ramsey equilibrium has time-invariant allocation rules

c(s, k), n(s, k), and k′(s, k), it follows that τ̄kt+1(s
t), H(st), and ω(st) can

also be expressed as functions of (s, k). The stationary version of expression

(15.12.5) with transition probabilities π(s′|s) becomes

τ̄k (s, k) ≥ (≤) 0 if and only if

H (s, k) ≥ (≤)

∑
s′ π (s′|s)ω [s′, k′ (s, k)]H [s′, k′ (s, k)]∑

s′ π (s′|s)ω [s′, k′ (s, k)]

≡ ΓH (s, k) .

(15.12.6)
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Note that the operator Γ is a weighted average of H [s′, k′(s, k)] and that it has

the property that ΓH∗ = H∗ for any constant H∗ .

Under some regularity conditions, H(s, k) attains a minimum H− and a

maximum H+ in the stationary equilibrium. That is, there exist equilibrium

states (s−, k−) and (s+, k+) such that

P∞
[
H (s, k) ≥ H−

]
= 1, (15.12.7a)

P∞
[
H (s, k) ≤ H+

]
= 1, (15.12.7b)

where H− = H(s−, k−) and H+ = H(s+, k+). We will now show that if

P∞ [H (s, k) ≥ ΓH (s, k)] = 1, (15.12.8a)

or

P∞ [H (s, k) ≤ ΓH (s, k)] = 1, (15.12.8b)

then there must exist a constant H∗ such that

P∞ [H (s, k) = H∗] = 1. (15.12.8c)

First, take equation (15.12.8a) and consider the state (s, k) = (s−, k−) that is

associated with a set of possible states in the next period, {s′, k′(s, k); ∀s′ ∈ S} .

By equation (15.12.7a), H(s′, k′) ≥ H− , and since H(s, k) = H− , condition

(15.12.8a) implies that H(s′, k′) = H− . We can repeat the same argument

for each (s′, k′), and thereafter for the equilibrium states that they map into,

and so on. Thus, using the ergodicity of {st, kt} , we obtain equation (15.12.8c)

with H∗ = H− . A similar reasoning can be applied to equation (15.12.8b), but

we now use (s, k) = (s+, k+) and equation (15.12.7b) to show that equation

(15.12.8c) is implied.

By the correspondence in expression (15.12.6) we have established part

(a) of Proposition 2. Part (b) follows after recalling definition (15.12.3); the

constant H∗ in equation (15.12.8c) is the sought-after Λ.
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15.13. Examples of labor tax smoothing

To gain some insight into optimal tax policies, we consider several examples of

government expenditures to be financed in a model without physical capital.

The technology is now described by

ct
(
st
)

+ gt (st) = nt
(
st
)
. (15.13.1)

Since one unit of labor yields one unit of output, the competitive equilibrium

wage is given by wt(s
t) = 1. The model is otherwise identical to the previous

framework. This very model is analyzed by Lucas and Stokey (1983), who

also study the time consistency of the optimal fiscal policy by allowing the

government to choose taxes sequentially rather than once-and-for-all at time

0.8

The household’s present-value budget constraint is given by equation (15.9.7)

except that we delete the part involving physical capital. Prices and taxes are

expressed in terms of the allocation by conditions (15.9.5a) and (15.9.8). Af-

ter using these expressions to eliminate prices and taxes, the implementability

condition, equation (15.11.1), becomes

∞∑

t=0

∑

st

βtπt
(
st
) [
uc
(
st
)
ct
(
st
)
− u`

(
st
)
nt
(
st
)]

− uc
(
s0
)
b0 = 0. (15.13.2)

We then form the Lagrangian in the same way as before. After writing out the

derivatives Vc(s
t) and Vn(s

t), the first-order conditions of this Ramsey problem

are

8 The optimal tax policy is in general time inconsistent, as studied in chapter 24 and as

indicated by the preceding discussion about taxation of initial capital. However, Lucas and

Stokey (1983) show that the optimal tax policy in the model without physical capital can be

made time consistent if the government can issue debt at all maturities (and so is not restricted

to issue only one-period debt as in our formulation). There exists a period-by-period strategy

for structuring a term structure of history-contingent claims that preserves the initial Ramsey

allocation {ct(s
t), nt(s

t); ∀st}t≥0 as the Ramsey allocation for the continuation economy.

By induction, the argument extends to subsequent periods. Persson, Persson, and Svensson

(1988) apply the argument to the maturity structure of both real and nominal bonds in a

monetary economy.
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ct
(
st
)
: (1 + Φ)uc

(
st
)

+ Φ
[
ucc
(
st
)
ct
(
st
)
− u`c

(
st
)
nt
(
st
)]

− θt
(
st
)

= 0, t ≥ 1; (15.13.3a)

nt
(
st
)
: − (1 + Φ)u`

(
st
)
− Φ

[
uc`
(
st
)
ct
(
st
)
− u``

(
st
)
nt
(
st
)]

+ θt
(
st
)

= 0, t ≥ 1; (15.13.3b)

c0
(
s0
)
: (1 + Φ)uc

(
s0
)

+ Φ
[
ucc
(
s0
)
c0
(
s0
)
− u`c

(
s0
)
n0

(
s0
)]

− θ0
(
s0
)
− Φucc

(
s0
)
b0 = 0; (15.13.3c)

n0

(
s0
)
: − (1 + Φ)u`

(
s0
)
− Φ

[
uc`
(
s0
)
c0
(
s0
)
− u``

(
s0
)
n0

(
s0
)]

+ θ0
(
s0
)
− Φuc`

(
s0
)
b0 = 0. (15.13.3d)

Here we retain our assumption that the government does not set taxes sequen-

tially but commits to a policy at time 0.

To uncover a key property of the optimal allocation for t ≥ 1, it is instruc-

tive to merge first-order conditions (15.13.3a) and (15.13.3b) by substituting

out for the multiplier θt(s
t):

(1 + Φ)uc(c, 1 − c− g) + Φ
[
cucc(c, 1 − c− g)

− (c+ g)u`c(c, 1 − c− g)
]

= (1 + Φ)u`(c, 1 − c− g) + Φ
[
cuc`(c, 1 − c− g)

− (c+ g)u``(c, 1 − c− g)
]
, (15.13.4)

where we have invoked the resource constraints (15.13.1) and `t(s
t)+nt(s

t) = 1.

We have also suppressed the time subscript and the index st for the quantities

of consumption, leisure, and government purchases in order to highlight a key

property of the optimal allocation. In particular, if the quantities of govern-

ment purchases are the same after two histories st and s̃j for t, j ≥ 0, i.e.,

gt(st) = gj(s̃j) = g , then it follows from equation (15.13.4) that the optimal

choices of consumption and leisure, (ct(s
t), `t(s

t)) and (cj(s̃
j), `j(s̃

j)), must

satisfy the very same first-order condition. Hence, the optimal allocation is a

function only of the current realized quantity of government purchases g and

does not depend on the specific history leading up to that outcome. This his-

tory independence can be compared to the analogous history independence of

the competitive equilibrium allocation with complete markets in chapter 8.

The following preliminary calculations will be useful in shedding further

light on optimal tax policies for some examples of government expenditure
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streams. First, substitute equations (15.9.5a) and (15.13.1) into equation

(15.13.2) to get

∞∑

t=0

∑

st

βtπt
(
st
)
uc
(
st
) [
τnt
(
st
)
nt
(
st
)
− gt (st)

]
− uc

(
s0
)
b0 = 0. (15.13.5)

Then multiplying equation (15.13.3a) by ct(s
t) and equation (15.13.3b) by

nt(s
t) and summing, we find

(1 + Φ)
[
ct
(
st
)
uc
(
st
)
− nt

(
st
)
u`
(
st
)]

+ Φ
[
ct
(
st
)2
ucc
(
st
)
− 2nt

(
st
)
ct
(
st
)
u`c
(
st
)

+ nt
(
st
)2
u``
(
st
)]

− θt
(
st
) [
ct
(
st
)
− nt

(
st
)]

= 0, t ≥ 1. (15.13.6a)

Similarly, multiplying equation (15.13.3c) by [c0(s
0)−b0] and equations (15.13.3d)

by n0(s
0) and summing, we obtain

(1 + Φ)
{[
c0
(
s0
)
− b0

]
uc
(
s0
)
− n0

(
s0
)
u`
(
s0
)}

+ Φ
{[
c0
(
s0
)
− b0

]2
ucc
(
s0
)
− 2n0

(
s0
) [
c0
(
s0
)
− b0

]
u`c
(
s0
)

+ n0

(
s0
)2
u``
(
s0
)}

− θ0
(
s0
) [
c0
(
s0
)
− b0 − n0

(
s0
)]

= 0. (15.13.6b)

Note that since the utility function is strictly concave, the quadratic term in

equation (15.13.6) is negative.9 Finally, multiplying equation (15.13.6a) by

9 To see that the quadratic term in equation (15.13.6a) is negative, complete the square by

adding and subtracting the quantity n2u2
`c
/ucc (where we have suppressed the time subscript

and the argument st ):

c2ucc − 2ncu`c + n2u`` + n2
u2
`c

ucc
− n2

u2
`c

ucc

= ucc

(
c2 − 2nc

u`c
ucc

+ n2
u2
`c

u2
cc

)
+

(
u`` −

u2
`c

ucc

)
n2

= ucc

(
c−

u`c
ucc

n

)2
+
uccu`` − u2

`c

ucc
n2.

Since the conditions for a strictly concave u are ucc < 0 and uccu`` − u2
`c
> 0, it follows

immediately that the quadratic term in equation (15.13.6a) is negative. The same argument

applies to the quadratic term in equation (15.13.6b).
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βtπt(s
t), summing over t and st , and adding equation (15.13.6b), we find that

(1 + Φ)

(
∞∑

t=0

∑

st

βtπt
(
st
) [
ct
(
st
)
uc
(
st
)
− nt

(
st
)
u`
(
st
)]

− uc
(
s0
)
b0

)

+ ΦQ−
∞∑

t=0

∑

st

βtπt
(
st
)
θt
(
st
) [
ct
(
st
)
− nt

(
st
)]

+ θ0
(
s0
)
b0 = 0,

where Q is the sum of negative (quadratic) terms. Using equations (15.13.2)

and (15.13.1), we arrive at

ΦQ+

∞∑

t=0

∑

st

βtπt
(
st
)
θt
(
st
)
gt (st) + θ0

(
s0
)
b0 = 0. (15.13.7)

Expression (15.13.7) furthers our understanding of the Lagrange multi-

plier Φ on the household’s present value budget constraint and how it re-

lates to the shadow values associated with the economy’s resource constraints

{θt(st); ∀st}t≥0 . Let us first examine under what circumstances the Lagrange

multiplier Φ is equal to zero. Setting Φ = 0 in equations (15.13.3) and (15.13.7)

yields

uc
(
st
)

= u`
(
st
)

= θt
(
st
)
, t ≥ 0; (15.13.8)

and, thus,
∞∑

t=0

∑

st

βtπt
(
st
)
uc
(
st
)
gt (st) + uc

(
s0
)
b0 = 0.

Dividing this expression by uc(s
0) and using equation (15.9.8), we find that

∞∑

t=0

∑

st

q0t
(
st
)
gt (st) = −b0.

In other words, when the government’s initial claims −b0 against the private

sector equal the present value of all future government expenditures, the La-

grange multiplier Φ is zero; that is, the household’s present-value budget does

not exert any additional constraining effect on welfare maximization beyond

what is already present in the economy’s technology. The reason is that the

government does not have to resort to any distortionary taxation, as can be

seen from conditions (15.9.5a) and (15.13.8), which imply τnt (st) = 0. If the

government’s initial claims against the private sector were to exceed the present



512 Optimal Taxation with Commitment

value of future government expenditures, a trivial implication would be that

the government would like to return this excess financial wealth as lump-sum

transfers to the households, and our argument here with Φ = 0 would remain

applicable. In the opposite case, when the present value of all government ex-

penditures exceeds the value of any initial claims against the private sector, the

Lagrange multiplier Φ > 0. For example, suppose b0 = 0 and there is some

gt(st) > 0. After recalling that Q < 0 and θt(s
t) > 0, it follows from equation

(15.13.7) that Φ > 0.

Following Lucas and Stokey (1983), we now exhibit some examples of gov-

ernment expenditure streams and how they affect optimal tax policies. Through-

out we assume that b0 = 0.

15.13.1. Example 1: gt = g for all t ≥ 0

Given a constant amount of government purchases gt = g , the first-order con-

dition (15.13.4) is the same in every period, and we conclude that the optimal

allocation is constant over time: (ct, nt) = (ĉ, n̂) for t ≥ 0. It then follows from

condition (15.9.5a) that the tax rate required to implement the optimal allo-

cation is also constant over time: τnt = τ̂n , for t ≥ 0. Consequently, equation

(15.13.5) implies that the government budget is balanced in each period.

Government debt issues in this economy serve to smooth distortions over

time. Because government expenditures are already smooth in this economy,

they are optimally financed from contemporaneous taxes. Nothing is gained

from using debt to change the timing of tax collection.

15.13.2. Example 2: gt = 0 for t 6= T , and gT > 0

Setting g = 0 in expression (15.13.4), the optimal allocation (ct, nt) = (ĉ, n̂)

is constant for t 6= T , and consequently, from condition (15.9.5a), the tax

rate is also constant over these periods, τnt = τ̂n for t 6= T . Using equations

(15.13.6), we can study tax revenues. Recall that ct−nt = 0 for t 6= T and that

b0 = 0. Thus, the last term in equations (15.13.6) drops out. Since Φ > 0, the

second (quadratic) term is negative, so the first term must be positive. Since
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(1 + Φ) > 0, this fact implies

0 < ĉ− u`
uc
n̂ = ĉ− (1 − τ̂n) n̂ = τ̂nn̂,

where the first equality invokes condition (15.9.5a). We conclude that tax rev-

enue is positive for t 6= T . For period T , the last term in equation (15.13.6),

θT gT , is positive. Therefore, the sign of the first term is indeterminate: labor

may be either taxed or subsidized in period T .

This example is a stark illustration of tax smoothing where debt is used to

redistribute tax distortions over time. With the same tax revenues in all periods

before and after time T , the optimal debt policy is as follows: in each period

t = 0, 1, . . . , T − 1, the government runs a surplus, using it to buy bonds issued

by the private sector. In period T , the expenditure gT is met by selling all of

these bonds, possibly levying a tax on current labor income, and issuing new

bonds that are thereafter rolled over forever. Interest payments on that constant

outstanding government debt are equal to the constant tax revenue for t 6= T ,

τ̂nn̂ . Thus, the tax distortion is the same in all periods surrounding period T ,

regardless of the proximity to the date T . This symmetry was first noted by

Barro (1979).

15.13.3. Example 3: gt = 0 for t 6= T , and gT is stochastic

We assume that gT = g > 0 with probability α and gT = 0 with probability

1 − α . As in the previous example, there is an optimal constant allocation

(ct, nt) = (ĉ, n̂) for all periods t 6= T (although the optimum values of ĉ and

n̂ will not, in general, be the same as in example 2). In addition, equation

(15.13.4) implies that (cT , nT ) = (ĉ, n̂) if gT = 0. The argument in example 2

shows that tax revenue is positive in all these states. Consequently, debt issues

are as follows.

In each period t = 0, 1, . . . , T−2, the government runs a surplus, using it to

buy bonds issued by the private sector. A significant difference from example 2

occurs in period T − 1, when the government now sells all these bonds and uses

the proceeds plus current labor tax revenue to buy one-period contingent bonds

that pay off in the next period only if gT = g and otherwise have no value. In

addition, the government buys more of these contingent claims in period T−1 by

going short in noncontingent claims. And as in example 2, the noncontingent
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government debt will be rolled over forever with interest payments equal to

τ̂nn̂ , but here it is issued one period earlier. If gT = 0 in the next period,

the government clearly satisfies its intertemporal budget constraint. In the case

gT = g , the construction of our Ramsey equilibrium ensures that the payoff

on the government’s holdings of contingent claims against the private sector is

equal to g plus interest payments of τ̂nn̂ on government debt net of any current

labor tax/subsidy in period T . In periods T + 1, T + 2, . . . , the situation is as

in example 2, regardless of whether gT = 0 or gT = g .

This is another example of tax smoothing over time where the tax distortion

is the same in all periods around time T . It also demonstrates the risk-spreading

aspects of fiscal policy under uncertainty. In effect, the government in period

T − 1 buys insurance from the private sector against the event that gT = g .

15.14. Lessons for optimal debt policy

Lucas and Stokey (1983) draw three lessons from their analysis of the model

in our previous section. The first is built into the model at the outset: budget

balance in a present-value sense must be respected. In a stationary economy, fis-

cal policies that have occasional deficits necessarily have offsetting surpluses at

other dates. Thus, in the examples with erratic government expenditures, good

times are associated with budget surpluses. Second, in the face of erratic gov-

ernment spending, the role of government debt is to smooth tax distortions over

time, and the government should not seek to balance its budget on a continual

basis. Third, the contingent-claim character of government debt is important

for an optimal policy.10

10 Aiyagari, Marcet, Sargent, and Seppälä (2002) offer a qualification to the importance

of state-contingent government debt in the model of Lucas and Stokey (1983). In numerical

simulations, they explore Ramsey outcomes under the assumption that contingent claims

cannot be traded. (Their setup is presented and analyzed in our next section.) They find

that the incomplete markets Ramsey allocation is very close to the complete markets Ramsey

allocation. This proximity comes from the Ramsey policy’s use of self-insurance through risk-

free borrowing and lending with households. Compare to our chapter 17 on heterogeneous

agents and how self-insurance can soften the effects of market incompleteness.
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To highlight the role of an optimal state-contingent government debt policy

further, we study the government’s budget constraint at time t after history st :

bt
(
st|st−1

)
= τnt

(
st
)
nt
(
st
)
− gt (st)

+

∞∑

j=1

∑

st+j |st

qtt+j
(
st+j

) [
τnt+j

(
st+j

)
nt+j

(
st+j

)
− gt+j (st+j)

]

=
∞∑

j=0

∑

st+j |st

βjπt+j
(
st+j |st

) uc
(
st+j

)

uc (st)

{[
1 − u`

(
st+j

)

uc (st+j)

]

·
[
ct+j

(
st+j

)
+ gt+j (st+j)

]
− gt+j (st+j)

}
, (15.14.1)

where we have invoked the resource constraint (15.13.1) and conditions (15.9.5a)

and (15.9.8) that express taxes and prices in terms of the allocation. Recall

from our discussion of first-order condition (15.13.4) that the optimal alloca-

tion {ct+j(st+j), `t+j(st+j)} is history independent and depends only on the

present realization of government purchases in any given period. We now ask,

what is true about the optimal amount of state-contingent debt that matures in

period t after history st ? Investigating the right side of expression (15.14.1), we

see that history dependence would only arise because of the transition probabil-

ities {πt+j(st+j |st)} that govern government purchases. Hence, if government

purchases are governed by a Markov process, we conclude that there can be no

history dependence: the beginning-of-period state-contingent government debt

is solely a function of the current state st , since everything on the right side of

(15.13.1) depends solely on st . This is a remarkable feature of the debt policy

associated with the solution to the optimal taxation problem. By purposefully

trading in state-contingent debt markets, the government shields itself from any

lingering effects of past shocks to government purchases. Its beginning-of-period

indebtedness is completely tailored to its present circumstances as captured by

the realization of the current state st . In contrast, our stochastic example 3

above is a nonstationary environment where the debt policy associated with the

optimal allocation depends on both calender time and past events.

Finally, we take a look at the value of contingent government debt in our

earlier model with physical capital. Here we cannot expect any sharp result con-

cerning beginning-of-period debt because of our finding above on the indetermi-

nacy of state-contingent debt and capital taxes. However, the derivations of that
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specific finding suggest that we instead should look at the value of outstanding

debt at the end of a period. By multiplying equation (15.9.4) by pt−1(st|st−1)

and summing over st , we express the household’s budget constraint for period

t in terms of time t− 1 values,

kt
(
st−1

)
+
∑

st

pt−1

(
st|st−1

)
bt
(
st|st−1

)

=
∑

st

pt−1

(
st|st−1

)
{
ct
(
st
)
−
[
1 − τnt

(
st
)]
wt
(
st
)
nt
(
st
)

+ kt+1

(
st
)

+
∑

st+1

pt
(
st+1|st

)
bt+1

(
st+1|st

)
}
, (15.14.2)

where the unit coefficient on kt(s
t−1) is obtained by invoking conditions (15.9.5b)

and (15.9.5c). Expression (15.14.2) states that the household’s ownership of

capital and contingent debt at the end of period t − 1 is equal to the present

value of next period’s contingent purchases of goods and financial assets net of

labor earnings. We can eliminate next period’s purchases of capital and state-

contingent bonds by using next period’s version of equation (15.14.2). After

invoking transversality conditions (15.9.10), continued substitutions yield
∑

st

pt−1

(
st|st−1

)
bt
(
st|st−1

)

=

∞∑

j=t

∑

sj |st−1

βj+1−tπj
(
sj |st−1

) uc
(
sj
)
cj
(
sj
)
− u`

(
sj
)
nj
(
sj
)

uc (st−1)

− kt
(
st−1

)
, (15.14.3)

where we have invoked conditions (15.9.5a) and (15.9.5b). Suppose now that

the stochastic process on s follows a Markov process. Then recall from earlier

that the allocations from period 1 onward can be described by time-invariant

allocation rules with the current state s and beginning-of-period capital stock

k as arguments. Thus, equation (15.14.3) implies that the end-of-period gov-

ernment debt is also a function of the state vector (s, k), since the current

state fully determines the end-of-period capital stock and is the only informa-

tion needed to form conditional expectations of future states. Putting together

the lessons of this section with earlier ones, reliance on state-contingent debt

and/or state-contingent capital taxes enables the government to avoid any lin-

gering effects on indebtedness from past shocks to government expenditures and

past productivity shocks that affected labor tax revenues.
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This striking lack of history dependence contradicts the extensive history-

dependence of the stock of government debt that Robert Barro (1979) identified

as one of the salient characteristics of his model of optimal fiscal policy. Ac-

cording to Barro, government debt should be cointegrated with tax revenues,

which in turn should follow a random walk, with innovations that are perfectly

correlated with innovations in the government expenditure process. Important

aspects of such behavior of government debt seem to be observed. For example,

Sargent and Velde (1995) display long series of government debt for eighteenth

century Britain that more closely resembles the outcome from Barro’s model

than from Lucas and Stokey’s. Partly inspired by those observations, Aiyaragi

et al. returned to the environment of Lucas and Stokey’s model and altered the

market structure in a way that brought outcomes closer to Barro’s. We create

their model by closing almost all of the markets that Lucas and Stokey had

allowed.

15.15. Taxation without state-contingent debt

Returning to the model without physical capital, we follow Aiyagari, Marcet,

Sargent, and Seppälä (2002) and study optimal taxation without state-contingent

debt. The government’s budget constraint in expression (15.9.3) has to be mod-

ified by replacing state-contingent debt by risk-free government bonds. In period

t and history st , let bt+1(s
t) be the amount of government indebtedness car-

ried over to and maturing in the next period t+1, denominated in time (t+1)

goods. The market value at time t of that government indebtedness equals

bt+1(s
t) divided by the risk-free gross interest rate between periods t and t+1,

denoted by Rt(s
t). Thus, the government’s budget constraint in period t and

history st becomes

bt
(
st−1

)
= τnt

(
st
)
nt
(
st
)
− gt (st) − Tt

(
st
)

+
bt+1 (st)

R (st)

≡ z
(
st
)

+
bt+1 (st)

Rt (st)
, (15.15.1)

where Tt(s
t) is a nonnegative lump-sum transfer to the representative household

and z(st) is a function for the net-of-interest government surplus. It might

seem strange to include the term Tt(s
t) that allows for a nonnegative lump-sum
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transfer to the private sector. In an optimal taxation allocation that includes

the levy of distortionary taxes, why would the government ever want to hand

back resources to the private sector that have been raised with distortionary

taxes? Certainly that would never happen in an economy with state-contingent

debt, since any such allocation could be improved by lowering distortionary

taxes rather than handing out lump-sum transfers. But as we will see, without

state-contingent debt there can be circumstances when a government would like

to make lump-sum transfers to the private sector. However, most of the time

we shall be able to ignore this possibility.

To rule out Ponzi schemes, we assume that the government is subject to

versions of the natural debt limits defined in chapters 8 and 17. The consumption

Euler equation for the representative household able to trade risk-free debt with

one-period gross interest rate Rt(s
t) is

1

Rt (st)
=
∑

st+1

pt
(
st+1|st

)
=
∑

st+1|st

βπt+1

(
st+1|st

) uc
(
st+1

)

uc (st)
.

Substituting this expression into the government’s budget constraint (15.15.1)

yields:

bt
(
st−1

)
= z

(
st
)

+
∑

st+1|st

βπt+1

(
st+1|st

) uc
(
st+1

)

uc (st)
bt+1

(
st
)
. (15.15.2)

Note that the constant bt+1(s
t) is the same for all realizations of st+1 . We will

now replace that constant bt+1(s
t) by another expression of the same magnitude.

In fact, we have as many candidate expressions of that magnitude as there

are possible states st+1 , i.e., for each state st+1 there is a government budget

constraint that is the analogue to expression (15.15.1) but where the time index

is moved one period forward. And all those budget constraints have a right side

that is equal to bt+1(s
t). Instead of picking one of these candidate expressions

to replace all occurrences of bt+1(s
t) in equation (15.15.2), we replace bt+1(s

t)

when the summation index in equation (15.15.2) is st+1 by the right side of

next period’s budget constraint that is associated with that particular realization

st+1 . These substitutions give rise to the following expression:

bt
(
st−1

)
= z

(
st
)

+
∑

st+1|st

βπt+1

(
st+1|st

)uc
(
st+1

)

uc (st)

·
[
z
(
st+1

)
+
bt+2

(
st+1

)

Rt+1 (st+1)

]
.



Taxation without state-contingent debt 519

After similar repeated substitutions for all future occurrences of government

indebtedness, and by invoking the natural debt limit, we arrive at a final ex-

pression:

bt
(
st−1

)
=

∞∑

j=0

∑

st+j |st

βjπt+j
(
st+j |st

) uc
(
st+j

)

uc (st)
z
(
st+j

)

= Et

∞∑

j=0

βj
uc
(
st+j

)

uc (st)
z
(
st+j

)
. (15.15.3)

Expression (15.15.3) at time t = 0 and initial state s0 , constitutes an im-

plementability condition derived from the present-value budget constraint that

the government must satisfy when seeking a solution to the Ramsey taxation

problem:

b0
(
s−1
)

= E0

∞∑

j=0

βj
uc
(
sj
)

uc (s0)
z
(
sj
)
. (15.15.4)

Now it is instructive to compare the present economy without state-contingent

debt to the earlier economy with state-contingent debt. Suppose that the initial

government debt in period 0 and state s0 is the same across the two economies,

i.e., b0(s
−1) = b0(s0|s−1). Implementability condition (15.15.4) of the present

economy is then exactly the same as the one for the economy with state-

contingent debt, as given by expression (15.14.1) evaluated in period t = 0. But

while this is the only implementability condition arising from budget constraints

in the complete markets economy, many more implementability conditions must

be satisfied in the economy without state-contingent debt. Specifically, because

the beginning-of-period indebtedness is the same across any two histories, for

any two realizations st and s̃t that share the same history until the previous

period, i.e., st−1 = s̃t−1 , we must impose equality across the right sides of their

respective budget constraints, as depicted in expression (15.15.3).11 Hence, the

Ramsey taxation problem without state-contingent debt becomes

max
{ct(st),bt+1(st)}

E0

∞∑

t=0

βtu
(
ct
(
st
)
, 1 − ct

(
st
)
− gt (st)

)

s.t. E0

∞∑

j=0

βj
uc
(
sj
)

uc (s0)
z
(
sj
)
≥ b0

(
s−1
)
; (15.15.5a)

11 Aiyagari et al. (2002) regard these conditions as imposing measurability of the right-hand

side of (15.15.3) with respect to st−1 .



520 Optimal Taxation with Commitment

Et

∞∑

j=0

βj
uc
(
st+j

)

uc (st)
z
(
st+j

)
= bt

(
st−1

)
, for all st; (15.15.5b)

given b0
(
s−1
)
,

where we have substituted the resource constraint (15.13.1) into the utility

function. It should also be understood that we have substituted the resource

constraint into the net-of-interest government surplus and used the household’s

first-order condition, 1−τnt (st) = u`(s
t)/uc(s

t), to eliminate the labor tax rate.

Hence, the net-of-interest government surplus now reads as

z
(
st
)

=

[
1 − u` (s

t)

uc (st)

] [
ct
(
st
)

+ gt (st)
]
− gt (st) − Tt

(
st
)
. (15.15.6)

Next, we compose a Lagrangian for the Ramsey problem. Let γ0(s
0) be

the nonnegative Lagrange multiplier on constraint (15.15.5a). As in the earlier

economy with state-contingent debt, this multiplier is strictly positive if the

government must resort to distortionary taxation, and otherwise equal to zero.

The force of the assumption that markets in state-contingent securities have

been shut down but that a market in a risk-free security remains is that we have

to attach stochastic processes {γt(st)}∞t=1 of Lagrange multipliers to the new

implementability constraints (15.15.5b). These multipliers might be positive or

negative, depending on direction in which the constraints are binding:

γt
(
st
)

≥ (≤) 0 if the constraint is binding in the direction

Et

∞∑

j=0

βj
uc
(
st+j

)

uc (st)
z
(
st+j

)
≥ (≤) bt

(
st−1

)
.

A negative multiplier γt(s
t) < 0 means that if we could relax constraint (15.15.5b),

we would like to increase the beginning-of-period indebtedness for that partic-

ular realization of history st , which would presumably enable us to reduce the

beginning-of-period indebtedness for some other history. In particular, as we will

soon see from the first-order conditions of the Ramsey problem, there would then

exist another realization s̃t with the same history up until the previous period,

i.e., s̃t−1 = st−1 , but where the multiplier on constraint (15.15.5b) takes on a

positive value γt(s̃
t) > 0. All this is indicative of the fact that the government

cannot use state-contingent debt and therefore cannot allocate its indebtedness

most efficiently across future states.
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We apply two transformations to the Lagrangian. We multiply constraint

(15.15.5a) by uc(s
0) and the constraints (15.15.5b) by βtuc(s

t). The La-

grangian for the Ramsey problem can then be represented as follows, where

the second equality invokes the law of iterated expectations and uses Abel’s

summation formula:12

J = E0

∞∑

t=0

βt
{
u
(
ct(s

t), 1 − ct(s
t) − gt(st)

)

+ γt(s
t)
[
Et
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j=0

βjuc(s
t+j) z(st+j) − uc(s

t) bt(s
t−1)

]}

= E0

∞∑

t=0

βt
{
u
(
ct(s

t), 1 − ct(s
t) − gt(st)

)

+ Ψt(s
t)uc(s

t) z(st) − γt(s
t)uc(s

t) bt(s
t−1)

]}
, (15.15.7a)

where

Ψt(s
t) = Ψt−1(s

t−1) + γt(s
t) (15.15.7b)

and Ψ−1(s
−1) = 0. The first-order condition with respect to ct(s

t) can be

expressed as

uc(s
t) − u`(s

t)

+ Ψt(s
t)
{[
ucc(s

t) − uc`(s
t)
]
z(st) + uc(s

t) zc(s
t)
}

− γt(s
t)
[
ucc(s

t) − uc`(s
t)
]
bt(s

t−1) = 0 , (15.15.8a)

and with respect to bt(s
t),

Et
[
γt+1(s

t+1)uc(s
t+1)

]
= 0 . (15.15.8b)

If we substitute z(st) from equation (15.15.6) and its derivative zc(s
t) into

first-order condition (15.15.8a), we will find only two differences from the cor-

responding condition (15.13.4) for the optimal allocation in an economy with

state-contingent government debt. First, the term involving bt(s
t−1) in first-

order condition (15.15.8a) does not appear in expression (15.13.4). Once again,

this term reflects the constraint that beginning-of-period government indebted-

ness must be the same across all realizations of next period’s state, a constraint

12 See Apostol (1974, p. 194). For another application, see chapter 19, page 659.
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that is not present if government debt can be state contingent. Second, the

Lagrange multiplier Ψt(s
t) in first-order condition (15.15.8a) may change over

time in response to realizations of the state, while the multiplier Φ in expression

(15.13.4) is time invariant.

Next, we are interested to learn if the optimal allocation without state-

contingent government debt will eventually be characterized by an expression

similar to (15.13.4), i.e., whether or not the Lagrange multiplier Ψt(s
t) con-

verges to a constant, so that from there on, the absence of state-contingent debt

no longer binds.

15.15.1. Future values of {gt} become deterministic

Aiyagari et al. (2002) prove that if {gt(st)} has absorbing states in the sense that

gt = gt−1 almost surely for t large enough, then Ψt(s
t) converges when gt(st)

enters an absorbing state. The optimal tail allocation for this economy without

state-contingent government debt coincides with the allocation of an economy

with state-contingent debt that would have occurred under the same shocks,

but for different initial debt. That is, the limiting random variable Ψ∞ will

then play the role of the single multiplier in an economy with state-contingent

debt because, as noted above, the first-order condition (15.15.8a) will then look

the same as expression (15.13.4), where Φ = Ψ∞ . The value of Ψ∞ depends

on the realization of the government expenditure path. If the absorbing state

is reached after many bad shocks (high values of gt(st)), the government will

have accumulated high debt, and convergence will occur to a contingent-debt

economy with high initial debt and therefore a high value of the multiplier Φ.

This particular result about convergence can be stated in more general

terms, i.e., Ψt(s
t) can be shown to converge if the future path of government

expenditures ever becomes deterministic, including the case of a constant level

of government expenditures. When there is no uncertainty, the government can

from there on attain the Ramsey allocation with one-period risk-free bonds, as

we studied at the beginning of this chapter. In the present setup, this becomes

apparent by examining first-order condition (15.15.8b) when there is no uncer-

tainty, and hence next period’s nonstochastic marginal utility of consumption

must be multiplied by a nonstochastic multiplier γt+1 = 0 in order for that

first-order condition to be satisfied under certainty. The zero value of all future
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multipliers {γt} implies convergence of Ψt(s
t) = Ψ∞ , and we are back to the

logic above, where expression (15.13.4) with Φt = Ψ∞ characterizes the op-

timal tail allocation for an economy without state-contingent government debt

when there is no uncertainty.

15.15.2. Stochastic {gt} but special preferences

To study whether Ψt(s
t) can converge when gt(st) remains stochastic forever, it

is helpful to substitute expression (15.15.7b) into first-order condition (15.15.8b)

Et
{[

Ψt+1

(
st+1

)
− Ψt

(
st
)]
uc
(
st+1

)}
= 0

which can be rewritten as

Ψt

(
st
)

= Et

[
Ψt+1

(
st+1

) uc
(
st+1

)

Etuc (st+1)

]

= EtΨt+1

(
st+1

)
+

COVt

(
Ψt+1

(
st+1

)
, uc

(
st+1

))

Etuc (st+1)
. (15.15.9)

Aiyagari et al. (2002) present a convergence result for a special class of

preferences that makes the covariance term in equation (15.15.9) identically

equal to zero. The household’s utility is assumed to be linear in consumption and

additively separable from the utility of leisure. (See the preference specification

in our next subsection.) Thus, the marginal utility of consumption is constant

and expression (15.15.9) reduces to

Ψt

(
st
)

= EtΨt+1

(
st+1

)
.

The stochastic process Ψt(s
t) is evidently a nonnegative martingale. As de-

scribed in equation (15.15.7b), Ψt(s
t) fluctuates over time in response to real-

izations of the multiplier γt(s
t) that can be either positive or negative; γt(s

t)

measures the marginal impact of news about the present value of government

expenditures on the maximum utility attained by the planner. The cumulative

multiplier Ψt(s
t) remains strictly positive so long as the government must re-

sort to distortionary taxation in the current period or for some realization of

the state in a future period.
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By a theorem of Doob (1953, p. 324), a nonnegative martingale such as

Ψt(s
t) converges almost surely.13 If the process for government expenditures

is sufficiently stochastic, e.g., when gt(st) is stationary with a strictly positive

variance, then Aiyagari et al. (2002) prove that Ψt(s
t) converges almost surely

to zero. When setting Ψ∞ = γ∞ = 0 in first-order condition (15.15.8a), it

follows that the optimal tax policy must eventually lead to a first-best allocation

with uc(s
t) = u`(s

t), i.e., τn∞ = 0. This implies that government assets converge

to a level always sufficient to support government expenditures from interest

earnings alone. And any unused interest earnings on government-owned assets

will then be handed back to the households as positive lump-sum transfers,

which would occur whenever government expenditures fall below their maximum

possible level.

The proof that Ψt(s
t) must converge to zero and government assets become

large enough to finance all future government expenditures under the stated pref-

erences is constructed along lines that support similar results to ones obtained

in our chapter 16 on self-insurance with incomplete markets. In both frame-

works, we appeal to a martingale convergence theorem and use an argument

based on contradictions to rule out convergence to any number other than zero.

To establish a contradiction in the present setting, suppose that Ψt(s
t) does

not converge to zero but rather to a strictly positive limit, Ψ∞ > 0. According

to our argument above, the optimal tail allocation for this economy without

state-contingent government debt will then coincide with the allocation of an

economy that has state-contingent debt and a particular initial debt level. It fol-

lows that these two economies should have identical labor tax rates supporting

that optimal tail allocation. But Aiyagari et al. (2002) show that a government

that follows such a tax policy and has access only to risk-free bonds to absorb

stochastic surpluses and deficits will with positive probability see either its debt

grow without bound or its assets grow without bound, two outcomes that are

inconsistent with an optimal allocation. The heuristic explanation is as follows.

The government in an economy with state-contingent debt uses these debt in-

struments as a form of “insurance policy” to smooth taxes across realizations of

the state. The absence of such an “insurance policy” when only risk-free bonds

are available means that implementing those very same tax rates, unresponsive

as they are to realizations of the state, would expose the government to a posi-

tive probability of seeing either its debt level or its asset level drift off to infinity.

13 For a discussion of the martingale convergence theorem, see the appendix to chapter 16.
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But that contradicts a supposition that such a tax policy would be optimal in an

economy without state-contingent debt. First, it is impossible for government

debt to grow without bound, because households would not be willing to lend to

a government that violates its natural borrowing limit. Second, it is not optimal

for the government to accumulate assets without bound, because welfare could

then be increased by cutting tax rates in some periods and thereby reducing

the deadweight loss of taxation.14 Therefore, we conclude that Ψt(s
t) cannot

converge to a nonnegative limit other than zero.

For more general preferences with sufficient randomness in government ex-

penditures, Aiyagari et al. (2002) cannot characterize the limiting dynamics of

Ψt(s
t) except to rule out convergence to a strictly positive number. So at least

two interesting possibilities remain: Ψ(st) may converge to zero or it may have

a nondegenerate distribution in the limit.

15.15.3. Example 3 revisited: gt = 0 for t 6= T , and gT is stochastic

To illustrate differences in optimal tax policy between economies with and with-

out state-contingent government debt, we revisit our third example above of gov-

ernment expenditures that was taken from Lucas and Stokey’s (1983) analysis of

an economy with state-contingent debt. Let us examine how the optimal policy

changes if the government has access only to risk-free bonds.15 We assume that

the household’s utility function is

u
(
ct
(
st
)
, `t
(
st
))

= ct
(
st
)

+H
(
`t
(
st
))
,

where H` > 0, H`` < 0 and H``` > 0. We assume that H`(0) = ∞ and H`(1) <

1 to guarantee that the first-best allocation without distortionary taxation has

an interior solution for leisure. Given these preferences, the first-order condition

(15.15.8a) with respect to consumption simplifies to

uc
(
st
)
− u`

(
st
)

+ Ψt

(
st
)
uc
(
st
)
zc
(
st
)

= 0 ,

14 Aiyagari et al. (2002, lemma 3) suggest that unbounded growth of government-owned

assets constitutes a contradiction because it violates a lower bound on debt, or an “asset limit.”

But we question this argument, since a government can trivially avoid violating any asset limit

by making positive lump-sum transfers to the households. A correct proof should instead be

based on the existence of welfare improvements associated with cutting distortionary taxes

instead of making any such lump-sum transfers to households.
15 Our first two examples above involve no uncertainty, so the issue of state-contingent debt

does not arise. Hence the optimal tax policy is unaltered in those two examples.
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which after solving for the derivatives becomes

[
1 + Ψt

(
st
)] {

1 −H`

(
1 − ct

(
st
)
− gt (st)

)}

= −Ψt

(
st
)
H``

(
1 − ct

(
st
)
− gt (st)

) [
ct
(
st
)

+ gt (st)
]
. (15.15.10)

As in our earlier analysis of this example, we assume that gT = g > 0 with

probability α and gT = 0 with probability 1−α . We also retain our assumption

that the government starts with no assets or debt, b0(s
−1) = 0, so that the mul-

tiplier on constraint (15.15.5a) is strictly positive, γ0(s
0) = Ψ0(s

0) > 0. Since

no additional information about future government expenditures is revealed in

periods t < T , it follows that the multiplier Ψt(s
t) = Ψ0(s

0) ≡ Ψ0 > 0 for

t < T . Given the multiplier Ψ0 , the optimal consumption level for t < T ,

denoted c0 , satisfies the following version of first-order condition (15.15.10):

[1 + Ψ0] {1 −H`(1 − c0)} = −Ψ0H``(1 − c0) c0 . (15.15.11)

In period T , there are two possible values of gT , and hence the stochastic

multiplier γT (sT ) can take two possible values, one negative value and one

positive value, according to first-order condition (15.15.8b). γT (sT ) is negative

if gT = 0 because that represents good news that should cause the multiplier

ΨT (sT ) to fall. In fact, the multiplier ΨT (sT ) falls all the way to zero if gT = 0

because the government would then never again have to resort to distortionary

taxation. And any tax revenues raised in earlier periods and carried over as

government-owned assets would then also be handed back to the households as

a lump-sum transfer. If, on the other hand, gT = g > 0, then γT (sT ) ≡ γT is

strictly positive and the optimal consumption level for t > T , denoted c̃ , would

satisfy the following version of first-order condition (15.15.10)

[1 + Ψ0 + γT ] {1 −H`(1 − c̃)} = − [Ψ0 + γT ] H``(1 − c̃) c̃ . (15.15.12)

In response to γT > 0, the multiplicative factor within square brackets has

increased on both sides of equation (15.15.12) but proportionately more so on

the right side. Because both equations (15.15.11) and (15.15.12) must hold

with equality at the optimal allocation, it follows that the change from c0 to

c̃ has to be such that {1 −H`(1 − c)} increases proportionately more than

−{H``(1 − c) c} . Since the former expression is decreasing in c and the lat-

ter expression is increasing in c , we can then conclude that c̃ < c0 and hence



Taxation without state-contingent debt 527

that the implied labor tax rate is raised for all periods t > T if government

expenditures turn out to be strictly positive in period T .

It is obvious from this example that a government with access only to risk-

free bonds cannot smooth tax rates over different realizations of the state. Recall

that the optimal tax policy with state-contingent debt prescribed a constant

tax rate for all t 6= T regardless of the realization of gT . Note also that, as

discussed above, the multiplier Ψt(s
t) in the economy without state-contingent

debt does converge when the future path of government expenditures becomes

deterministic in period T . In our example, Ψt(s
t) converges either to zero or

to (Ψ0 + γT ) > 0, depending on the realization of government expenditures.

Starting from period T , the optimal tail allocation coincides then with the

allocation of an economy with state-contingent debt that would have occurred

under the same shocks, but for different initial debt, either a zero debt level

associated with Φ = 0, if gT = 0, or a particular positive debt level that would

correspond to Φ = Ψ0 + γT , if gT = g > 0.

Schmitt-Grohe and Uribe (2004a) and Siu (2002) analyze optimal monetary

and fiscal policy in economies in which the government can issue only nominal

risk-free debt. But unanticipated inflation makes risk-free nominal debt state

contingent in real terms and seems to provide a motive for the government to

make inflation vary. Schmitt-Grohe and Uribe and Siu both focus on how a kind

of price stickiness that they impose on firms would affect the optimal inflation

rate and the government’s use of fluctuations in inflation as a back-door way of

introducing state-contingent taxation. They find that when even a very small

amount of price stickiness is imposed on firms, it causes the volatility of the

optimal inflation rate to become very small. Thus, the government abstains from

the back-door channel for synthesizing state-contingent debt. The authors relate

their finding to the aspect of Aiyagari’s et al.’s calculations for an economy with

no state-contingent debt, mentioned in footnote 10, that the Ramsey allocation

in their economy without state-contingent debt closely approximates that for

the economy with complete markets.
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15.16. Zero tax on human capital

Returning to the nonstochastic model, Jones, Manuelli, and Rossi (1997) show

that the optimality of a limiting zero tax also applies to labor income in a model

with human capital, ht , so long as the technology for accumulating human

capital displays constant returns to scale in the stock of human capital and

goods used (not including raw labor).

We postulate the following human capital technology,

ht+1 = (1 − δh)ht +H (xht, ht, nht) , (15.16.1)

where δh ∈ (0, 1) is the rate at which human capital depreciates. The function

H describes how new human capital is created with the input of a market good

xht , the stock of human capital ht , and raw labor nht . Human capital is in

turn used to produce “efficiency units” of labor et ,

et = M (xmt, ht, nmt) , (15.16.2)

where xmt and nmt are the market good and raw labor used in the process.

We assume that both H and M are homogeneous of degree one in market

goods (xjt, j = h,m) and human capital (ht ), and twice continuously differen-

tiable with strictly decreasing (but everywhere positive) marginal products of

all factors.

The number of efficiency units of labor et replaces our earlier argument

for labor in the production function, F (kt, et). The household’s preferences are

still described by expression (15.2.1), with leisure `t = 1 − nht − nmt . The

economy’s aggregate resource constraint is

ct + gt + kt+1 + xmt + xht

= F [kt,M (xmt, ht, nmt)] + (1 − δ) kt. (15.16.3)

The household’s present-value budget constraint is

∞∑

t=0

q0t (1 + τct ) ct =

∞∑

t=0

q0t [(1 − τnt )wtet − (1 + τmt )xmt − xht]

+
[(

1 − τk0
)
r0 + 1 − δ

]
k0 + b0, (15.16.4)

where we have added τct and τmt to the set of tax instruments, to enhance the

government’s ability to control various margins. Substitute equation (15.16.2)
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into equation (15.16.4), and let λ be the Lagrange multiplier on this budget

constraint, while αt denotes the Lagrange multiplier on equation (15.16.1). The

household’s first-order conditions are then

ct: βtuc (t) − λq0t (1 + τct ) = 0, (15.16.5a)

nmt: − βtu` (t) + λq0t (1 − τnt )wtMn (t) = 0, (15.16.5b)

nht: − βtu` (t) + αtHn (t) = 0, (15.16.5c)

xmt: λq0t [(1 − τnt )wtMx (t) − (1 + τmt )] = 0, (15.16.5d)

xht: − λq0t + αtHx (t) = 0, (15.16.5e)

ht+1: − αt + λq0t+1

(
1 − τnt+1

)
wt+1Mh (t+ 1)

+ αt+1 [1 − δh +Hh (t+ 1)] = 0. (15.16.5f)

Substituting equation (15.16.5e) into equation (15.16.5f ) yields

q0t
Hx(t)

= q0t+1

[1 − δh +Hh(t+ 1)

Hx(t+ 1)

+ (1 − τnt+1)wt+1Mh(t+ 1)
]
. (15.16.6)

We now use the household’s first-order conditions to simplify the sum on the

right side of the present-value constraint (15.16.4). First, note that homogeneity

of H implies that equation (15.16.1) can be written as

ht+1 = (1 − δh)ht +Hx (t)xht +Hh (t)ht.

Solve for xht with this expression, use M from equation (15.16.2) for et , and

substitute into the sum on the right side of equation (15.16.4), which then

becomes
∞∑

t=0

q0t

{
(1 − τnt )wtMx (t)xmt + (1 − τnt )wtMh (t)ht

− (1 + τmt )xmt −
ht+1 − [1 − δh +Hh (t)]ht

Hx (t)

}
.

Here we have also invoked the homogeneity of M . First-order condition (15.16.5d)

implies that the term multiplying xmt is zero, [(1−τnt )wtMx(t)−(1+τmt )] = 0.

After rearranging, we are left with
[
1 − δh +Hh (0)

Hx (0)
+ (1 − τn0 )w0Mh (0)

]
h0 −

∞∑

t=1

ht

{
q0t−1

Hx (t− 1)

− q0t

[
1 − δh +Hh (t)

Hx (t)
+ (1 − τnt )wtMh (t)

]}
. (15.16.7)
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However, the term in braces is zero by first-order condition (15.16.6), so the

sum on the right side of equation (15.16.4) simplifies to the very first term in

this expression.

Following our standard scheme of constructing the Ramsey plan, a few more

manipulations of the household’s first-order conditions are needed to solve for

prices and taxes in terms of the allocation. We first assume that τc0 = τk0 =

τn0 = τm0 = 0. If the numeraire is q00 = 1, then condition (15.16.5a) implies

q0t = βt
uc (t)

uc (0)

1

1 + τct
. (15.16.8a)

From equations (15.16.5b) and (15.16.8a) and wt = Fe(t), we obtain

(1 + τct )
u` (t)

uc (t)
= (1 − τnt )Fe (t)Mn (t) , (15.16.8b)

and, by equations (15.16.5c), (15.16.5e), and (15.16.8a),

(1 + τct )
u` (t)

uc (t)
=
Hn (t)

Hx (t)
, (15.16.8c)

and equation (15.16.5d) with wt = Fe(t) yields

1 + τmt = (1 − τnt )Fe (t)Mx (t) . (15.16.8d)

For a given allocation, expressions (15.16.8) allow us to recover prices and taxes

in a recursive fashion: (15.16.8c) defines τct and (15.16.8a) can be used to

compute q0t , (15.16.8b) sets τnt , and (15.16.8d) pins down τmt .

Only one task remains to complete our strategy of determining prices and

taxes that achieve any allocation. The additional condition (15.16.6) charac-

terizes the household’s intertemporal choice of human capital, which imposes

still another constraint on the price q0t and the tax τnt . Our determination of

τnt in equation (15.16.8b) can be thought of as manipulating the margin that

the household faces in its static choice of supplying effective labor et , but the

tax rate also affects the household’s dynamic choice of human capital ht . Thus,

in the Ramsey problem, we will have to impose the extra constraint that the

allocation is consistent with the same τnt entering both equations (15.16.8b)

and (15.16.6). To find an expression for this extra constraint, solve for (1− τnt )

from equation (15.16.8b) and a lagged version of equation (15.16.6), which are
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then set equal to each other. We eliminate the price q0t by using equations

(15.16.8a) and (15.16.8c), and the final constraint becomes

u` (t− 1)Hn (t) =βu` (t)Hn (t− 1)

·
[
1 − δh +Hh (t) +Hn (t)

Mh (t)

Mn (t)

]
. (15.16.9)

Proceeding to step 2 in constructing the Ramsey plan, we use condition

(15.16.8a) to eliminate q0t (1+τct ) in the household’s budget constraint (15.16.4).

After also invoking the simplified expression (15.16.7) for the sum on the right

side of (15.16.4), the implementability condition can be written as

∞∑

t=0

βtuc (t) ct − Ã = 0, (15.16.10)

where Ã is given by

Ã = Ã (c0, nm0, nh0, xm0, xh0)

= uc (0)

{[
1 − δh +Hh (0)

Hx (0)
+ Fe (0)Mh (0)

]
h0

+ [Fk (0) + 1 − δk] k0 + b0

}
.

In step 3, we define

V (ct, nmt, nht,Φ) = u (ct, 1 − nmt − nht) + Φuc (t) ct, (15.16.11)

and formulate a Lagrangian,

J =

∞∑

t=0

βt
{
V (ct, nmt, nht,Φ)

+ θt

{
F [kt,M (xmt, ht, nmt)] + (1 − δ) kt

− ct − gt − kt+1 − xmt − xht

}

+ νt [(1 − δh)ht +H (xht, ht, nht) − ht+1]

}
− ΦÃ. (15.16.12)

This formulation would correspond to the Ramsey problem if it were not for the

missing constraint (15.16.9). Following Jones, Manuelli, and Rossi (1997), we
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will solve for the first-order conditions associated with equation (15.16.12), and

when it is evaluated at a steady state, we can verify that constraint (15.16.9)

is satisfied even though it has not been imposed. Thus, if both the problem in

expression (15.16.12) and the proper Ramsey problem with constraint (15.16.9)

converge to a unique steady state, they will converge to the same steady state.

The first-order conditions for equation (15.16.12) evaluated at the steady

state are

c: Vc = θ (15.16.13a)

nm: Vnm
= −θFeMn (15.16.13b)

nh: Vnh
= −νHn (15.16.13c)

xm: 1 = FeMx (15.16.13d)

xh: θ = νHx (15.16.13e)

h: 1 = β

(
1 − δh +Hh +

θ

ν
FeMh

)
(15.16.13f)

k: 1 = β (1 − δk + Fk) . (15.16.13g)

Note that Vnm
= Vnh

, so by conditions (15.16.13b) and (15.16.13c),

θ

ν
=

Hn

FeMn
, (15.16.14)

which we substitute into equation (15.16.13g ),

1 = β

(
1 − δh +Hh +Hn

Mh

Mn

)
. (15.16.15)

Condition (15.16.15) coincides with constraint (15.16.9), evaluated in a steady

state. In other words, we have confirmed that the problem (15.16.12) and the

proper Ramsey problem with constraint (15.16.9) share the same steady state,

under the maintained assumption that both problems converge to a unique

steady state.

What is the optimal τn ? The substitution of equation (15.16.13e) into

equation (15.16.14) yields

Hx =
Hn

FeMn
. (15.16.16)

The household’s first-order conditions (15.16.8b) and (15.16.8c) imply in a

steady state that

(1 − τn)Hx =
Hn

FeMn
. (15.16.17)
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It follows immediately from equations (15.16.16) and (15.16.17) that τn = 0.

Given τn = 0, conditions (15.16.8d) and (15.16.13d) imply τm = 0. We

conclude that in the present model neither labor nor capital should be taxed in

the limit.

15.17. Should all taxes be zero?

The optimal steady-state tax policy of the model in the previous section is to

set τk = τn = τm = 0. However, in general, this implies τc 6= 0. To see this

point, use equation (15.16.8b) and τn = 0 to get

1 + τc =
uc
u`
FeMn. (15.17.1)

From equations (15.16.13a) and (15.16.13b)

FeMn = −Vnm

Vc
=

u` + Φuc`c

uc + Φ (uc + uccc)
. (15.17.2)

Hence,

1 + τc =
ucu` + Φucuc`c

ucu` + Φ (ucu` + uccu`c)
. (15.17.3)

As discussed earlier, a first-best solution without distortionary taxation has

Φ = 0, so τc should trivially be set equal to zero. In a second-best solution,

Φ > 0 and we get τc = 0 if and only if

ucuc`c = ucu` + uccu`c, (15.17.4)

which is in general not satisfied. However, Jones, Manuelli, and Rossi (1997)

point out one interesting class of utility functions that is consistent with equation

(15.17.4):

u (c, `) =






c1−σ

1 − σv (`) if σ > 0, σ 6= 1

ln (c) + v (`) if σ = 1.

If a steady state exists, the optimal solution for these preferences is eventually to

set all taxes equal to zero. It follows that the optimal plan involves collecting tax

revenues in excess of expenditures in the initial periods. When the government

has amassed claims against the private sector so large that the interest earnings
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suffice to finance g , all taxes are set equal to zero. Since the steady-state interest

rate is R = β−1 , we can use the government’s budget constraint (15.2.5) to find

the corresponding value of government indebtedness

b =
β

β − 1
g < 0.

15.18. Concluding remarks

Perhaps the most startling finding of this chapter is that the optimal steady-

state tax on physical capital in a nonstochastic economy is equal to zero. The

result that capital should not be taxed in the steady state is robust to whether or

not the government must balance its budget in each period and to any redistri-

butional concerns arising from a social welfare function. As a stark illustration,

Judd’s (1985b) example demonstrates that the result holds when the govern-

ment is constrained to run a balanced budget and when it cares only about the

workers who are exogenously constrained to not hold any assets. Thus, the cap-

ital owners who are assumed not to work will be exempt from taxation in the

steady state, and the government will finance its expenditures solely by levying

wage taxes on the group of agents that it cares about.

It is instructive to consider Jones, Manuelli, and Rossi’s (1997) extension

of the no-tax result to labor income, or more precisely human capital. They

ask rhetorically, Is physical capital special? We are inclined to answer yes to

this question for the following reason. The zero tax on human capital is derived

in a model where the production of both human capital and “efficiency units”

of labor show constant returns to scale in the stock of human capital and the

use of final goods but not raw labor which otherwise enters as an input in the

production functions. These assumptions explain why the stream of future labor

income in the household’s present-value budget constraint in equation (15.16.4)

is reduced to the first term in equation (15.16.7), which is the value of the

household’s human capital at time 0. Thus, the functional forms have made

raw labor disappear as an object for taxation in future periods. Or in the words

of Jones, Manuelli, and Rossi (1997, pp. 103 and 99), “Our zero tax results

are driven by zero profit conditions. Zero profits follow from the assumption of
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linearity in the accumulation technologies. Since the activity ‘capital income’

and the activity ‘labor income’ display constant returns to scale in reproducible

factors, their ‘profits’ cannot enter the budget constraint in equilibrium.” But

for alternative production functions that make the endowment of raw labor

reappear, the optimal labor tax would not be zero. It is for this reason that

we think physical capital is special: because the zero-tax result arises with

the minimal assumptions of the standard neoclassical growth model, while the

zero-tax result on labor income requires that raw labor vanish from the agent’s

present-value budget constraints.16

The weaknesses of our optimal steady-state tax analysis are that it says

nothing about how long it takes to reach the zero tax on capital income and

how taxes and any redistributive transfers are set during the transition pe-

riod. These questions have to be studied numerically, as was done by Chari,

Christiano, and Kehoe (1994), though their paper does not involve any redistri-

butional concerns because of the assumption of a representative agent. Domeij

and Heathcote (2000) construct a model with heterogeneous agents and incom-

plete insurance markets to study the welfare implications of eliminating capital

income taxation. Using earnings and wealth data from the United States, they

calibrate a stochastic process for labor earnings that implies a wealth distri-

bution of asset holdings resembling the empirical one. Setting initial tax rates

equal to estimates of present taxes in the United States, they study the effects

of an unexpected policy reform that sets the capital tax permanently equal to

zero and raises the labor tax to maintain long-run budget balance. They find

that a majority of households prefers the status quo to the tax reform because

of the distributional implications.

This example illustrates the importance of a well-designed tax and transfer

policy in the transition to a new steady state. In addition, as shown by Aiyagari

(1995), the optimal capital tax in a heterogeneous-agent model with incomplete

insurance markets is actually positive, even in the long run. A positive capital

tax is used to counter the tendency of such an economy to overaccumulate

16 One special case of Jones, Manuelli, and Rossi’s (1997) framework with its zero-tax

result for labor is Lucas’s (1988) endogenous growth model studied in chapter 14. Recall our

alternative interpretation of that model as one without any nonreproducible raw labor but just

two reproducible factors: physical and human capital. No wonder that raw labor in Lucas’s

model does not affect the optimal labor tax, since the model can equally well be thought of

as an economy without raw labor.
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capital because of too much precautionary saving. We say more about these

heterogeneous-agent models in chapter 17.

Golosov, Kocherlakota, and Tsyvinski (2003) pursue another way of dis-

rupting the connection between stationary values of the two key Euler equations

that underlie Chamley and Judd’s zero-tax-on-capital outcome. They put the

Ramsey planner in a private information environment in which it cannot observe

the hidden skill levels of different households. That impels the planner to design

the tax system as an optimal dynamic incentive mechanism that trades off cur-

rent and continuation values in an optimal way. We discuss such mechanisms for

coping with private information in chapter 19. Because the information problem

alters the planner’s Euler equation for the household’s consumption, Chamley

and Judd’s result does not hold for this environment.

An assumption maintained throughout the chapter has been that the gov-

ernment can commit to future tax rates when solving the Ramsey problem at

time 0. As noted earlier, taxing the capital stock at time 0 amounts to lump-

sum taxation and therefore disposes of distortionary taxation. It follows that

a government without a commitment technology would be tempted in future

periods to renege on its promises and levy a confiscatory tax on capital. An

interesting question arises: can the incentive to maintain a good reputation re-

place a commitment technology? That is, can a promised policy be sustained in

an equilibrium because the government wants to preserve its reputation? Repu-

tation involves history dependence and incentives and will be studied in chapter

24.

Exercises

Exercise 15.1 A small open economy (Razin and Sadka, 1995)

Consider the nonstochastic model with capital and labor in this chapter, but

assume that the economy is a small open economy that cannot affect the in-

ternational rental rate on capital, r∗t . Domestic firms can rent any amount of

capital at this price, and the households and the government can choose to go

short or long in the international capital market at this rental price. There is no

labor mobility across countries. We retain the assumption that the government

levies a tax τnt on each household’s labor income, but households no longer have
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to pay taxes on their capital income. Instead, the government levies a tax τ̂kt
on domestic firms’ rental payments to capital regardless of the capital’s origin

(domestic or foreign). Thus, a domestic firm faces a total cost of (1 + τ̂kt )r∗t on

a unit of capital rented in period t .

a. Solve for the optimal capital tax τ̂kt .

b. Compare the optimal tax policy of this small open economy to that of the

closed economy of this chapter.

Exercise 15.2 Consumption taxes

Consider the nonstochastic model with capital and labor in this chapter, but

instead of labor and capital taxation assume that the government sets labor

and consumption taxes, {τnt , τct } . Thus, the household’s present-value budget

constraint is now given by

∞∑

t=0

q0t (1 + τct ) ct =

∞∑

t=0

q0t (1 − τnt )wtnt + [r0 + 1 − δ] k0 + b0.

a. Solve for the Ramsey plan.

b. Suppose that the solution to the Ramsey problem converges to a steady

state. Characterize the optimal limiting sequence of consumption taxes.

c. In the case of capital taxation, we imposed an exogenous upper bound on

τk0 . Explain why a similar exogenous restriction on τc0 is needed to ensure an

interesting Ramsey problem. (Hint: Explore the implications of setting τct = τc

and τnt = −τc for all t ≥ 0, where τc is a large positive number.)

Exercise 15.3 Specific utility function (Chamley, 1986)

Consider the nonstochastic model with capital and labor in this chapter, and

assume that the period utility function in equation (15.2.1) is given by

u (ct, `t) =
c1−σt

1 − σ
+ v (`t) ,

where σ > 0. When σ is equal to 1, the term c1−σt /(1 − σ) is replaced by

log(ct).

a. Show that the optimal tax policy in this economy is to set capital taxes

equal to zero in period 2 and from there on, i.e., τkt = 0 for t ≥ 2. (Hint:
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Given the preference specification, evaluate and compare equations (15.6.4)

and (15.6.9a).)

b. Suppose there is uncertainty in the economy, as in the stochastic model with

capital and labor in this chapter. Derive the optimal ex ante capital tax rate for

t ≥ 2.

Exercise 15.4 Two labor inputs (Jones, Manuelli, and Rossi, 1997)

Consider the nonstochastic model with capital and labor in this chapter, but

assume that there are two labor inputs, n1t and n2t , entering the production

function, F (kt, n1t, n2t). The household’s period utility function is still given

by u(ct, `t) where leisure is now equal to

`t = 1 − n1t − n2t.

Let τnit be the flat-rate tax at time t on wage earnings from labor nit , for

i = 1, 2, and τkt denotes the tax on earnings from capital.

a. Solve for the Ramsey plan. What is the relationship between the optimal

tax rates τn1t and τn2t for t ≥ 1? Explain why your answer is different for period

t = 0. As an example, assume that k and n1 are complements while k and n2

are substitutes.

We now assume that the period utility function is given by u(ct, `1t, `2t)

where

`1t = 1 − n1t, and `2t = 1 − n2t.

Further, the government is now constrained to set the same tax rate on both

types of labor, i.e., τn1t = τn2t for all t ≥ 0.

b. Solve for the Ramsey plan. (Hint: Using the household’s first-order condi-

tions, we see that the restriction τn1t = τn2t can be incorporated into the Ramsey

problem by adding the constraint u`1(t)Fn2 (t) = u`2(t)Fn1(t).)

c. Suppose that the solution to the Ramsey problem converges to a steady state

where the constraint that the two labor taxes should be equal is binding. Show

that the limiting capital tax is not zero unless Fn1Fn2k = Fn2Fn1k .

Exercise 15.5 Another specific utility function

Consider the following optimal taxation problem. There is no uncertainty. There

is one good that is produced by labor xt of the representative household, and
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that can be divided among private consumption ct and government consumption

gt subject to

ct + gt = 1 − xt. (0)

The good is produced by zero-profit competitive firms that pay the worker a

pretax wage of 1 per unit of 1 − xt (i.e., the wage is tied down by the linear

technology). A representative consumer maximizes

(1)

∞∑

t=0

βtu (ct, xt)

subject to the sequence of budget constraints

(2) ct + qtbt+1 ≤ (1 − τt) (1 − xt) + bt

where ct is consumption, xt is leisure, qt is the price of consumption at t + 1

in units of time t consumption, and bt is a stock of one-period IOUs owned

by the household and falling due at time t . Here τt is a flat-rate tax on the

household’s labor supply 1 − xt . Assume that u(c, x) = c− .5(1 − x)2 .

a. Argue that in a competitive equilibrium, qt = β and xt = τt .

b. Argue that in a competitive equilibrium with b0 = 0 and limt→∞ βtbt = 0,

the sequence of budget constraints (2) imply the following single intertemporal

constraint:
∞∑

t=0

βt (ct − (1 − xt) (1 − τt)) = 0.

Given an exogenous sequence of government purchases {gt}∞t=0 , a govern-

ment wants to maximize (1) subject both to the budget constraint

(3)

∞∑

t=0

βt (gt − τt (1 − xt)) = 0

and to the household’s first-order condition

(4) xt = τt.

c. Consider the following government expenditure process defined for t ≥ 0:
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gt =

{
0, if t is even;

.5, if t is odd;

Solve the Ramsey plan. Show that the optimal tax rate is given by

τt = τ ∀t ≥ 0.

Please compute the value for τ when β = .95.

d. Consider the following government expenditure process defined for t ≥ 0:

gt =

{
.5, if t is even;

0, if t is odd;

Show that τt = τ ∀t ≥ 0. Compute τ and comment on whether it is larger or

smaller than the value you computed in part (c).

e. Interpret your results in parts c and d in terms of “tax-smoothing.”

g. Under what circumstances, if any, would τ = 0?

Exercise 15.6 Yet another specific utility function

Consider an economy with a representative household with preferences over

streams of consumption ct and labor supply nt that are ordered by

(1)

∞∑

t=0

βt
(
ct − u1nt − .5u2n

2
t

)
, β ∈ (0, 1)

where u1, u2 > 0. The household operates a linear technology

(2) yt = nt,

where yt is output. There is no uncertainty. There is a government that finances

an exogenous stream of government purchases {gt} by a flat rate tax τt on labor.

The feasibility condition for the economy is

(3) yt = ct + gt.

At time 0 there are complete markets in dated consumption goods. Let qt

be the price of a unit of consumption at date t in terms of date 0 consumption.

The budget constraints for the household and the government, respectively, are

(4)

∞∑

t=0

qt [(1 − τt)nt − ct] = 0
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(5)

∞∑

t=0

qt (τtnt − gt) = 0.

Part I. Call a tax rate process {τt} budget feasible if it satisfies (5).

a. Define a competitive equilibrium with taxes.

Part II. A Ramsey planner chooses a competitive equilibrium to maximize (1).

b. Formulate the Ramsey problem. Get as far as you can in solving it for

the Ramsey plan, i.e., compute the competitive equilibrium price system and

tax policy under the Ramsey plan. How does the Ramsey plan pertain to “tax

smoothing?”

c. Consider two possible government expenditure sequences: Sequence A:

{gt} = {0, g, 0, g, 0, g, . . .} . Sequence B: {gt} = {βg, 0, βg, 0, βg, 0, . . .} . Please

tell how the Ramsey equilibrium tax rates and interest rates differ across the

two equilibria associated with sequence A and sequence B.

Exercise 15.7 Comparison of tax systems

Consider an economy with a representative household that orders consumption,

leisure streams {ct, `t}∞t=0 according to

∞∑

t=0

βtu (ct, `t) , β ∈ (0, 1)

where u is increasing, strictly concave, and twice continuously differentiable in

c and ` . The household is endowed with one unit of time that can be used for

leisure `t and labor nt ; `t + nt = 1.

A single good is produced with labor nt and capital kt as inputs. The

output can be consumed by households, used by the government, or used to

augment the capital stock. The technology is described by

ct + gt + kt+1 = F (kt, nt) + (1 − δ) kt,

where δ ∈ (0, 1) is the rate at which capital depreciates, and gt ≥ 0 is an ex-

ogenous amount of government purchases in period t . The production function

F (k, n) exhibits constant returns to scale.

The government finances its purchases by levying two flat-rate, time varying

taxes {τnt , τat }∞t=0 . τnt is a tax on labor earnings and the tax revenue from this
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source in period t is equal to τnt w
n
t nt , where wt is the wage rate. τat is a tax

on capital earnings and the asset value of the capital stock net of depreciation.

That is, the tax revenue from this source in period t is equal to τat (rt+1−δ)kt ,
where rt is the rental rate on capital. We assume that the tax rates in period 0

cannot be chosen by the government but must be set equal to zero, τn0 = τa0 = 0.

The government can trade in one-period bonds. We assume that there is no

outstanding government debt at time 0.

a. Formulate the Ramsey problem, and characterize the optimal government

policy using the primal approach to taxation.

b. Show that if there exists a steady state Ramsey allocation, the limiting tax

rate τa∞ is zero.

Consider another economy with identical preferences, endowment, technology

and government expenditures but where labor taxation is forbidden. Instead of

a labor tax this economy must use a consumption tax τ̃ct . (We use a tilde to

distinguish outcomes in this economy as compared to the previous economy.)

Hence, this economy’s tax revenues in period t are equal to τ̃ct c̃t+τ̃
a
t (r̃t+1−δ)k̃t .

We assume that the tax rates in period 0 cannot be chosen by the government

but must be set equal to zero, τ̃c0 = τ̃a0 = 0. And as before, the government can

trade in one-period bonds and there is no outstanding government debt at time

0.

c. Formulate the Ramsey problem, and characterize the optimal government

policy using the primal approach to taxation.

Let the allocation and tax rates that solve the Ramsey problem in question a be

given by Ω ≡ {ct, `t, nt, kt+1, τ
n
t , τ

a
t }∞t=0 . And let the allocation and tax rates

that solve the Ramsey problem in question c be given by Ω̃ ≡ {c̃t, ˜̀t, ñt, k̃t+1, τ̃
c
t ,

τ̃at }∞t=0 .

d. Make a careful argument for how the allocation {ct, `t, nt, kt+1}∞t=0 compares

to the allocation {c̃t, ˜̀t, ñt, k̃t+1}∞t=0 .

e. Find expressions for the tax rates {τ̃ct , τ̃at }∞t=1 solely in terms of {τnt , τat }∞t=1 .

f. Write down the government’s present value budget constraint in the first

economy which holds with equality for the allocation and tax rates as given

by Ω. Can you manipulate this expression so that you arrive at the govern-

ment’s present value budget constraint in the second economy by only using

your characterization of Ω̃ in terms of Ω in questions d and e?
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Chapter 16
Self-Insurance

16.1. Introduction

This chapter describes a version of what is sometimes called a savings problem

(e.g., Chamberlain and Wilson, 2000). A consumer wants to maximize the

expected discounted sum of a concave function of one-period consumption rates,

as in chapter 8. However, the consumer is cut off from all insurance markets and

almost all asset markets. The consumer can only purchase nonnegative amounts

of a single risk-free asset. The absence of insurance opportunities induces the

consumer to adjust his asset holdings to acquire “self-insurance.”

This model is interesting to us partly as a benchmark to compare with the

complete markets model of chapter 8 and some of the recursive contracts models

of chapter 19, where information and enforcement problems restrict allocations

relative to chapter 8, but nevertheless permit more insurance than is allowed in

this chapter. A generalization of the single-agent model of this chapter will also

be an important component of the incomplete markets models of chapter 17.

Finally, the chapter provides our first brush with the powerful supermartingale

convergence theorem.

To highlight the effects of uncertainty and borrowing constraints, we shall

study versions of the savings problem under alternative assumptions about

the stringency of the borrowing constraint and alternative assumptions about

whether the household’s endowment stream is known or uncertain.

– 545 –
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16.2. The consumer’s environment

An agent orders consumption streams according to

E0

∞∑

t=0

βtu (ct) , (16.2.1)

where β ∈ (0, 1), and u(c) is a strictly increasing, strictly concave, twice con-

tinuously differentiable function of the consumption of a single good c . The

agent is endowed with an infinite random sequence {yt}∞t=0 of the good. Each

period, the endowment takes one of a finite number of values, indexed by s ∈ S .

In particular, the set of possible endowments is y1 < y2 < · · · < yS . Elements

of the sequence of endowments are independently and identically distributed

with Prob(y = ys) = Πs,Πs ≥ 0, and
∑
s∈S

Πs = 1. There are no insurance

markets.

The agent can hold nonnegative amounts of a single risk-free asset that

has a net rate of return r , where (1 + r)β = 1. Let at ≥ 0 be the agent’s

assets at the beginning of period t , including the current realization of the

income process. (Later we shall use an alternative and common notation by

defining bt = −at+ yt as the debt of the consumer at the beginning of period t ,

excluding the time t endowment.) We assume that a0 = y0 is drawn from the

time-invariant endowment distribution {Πs} . (This is equivalent to assuming

that b0 = 0 in the alternative notation.) The agent faces the sequence of budget

constraints

at+1 = (1 + r) (at − ct) + yt+1 , (16.2.2)

where 0 ≤ ct ≤ at , with a0 given. That ct ≤ at is the constraint that holdings

of the asset at the end of the period (which evidently equal at+1−yt+1

1+r ) must be

nonnegative. The constraint ct ≥ 0 is either imposed or comes from an Inada

condition limc↓0 u
′(c) = +∞ .

The Bellman equation for an agent with a > 0 is

V (a) = max
c

{
u(c) +

S∑

s=1

βΠsV
[
(1 + r)(a − c) + ys

]}
(16.2.3)

subject to 0 ≤ c ≤ a ,

where ys is the income realization in state s ∈ S . The value function V (a)

inherits the basic properties of u(c); that is, V (y) is increasing, strictly concave,

and differentiable.
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“Self-insurance” occurs when the agent uses savings to insure himself against

income fluctuations. On the one hand, in response to low income realizations,

an agent can draw down his savings and avoid temporary large drops in con-

sumption. On the other hand, the agent can partly save high income realizations

in anticipation of poor outcomes in the future. We are interested in the long-

run properties of an optimal “self-insurance” scheme. Will the agent’s future

consumption settle down around some level c̄?1 Or will the agent eventually be-

come impoverished?2 Following the analysis of Chamberlain and Wilson (2000)

and Sotomayor (1984), we will show that neither of these outcomes occurs:

consumption will diverge to infinity!

Before analyzing it under uncertainty, we’ll briefly consider the savings

problem under a certain endowment sequence. With a nonrandom endowment

that does not grow perpetually, consumption does converge.

16.3. Nonstochastic endowment

Without uncertainty, the question of insurance is moot. However, it is instruc-

tive to study the optimal consumption decisions of an agent with an uneven

income stream who faces a borrowing constraint. We break our analysis of the

nonstochastic case into two parts, depending on the stringency of the borrow-

ing constraint. We begin with the least stringent possible borrowing constraint,

namely, the natural borrowing constraint on one-period Arrow securities, which

are risk free in the current context. After that, we’ll arbitrarily tighten the bor-

rowing constraint to arrive at the no-borrowing condition at+1 ≥ yt+1 imposed

in the statement of the problem in the previous section.

For convenience, we temporarily use our alternative notation. We let bt be

the amount of one-period debt that the consumer owes at time t ; bt is related

to at by

at = −bt + yt,

with b0 = 0. Here −bt is the consumer’s asset position before the realization of

his time t endowment. In this notation, the time t budget constraint (16.2.2)

1 As will occur in the model of social insurance without commitment, to be analyzed in

chapter 19.
2 As in the case of social insurance with asymmetric information, to be analyzed in chapter

19.
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becomes

ct + bt ≤ βbt+1 + yt (16.3.1)

where in terms of bt+1 , we would express a no-borrowing constraint (at+1 ≥
yt+1 ) as

bt+1 ≤ 0. (16.3.2)

The no-borrowing constraint (16.3.2) is evidently more stringent than the

natural borrowing constraint on one-period Arrow securities that we imposed

in chapter 8. Under an Inada condition on u(c) at c = 0, or alternatively when

ct ≥ 0 is imposed, the natural borrowing constraint in this nonstochastic case

is found by solving (16.3.1) forward with ct ≡ 0:

bt ≤
∞∑

j=0

βjyt+j ≡ bt. (16.3.3)

The right side is the maximal amount that it is feasible to pay repay at time t

when ct ≥ 0.

Solve (16.3.1) forward and impose the initial condition b0 = 0 to get

∞∑

t=0

βtct ≤
∞∑

t=0

βtyt. (16.3.4)

When ct ≥ 0, under the natural borrowing constraints, this is the only restric-

tion that the budget constraints (16.3.1) impose on the {ct} sequence. The

first-order conditions for maximizing (16.2.1) subject to (16.3.4) are

u′ (ct) ≥ u′ (ct+1) , = if bt+1 < bt+1. (16.3.5)

It is possible to satisfy these first-order conditions by setting ct = c for all t ≥ 0,

where c is the constant consumption level chosen to satisfy (16.3.4) at equality:

c

1 − β
=

∞∑

t=0

βtyt. (16.3.6)

Under this policy, bt is given by

bt = β−t
t−1∑

j=0

βj (c− yj) = β−t



 c

1 − β
− βtc

1 − β
−

t−1∑

j=0

βjyj





=
∞∑

j=0

βjyt+j −
c

1 − β
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where the last equality invokes (16.3.6). This expression for bt is evidently less

than or equal to bt for all t ≥ 0. Thus, under the natural borrowing constraints,

we have constant consumption for t ≥ 0, i.e., perfect consumption smoothing

over time.

The natural debt limits allow bt to be positive, provided that it is not

too large. Next we shall study the more severe ad hoc debt limit that requires

−bt ≥ 0, so that the consumer can lend , but not borrow. This restriction will

inhibit consumption smoothing for households whose incomes are growing, and

who therefore are naturally borrowers.3

16.3.1. An ad hoc borrowing constraint: nonnegative assets

We continue to assume a known endowment sequence but now impose a no-

borrowing constraint (1 + r)−1bt+1 ≤ 0 ∀t ≥ 0. To facilitate the transition to

our subsequent analysis of the problem under uncertainty, we work in terms of a

definition of assets that include this period’s income, at = −bt+yt .4 Let (c∗t , a
∗
t )

denote an optimal path. First-order necessary conditions for an optimum are

u′ (c∗t ) ≥ u′
(
c∗t+1

)
, = if c∗t < a∗t (16.3.7)

for t ≥ 0. Along an optimal path, it must be true that either

(a) c∗t−1 = c∗t ; or

(b) c∗t−1 < c∗t and c∗t−1 = a∗t−1 , and hence a∗t = yt .

Condition (b) states that the no-borrowing constraint binds only when the con-

sumer desires to shift consumption from the future to the present. He will desire

to do that only when his endowment is growing.

According to conditions a and b, ct−1 can never exceed ct . The reason is

that a declining consumption sequence can be improved by cutting a marginal

unit of consumption at time t− 1 with a utility loss of u′(ct−1) and increasing

consumption at time t by the saving plus interest with a discounted utility gain

3 See exercise 16.1 for how income growth and shrinkage impinge on consumption in the

presence of an ad hoc borrowing constraint.
4 When {yt} is an i.i.d. process, working with at rather than bt makes it possible to

formulate the consumer’s Bellman equation in terms of the single state variable at , rather

than the pair bt, yt . We’ll exploit this idea again in chapter 17.
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of β(1+r)u′(ct) = u′(ct) > u′(ct−1), where the inequality follows from the strict

concavity of u(c) and ct−1 > ct . A symmetric argument rules out ct−1 < ct

as long as the nonnegativity constraint on savings is not binding; that is, an

agent would choose to cut his savings to make ct−1 equal to ct as in condition

a. Therefore, consumption increases from one period to another as in condition

b only for a constrained agent with zero savings, a∗t−1 − c∗t−1 = 0. It follows

that next period’s assets are then equal to next period’s income, a∗t = yt .

Solving the budget constraint (16.2.2) at equality forward for at and rear-

ranging gives
∞∑

j=0

βjct+j = at +

∞∑

j=1

βjyt+j . (16.3.8)

At dates t ≥ 1 for which at = yt , so that the no-borrowing constraint was

binding at time t− 1, (16.3.8) becomes

∞∑

j=0

βjct+j =

∞∑

j=0

βjyt+j. (16.3.9)

Equations (16.3.8) and (16.3.9) contain important information about the opti-

mal solution. Equation (16.3.8) holds for all dates t ≥ 1 at which the consumer

arrives with positive net assets at − yt > 0. Equation (16.3.9) holds for those

dates t at which net assets or savings at−yt are zero, i.e., when the no-borrowing

constraint was binding at t− 1. If the no-borrowing constraint is binding only

finitely often, then after the last date t−1 at which it was binding, (16.3.9) and

the Euler equation (16.3.7) imply that consumption will thereafter be constant

at a rate c̃ that satisfies c̃
1−β =

∑∞
j=0 β

jyt+j .

In more detail, suppose that an agent arrives in period t with zero savings

and knows that the borrowing constraint will never bind again. He would then

find it optimal to choose the highest sustainable constant consumption. This is

given by the annuity value of the tail of the income process starting from period

t ,

xt ≡ r

1 + r

∞∑

j=t

(1 + r)t−j yj . (16.3.10)

In the optimization problem under certainty, the impact of the borrowing con-

straint will not vanish until the date at which the annuity value of the tail (or

remainder) of the income process is maximized. We state this in the following

proposition.
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Proposition 1: Given a borrowing constraint and a nonstochastic endow-

ment stream, the limit of the nondecreasing optimal consumption path is

c̄ ≡ lim
t→∞

c∗t = sup
t
xt ≡ x̄ . (16.3.11)

Proof: We will first show that c̄ ≤ x̄ . Suppose to the contrary that c̄ > x̄ .

Then conditions a and b imply that there is a t such that a∗t = yt and c∗j > xt

for all j ≥ t . Therefore, there is a τ sufficiently large that

0 <
τ∑

j=t

(1 + r)t−j
(
c∗j − yj

)
= (1 + r)t−τ

(
c∗τ − a∗τ

)
,

where the equality uses a∗t = yt and successive iterations on budget constraint

(16.2.2). The implication that c∗τ > a∗τ constitutes a contradiction because it

violates the constraint that savings are nonnegative in optimization problem

(16.2.3).

To show that c̄ ≥ x̄ , suppose to the contrary that c̄ < x̄ . Then there is an

xt such that c∗j < xt for all j ≥ t , and hence

∞∑

j=t

(1 + r)t−j c∗j <
∞∑

j=t

(1 + r)t−j xt =
∞∑

j=t

(1 + r)t−j yj

≤ a∗t +
∞∑

j=t+1

(1 + r)t−j yj ,

where the last weak inequality uses a∗t ≥ yt . Therefore, there is an ε > 0 and

τ̂ > t such that for all τ > τ̂ ,

τ∑

j=t

(1 + r)t−j c∗j < a∗t +

τ∑

j=t+1

(1 + r)t−j yj − ε ,

and after invoking budget constraint (16.2.2) repeatedly,

(1 + r)
t−τ

c∗τ < (1 + r)
t−τ

a∗τ − ε ,

or, equivalently,

c∗τ < a∗τ − (1 + r)
τ−t

ε .
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We can then construct an alternative feasible consumption sequence {cεj} such

that cεj = c∗j for j 6= τ̂ and cεj = c∗j + ε for j = τ̂ . The fact that this alternative

sequence yields higher utility establishes the contradiction.

More generally, we know that at each date t ≥ 1 for which the no-borrowing

constraint is binding at date t−1, consumption will increase to satisfy (16.3.9).

The time series of consumption will thus be a discrete time step function whose

jump dates t coincide with the dates at which xt attains new highs:

t = {t : xt > xs, s < t}.

If there is a finite last date t , optimal consumption is a monotone bounded

sequence that converges to a finite limit.

In summary, we have shown that under certainty, the optimal consumption

sequence converges to a finite limit as long as the discounted value of future

income is bounded across all starting dates t . Surprisingly enough, that result

is overturned when there is uncertainty. But first, consider a simple example of

a nonstochastic endowment process.

16.3.2. Example: periodic endowment process

Suppose that the endowment oscillates between one good in even periods and

zero goods in odd periods. The annuity value of this endowment process is equal

to

xt

∣∣∣
t even

=
r

1 + r

∞∑

j=0

(1 + r)−2j = (1 − β)
∞∑

j=0

β2j =
1

1 + β
, (16.3.12a)

xt

∣∣∣
t odd

=
1

1 + r
xt

∣∣∣
t even

=
β

1 + β
. (16.3.12b)

According to Proposition 1, the limit of the optimal consumption path is then

c̄ = (1+β)−1 . That is, as soon as the agent reaches the first even period in life,

he sets consumption equal to c̄ forevermore. The associated beginning-of-period

assets at fluctuates between (1 + β)−1 and 1.

The exercises at the end of this chapter contain more examples.
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16.4. Quadratic preferences

It is useful briefly to consider the linear quadratic permanent income model

as a benchmark for the results to come. Assume as before that β(1 + r) = 1

and that the household’s budget constraint at t is (16.3.1). Rather than the

no-borrowing constraint (16.3.2), we impose that5

E0

(
lim
t→∞

βtb2t

)
= 0. (16.4.1)

This constrains the asymptotic rate at which debt can grow. Subject to this

constraint, solving (16.3.1) forward yields

bt =

∞∑

j=0

βj (yt+j − ct+j) . (16.4.2)

We alter the preference specification above to make u(ct) a quadratic func-

tion −.5(ct − γ)2 , where γ > 0 is a bliss consumption level. Marginal utility is

linear in consumption: u′(c) = γ− c . We put no bounds on c ; in particular, we

allow consumption to be negative. We allow {yt} to be an arbitrary stationary

stochastic process.

The weakness of constraint (16.4.1) allows the household’s first-order con-

dition to prevail with equality at all t ≥ 0: u′(ct) = Etu
′(ct+1). The linearity

of marginal utility in turn implies

Etct+1 = ct, (16.4.3)

which states that ct is a martingale. Combining (16.4.3) with (16.4.2) and tak-

ing expectations conditional on time t information gives bt = Et
∑∞

j=0 β
jyt+j−

1
1−β ct or

ct =
r

1 + r



−bt + Et

∞∑

j=0

(
1

1 + r

)j
yt+j



 . (16.4.4)

5 The natural borrowing limit assumes that consumption is nonnegative, while the model

with quadratic preferences permits consumption to be negative. When consumption can be

negative, there seems to be no natural lower bound to the amount of debt that could be

repaid, since more payments can always be wrung out of the consumer. Thus, with quadratic

preferences we have to rethink the sense of a borrowing constraint. The alternative (16.4.1)

allows negative consumption but limits the rate at which debt is allowed to grow in a way

designed to rule out a Ponzi scheme that would have the consumer always consume bliss

consumption by accumulating debt without limit.
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Equation (16.4.4) is a version of the permanent income hypothesis and tells

the consumer to set his current consumption equal to the annuity value of his

nonhuman (−bt ) and human wealth (Et
∑∞

j=0

(
1

1+r

)j
yt+j ). We can substitute

this consumption rule into (16.3.1) and rearrange to get

bt+1 = bt + rEt

∞∑

j=0

(
1

1 + r

)j
yt+j − (1 + r) yt. (16.4.5)

Equations (16.4.4) and (16.4.5) imply that under the optimal policy, ct, bt both

have unit roots and that they are cointegrated.

Consumption rule (16.4.4) has the remarkable feature of certainty equiv-

alence: consumption ct depends only on the first moment of the discounted

value of the endowment sequence. In particular, the conditional variance of the

present value of the endowment does not matter.6 Under rule (16.4.4), con-

sumption is a martingale and the consumer’s assets bt are a unit root process.

Neither consumption nor assets converge, though at each point in time, the

consumer expects his consumption not to drift in its average value.

The next section shows that these outcomes will change dramatically when

we alter the specification of the utility function to rule out negative consumption.

16.5. Stochastic endowment process: i.i.d. case

With uncertain endowments, the first-order condition for the optimization prob-

lem (16.2.3) is

u′(c) ≥
S∑

s=1

β(1 + r)ΠsV
′
[
(1 + r)(a − c) + ys

]
, (16.5.1)

with equality if the nonnegativity constraint on savings is not binding. The

Benveniste-Scheinkman formula implies u′(c) = V ′(a), so the first-order condi-

tion can also be written as

V ′ (a) ≥
S∑

s=1

β (1 + r) ΠsV
′ (a′s) , (16.5.2)

6 This property of the consumption rule reflects the workings of the type of certainty

equivalence that we discussed in chapter 5.
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where a′s is next period’s assets if the income shock is ys . Since β−1 = (1 + r),

V ′(a) is a nonnegative supermartingale. By a theorem of Doob (1953, p. 324),7

V ′(a) must then converge almost surely. The limiting value of V ′(a) must be

zero because of the following argument: Suppose to the contrary that V ′(a)

converges to a strictly positive limit. That supposition implies that a converges

to a finite positive value. But this implication is immediately contradicted by the

nature of the optimal policy function, which makes c a function of a , together

with the budget constraint (16.2.2): randomness of y contradicts a finite limit

for a . Instead, V ′(a) must converge to zero, implying that assets diverge to

infinity. (We return to this result in chapter 17 on incomplete market models.)

Though assets diverge to infinity, they do not increase monotonically. Since

assets are used for self-insurance, we would expect that low income realizations

are associated with reductions in assets. To show this point, suppose to the

contrary that even the lowest income realization y1 is associated with nonde-

creasing assets; that is, (1 + r)(a− c) + y1 ≥ a . Then we have

V ′
[
(1 + r)(a − c) + y1

]
≤ V ′(a)

=

S∑

s=1

ΠsV
′
[
(1 + r)(a − c) + ys

]
, (16.5.3)

where the last equality is first-order condition (16.5.2) when the nonnegativity

constraint on savings is not binding and after using β−1 = (1 + r). Since

V ′[(1+ r)(a− c)+ ys] ≤ V ′[(1+ r)(a− c)+ y1] for all s ∈ S , expression (16.5.3)

implies that the derivatives of V evaluated at different asset values are equal to

each other, an implication that is contradicted by the strict concavity of V .

The fact that assets converge to infinity means that the individual’s con-

sumption also converges to infinity. After invoking the Benveniste-Scheinkman

formula, first-order condition (16.5.1) can be rewritten as

u′ (c) ≥
S∑

s=1

β (1 + r) Πsu
′ (c′s) =

S∑

s=1

Πsu
′ (c′s) , (16.5.4)

where c′s is next period’s consumption if the income shock is ys , and the last

equality uses (1 + r) = β−1 . It is important to recognize that the individual

will never find it optimal to choose a time-invariant consumption level for the

7 See the appendix of this chapter for a statement of the theorem.
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indefinite future. Suppose to the contrary that the individual at time t were to

choose a constant consumption level for all future periods. The maximum con-

stant consumption level that would be sustainable under all conceivable future

income realizations is the annuity value of his current assets at and a stream of

future incomes all equal to the lowest income realization. But whenever there is

a future period with a higher income realization, we can use an argument similar

to our earlier construction of the sequence {cεj} in the case of certainty to show

that the initial time-invariant consumption level does not maximize the agent’s

utility. It follows that future consumption will vary with income realizations

and that consumption cannot converge to a finite limit with an i.i.d. endow-

ment process. Hence, when applying the martingale convergence theorem, the

nonnegative supermartingale u′(c) in (16.5.4) must converge to zero, since any

strictly positive limit would imply that consumption converges to a finite limit,

which is ruled out.

16.6. Stochastic endowment process: general case

The result that consumption diverges to infinity with an i.i.d. endowment pro-

cess is extended by Chamberlain and Wilson (2000) to an arbitrary stationary

stochastic endowment process that is sufficiently stochastic. Let It denote the

information set at time t . Then the general version of first-order condition

(16.5.4) becomes

u′(ct) ≥ E
[
u′(ct+1)

∣∣∣It
]
, (16.6.1)

where E(·|It) is the expectation operator conditioned upon information set It .

Assuming a bounded utility function, Chamberlain and Wilson prove the fol-

lowing result, where xt is defined in (16.3.10):

Proposition 2: If there is an ε > 0 such that for any α ∈ <

P
(
α ≤ xt ≤ α+ ε

∣∣∣It
)
< 1 − ε

for all It and t ≥ 0, then P (limt→∞ ct = ∞) = 1.

Without providing a proof here, it is useful to make a connection to the

nonstochastic case in Proposition 1. Under certainty, the limiting value of the

consumption path is given by the highest annuity of the endowment process
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across all starting dates t ; c̄ = supt xt . Under uncertainty, Proposition 2 says

that the consumption path will never converge to any finite limit if the annuity

value of the endowment process is sufficiently stochastic. Instead, the optimal

consumption path will then converge to infinity. This stark difference between

the case of certainty and uncertainty is quite remarkable.8

16.7. Economic intuition

Imagine that you perturb any constant endowment stream by adding the slight-

est i.i.d. component. Our two propositions then say that the optimal consump-

tion path changes from being a constant to becoming a stochastic process that

goes to infinity. Beyond appealing to martingale convergence theorems, Cham-

berlain and Wilson (2000, p. 381) comment upon the difficulty of developing

economic intuition for this startling finding:

Unfortunately, the line of argument used in the proof does not provide

a very convincing economic explanation. Clearly the strict concavity

of the utility function must play a role. (The result does not hold if,

for instance, u is a linear function over a sufficiently large domain and

(xt) is bounded.) But to simply attribute the result to risk aversion on

the grounds that uncertain future returns will cause risk-averse con-

sumers to save more, given any initial asset level, is not a completely

satisfactory explanation either. In fact, it is a bit misleading. First,

that argument only explains why expected accumulated assets would

tend to be larger in the limit. It does not really explain why consump-

tion should grow without bound. Second, over any finite time horizon,

the argument is not even necessarily correct.

Given a finite horizon, Chamberlain and Wilson proceed to discuss how mean-

preserving spreads of future income leave current consumption unaffected when

the agent’s utility function is quadratic over a sufficiently large domain.

8 In exercise 16.3 , you will be asked to prove that the divergence of consumption to +∞

also occurs under a stochastic counterpart to the natural borrowing limits. These are less

stringent than the no-borrowing condition.
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We believe that the economic intuition is to be found in the strict concavity

of the utility function and the assumption that the marginal utility of consump-

tion must remain positive for any arbitrarily high consumption level. This rules

out quadratic utility, for example. To advance this explanation, we first focus

on utility functions whose marginal utility of consumption is strictly convex,

i.e., u′′′ > 0 if the function is thrice differentiable. Then, Jensen’s inequality

implies
∑

sΠsu
′(cs) > u′(

∑
sΠscs); first-order condition (16.5.4) then implies

c <

S∑

s=1

Πsc
′
s , (16.7.1)

where the strict inequality follows from our earlier argument that future con-

sumption levels will not be constant but will vary with income realizations. In

other words, when the marginal utility of consumption is strictly convex, a given

absolute decline in consumption is not only more costly in utility than a gain

from an identical absolute increase in consumption, but the former is also asso-

ciated with a larger rise in marginal utility as compared to the drop in marginal

utility of the latter. To set today’s marginal utility of consumption equal to next

period’s expected marginal utility of consumption, the consumer must therefore

balance future states with expected declines in consumption against appropri-

ately higher expected increases in consumption for other states. Of course, when

next period arrives and the consumer chooses optimal consumption (which is

then on average higher than last period’s consumption), the same argument

applies again. That is, the process exhibits a “ratchet effect” by which con-

sumption tends toward ever higher levels. Moreover, this on-average increasing

consumption sequence cannot converge to a finite limit because of our earlier

argument based on an agent’s desire to exhaust all his resources while respecting

his budget constraint.

Strictly speaking, this argument for the optimality of unbounded consump-

tion growth applies to utility functions whose marginal utility of consumption

is strictly convex. But even utility functions that do not have convex marginal

utility globally must ultimately conform to a similar condition over long enough

intervals of the positive real line, because otherwise those utility functions would

eventually violate the assumptions of a strictly positive, strictly diminishing

marginal utility of consumption, u′ > 0 and u′′ < 0. Chamberlain and Wil-

son’s reference to a quadratic utility function illustrates the problem of how the
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marginal utility of consumption will otherwise turn negative at large consump-

tion levels. Thus, our understanding of the remarkable result in Proposition 2

is aided by considering the inevitable ratchet effect upon consumption implied

by the first-order condition for the agent’s optimal intertemporal choice.

16.8. Concluding remarks

This chapter has maintained the assumption that β(1 + r) = 1, which is a very

important ingredient in delivering the divergence toward infinity of the agent’s

asset and consumption level. Chamberlain and Wilson (1984) study a much

more general version of the model where they relax this condition.

Chapter 17 will put together continua of agents facing generalizations of the

savings problems in order to build some incomplete markets models. The models

of that chapter will determine the interest rate 1 + r as an equilibrium object.

In these models, to define a stationary equilibrium, we want the sequence of

distributions of each agent’s asset holdings to converge to a well-defined invariant

distribution with finite first and second moments. For there to exist a stationary

equilibrium without aggregate uncertainty, the findings of the present chapter

would lead us to anticipate that the equilibrium interest rate in those models

must fall short of β−1 . In a production economy with physical capital, that

result implies that the marginal product of capital will be less than the one

that would prevail in a complete markets world when the stationary interest

rate would be given by β−1 . In other words, an incomplete markets economy

is characterized by an overaccumulation of capital that drives the interest rate

below β−1 , which in turn chokes the desire to accumulate an infinite amount of

assets that agents would have had if the interest rate had been equal to β−1 .

Chapter 19 will consider several models in which the condition β(1+r) = 1

is maintained. There the assumption will be that a social planner has access to

risk-free loans outside the economy and seeks to maximize agents’ welfare subject

to enforcement and/or information problems. The environment is once again

assumed to be stationary without aggregate uncertainty, so in the absence of

enforcement and information problems the social planner would just redistribute

the economy’s resources in each period without any intertemporal trade with

the outside world. But when agents are free to leave the economy with their
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endowment streams and forever live in autarky, the optimal solution prescribes

that the social planner amass sufficient outside claims so that each agent is

granted a constant consumption stream in the limit, at a level that weakly

dominates autarky for all realizations of an agent’s endowment. In the case of

asymmetric information, where the planner can induce agents to tell the truth

only by manipulating promises of future utilities, we obtain a conclusion that

is diametrically opposite to the self-insurance outcome of the present chapter.

Instead of consumption approaching infinity in the limit, the optimal solution

has all agents’ consumption approaching its lower bound.

A. Supermartingale convergence theorem

This appendix states the supermartingale convergence theorem. Let the ele-

ments of the 3-tuple (Ω,F , P ) denote a sample space, a collection of events,

and a probability measure, respectively. Let t ∈ T index time, where T de-

notes the nonnegative integers. Let Ft denote an increasing sequence of σ -fields

of F sets. Suppose that

(i) Zt is measurable with respect to Ft ;

(ii) E|Zt| < +∞ ;

(iii) E(Zt|Fs) = Zs almost surely for all s < t; s, t ∈ T .

Then {Zt, t ∈ T } is said to be a martingale with respect to Ft . If (iii) is replaced

by E(Zt|Fs) ≥ Zs almost surely, then {Zt} is said to be a submartingale. If

(iii) is replaced by E(Zt|Fs) ≤ Zs almost surely, then {Zt} is said to be a

supermartingale.

We have the following important theorem.

Supermartingale Convergence Theorem: Let {Zt,Ft} be a

nonnegative supermartingale. Then there exists a random variable Z such that

limZt = Z almost surely and E|Z| < +∞ , i.e., Zt converges almost surely to

a finite limit.
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Exercises

Exercise 16.1 A consumer has preferences over sequences of a single con-

sumption good that are ordered by
∑∞

t=0 β
tu(ct), where β ∈ (0, 1) and u(·) is

strictly increasing, twice continuously differentiable, strictly concave, and satis-

fies the Inada condition limc↓0 u
′(c) = +∞ . The one good is not storable. The

consumer has an endowment sequence of the one good yt = λt, t ≥ 0, where

|λβ| < 1. The consumer can borrow or lend at a constant and exogenous risk-

free net interest rate of r that satisfies (1 + r)β = 1. The consumer’s budget

constraint at time t is

bt + ct ≤ yt + (1 + r)−1bt+1

for all t ≥ 0, where bt is the debt (if positive) or assets (if negative) due at t ,

and the consumer has initial debt b0 = 0.

Part I. In this part, assume that the consumer is subject to the ad hoc borrowing

constraint bt ≤ 0 ∀t ≥ 1. Thus, the consumer can lend but not borrow.

a. Assume that λ < 1. Compute the household’s optimal plan for {ct, bt+1}∞t=0 .

b. Assume that λ > 1. Compute the household’s optimal plan {ct, bt+1}∞t=0 .

Part II. In this part, assume that the consumer is subject to the natural bor-

rowing constraint associated with the given endowment sequence.

c. Compute the natural borrowing limits for all t ≥ 0.

d. Assume that λ < 1. Compute the household’s optimal plan for {ct, bt+1}∞t=0 .

e. Assume that λ > 1. Compute the household’s optimal plan {ct, bt+1}∞t=0 .

Exercise 16.2 The household has preferences over stochastic processes of a

single consumption good that are ordered by E0

∑∞
t−0 β

t ln(ct), where β ∈
(0, 1) and E0 is the mathematical expectation with respect to the distribution

of the consumption sequence of a single nonstorable good, conditional on the

value of the time 0 endowment. The consumer’s endowment is the following

stochastic process: at times t = 0, 1, the household’s endowment is drawn from

the distribution Prob(yt = 2) = π , Prob(yt = 1) = 1 − π , where π ∈ (0, 1).

At all times t ≥ 2, yt = yt−1 . At each date t ≥ 0, the household can lend,

but not borrow, at an exogenous and constant risk-free one-period net interest
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rate of r that satisfies (1 + r)β = 1. The consumer’s budget constraint at t is

at+1 = (1+r)(at−ct)+yt+1 , subject to the initial condition a0 = y0 . One-period

assets carried (at − ct) over into period t + 1 from t must be nonnegative, so

that the no-borrowing constraint is at ≥ ct . At time t = 0, after y0 is realized,

the consumer devises an optimal consumption plan.

a. Draw a tree that portrays the possible paths for the endowment sequence

from date 0 onward.

b. Assume that y0 = 2. Compute the consumer’s optimal consumption and

lending plan.

c. Assume that y0 = 1. Compute the consumer’s optimal consumption and

lending plan.

d. Under the two assumptions on the initial condition for y0 in the preceding

two questions, compute the asymptotic distribution of the marginal utility of

consumption u′(ct) (which in this case is the distribution of u′(ct) = V ′
t (at) for

t ≥ 2), where Vt(a) is the consumer’s value function at date t).

e. Discuss whether your results in part d conform to Chamberlain and Wilson’s

application of the supermartingale convergence theorem.

Exercise 16.3 Consider the stochastic version of the savings problem under

the following natural borrowing constraints . At each date t ≥ 0, the consumer

can issue risk-free one-period debt up to an amount that it is feasible for him to

repay almost surely, given the nonnegativity constraint on consumption ct ≥ 0

for all t ≥ 0.

a. Verify that the natural debt limit is (1 + r)−1bt+1 ≤ y1

r .

b. Show that the natural debt limit can also be expressed as at+1 − yt+1 ≥
− (1+r)y1

r for all t ≥ 0.

c. Assume that yt is an i.i.d. process with nontrivial distribution {Πs} , in the

sense that at least two distinct endowments occur with positive probabilities.

Prove that optimal consumption diverges to +∞ under the natural borrowing

limits.

d. For identical realizations of the endowment sequence, get as far as you can

in comparing what would be the sequences of optimal consumption under the

natural and ad hoc borrowing constraints.



Exercises 563

Exercise 16.4 Trade?

A pure endowment economy consists of two households with identical prefer-

ences but different endowments. A household of type i has preferences that are

ordered by

(1) E0

∞∑

t=0

βtu(cit), β ∈ (0, 1)

where cit is time t consumption of a single consumption good, u(cit) = u1cit −
.5u2c

2
it , where u1, u2 > 0, and E0 denotes the mathematical expectation con-

ditioned on time 0 information. The household of type 1 has a stochastic

endowment y1t of the good governed by

(2) y1t+1 = y1t + σεt+1

where σ > 0 and εt+1 is an i.i.d. process Gaussian process with mean 0 and

variance 1. The household of type 2 has endowment

(3) y2t+1 = y2t − σεt+1

where εt+1 is the same random process as in (2). At time t , yit is realized

before consumption at t is chosen. Assume that at time 0, y10 = y20 and that

y10 is substantially less than the bliss point u1/u2 . To make the computation

easier, please assume that there is no disposal of resources.

Part I. In this part, please assume that there are complete markets in history-

and date-contingent claims.

a. Define a competitive equilibrium, being careful to specify all of the objects

of which a competitive equilibrium is composed.

b. Define a Pareto problem for a fictitious planner who attaches equal weight

to the two households. Find the consumption allocation that solves the Pareto

(or planning) problem.

c. Compute a competitive equilibrium.

Part II. Now assume that markets are incomplete. There is only one traded

asset: a one-period risk-free bond that both households can either purchase or
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issue. The gross rate of return on the asset between date t and date t + 1 is

Rt . Household i ’s budget constraint at time t is

(4) cit + R−1
t bit+1 = yit + bit

where bit is the value in terms of time t consumption goods of household’s i

holdings of one-period risk-free bonds. We require that a consumers’s holdings

of bonds are subject to the restriction

(5) lim
t→+∞

Eβtu′(cit)Ebit+1 = 0.

Assume that b10 = b20 = 0. An incomplete markets competitive equilibrium

is a gross interest rate sequence {Rt} , sequences of bond holdings {bit} for

i = 1, 2, and feasible allocations {cit}, i = 1, 2 such that given {Rt} , household

i = 1, 2 is maximizing (1) subject to the sequence of budget constraints (4) and

the given initial levels of b10, b20 .

d. A friend of yours recommends the guess-and-verify method and offers the

following guess about the equilibrium. He conjectures that there are no gains to

trade: in equilibrium, each household simply consumes its endowment. Please

verify or falsify this guess. If you verify it, please give formulas for the equilib-

rium {Rt} and the stocks of bonds held by each household at each date.

Exercise 16.5 Trade??

A consumer orders consumption streams according to

(1) E0

∞∑

t=0

βt
c1−αt

1 − α
, β ∈ (0, 1)

where α > 1 and E0 is the mathematical expectation conditional on time 0

information. The consumer can borrow or lend a one-period risk-free security

that bears a fixed rate of return of R = β−1 . The consumer’s budget constraint

at time t is

(2) ct +R−1bt+1 = yt + bt

where bt is the level of the asset that the consumer brings into period t . The

household is subject to a “natural” borrowing limit. The household’s initial

asset level is b0 = 0 and his endowment sequence yt follows the process

(3) yt+1 = yt exp(k1εt+1 + k2)
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where εt+1 is an i.i.d. Gaussian process with mean zero and variance 1, k2 =

.5αk2
1 , and k1 6= 0. The consumer chooses a process {ct, bt+1}∞t=0 to maximize

(1) subject to (2), (3), and the natural borrowing limit.

a. Give a closed-form expression for the consumer’s optimal consumption and

asset accumulation plan.

Hint 1: If logx is N (µ, σ2), then Ex = exp(µ+ σ2/2).

Hint 2: You could start by trying to verify the following guess: the optimal

policy has bt+1 = 0 for all t ≥ 0.

b. Discuss the solution that you obtained in part a in terms of Friedman’s

permanent income hypothesis.

c. Does the household engage in precautionary savings?



Chapter 17

Incomplete Markets Models

17.1. Introduction

In the complete markets model of chapter 8, the optimal consumption alloca-

tion is not history dependent; the allocation depends on the current value of

the Markov state variable only. This outcome reflects the comprehensive op-

portunities to insure risks that markets provide. This chapter and chapter 19

describe settings with more impediments to exchanging risks. These reduced

opportunities make allocations history dependent. In this chapter, the history

dependence is encoded in the dependence of a household’s consumption on the

household’s current asset holdings. In chapter 19, history dependence is en-

coded in the dependence of the consumption allocation on a continuation value

promised by a planner or principal.

The present chapter describes a particular type of incomplete markets

model. The models have a large number of ex ante identical but ex post het-

erogeneous agents who trade a single security. For most of this chapter, we

study models with no aggregate uncertainty and no variation of an aggregate

state variable over time (so macroeconomic time series variation is absent). But

there is much uncertainty at the individual level. Households’ only option is to

“self-insure” by managing a stock of a single asset to buffer their consumption

against adverse shocks. We study several models that differ mainly with respect

to the particular asset that is the vehicle for self-insurance, for example, fiat

currency or capital.

The tools for constructing these models are discrete-state discounted dy-

namic programming, used to formulate and solve problems of the individuals,

and Markov chains, used to compute a stationary wealth distribution. The

models produce a stationary wealth distribution that is determined simultane-

ously with various aggregates that are defined as means across corresponding

individual-level variables.

– 566 –
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We begin by recalling our discrete-state formulation of a single-agent infinite

horizon savings problem. We then describe several economies in which house-

holds face some version of this infinite horizon savings problem, and where some

of the prices taken parametrically in each household’s problem are determined

by the average behavior of all households.1

This class of models was invented by Bewley (1977, 1980, 1983, 1986), partly

to study a set of classic issues in monetary theory. The second half of this chapter

joins that enterprise by using the model to represent inside and outside money, a

free banking regime, a subtle limit to the scope of Friedman’s optimal quantity of

money, a model of international exchange rate indeterminacy, and some related

issues. The chapter closes by describing some recent work of Krusell and Smith

(1998) designed to extend the domain of such models to include a time-varying

stochastic aggregate state variable. As we shall see, this innovation makes the

state of the household’s problem include the time t cross-section distribution of

wealth, an immense object.

Researchers have used calibrated versions of Bewley models to give quanti-

tative answers to questions including the welfare costs of inflation (İmrohoroğlu,

1992), the risk-sharing benefits of unfunded social security systems (İmrohoroğlu,

İmrohoroğlu, and Joines, 1995), the benefits of insuring unemployed people

(Hansen and İmrohoroğlu, 1992), and the welfare costs of taxing capital (Aiya-

gari, 1995).

1 Most of the heterogeneous-agent models in this chapter have been arranged to shut down

aggregate variations over time, to avoid the “curse of dimensionality” that comes into play in

formulating the household’s dynamic programming problem when there is an aggregate state

variable. But we also describe a model of Krusell and Smith (1998) that has an aggregate

state variable.
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17.2. A savings problem

Recall the discrete-state savings problem described in chapters 4 and 16. The

household’s labor income at time t , st , evolves according to an m-state Markov

chain with transition matrix P . If the realization of the process at t is s̄i ,

then at time t the household receives labor income ws̄i . Thus, employment

opportunities determine the labor income process. We shall sometimes assume

that m is 2, and that st takes the value 0 in an unemployed state and 1 in an

employed state.

We constrain holdings of a single asset to a grid A = [0 < a1 < a2 < . . . <

an] . For given values of (w, r ) and given initial values (a0, s0 ), the household

chooses a policy for {at+1}∞t=0 to maximize

E0

∞∑

t=0

βtu(ct), (17.2.1)

subject to
ct + at+1 = (1 + r)at + wst

at+1 ∈ A
(17.2.2)

where β ∈ (0, 1) is a discount factor; u(c) is a strictly increasing, strictly

concave, twice continuously differentiable one-period utility function satisfying

the Inada condition limc↓0 u
′(c) = +∞ ; and β(1 + r) < 1.2

The Bellman equation, for each i ∈ [1, . . . ,m] and each h ∈ [1, . . . , n] , is

v(ah, s̄i) = max
a′∈A

{u[(1 + r)ah + ws̄i − a′] + β

m∑

j=1

P(i, j)v(a′, s̄j)}, (17.2.3)

where a′ is next period’s value of asset holdings. Here v(a, s) is the optimal

value of the objective function, starting from asset-employment state (a, s).

Note that the grid A incorporates upper and lower limits on the quantity that

can be borrowed (i.e., the amount of the asset that can be issued). The upper

bound on A is restrictive. In some of our theoretical discussion to follow, it will

be important to dispense with that upper bound.

In chapter 16, we described how to solve equation (17.2.3) for a value

function v(a, s) and an associated policy function a′ = g(a, s) mapping this

period’s (a, s) pair into an optimal choice of assets to carry into next period.

2 The Inada condition makes consumption nonnegative, and this fact plays a role in jus-

tifying the natural debt limit below.
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17.2.1. Wealth-employment distributions

Define the unconditional distribution of (at, st) pairs, λt(a, s) = Prob(at =

a, st = s). The exogenous Markov chain P on s and the optimal policy function

a′ = g(a, s) induce a law of motion for the distribution λt , namely,

Prob(at+1 = a′, st+1 = s′) =
∑

at

∑

st

Prob(at+1 = a′|at = a, st = s)

· Prob(st+1 = s′|st = s) · Prob(at = a, st = s),

or

λt+1(a
′, s′) =

∑

a

∑

s

λt(a, s)Prob(st+1 = s′|st = s) · I(a′, s, a),

where we define the indicator function I(a′, a, s) = 1 if a′ = g(a, s), and 0

otherwise.3 The indicator function I(a′, a, s) = 1 identifies the time t states

a, s that are sent into a′ at time t+1. The preceding equation can be expressed

as

λt+1(a
′, s′) =

∑

s

∑

{a:a′=g(a,s)}

λt(a, s)P(s, s′). (17.2.4)

A time-invariant distribution λ that solves equation (17.2.4) (i.e., one for which

λt+1 = λt ) is called a stationary distribution. One way to compute a stationary

distribution is to iterate to convergence on equation (17.2.4). An alternative is

to create a Markov chain that describes the solution of the optimum problem,

then to compute an invariant distribution from a left eigenvector associated with

a unit eigenvalue of the stochastic matrix (see chapter 2).

To deduce this Markov chain, we map the pair (a, s) of vectors into a

single state vector x as follows. For i = 1, . . . , n , h = 1, . . . ,m , let the j th

element of x be the pair (ai, sh ), where j = (i−1)m+h . Thus, we denote x′ =

[(a1, s1), (a1, s2), . . . , (a1, sm), (a2, s1), . . . , (a2, sm), . . . , (an, s1), . . . , (an, sm)] . The

optimal policy function a′ = g(a, s) and the Markov chain P on s induce a

Markov chain on xt via the formula

Prob[(at+1 = a′, st+1 = s′)|(at = a, st = s)]

= Prob(at+1 = a′|at = a, st = s) · Prob(st+1 = s′|st = s)

= I(a′, a, s)P(s, s′),

3 This construction exploits the fact that the optimal policy is a deterministic function of

the state, which comes from the concavity of the objective function and the convexity of the

constraint set.
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where I(a′, a, s) = 1 is defined as above. This formula defines an N×N matrix

P , where N = n ·m . This is the Markov chain on the household’s state vector

x .4

Suppose that the Markov chain associated with P is asymptotically sta-

tionary and has a unique invariant distribution π∞ . Typically, all states in the

Markov chain will be recurrent, and the individual will occasionally revisit each

state. For long samples, the distribution π∞ tells the fraction of time that the

household spends in each state. We can “unstack” the state vector x and use

π∞ to deduce the stationary probability measure λ(ai, sh) over (a, s) pairs,

where

λ(ai, sh) = Prob(at = ai, st = sh) = π∞(j),

and where π∞(j) is the j th component of the vector π∞ , and j = (i−1)m+h .

17.2.2. Reinterpretation of the distribution λ

The solution of the household’s optimum savings problem induces a stationary

distribution λ(a, s) that tells the fraction of time that an infinitely lived agent

spends in state (a, s). We want to reinterpret λ(a, s). Thus, let (a, s) index

the state of a particular household at a particular time period t , and assume

that there is a probability distribution of households over state (a, s). We start

the economy at time t = 0 with a distribution λ(a, s) of households that we

want to repeat itself over time. The models in this chapter arrange the initial

distribution and other things so that the distribution of agents over individual

state variables (a, s) remains constant over time even though the state of the

individual household is a stochastic process. We shall study several models of

this type.

4 Various Matlab programs to be described later in this chapter create the Markov chain

for the joint (a, s) state.
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17.2.3. Example 1: a pure credit model

Mark Huggett (1993) studied a pure exchange economy. Each of a continuum

of households has access to a centralized loan market in which it can borrow or

lend at a constant net risk-free interest rate of r . Each household’s endowment

is governed by the Markov chain (P , s̄). The household can either borrow or

lend at a constant risk-free rate. However, total borrowing cannot exceed φ > 0,

where φ is a parameter set by Huggett. A household’s setting of next period’s

level of assets is restricted to the discrete set A = [a1, . . . , am] , where the lower

bound on assets a1 = −φ . Later we’ll discuss alternative ways to set φ , and

how it relates to a natural borrowing limit.

The solution of the household’s problem is a policy function a′ = g(a, s)

that induces a stationary distribution λ(a, s) over states. Huggett uses the

following definition:

Definition: Given φ , a stationary equilibrium is an interest rate r , a policy

function g(a, s), and a stationary distribution λ(a, s) for which

(a) The policy function g(a, s) solves the household’s optimum problem;

(b) The stationary distribution λ(a, s) is induced by (P , s̄) and g(a, s);

(c) The loan market clears

∑

a,s

λ(a, s)g(a, s) = 0.

17.2.4. Equilibrium computation

Huggett computed equilibria by using an iterative algorithm. He fixed an r = rj

for j = 0, and for that r solved the household’s problem for a policy function

gj(a, s) and an associated stationary distribution λj(a, s). Then he checked to

see whether the loan market clears at rj by computing

∑

a,s

λj(a, s)g(a, s) = e∗j .

If e∗j > 0, Huggett raised rj+1 above rj and recomputed excess demand, con-

tinuing these iterations until he found an r at which excess demand for loans is

zero.
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17.2.5. Example 2: a model with capital

The next model was created by Rao Aiyagari (1994). He used a version of the

savings problem in an economy with many agents and interpreted the single

asset as homogeneous physical capital, denoted k . The capital holdings of a

household evolve according to

kt+1 = (1 − δ)kt + xt

where δ ∈ (0, 1) is a depreciation rate and xt is gross investment. The house-

hold’s consumption is constrained by

ct + xt = r̃kt + wst,

where r̃ is the rental rate on capital and w is a competitive wage, to be deter-

mined later. The preceding two equations can be combined to become

ct + kt+1 = (1 + r̃ − δ)kt + wst,

which agrees with equation (17.2.2) if we take at ≡ kt and r ≡ r̃ − δ .

There is a large number of households with identical preferences (17.2.1)

whose distribution across (k, s) pairs is given by λ(k, s), and whose average

behavior determines (w, r) as follows: Households are identical in their pref-

erences, the Markov processes governing their employment opportunities, and

the prices that they face. However, they differ in their histories st0 = {sh}th=0

of employment opportunities, and therefore in the capital that they have ac-

cumulated. Each household has its own history st0 as well as its own initial

capital k0 . The productivity processes are assumed to be independent across

households. The behavior of the collection of these households determines the

wage and interest rate (w, r ).

Assume an initial distribution across households of λ(k, s). The average

level of capital per household K satisfies

K =
∑

k,s

λ(k, s)g(k, s),

where k′ = g(k, s). Assuming that we start from the invariant distribution, the

average level of employment is

N = ξ′∞s̄,
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where ξ∞ is the invariant distribution associated with P and s̄ is the exoge-

nously specified vector of individual employment rates. The average employment

rate is exogenous to the model, but the average level of capital is endogenous.

There is an aggregate production function whose arguments are the average

levels of capital and employment. The production function determines the rental

rates on capital and labor from the marginal conditions

w = ∂F (K,N)/∂N

r̃ = ∂F (K,N)/∂K

where F (K,N) = AKαN1−α and α ∈ (0, 1).

We now have identified all of the objects in terms of which a stationary

equilibrium is defined.

Definition of Equilibrium: A stationary equilibrium is a policy func-

tion g(k, s), a probability distribution λ(k, s), and positive real numbers (K, r̃, w )

such that

(a) The prices (w, r ) satisfy

w = ∂F (K,N)/∂N

r = ∂F (K,N)/∂K − δ;
(17.2.5)

(b) The policy function g(k, s) solves the household’s optimum problem;

(c) The probability distribution λ(k, s) is a stationary distribution associated

with [g(k, s),P ] ; that is, it satisfies

λ(k′, s′) =
∑

s

∑

{k:k′=g(k,s)}

λ(k, s)P(s, s′);

(d) The average value of K is implied by the average of the households’ decisions

K =
∑

k,s

λ(k, s)g(k, s).
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17.2.6. Computation of equilibrium

Aiyagari computed an equilibrium of the model by defining a mapping from

K ∈ IR into IR , with the property that a fixed point of the mapping is an

equilibrium K . Here is an algorithm for finding a fixed point:

1. For fixed value of K = Kj with j = 0, compute (w, r ) from equation

(17.2.5), then solve the household’s optimum problem. Use the optimal policy

gj(k, s) to deduce an associated stationary distribution λj(k, s).

2. Compute the average value of capital associated with λj(k, s), namely,

K∗
j =

∑

k,s

λj(k, s)gj(k, s).

3. For a fixed “relaxation parameter” ξ ∈ (0, 1), compute a new estimate of K

from method5

Kj+1 = ξKj + (1 − ξ)K∗
j .

4. Iterate on this scheme to convergence.

Later, we shall display some computed examples of equilibria of both Huggett’s

model and Aiyagari’s model. But first we shall analyze some features of both

models more formally.

17.3. Unification and further analysis

We can display salient features of several models by using a graphical apparatus

of Aiyagari (1994). We shall show relationships among several models that have

identical household sectors but make different assumptions about the single asset

being traded.

For convenience, recall the basic savings problem. The household’s objec-

tive is to maximize

E0

∞∑

t=0

βtu(ct) (17.3.1a)

5 By setting ξ < 1, the relaxation method often converges to a fixed point in cases in

which direct iteration (i.e., setting ξ = 0) fails to converge.
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ct + at+1 = wst + (1 + r)at (17.3.1b)

subject to the borrowing constraint

at+1 ≥ −φ. (17.3.1c)

We now temporarily suppose that at+1 can take any real value exceeding −φ .

Thus, we now suppose that at ∈ [−φ,+∞). We occasionally find it useful to

express the discount factor β ∈ (0, 1) in terms of a discount rate ρ as β = 1
1+ρ .

In equation (17.3.1b), w is sometimes a given function ψ(r) of the net interest

rate r .

17.4. Digression: the nonstochastic savings problem

It is useful briefly to study the nonstochastic version of the savings problem

when β(1+r) < 1. For β(1+r) = 1, we studied this problem in chapter 16. To

get the nonstochastic savings problem, assume that st is fixed at some positive

level s . Associated with the household’s maximum problem is the Lagrangian

L =

∞∑

t=0

βt {u(ct) + θt [(1 + r)at + ws− ct − at+1]} , (17.4.1)

where {θt}∞t=0 is a sequence of nonnegative Lagrange multipliers on the budget

constraint. The first-order conditions for this problem are

u′(ct) ≥ β(1 + r)u′(ct+1), = if at+1 > −φ. (17.4.2)

When at+1 > −φ , the first-order condition implies

u′(ct+1) =
1

β(1 + r)
u′(ct), (17.4.3)

which because β(1+r) < 1 in turn implies that u′(ct+1) > u′(ct) and ct+1 < ct .

Thus, consumption is declining during periods when the household is not bor-

rowing constrained. Thus, {ct} is a monotone decreasing sequence. If it is

bounded below, either because of an Inada condition on u(·) at 0 or a nonneg-

ativity constraint on ct , then ct will converge as t→ +∞ . When it converges,

the household will be borrowing constrained.
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We can compute the steady level of consumption when the household even-

tually becomes permanently stuck at the borrowing constraint. Set at+1 = at =

−φ . This and (17.3.1b) gives

ct = c̄ = ws− rφ. (17.4.4)

This is the level of labor income left after paying the net interest on the debt

at the borrowing limit. The household would like to shift consumption from

tomorrow to today but can’t.

If we solve the budget constraint forward, we obtain the present-value bud-

get constraint

a0 = (1 + r)−1
∞∑

t=0

(1 + r)−t(ct − ws). (17.4.5)

Thus, when β(1 + r) < 1, the household’s consumption plan can be found from

solving equations (17.4.5), (17.4.4), and (17.4.3) for an initial c0 and a date T

after which the debt limit is binding and ct is constant.

If consumption is required to be nonnegative,6 equation (17.4.4) implies

that the debt limit must satisfy

φ ≤ ws

r
. (17.4.6)

We call the right side the natural debt limit. If φ < ws
r , we say that there is an

ad hoc debt limit.

We have deduced that when β(1 + r) < 1, if a steady-state level exists,

consumption is given by equation (17.4.4) and assets by at = −φ .

Now turn to the case that β(1+r) = 1. Here equation (17.4.3) implies that

ct+1 = ct and the budget constraint implies ct = ws + ra and at+1 = at = a0 .

So when β(1 + r) = 1, any a0 is a stationary value of a . It is optimal forever

to roll over the initial asset level.

In summary, in the deterministic case, the steady-state demand for assets

is −φ when (1 + r) < β−1 (i.e., when r < ρ); and it equals a0 when r = ρ .

Letting the steady-state level be ā , we have

ā =

{−φ, if r < ρ;

a0, if r = ρ,

6 Consumption must be nonnegative, for example, if we impose the Inada condition dis-

cussed earlier.
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where β = (1 + ρ)−1 . When r = ρ , we say that the steady-state asset level ā

is indeterminate.

17.5. Borrowing limits: natural and ad hoc

We return to the stochastic case and take up the issue of debt limits. Imposing

ct ≥ 0 implies the emergence of what Aiyagari calls a natural debt limit. Thus,

imposing ct ≥ 0 and solving equation (17.3.1b) forward gives

at ≥ − 1

1 + r

∞∑

j=0

wst+j(1 + r)−j . (17.5.1)

Since the right side is a random variable, not known at t , we have to supplement

equation (17.5.1) to obtain the borrowing constraint. One possible approach is

to replace the right side of equation (17.5.1) with its conditional expectation,

and to require equation (17.5.1) to hold in expected value. But this expected

value formulation is incompatible with the notion that the loan is risk free, and

that the household can repay it for sure. If we insist that equation (17.5.1)

hold almost surely, for all t ≥ 0, then we obtain the constraint that emerges by

replacing st with min s ≡ s1 , which yields

at ≥ −s1w
r
. (17.5.2)

Aiyagari (1994) calls this the natural debt limit. To accommodate possibly more

stringent debt limits, beyond those dictated by the notion that it is feasible to

repay the debt for sure, Aiyagari specifies the debt limit as

at ≥ −φ, (17.5.3)

where

φ = min
[
b,
s1w

r

]
, (17.5.4)

and b > 0 is an arbitrary parameter defining an “ad hoc” debt limit.
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17.5.1. A candidate for a single state variable

For the special case in which s is i.i.d., Aiyagari showed how to cast the model in

terms of a single state variable to appear in the household’s value function. To

synthesize a single state variable, note that the “disposable resources” available

to be allocated at t are zt = wst + (1 + r)at + φ . Thus, zt is the sum of

the current endowment, current savings at the beginning of the period, and the

maximal borrowing capacity φ . This can be rewritten as

zt = wst + (1 + r)ât − rφ

where ât ≡ at + φ . In terms of the single state variable zt , the household’s

budget set can be represented recursively as

ct + ât+1 ≤ zt (17.5.5a)

zt+1 = wst+1 + (1 + r)ât+1 − rφ (17.5.5b)

where we must have ât+1 ≥ 0. The Bellman equation is

v(zt, st) = max
ât+1≥0

{u(zt − ât+1) + βEv(zt+1, st+1)} . (17.5.6)

Here st appears in the state vector purely as an information variable for predict-

ing the employment component st+1 of next period’s disposable resources zt+1 ,

conditional on the choice of ât+1 made this period. Therefore, it disappears

from both the value function and the decision rule in the i.i.d. case.

More generally, with a serially correlated state, associated with the solution

of the Bellman equation is a policy function

ât+1 = A(zt, st). (17.5.7)
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17.5.2. Supermartingale convergence again

Let’s revisit a main issue from chapter 16, but now consider the possible case

β(1 + r) < 1. From equation (17.5.5a), optimal consumption satisfies ct =

zt −A(zt, st). The optimal policy obeys the Euler inequality:

u′(ct) ≥ β(1 + r)Etu
′(ct+1), = if ât+1 > 0. (17.5.8)

We can use equation (17.5.8) to deduce significant aspects of the limiting be-

havior of mean assets as a function of r . Following Chamberlain and Wilson

(2000) and others, to deduce the effect of r on the mean of assets, we analyze

the limiting behavior of consumption implied by the Euler inequality (17.5.8).

Define

Mt = βt(1 + r)tu′(ct) ≥ 0.

Then Mt+1 −Mt = βt(1 + r)t[β(1 + r)u′(ct+1)− u′(ct)] . Equation (17.5.8) can

be written

Et(Mt+1 −Mt) ≤ 0, (17.5.9)

which asserts that Mt is a supermartingale. Because Mt is nonnegative, the

supermartingale convergence theorem applies. It asserts that Mt converges

almost surely to a nonnegative random variable M̄ : Mt →a.s. M̄ .

It is interesting to consider three cases: (1) β(1 + r) > 1; (2) β(1 + r) < 1,

and (3) β(1 + r) = 1. In case 1, the fact that Mt converges implies that

u′(ct) converges to zero almost surely. If u(·) is unbounded (has no satiation

point), this fact then implies that ct → +∞ and that the consumer’s asset

holdings must be diverging to +∞ . Chamberlain and Wilson (2000) show that

such results also characterize the borderline case (3) (see chapter 16). In case

2, convergence of Mt leaves open the possibility that u′(c) does not converge

almost surely, that it remains finite and continues to vary randomly. Indeed,

when β(1 + r) < 1, the average level of assets remains finite, and so does the

level of consumption.

It is easier to analyze the borderline case β(1 + r) = 1 in the special

case that the employment process is independently and identically distributed,

meaning that the stochastic matrix P has identical rows.7 In this case, st

provides no information about zt+1 , and so st can be dropped as an argument

of both v(·) and A(·). For the case in which st is i. i. d., Aiyagari (1994) uses

7 See chapter 16 for a closely related proof.
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the following argument by contradiction to show that if β(1 + r) = 1, then

zt diverges to +∞ . Assume that there is some upper limit zmax such that

zt+1 ≤ zmax = wsmax + (1 + r)A(zmax) − rφ . Then when β(1 + r) = 1, the

strict concavity of the value function, the Benveniste-Scheinkman formula, and

equation (17.5.8) imply

v′(zmax) ≥ Etv
′
[
wst+1 + (1 + r)A(zmax) − rφ

]

> v′ [wsmax + (1 + r)A(zmax) − rφ] = v′(zmax),

which is a contradiction.

17.6. Average assets as a function of r

In the next several sections we use versions of a graph of Aiyagari (1994) to

analyze several models. The graph plots the average level of assets as a function

of r . In the model with capital, the graph is constructed to incorporate the

equilibrium dependence of the wage w on r . In models without capital, like

Huggett’s, the wage is fixed. We shall focus on situations where β(1 + r) < 1.

We consider cases where the optimal decision rule A(zt, st) and the Markov

chain for s induce a Markov chain jointly for assets and s that has a unique

invariant distribution. For fixed r , let Ea(r) denote the mean level of assets

a and let Eâ(r) = Ea(r) + φ be the mean level of a + φ , where the mean

is taken with respect to the invariant distribution. Here it is understood that

Ea(r) is a function of φ ; when we want to make the dependence explicit we

write Ea(r;φ). Also, as we have said, where the single asset is capital, it is

appropriate to make the wage w a function of r . This approach incorporates

the way different values of r affect average capital, the marginal product of

labor, and therefore the wage.

The preceding analysis applying supermartingale convergence implies that

as β(1 + r) goes to 1 from below (i.e., r goes to ρ from below), Ea(r) diverges

to +∞ . This feature is reflected in the shape of the Ea(r) curve in Figure

17.6.1.8

8 As discussed in Aiyagari (1994), Ea(r) need not be a monotonically increasing function

of r , especially because w can be a function of r .
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Figure 17.6.1: Demand for capital and determination of

interest rate. The Ea(r) curve is constructed for a fixed wage

that equals the marginal product of labor at level of capital

K1 . In the nonstochastic version of the model with capital,

the equilibrium interest rate and capital stock are (ρ,K0),

while in the stochastic version they are (r,K1). For a version

of the model without capital in which w is fixed at this same

fixed wage, the equilibrium interest rate in Huggett’s pure

credit economy occurs at the intersection of the Ea(r) curve

with the r -axis.

Figure 17.6.1 assumes that the wage w is fixed in drawing the Ea(r) curve.

Later, we will discuss how to draw a similar curve, making w adjust as the

function of r that is induced by the marginal productivity conditions for positive

values of K . For now, we just assume that w is fixed at the value equal to the

marginal product of labor when K = K1 , the equilibrium level of capital in

the model. The equilibrium interest rate is determined at the intersection of

the Ea(r) curve with the marginal productivity of capital curve. Notice that

the equilibrium interest rate r is lower than ρ , its value in the nonstochastic
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version of the model, and that the equilibrium value of capital K1 exceeds the

equilibrium value K0 (determined by the marginal productivity of capital at

r = ρ in the nonstochastic version of the model.)

For a pure credit version of the model like Huggett’s, but the same Ea(r)

curve, the equilibrium interest rate is determined by the intersection of the

Ea(r) curve with the r -axis.

E a(r,     )φ

φ

φ

r

E a (r,0)

E a(r)
0

Figure 17.6.2: The effect of a shift in φ on the Ea(r) curve.

Both Ea(r) curves are drawn assuming that the wage is fixed.

For the purpose of comparing some of the models that follow, it is useful

to note the following aspect of the dependence of Ea(0) on φ :

Proposition 1: When r = 0, the optimal rule ât+1 = A(zt, st) is indepen-

dent of φ . This implies that for φ > 0, Ea(0;φ) = Ea(0; 0) − φ .

Proof: It is sufficient to note that when r = 0, φ disappears from the right

side of equation (17.5.5b) (the consumer’s budget constraint). Therefore, the

optimal rule ât+1 = A(zt, st) does not depend on φ when r = 0. More explicitly,

when r = 0, add φ to both sides of the household’s budget constraint to get

(at+1 + φ) + ct ≤ (at + φ) + wst.

If the household’s problem with φ = 0 is solved by the decision rule at+1 =

g(at, zt), then the household’s problem with φ > 0 is solved with the same

decision rule evaluated at at+1 + φ = g(at + φ, zt).
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Thus, it follows that at r = 0, an increase in φ displaces the Ea(r) curve

to the left by the same amount. See Figure 17.6.2. We shall use this result to

analyze several models.

In the following sections, we use a version of Figure 17.6.1 to compute

equilibria of various models. For models without capital, the figure is drawn

assuming that the wage is fixed. Typically, the Ea(r) curve will have the same

shape as Figure 17.6.1. In Huggett’s model, the equilibrium interest rate is

determined by the intersection of the Ea(r) curve with the r -axis, reflecting

that the asset (pure consumption loans) is available in zero net supply. In some

models with money, the availability of a perfect substitute for consumption loans

(fiat currency) creates a positive net supply.
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Figure 17.6.3: Two Ea(r) curves, one with b = 6, the other

with b = 3, with w fixed at w = 1. Notice that at r− 0, the

difference between the two curves is 3, the difference in the

b ’s.
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17.7. Computed examples

We used some Matlab programs that solve discrete-state dynamic programming

problems to compute some examples.9 We discretized the space of assets from

−φ to a parameter amax = 16 with step size .2.

The utility function is u(c) = (1− µ)−1c1−µ , with µ = 3. We set β = .96.

We used two specifications of the Markov process for s . First, we used Tauchen’s

(1986) method to get a discrete-state Markov chain to approximate a first-order

autoregressive process

log st = ρ log st−1 + ut,

where ut is a sequence of i.i.d. Gaussian random variables. We set ρ = .2 and

the standard deviation of ut equal to .4
√

(1 − ρ)2 . We used Tauchen’s method

with N = 7 being the number of points in the grid for s .

For the second specification, we assumed that s is i.i.d. with mean 1.0903.

For this case, we compared two settings for the variance: .22 and .68. Figures

17.6.3 and 17.7.1 plot the Ea(r) curves for these various specifications. Figure

17.7.1 plots Ea(r) for the first case of serially correlated s . The two E[a(r)]

curves correspond to two distinct settings of the ad hoc debt constraint. One is

for b = 3, the other for b = 6. Figure 17.7.2 plots the invariant distribution of

asset holdings for the case in which b = 3 and the interest rate is determined

at the intersection of the Ea(r) curve and the r -axis.

Figure 17.7.1 summarizes a precautionary savings experiment for the i.i.d.

specification of s . Two Ea(r) curves are plotted. For each, we set the ad hoc

debt limit b = 0. The Ea(r) curve further to the right is the one for the higher

variance of the endowment shock s . Thus, a larger variance in the random

shock causes increased savings.

Keep these graphs in mind as we turn to analyze some particular models

in more detail.

9 The Matlab programs used to compute the Ea(r) functions are bewley99.m, bewley99v2.m,

aiyagari2.m, bewleyplot.m, and bewleyplot2.m. The program markovapprox.m implements

Tauchen’s method for approximating a continuous autoregressive process with a Markov chain.

A program markov.m simulates a Markov chain.
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Figure 17.7.1: Two Ea(r) curves when b = 0 and the

endowment shock s is i.i.d. but with different variances; the

curve with circles belongs to the economy with the higher

variance.
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17.8. Several Bewley models

We consider several models in which a continuum of households faces the same

problem. Their behavior generates the asset demand function Ea(r;φ). The

models share the same family of Ea(r;φ) curves, but differ in their settings

of φ and in their interpretations of the supply of the asset. The models are

(1) Aiyagari’s (1994, 1995) model in which the risk-free asset is either physical

capital or private IOUs, with physical capital being the net supply of the asset;

(2) Huggett’s model (1993), where the asset is private IOUs, available in zero

net supply; (3) Bewley’s model of fiat currency; (4) modifications of Bewley’s

model to permit an inflation tax; and (5) modifications of Bewley’s model to

pay interest on currency, either explicitly or implicitly through deflation.

17.8.1. Optimal stationary allocation

Because there is no aggregate risk and the aggregate endowment is constant,

a stationary optimal allocation would have consumption constant over time

for each household. Each household’s consumption plan would have constant

consumption over time. The implicit risk-free interest rate associated with such

an allocation would be r = ρ . In the version of the model with capital, the

stationary aggregate capital stock solves

FK(K,N) − δ = ρ. (17.8.1)

Equation (17.8.1) restricts the stationary optimal capital stock in the non-

stochastic optimal growth model of Cass (1965) and Koopmans (1965). The

stationary level of capital is K0 in Figure 17.6.1, depicted as the ordinate of

the intersection of the marginal productivity net of depreciation curve with a

horizontal line r = ρ . As we saw before, the horizontal line at r = ρ acts as

a “long-run” demand curve for savings for a nonstochastic version of the sav-

ings problem. The stationary optimal allocation matches the one produced by

a nonstochastic growth model. We shall use the risk-free interest rate r = ρ

as a benchmark against which to compare some alternative incomplete market

allocations. Aiyagari’s (1994) model replaces the horizontal line r = ρ with an

upward-sloping curve Ea(r), causing the stationary equilibrium interest rate to

fall and the capital stock to rise relative to the risk-free model.
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17.9. A model with capital and private IOUs

Figure 17.6.1 can be used to depict the equilibrium of Aiyagari’s model described

above. The single asset is capital. There is an aggregate production function

Y = F (K,N), and w = FN (K,N), r + δ = FK(K,N). We can invert the

marginal condition for capital to deduce a downward-sloping curve K = K(r).

This is drawn as the curve labeled FK − δ in Figure 17.6.1. We can use the

marginal productivity conditions to deduce a factor price frontier w = ψ(r).

For fixed r , we use w = ψ(r) as the wage in the savings problem and then

deduce Ea(r). We want the equilibrium r to satisfy

Ea(r) = K(r). (17.9.1)

The equilibrium interest rate occurs at the intersection of Ea(r) with the FK−δ
curve. See Figure 17.6.1.10

It follows from the shape of the curves that the equilibrium capital stock K1

exceeds K0 , the capital stock required at the given level of total labor to make

the interest rate equal ρ . There is capital overaccumulation in the stochastic

version of the model.

17.10. Private IOUs only

It is easy to compute the equilibrium of Mark Huggett’s (1993) model with

Figure 17.6.1. We recall that in Huggett’s model, the one asset consists of risk-

free loans issued by other households. There are no “outside” assets. This fits

the basic model, with at being the quantity of loans owed to the individual at

the beginning of t . The equilibrium condition is

Ea(r, φ) = 0, (17.10.1)

which is depicted as the intersection of the Ea(r) curve in Figure 17.6.1 with

the r -axis. There is a family of such curves, one for each value of the “ad hoc”

10 Recall that Figure 17.6.1 was drawn for a fixed wage w , fixed at the value equal to

the marginal product of labor when K = K1 . Thus, the new version of Figure 17.6.1 that

incorporates w = ψ(r) has a new curve Ea(r) that intersects the FK − δ curve at the same

point (r1, K1) as the old curve Ea(r) with the fixed wage. Further, the new Ea(r) curve

would not be defined for negative values of K .
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debt limit. Relaxing the ad hoc debt limit (by driving b → +∞) sends the

equilibrium interest rate upward toward the intersection of the furthest to the

left Ea(r) curve, the one that is associated with the natural debt limit, with

the r -axis.

17.10.1. Limitation of what credit can achieve

The equilibrium condition (17.10.1) and limr↗ρ Ea(r) = +∞ imply that the

equilibrium value of r is less than ρ , for all values of the debt limit respecting

the natural debt limit. This outcome supports the following conclusion:

Proposition 2: (Suboptimality of equilibrium with credit) The equilib-

rium interest rate associated with the natural debt limit is the highest one that

Huggett’s model can support. This interest rate falls short of ρ , the interest

rate that would prevail in a complete markets world.11

17.10.2. Proximity of r to ρ

Notice how in Figure 17.6.3 the equilibrium interest rate r gets closer to ρ

as the borrowing constraint is relaxed. How close it can get under the natural

borrowing limit depends on several key parameters of the model: (1) the discount

factor β , (2) the curvature of u(·), (3) the persistence of the endowment process,

and (4) the volatility of the innovations to the endowment process. When he

selected a plausible β and u(·), then calibrated the persistence and volatility of

the endowment process to U.S. panel data on workers’ earnings, Huggett (1993)

found that under the natural borrowing limit, r is quite close to ρ and that the

household can achieve substantial self-insurance.12 We shall encounter an echo

of this finding when we review Krusell and Smith’s (1998) finding that under

their calibration of idiosyncratic risk, a real business cycle with complete markets

11 Huggett used the model to study how tightening the ad hoc debt limit parameter b

would reduce the risk-free rate far enough below ρ to explain the “risk-free rate” puzzle.
12 This result depends sensitively on how one specifies the left tail of the endowment distri-

bution. Notice that if the minimum endowment s̄1 is set to zero, then the natural borrowing

limit is zero. However, Huggett’s calibration permits positive borrowing under the natural

borrowing limit.
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does a good job of approximating the prices and the aggregate allocation of the

same model in which only a risk-free asset can be traded.

17.10.3. Inside money or free banking interpretation

Huggett’s can be viewed as a model of pure “inside money,” or of circulating

private IOUs. Every person is a “banker” in this setting, entitled to issue “notes”

or evidences of indebtedness, subject to the debt limit (17.5.3). A household

has issued notes whenever at+1 < 0.

There are several ways to think about the “clearing” of notes imposed by

equation (17.10.1). Here is one: In period t , trading occurs in subperiods as

follows. First, households realize their st . Second, some households choose to

set at+1 < at ≤ 0 issue new IOUs in the amount −at+1 + at . Other households

with at < 0 may decide to set at+1 ≥ 0, meaning that they want to “redeem”

their outstanding notes and possibly acquire notes issued by others. Third,

households go to the market and exchange goods for notes. Fourth, notes are

“cleared” or “netted out” in a centralized clearinghouse: positive holdings of

notes issued by others are used to retire possibly negative initial holdings of one’s

own notes. If a person holds positive amounts of notes issued by others, some of

these are used to retire any of his own notes outstanding. This clearing operation

leaves each person with a particular at+1 to carry into the next period, with no

owner of IOUs also being in the position of having some notes outstanding.

There are other ways to interpret the trading arrangement in terms of

circulating notes that implement multilateral long-term lending among corre-

sponding “banks”: notes issued by individual A and owned by B are “honored”

or redeemed by individual C by being exchanged for goods.13 In a different

setting, Kocherlakota (1996b) and Kocherlakota and Wallace (1998) describe

such trading mechanisms.

Under the natural borrowing limit, we can think of this pure consumption

loans or inside money model as possibly a model of free banking. In the model,

households’ ability to issue IOUs is restrained only by the requirement that all

loans be risk-free and of one period in duration. Later, we’ll use the equilibrium

allocation of this free banking model as a benchmark against which to judge the

13 It is possible to tell versions of this story in which notes issued by one individual or group

of individuals are “extinguished” by another.
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celebrated Friedman rule in a model with outside money and a severe borrowing

limit.

We now tighten the borrowing limit enough to make room for some “outside

money.”

17.10.4. Bewley’s basic model of fiat money

This version of the model is set up to generate a demand for fiat money, an

inconvertible currency supplied in a fixed nominal amount by the government

(an entity outside the model). Individuals can hold currency, but not issue

it. To map the individual’s problem into problem (17.3.1), we let mt+1/p =

at+1, b = φ = 0, where mt+1 is the individual’s holding of currency from t to

t+ 1, and p is a constant price level. With a constant price level, r = 0. With

b = φ = 0, ât = at . Currency is the only asset that can be held. The fixed

supply of currency is M . The condition for a stationary equilibrium is

Ea(0) =
M

p
. (17.10.2)

This equation is to be solved for p . The equation states a version of the quantity

theory of money.

Since r = 0, we need some ad hoc borrowing constraint (i.e., b < ∞)

to make this model have a stationary equilibrium. If we relax the borrowing

constraint from b = 0 to permit some borrowing (letting b > 0), the Ea(r)

curve shifts to the left, causing Ea(0) to fall and the stationary price level to

rise.

Let m̄ = Ea(0, φ = 0) be the solution of equation (17.10.2) when φ = 0.

Proposition 1 tells how to construct a set of stationary equilibria, indexed by

φ ∈ (0, m̄), which have identical allocations but different price levels. Given an

initial stationary equilibrium with φ = 0 and a price level satisfying equation

(17.10.2), we construct the equilibrium for φ ∈ (0, m̄) by setting ât for the new

equilibrium equal to ât for the old equilibrium for each person for each period.

This set of equilibria highlights how expanding the amount of “inside money,”

by substituting for “outside” money, causes the value of outside money (cur-

rency) to fall. The construction also indicates that if we set φ > m̄ , then there

exists no stationary monetary equilibrium with a finite positive price level. For

φ > m̄ , Ea(0) < 0, indicating a force for the interest rate to rise and for private
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IOUs to dominate currency in rate of return and to drive it out of the model.

This outcome leads us to consider proposals to get currency back into the model

by paying interest on it. Before we do, let’s consider some situations more often

observed, where a government raises revenues by an inflation tax.

17.11. A model of seigniorage

The household side of the model is described in the previous section; we continue

to summarize this in a stationary demand function Ea(r). We suppose that

φ = 0, so individuals cannot borrow. But now the government augments the

nominal supply of currency over time to finance a fixed aggregate flow of real

purchases G . The government budget constraint at t ≥ 0 is

Mt+1 = Mt + ptG, (17.11.1)

which for t ≥ 1 can be expressed

Mt+1

pt
=

Mt

pt−1

(
pt−1

pt

)
+G.

We shall seek a stationary equilibrium with pt−1

pt
= (1 + r) for t ≥ 1 and

Mt+1

pt
= ā for t ≥ 0. These guesses make the previous equation become

ā =
G

−r . (17.11.2)

For G > 0, this is a rectangular hyperbola in the southeast quadrant. A sta-

tionary equilibrium value of r is determined at the intersection of this curve

with Ea(r) (see Figure 17.11.1). Evidently, when G > 0, the equilibrium net

interest rate r < 0; −r can be regarded as an inflation tax. Notice that if there

is one equilibrium value, there is typically more than one. This is a symptom

of the Laffer curve present in this model. Typically if a stationary equilibrium

exists, there are at least two stationary inflation rates that finance the govern-

ment budget. This conclusion follows from the fact that both curves in Figure

17.11.1 have positive slopes.



592 Incomplete Markets Models

 _

E a (r)

r

E a (r)

1

2

1
r

r

G / r = - a

Figure 17.11.1: Two stationary equilibrium rates of return

on currency that finance the constant government deficit G .

After r is determined, the initial price level can be determined by the time

0 version of the government budget constraint (17.11.1), namely,

ā = M0/p0 +G.

This is the version of the quantity theory of money that prevails in this model.

An increase in M0 increases p0 and all subsequent prices proportionately.

Since there are generally multiple stationary equilibrium inflation rates,

which one should we select? We recommend choosing the one with the highest

rate of return to currency, that is, the lowest inflation tax. This selection gives

“classical” comparative statics: increasing G causes r to fall. In distinct but

related settings, Marcet and Sargent (1989) and Bruno and Fischer (1990) give

learning procedures that select the same equilibrium we have recommended.

Marimon and Sunder (1993) describe experiments with human subjects that

they interpret as supporting this selection.

Note the effects of alterations in the debt limit φ on the inflation rate.

Raising φ causes the Ea(r) curve to shift to the left, and lowers r . It is

even possible for such an increase in φ to cause all stationary equilibria to

vanish. This experiment indicates why governments intent on raising seigniorage

might want to restrict private borrowing. See Bryant and Wallace (1984) for
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an extensive theoretical elaboration of this and related points. See Sargent and

Velde (1995) for a practical example from the French Revolution.

17.12. Exchange rate indeterminacy

We can adapt the preceding model to display a version of Kareken and Wallace’s

(1980) theory of exchange rate indeterminacy. Consider a model consisting of

two countries, each of which is a Bewley economy with stationary money demand

function Eai(r) in country i . The same single consumption good is available in

each country. Residents of both countries are free to hold the currency of either

country. Households of either country are indifferent between the two currencies

as long as their rates of return are equal. Let pit be the price level in country

i , and let p1t = etp2t define the time t exchange rate et . The gross return on

currency i between t − 1 and t is (1 + r) =
(
pi,t−1

pi,t

)
for i = 1, 2. Equality of

rates of return implies et = et−1 for all t and therefore p1,t = ep2,t for all t ,

where e is a constant exchange rate to be determined.

Each of the two countries finances a fixed expenditure level Gi by printing

its own currency. Let āi be the stationary level of real balances in country i ’s

currency. Stationary versions of the two countries’ budget constraints are

ā1 = ā1(1 + r) +G1 (17.12.1)

ā2 = ā2(1 + r) +G2 (17.12.2)

Sum these to get

ā1 + ā2 =
(G1 +G2)

−r .

Setting this curve against Ea1(r)+Ea2(r) determines a stationary equilibrium

rate of return r . To determine the initial price level and exchange rate, we

use the time 0 budget constraints of the two governments. The time 0 budget

constraint for country i is

Mi,1

pi,0
=
Mi,0

pi,0
+Gi

or

āi =
Mi,0

pi,0
+Gi. (17.12.3)
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Add these and use p1,0 = ep2,0 to get

(ā1 + ā2) − (G1 +G2) =
M1,0 + eM2,0

p1,0
.

This is one equation in two variables (e, p1,0). If there is a solution for some

e ∈ (0,+∞), then there is a solution for any other e ∈ (0,+∞). In this sense,

the equilibrium exchange rate is indeterminate.

Equation (17.12.3) is a quantity theory of money stated in terms of the

initial “world money supply” M1,0 + eM2,0 .

17.12.1. Interest on currency

Bewley (1980, 1983) studied whether Friedman’s recommendation to pay in-

terest on currency could improve outcomes in a stationary equilibrium, and

possibly even support an optimal allocation. He found that when β < 1, Fried-

man’s rule could improve things but could not implement an optimal allocation,

for reasons we now describe.

As in the earlier fiat money model, there is one asset, fiat currency, issued

by a government. Households cannot borrow (b = 0). The consumer’s budget

constraint is

mt+1 + ptct ≤ (1 + r̃)mt + ptwst − τpt

where mt+1 ≥ 0 is currency carried over from t to t + 1, pt is the price level

at t , r̃ is nominal interest on currency paid by the government, and τ is a real

lump-sum tax. This tax is used to finance the interest payments on currency.

The government’s budget constraint at t is

Mt+1 = Mt + r̃Mt − τpt,

where Mt is the nominal stock of currency per person at the beginning of t .

There are two versions of this model: one where the government pays ex-

plicit interest while keeping the nominal stock of currency fixed, another where

the government pays no explicit interest but varies the stock of currency to pay

interest through deflation.

For each setting, we can show that paying interest on currency, where cur-

rency holdings continue to obey mt ≥ 0, can be viewed as a device for weaken-

ing the impact of this nonnegativity constraint. We establish this point for each
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setting by showing that the household’s problem is isomorphic with Aiyagari’s

problem of expressions (17.3.1), (17.5.3), and (17.5.4).

17.12.2. Explicit interest

In the first setting, the government leaves the money supply fixed, setting

Mt+1 = Mt ∀t , and undertakes to support a constant price level. These settings

make the government budget constraint imply

τ = r̃M/p.

Substituting this into the household’s budget constraint and rearranging gives

mt+1

p
+ ct ≤

mt

p
(1 + r̃) + wst − r̃

M

p

where the choice of currency is subject to mt+1 ≥ 0. With appropriate trans-

formations of variables, this matches Aiyagari’s setup of expressions (17.3.1),

(17.5.3), and (17.5.4). In particular, take r = r̃ , φ = M
p ,

mt+1

p = ât+1 ≥ 0.

With these choices, the solution of the savings problem of a household living

in an economy with aggregate real balances of M
p and with nominal interest r̃

on currency can be read from the solution of the savings problem with the real

interest rate r̃ and a borrowing constraint parameter φ ≡ M
p . Let the solution

of this problem be given by the policy function at+1 = g(a, s; r, φ). Because

we have set mt+1

p = ât+1 ≡ at+1 + M
p , the condition that the supply of real

balances equals the demand Emt+1

p = M
p is equivalent with Eâ(r) = φ . Note

that because at = ât − φ , the equilibrium can also be expressed as Ea(r) = 0,

where as usual Ea(r) is the average of a computed with respect to the invariant

distribution λ(a, s).

The preceding argument shows that an equilibrium of the money economy

with mt+1 ≥ 0, equilibrium real balances M
p , and explicit interest on currency

r therefore is isomorphic to a pure credit economy with borrowing constraint

φ = M
p . We formalize this conclusion in the following proposition:

Proposition 3: A stationary equilibrium with interest on currency financed

by lump-sum taxation has the same allocation and interest rate as an equilibrium

of Huggett’s free banking model for debt limit φ equaling the equilibrium real

balances from the monetary economy.
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To compute an equilibrium with interest on currency, we use a “back-

solving” method.14 Thus, even though the spirit of the model is that the govern-

ment names r̃ = r and commits itself to set the lump-sum tax needed to finance

interest payments on whatever M
p emerges, we can compute the equilibrium by

naming M
p first , then finding an r that makes things work. In particular, we

use the following steps:

1. Set φ to satisfy 0 ≤ φ ≤ ws1
r . (We will elaborate on the upper bound in the

next section.) Compute real balances and therefore p by solving M
p = φ .

2. Find r from Eâ(r) = M
p or Ea(r) = 0.

3. Compute the equilibrium tax rate from the government budget constraint

τ = rMp .

This construction finds a constant tax that satisfies the government budget

constraint and that supports a level of real balances in the interval 0 ≤ M
p ≤

ws1
r . Evidently, the largest level of real balances that can be supported in

equilibrium is the one associated with the natural debt limit. The levels of

interest rates that are associated with monetary equilibria are in the range

0 ≤ r ≤ rFB , where Ea(rFB) = 0 and rFB is the equilibrium interest rate in

the pure credit economy (i.e., Huggett’s model) under the natural debt limit.

17.12.3. The upper bound on M
p

To interpret the upper bound on attainable M
p , note that the government’s bud-

get constraint and the budget constraint of a household with zero real balances

imply that τ = rMp ≤ ws for all realizations of s . Assume that the stationary

distribution of real balances has a positive fraction of agents with real balances

arbitrarily close to zero. Let the distribution of employment shocks s be such

that a positive fraction of these low-wealth consumers receive income ws1 at

any time. Then, for it to be feasible for the lowest wealth consumers to pay

their lump-sum taxes, we must have τ ≡ rM
p ≤ ws1 or M

p ≤ ws1
r .

In Figure 17.6.1, the equilibrium real interest rate r can be read from the

intersection of the Ea(r) curve and the r -axis. Think of a graph with two

14 See Sims (1989) and Diaz-Giménez, Prescott, Fitgerald, and Alvarez (1992) for an ex-

planation and application of back-solving.
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Ea(r) curves, one with the natural debt limit φ = s1w
r , the other one with an

ad hoc debt limit φ = min[b, s1wr ] shifted to the right. The highest interest rate

that can be supported by an interest on currency policy is evidently determined

by the point where the Ea(r) curve for the natural debt limit passes through

the r -axis. This is higher than the equilibrium interest rate associated with any

of the ad hoc debt limits, but must be below ρ . Note that ρ is the interest

rate associated with the optimal quantity of money. Thus, we have Aiyagari’s

(1994) graphical version of Bewley’s (1983) result that the optimal quantity of

money (Friedman’s rule) cannot be implemented in this setting.

We summarize this discussion with a proposition about free banking and

Friedman’s rule:

Proposition 4: The highest interest rate that can be supported by paying

interest on currency equals that associated with the pure credit (i.e., the pure

inside money) model with the natural debt limit.

If ρ > 0, Friedman’s rule—to pay real interest on currency at the rate ρ—

cannot be implemented in this model. The most that can be achieved by paying

interest on currency is to eradicate the restriction that prevents households from

issuing currency in competition with the government and to implement the free

banking outcome.

17.12.4. A very special case

Levine and Zame (2002) have studied a special limiting case of the preceding

model in which the free banking equilibrium, which we have seen is equivalent

to the best stationary equilibrium with interest on currency, is optimal. They

attain this special case as the limit of a sequence of economies with ρ ↓ 0.

Heuristically, under the natural debt limits, the Ea(r) curves converge to a

horizontal line at r = 0. At the limit ρ = 0, the argument leading to Proposition

4 allows for the optimal r = ρ equilibrium.
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17.12.5. Implicit interest through deflation

There is another arrangement equivalent to paying explicit interest on currency.

Here the government aspires to pay interest through deflation, but abstains from

paying explicit interest. This purpose is accomplished by setting r̃ = 0 and

τpt = −gMt , where it is intended that the outcome will be (1+ r)−1 = (1+ g),

with g < 0. The government budget constraint becomes Mt+1 = Mt(1 + g).

This can be written
Mt+1

pt
=

Mt

pt−1

pt−1

pt
(1 + g).

We seek a steady state with constant real balances and inverse of the gross

inflation rate pt−1

pt
= (1 + r). Such a steady state implies that the preceding

equation gives (1 + r) = (1 + g)−1, as desired. The implied lump-sum tax rate

is τ = − Mt

pt−1
(1 + r)g. Using (1 + r) = (1 + g)−1 , this can be expressed

τ =
Mt

pt−1
r.

The household’s budget constraint with taxes set in this way becomes

ct +
mt+1

pt
≤ mt

pt−1
(1 + r) + wst −

Mt

pt−1
r (17.12.4)

This matches Aiyagari’s setup with Mt

pt−1
= φ.

With these matches the steady-state equilibrium is determined just as

though explicit interest were paid on currency. The intersection of the Ea(r)

curve with the r -axis determines the real interest rate. Given the parameter b

setting the debt limit, the interest rate equals that for the economy with explicit

interest on currency.
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17.13. Precautionary savings

As we have seen in the production economy with idiosyncratic labor income

shocks, the steady-state capital stock is larger when agents have no access to

insurance markets as compared to the capital stock in a complete markets econ-

omy. The “excessive” accumulation of capital can be thought of as the economy’s

aggregate amount of precautionary savings—a point emphasized by Huggett and

Ospina (2000). The precautionary demand for savings is usually described as the

extra savings caused by future income being random rather than determinate.15

In a partial equilibrium savings problem, it has been known since Leland

(1968) and Sandmo (1970) that precautionary savings in response to risk are

associated with convexity of the marginal utility function, or a positive third

derivative of the utility function. In a two-period model, the intuition can be

obtained from the Euler equation, assuming an interior solution with respect to

consumption:

u′[(1 + r)a0 + w0 − a1] = β(1 + r)E0u
′[(1 + r)a1 + w1],

where 1+r is the gross interest rate, wt is labor income (endowment) in period

t = 0, 1, a0 is an initial asset level, and a1 is the optimal amount of savings be-

tween periods 0 and 1. Now compare the optimal choice of a1 in two economies

where next period’s labor income w1 is either determinate and equal to w̄1 , or

random with a mean value of w̄1 . Let an1 and as1 denote the optimal choice of

savings in the nonstochastic and stochastic economy, respectively, that satisfy

the Euler equations:

u′[(1 + r)a0 + w0 − an1 ] = β(1 + r)u′[(1 + r)an1 + w̄1]

u′[(1 + r)a0 + w0 − as1] = β(1 + r)E0u
′[(1 + r)as1 + w1]

> β(1 + r)u′[(1 + r)as1 + w̄1],

15 Neng Wang (2003) describes an analytically tractable Bewley model with exponential

utility. He is able to decompose the savings of an infinitely lived agent into three pieces: (1) a

part reflecting a “rainy day” motive that would also be present with quadratic preferences; (2)

a part coming from a precautionary motive; and (3) a dissaving component due to impatience

that reflects the relative sizes of the interest rate and the consumer’s discount rate. Wang

computes the equilibrium of a Bewley model by hand and shows that, at the equilibrium

interest rate, the second and third components cancel, effectively leaving the consumer to

behave as a permanent-income consumer having a martingale consumption policy.
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where the strict inequality is implied by Jensen’s inequality under the assump-

tion that u′′′ > 0. It follows immediately from these expressions that the

optimal asset level is strictly greater in the stochastic economy as compared to

the nonstochastic economy, as1 > an1 .

Versions of precautionary savings have been analyzed by Miller (1974), Sib-

ley (1975), Zeldes (1989), Caballero (1990), Kimball (1990, 1993), and Carroll

and Kimball (1996), to mention just a few other studies in a vast literature.

Using numerical methods for a finite horizon savings problem and assuming

a constant relative risk aversion utility function, Zeldes (1989) found that in-

troducing labor income uncertainty made the optimal consumption function

concave in assets. That is, the marginal propensity to consume out of assets or

transitory income declines with the level of assets. In contrast, without uncer-

tainty and when β(1 + r) = 1 (as assumed by Zeldes), the marginal propensity

to consume depends only on the number of periods left to live, and is neither

a function of the agent’s asset level nor the present value of lifetime wealth.16

Here we briefly summarize Carroll and Kimball’s (1996) analytical explanation

for the concavity of the consumption function that income uncertainty seemed

to induce.

In a finite horizon model where both the interest rate and endowment are

stochastic processes, Carroll and Kimball cast their argument in terms of the

class of hyperbolic absolute risk aversion (HARA) one-period utility functions.

These are defined by u′′′u′

u′′2 = k for some number k . To induce precautionary

savings, it must be true that k > 0. Most commonly used utility functions are

of the HARA class: quadratic utility has k = 0, constant absolute risk aversion

(CARA) corresponds to k = 1, and constant relative risk aversion (CRRA)

utility functions satisfy k > 1.

Carroll and Kimball show that if k > 0, then consumption is a concave

function of wealth. Moreover, except for some special cases, they show that

the consumption function is strictly concave; that is, the marginal propensity

to consume out of wealth declines with increases in wealth. The exceptions to

16 When β(1 + r) = 1 and there are T periods left to live in a nonstochastic economy,

consumption smoothing prescribes a constant consumption level c given by
∑T−1

t=0
c

(1+r)t =

Ω, which implies c = r
1+r

[
1 − 1

(1+r)T

]−1
Ω ≡ MPCT Ω, where Ω is the agent’s current

assets plus the present value of her future labor income. Hence, the marginal propensity to

consume out of an additional unit of assets or transitory income, MPCT , is only a function

of the time horizon T .
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strict concavity include two well-known cases: CARA utility if all of the risk is

to labor income (no rate-of-return risk), and CRRA utility if all of the risk is

rate-of-return risk (no labor-income risk).

In the course of the proof, Carroll and Kimball generalize the result of Sibley

(1975) that a positive third derivative of the utility function is inherited by the

value function. For there to be precautionary savings, the third derivative of

the value function with respect to assets must be positive; that is, the marginal

utility of assets must be a convex function of assets. The case of the quadratic

one-period utility is an example where there is no precautionary saving. Off

corners, the value function is quadratic, and the third derivative of the value

function is zero.17

Where precautionary saving occurs, and where the marginal utility of con-

sumption is always positive, the consumption function becomes approximately

linear for large asset levels.18 This feature of the consumption function plays a

decisive role in governing the behavior of a model of Krusell and Smith (1998),

to which we now turn.

17.14. Models with fluctuating aggregate variables

That the aggregate equilibrium state variables are constant helps makes the

preceding models tractable. This section describes a way to extend such models

to situations with time-varying stochastic aggregate state variables.19

Krusell and Smith (1998) modified Aiyagari’s (1994) model by adding an

aggregate state variable z , a technology shock that follows a Markov process.

Each household continues to receive an idiosyncratic labor-endowment shock s

17 In linear-quadratic models, decision rules for consumption and asset accumulation are

independent of the variances of innovations to exogenous income processes.
18 Roughly speaking, this follows from applying the Benveniste-Scheinkman formula and

noting that, where v is the value function, v′′ is increasing in savings and v′′ is bounded.
19 See Duffie, Geanakoplos, Mas-Colell, and McLennan (1994) for a general formulation

and equilibrium existence theorem for such models. These authors cast doubt on whether in

general the current distribution of wealth is enough to serve as a complete description of the

history of the aggregate state. They show that in addition to the distribution of wealth, it

can be necessary to add a sunspot to the state. See Miao (2003) for a later treatment and

for an interpretation of the additional state variable in terms of a distribution of continuation

values. See Marcet and Singleton (1999) for a computational strategy for incomplete markets

models with a finite number of heterogeneous agents.
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that averages to the same constant value for each value of the aggregate shock

z . The aggregate shock causes the size of the state of the economy to expand

dramatically, because every household’s wealth will depend on the history of

the aggregate shock z , call it zt , as well as the history of the household-specific

shock st . That makes the joint histories of zt, st correlated across households,

which in turn makes the cross-section distribution of (k, s) vary randomly over

time. Therefore, the interest rate and wage will also vary randomly over time.

One way to specify the state is to include the cross-section distribution

λ(k, s) each period among the state variables. Thus, the state includes a cross-

section probability distribution of (capital, employment) pairs. In addition, a

description of a recursive competitive equilibrium must include a law of motion

mapping today’s distribution λ(k, s) into tomorrow’s distribution.

17.14.1. Aiyagari’s model again

To prepare the way for Krusell and Smith’s way of handling such a model, we

recall the structure of Aiyagari’s model. The household’s Bellman equation in

Aiyagari’s model is

v(k, s) = max
c,k′

{u(c) + βE[v(k′, s′)|s]} (17.14.1)

where the maximization is subject to

c+ k′ = r̃k + ws+ (1 − δ)k, (17.14.2)

and the prices r̃ and w are fixed numbers satisfying

r̃ = r̃(K,N) = α

(
K

N

)α−1

(17.14.3a)

w = w(K,N) = (1 − α)

(
K

N

)α
. (17.14.3b)

Recall that aggregate capital and labor K,N are the average values of k, s

computed from

K =

∫
kλ(k, s)dkds (17.14.4)

N =

∫
sλ(k, s)dkds. (17.14.5)
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Here we are following Aiyagari by assuming a Cobb-Douglas aggregate produc-

tion function. The definition of a stationary equilibrium requires that λ(k, s) be

the stationary distribution of (k, s) across households induced by the decision

rule that attains the right side of equation (17.14.1).

17.14.2. Krusell and Smith’s extension

Krusell and Smith (1998) modify Aiyagari’s model by adding an aggregate pro-

ductivity shock z to the price equations, emanating from the presence of z in

the production function. The shock z is governed by an exogenous Markov

process. Now the state must include λ and z too, so the household’s Bellman

equation becomes

v(k, s;λ, z) = max
c,k′

{u(c) + βE[v(k′, s′;λ′, z′)|(s, z, λ)]} (17.14.6)

where the maximization is subject to

c+ k′ = r̃(K,N, z)k + w(K,N, z)s+ (1 − δ)k (17.14.7a)

r̃ = r̃(K,N, z) = zα

(
K

N

)α−1

(17.14.7b)

w = w(K,N, z) = z(1 − α)

(
K

N

)α
(17.14.7c)

λ′ = H(λ, z) (17.14.7d)

where (K,N) is a stochastic processes determined from20

Kt =

∫
kλt(k, s)dkds (17.14.8)

Nt =

∫
sλt(k, s)dkds. (17.14.9)

Here λt(k, s) is the distribution of k, s across households at time t . The distri-

bution is itself a random function disturbed by the aggregate shock zt .

20 In our simplified formulation, N is actually constant over time. But in Krusell and

Smith’s model, N too can be a stochastic process, because leisure is in the one-period utility

function.
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Krusell and Smith make the plausible guess that λt(k, s) is enough to com-

plete the description of the state.21 , 22 The Bellman equation and the pricing

functions induce the household to want to forecast the average capital stock

K , in order to forecast future prices. That desire makes the household want to

forecast the cross-section distribution of holdings of capital. To do so it consults

the law of motion (17.14.7d).

Definition: A recursive competitive equilibrium is a pair of price functions

r̃, w , a value function, a decision rule k′ = f(k, s;λ, z), and a law of motion H

for λ(k, s) such that

(a) given the price functions and H , the value function solves the Bellman

equation (17.14.6) and the optimal decision rule is f ;

(b) the decision rule f and the Markov processes for s and z imply that today’s

distribution λ(k, s) is mapped into tomorrow’s λ′(k, s) by H .

The curse of dimensionality makes an equilibrium difficult to compute.

Krusell and Smith propose a way to approximate an equilibrium using simula-

tions. First, they characterize the distribution λ(k, s) by a finite set of moments

of capital m = (m1, . . . ,mI). They assume a parametric functional form for H

mapping today’s m into next period’s value m′ . They assume a form that can

be conveniently estimated using least squares. They assume initial values for

the parameters of H . Given H , they use numerical dynamic programming to

solve the Bellman equation

v(k, s;m, z) = max
c,k′

{u(c) + βE[v(k′, s′;m′, z′)|(s, z,m)]}

subject to the assumed law of motion H for m . They take the solution of this

problem and draw a single long realization from the Markov process for {zt} ,

say, of length T . For that particular realization of z , they then simulate paths of

{kt, st} of length T for a large number M of households. They assemble these

M simulations into a history of T empirical cross-section distributions λt(k, s).

They use the cross section at t to compute the cross-section moments m(t),

21 However, in general settings, this guess remains to be verified. Duffie, Geanakoplos, Mas-

Colell, and McLennan (1994) give an example of an incomplete markets economy in which it

is necessary to keep track of a longer history of the distribution of wealth.
22 Loosely speaking, that the individual moves through the distribution of wealth as time

passes indicates that his implicit Pareto weight is fluctuating.
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thereby assembling a time series of length T of the cross-section moments m(t).

They use this sample and nonlinear least squares to estimate the transition

function H mapping m(t) into m(t+ 1). They return to the beginning of the

procedure, use this new guess at H , and continue, iterating to convergence of

the function H .

Krusell and Smith compare the aggregate time series Kt, Nt, r̃t, wt from this

model with a corresponding representative agent (or complete markets) model.

They find that the statistics for the aggregate quantities and prices for the two

types of models are very close. Krusell and Smith interpret this result in terms of

an “approximate aggregation theorem” that follows from two properties of their

parameterized model. First, consumption as a function of wealth is concave but

close to linear for moderate to high wealth levels. Second, most of the saving is

done by the high-wealth people. These two properties mean that fluctuations

in the distribution of wealth have only a small effect on the aggregate amount

saved and invested. Thus, distribution effects are small. Also, for these high-

wealth people, self-insurance works quite well, so aggregate consumption is not

much lower than it would be for the complete markets economy.

Krusell and Smith compare the distributions of wealth from their model to

the U.S. data. Relative to the data, the model with a constant discount factor

generates too few very poor people and too many rich people. Krusell and

Smith modify the model by making the discount factor an exogenous stochastic

process. The discount factor switches occasionally between two values. Krusell

and Smith find that a modest difference between two discount factors can bring

the model’s wealth distribution much closer to the data. Patient people become

wealthier; impatient people eventually become poorer.
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17.15. Concluding remarks

The models in this chapter pursue some of the adjustments that households

make when their preferences and endowments give a motive to insure but mar-

kets offer limited opportunities to do so. We have studied settings where house-

holds’ saving occurs through a single risk-free asset. Households use the asset

to “self-insure,” by making intertemporal adjustments of the asset holdings to

smooth their consumption. Their consumption rates at a given date become a

function of their asset holdings, which in turn depend on the histories of their

endowments. In pure exchange versions of the model, the equilibrium allocation

becomes individual history specific, in contrast to the history-independence of

the corresponding complete markets model.

The models of this chapter arbitrarily shut down or allow markets without

explanation. The market structure is imposed, its consequences then analyzed.

In chapter 19, we study a class of models for similar environments that, like the

models of this chapter, make consumption allocations history dependent. But

the spirit of the models in chapter 19 differs from those in this chapter in re-

quiring that the trading structure be more firmly motivated by the environment.

In particular, the models in chapter 19 posit a particular reason that complete

markets do not exist, coming from enforcement or information problems, and

then study how risk sharing among people can best be arranged.

Exercises

Exercise 17.1 Random discount factor (Bewley-Krusell-Smith)

A household has preferences over consumption of a single good ordered by a value

function defined recursively by v(βt, at, st) = u(ct) + βtEtv(βt+1, at+1, st+1),

where βt ∈ (0, 1) is the time t value of a discount factor, and at is time t holding

of a single asset. Here v is the discounted utility for a consumer with asset

holding at , discount factor βt , and employment state st . The discount factor

evolves according to a three-state Markov chain with transition probabilities

Pi,j = Prob(βt+1 = β̄j|βt = β̄i). The discount factor and employment state at

t are both known. The household faces the sequence of budget constraints

at+1 + ct ≤ (1 + r)at + wst
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where st evolves according to an n-state Markov chain with transition matrix

P . The household faces the borrowing constraint at+1 ≥ −φ for all t .

Formulate Bellman equations for the household’s problem. Describe an algo-

rithm for solving the Bellman equations. (Hint: Form three coupled Bellman

equations.)

Exercise 17.2 Mobility costs (Bertola)

A worker seeks to maximize E
∑∞
t=0 β

tu(ct), where β ∈ (0, 1) and u(c) = c1−σ

(1−σ) ,

and E is the expectation operator. Each period, the worker supplies one unit of

labor inelastically (there is no unemployment) and either wg or wb , where wg >

wb . A new “job” starts off paying wg the first period. Thereafter, a job earns

a wage governed by the two-state Markov process governing transition between

good and bad wages on all jobs; the transition matrix is

[
p (1 − p)

(1 − p) p

]
.

A new (well-paying) job is always available, but the worker must pay mobility

cost m > 0 to change jobs. The mobility cost is paid at the beginning of the

period that a worker decides to move. The worker’s period t budget constraint

is

At+1 + ct +mIt ≤ RAt + wt,

where R is a gross interest rate on assets, ct is consumption at t , m > 0 is

moving costs, It is an indicator equaling 1 if the worker moves in period t ,

zero otherwise, and wt is the wage. Assume that A0 > 0 is given and that the

worker faces the no-borrowing constraint, At ≥ 0 for all t .

a. Formulate the Bellman equation for the worker.

b. Write a Matlab program to solve the worker’s Bellman equation. Show the

optimal decision rules computed for the following parameter values: m = .9, p =

.8, R = 1.02, β = .95, wg = 1.4, wb = 1, σ = 4. Use a range of assets levels of

[0, 3]. Describe how the decision to move depends on wealth.

c. Compute the Markov chain governing the transition of the individual’s state

(A,w). If it exists, compute the invariant distribution.

d. In the fashion of Bewley, use the invariant distribution computed in part c

to describe the distribution of wealth across a large number of workers all facing

this same optimum problem.
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Exercise 17.3 Unemployment

There is a continuum of workers with identical probabilities λ of being fired

each period when they are employed. With probability µ ∈ (0, 1), each un-

employed worker receives one offer to work at wage w drawn from the cumu-

lative distribution function F (w). If he accepts the offer, the worker receives

the offered wage each period until he is fired. With probability 1 − µ , an

unemployed worker receives no offer this period. The probability µ is deter-

mined by the function µ = f(U), where U is the unemployment rate, and

f ′(U) < 0, f(0) = 1, f(1) = 0. A worker’s utility is given by E
∑∞

t=0 β
tyt ,

where β ∈ (0, 1) and yt is income in period t , which equals the wage if em-

ployed and zero otherwise. There is no unemployment compensation. Each

worker regards U as fixed and constant over time in making his decisions.

a. For fixed U , write the Bellman equation for the worker. Argue that his

optimal policy has the reservation wage property.

b. Given the typical worker’s policy (i.e., his reservation wage), display a differ-

ence equation for the unemployment rate. Show that a stationary unemployment

rate must satisfy

λ(1 − U) = f(U)
[
1 − F (w̄)

]
U,

where w̄ is the reservation wage.

c. Define a stationary equilibrium.

d. Describe how to compute a stationary equilibrium. You don’t actually have

to compute it.

Exercise 17.4 Asset insurance

Consider the following setup. There is a continuum of households that maximize

E

∞∑

t=0

βtu(ct),

subject to

ct + kt+1 + τ ≤ y + max(xt, g)k
α
t , ct ≥ 0, kt+1 ≥ 0, t ≥ 0,

where y > 0 is a constant level of income not derived from capital, α ∈ (0, 1), τ

is a fixed lump-sum tax, kt is the capital held at the beginning of t , g ≤ 1 is an
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“investment insurance” parameter set by the government, and xt is a stochastic

household-specific gross rate of return on capital. We assume that xt is governed

by a two-state Markov process with stochastic matrix P , which takes on the two

values x̄1 > 1 and x̄2 < 1. When the bad investment return occurs, (xt = x̄2 ),

the government supplements the household’s return by max(0, g − x̄2).

The household-specific randomness is distributed identically and indepen-

dently across households. Except for paying taxes and possibly receiving insur-

ance payments from the government, households have no interactions with one

another; there are no markets.

Given the government policy parameters τ, g , the household’s Bellman

equation is

v(k, x) = max
k′

{u
[
max(x, g)kα − k′ − τ

]
+ β

∑

x′

v(k′, x′)P(x, x′)}.

The solution of this problem is attained by a decision rule

k′ = G(k, x),

that induces a stationary distribution λ(k, x) of agents across states (k, x).

The average (or per capita) physical output of the economy is

Y =
∑

k

∑

x

(x× kα)λ(k, x).

The average return on capital to households, including the investment insurance,

is

ν =
∑

k

x̄1k
αλ(k, x1) + max(g, x̄2)

∑

k

kαλ(k, x2),

which states that the government pays out insurance to all households for which

g > x̄2 .

Define a stationary equilibrium.

Exercise 17.5 Matching and job quality

Consider the following Bewley model, a version of which Daron Acemoglu and

Robert Shimer (2000) calibrate to deduce quantitative statements about the ef-

fects of government-supplied unemployment insurance on the equilibrium level

of unemployment, output, and workers’ welfare. Time is discrete. Each of a

continuum of ex ante identical workers can accumulate nonnegative amounts of
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a single risk-free asset bearing gross one-period rate of return R ; R is exogenous

and satisfies βR < 1. There are good jobs with wage wg and bad jobs with

wage wb < wg . Both wages are exogenous. Unemployed workers must decide

whether to search for good jobs or bad jobs. (They cannot search for both.) If

an unemployment worker devotes h units of time to search for a good job, a

good job arrives with probability mgh ; h units of time devoted to searching for

bad jobs makes a bad job arrive with probability mbh . Assume that mg < mb .

Good jobs terminate exogenously each period with probability δg , bad jobs

with probability δb . Exogenous terminations entitle an unemployed worker to

unemployment compensation of b , which is independent of the worker’s lagged

earnings. However, each period, an unemployed worker’s entitlement to unem-

ployment insurance is exposed to an i.i.d. probability of φ of expiring. Workers

who quit are not entitled to unemployment insurance.

Workers choose {ct, ht}∞t=0 to maximize

E0

∞∑

t=0

βt(1 − θ)−1(ct(h̄− ht)
η)1−θ,

where β ∈ (0, 1), and θ is a coefficient of relative risk aversion, subject to the

asset accumulation equation

at+1 = R(at + yt − ct)

and the no-borrowing condition at+1 ≥ 0; η governs the substitutability be-

tween consumption and leisure. Unemployed workers eligible for unemployment

insurance receive income yt = b , while those not eligible receive 0. Employed

workers with good jobs receive after-tax income of yt = wgh(1 − τ), and those

with bad jobs receive yt = wbh(1 − τ). In equilibrium, the flat-rate tax is set

so that the government budget for unemployment insurance balances. Workers

with bad jobs have the option of quitting to search for good jobs.

Define a worker’s composite state as his asset level, together with one of four

possible employment states: (1) employed in a good job, (2) employed in a bad

job, (3) unemployed and eligible for unemployment insurance; (4) unemployed

and ineligible for unemployment insurance.

a. Formulate value functions for the four types of employment states, and

describe Bellman equations that link them.
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b. In the fashion of Bewley, define a stationary stochastic equilibrium, being

careful to define all of the objects composing an equilibrium.

c. Adjust the Bellman equations to accommodate the following modification.

Assume that every period that a worker finds himself in a bad job, there is a

probability δupgrade that the following period, the bad job is upgraded to a good

job, conditional on not having been fired.

d. Acemoglu and Shimer calibrate their model to U.S. high school graduates,

then perform a local analysis of the consequences of increasing the unemploy-

ment compensation rate b . For their calibration, they find that there are sub-

stantial benefits to raising the unemployment compensation rate and that this

conclusion prevails despite the presence of a “moral hazard problem” associated

with providing unemployment insurance benefits in their model. The reason is

that too many workers choose to search for bad rather than good jobs. They

calibrate β so that workers are sufficiently impatient that most workers with

low assets search for bad jobs. If workers were more fully insured, more workers

would search for better jobs. That would put a larger fraction of workers in

good jobs and raise average productivity. In equilibrium, unemployed workers

with high asset levels do search for good jobs, because their assets provide them

with the “self-insurance” needed to support their investment in search for good

jobs. Do you think that the modification suggested in part c would affect the

outcomes of increasing unemployment compensation b?



Part V

Recursive contracts



Chapter 18
Dynamic Stackelberg Problems

18.1. History dependence

Previous chapters described decision problems that are recursive in what we can

call “natural” state variables, i.e., state variables that describe stocks of capital,

wealth, and information that helps forecast future values of prices and quantities

that impinge on future utilities or profits. In problems that are recursive in the

natural state variables, optimal decision rules are functions of the natural state

variables.

This chapter is our first encounter with a class of problems that are not

recursive in the natural state variables. Kydland and Prescott (1977), Prescott

(1977), and Calvo (1978) gave macroeconomic examples of decision problems

whose solutions exhibited time inconsistency because they are not recursive in

the natural state variables. Those authors studied the decision problem of a

large agent (the government) facing a competitive market composed of many

small private agents whose decisions are influenced by their forecasts of the

government’s future actions. In such settings, the natural state variables of

private agents at time t reflect their earlier decisions that had been influenced

by their earlier forecasts of the government’s action at time t . In a rational

expectations equilibrium, the government on average confirms private agents’

earlier expectations about the government’s time t actions. This need to con-

firm prior forecasts puts constraints on the government’s time t decisions that

prevent its problem from being recursive in the natural state variables. These

additional constraints make the government’s decision rule at t depend on the

entire history of the state from time 0 to time t .

Prescott (1977) asserted that optimal control theory does not apply to

problems with this structure. This chapter and chapters 19 and 22 show how

Prescott’s pessimism about the inapplicability of optimal control theory has

been overturned by more recent work.1 An important finding is that if the

1 Kydland and Prescott (1980) is an important contribution that helped to dissipate

Prescott’s initial pessimism.

– 615 –
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natural state variables are augmented with some additional state variables that

measure the costs in terms of the government’s current continuation value of

confirming past private sector expectations about its current behavior, this class

of problems can be made recursive. This fact affords immense computational

advantages and yields substantial insights. This chapter displays these within

the tractable framework of linear quadratic problems.

18.2. The Stackelberg problem

To exhibit the essential structure of the problems that concerned Kydland and

Prescott (1977) and Calvo (1979), this chapter uses the optimal linear regulator

to solve a linear quadratic version of what is known as a dynamic Stackelberg

problem.2 For now we refer to the Stackelberg leader as the government and

the Stackelberg follower as the representative agent or private sector. Soon we’ll

give an application with another interpretation of these two players.

Let zt be an nz × 1 vector of natural state variables, xt an nx × 1 vector

of endogenous variables free to jump at t , and ut a vector of government in-

struments. The zt vector is inherited from the past. The model determines the

“jump variables” xt at time t . Included in xt are prices and quantities that

adjust to clear markets at time t . Let yt =

[
zt

xt

]
. Define the government’s

one-period loss function3

r(y, u) = y′Ry + u′Qu. (18.2.1)

Subject to an initial condition for z0 , but not for x0 , a government wants

to maximize

−
∞∑

t=0

βtr(yt, ut). (18.2.2)

The government makes policy in light of the model
[
I 0

G21 G22

] [
zt+1

xt+1

]
=

[
Â11 Â12

Â21 Â22

] [
zt

xt

]
+ B̂ut. (18.2.3)

2 Sometimes it is also called a Ramsey problem.
3 The problem assumes that there are no cross products between states and controls in

the return function. A simple transformation converts a problem whose return function has

cross products into an equivalent problem that has no cross products.
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We assume that the matrix on the left is invertible, so that we can multiply

both sides of the above equation by its inverse to obtain4

[
zt+1

xt+1

]
=

[
A11 A12

A21 A22

] [
zt

xt

]
+But (18.2.4)

or

yt+1 = Ayt +But. (18.2.5)

The government maximizes (18.2.2) by choosing sequences {ut, xt, zt+1}∞t=0

subject to (18.2.5) and the initial condition for z0 .

The private sector’s behavior is summarized by the second block of equa-

tions of (18.2.3) or (18.2.4). These typically include the first-order conditions

of private agents’ optimization problem (i.e., their Euler equations). They sum-

marize the forward-looking aspect of private agents’ behavior. We shall provide

an example later in this chapter in which, as is typical of these problems, the

last nx equations of (18.2.4) or (18.2.5) constitute implementability constraints

that are formed by the Euler equations of a competitive fringe or private sec-

tor. When combined with a stability condition to be imposed below, these

Euler equations summarize the private sector’s best response to the sequence of

actions by the government.

The certainty equivalence principle stated in chapter 5 allows us to work

with a nonstochastic model. We would attain the same decision rule if we were

to replace xt+1 with the forecast Etxt+1 and to add a shock process Cεt+1 to

the right side of (18.2.4), where εt+1 is an i.i.d. random vector with mean of

zero and identity covariance matrix.

Let Xt denote the history of any variable X from 0 to t . Miller and Salmon

(1982, 1985), Hansen, Epple, and Roberds (1985), Pearlman, Currie, and Levine

(1986), Sargent (1987), Pearlman (1992), and others have all studied versions

of the following problem:

Problem S: The Stackelberg problem is to maximize (18.2.2) by finding a se-

quence of decision rules, the time t component of which maps the time t his-

tory of the state zt into the time t decision ut of the Stackelberg leader. The

Stackelberg leader commits to this sequence of decision rules at time 0. The

4 We have assumed that the matrix on the left of (18.2.3) is invertible for ease of presen-

tation. However, by appropriately using the invariant subspace methods described under step

2 below (see Appendix 18B), it is straightforward to adapt the computational method when

this assumption is violated.
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maximization is subject to a given initial condition for z0 . But x0 is to be

chosen.

The optimal decision rule is history dependent, meaning that ut depends

not only on zt but also on lags of z . History dependence has two sources: (a)

the government’s ability to commit5 to a sequence of rules at time 0, and (b)

the forward-looking behavior of the private sector embedded in the second block

of equations (18.2.4). The history dependence of the government’s plan is ex-

pressed in the dynamics of multipliers µx on the last nx equations of (18.2.3)

or (18.2.4). These multipliers measure the costs today of honoring past gov-

ernment promises about current and future settings of u . It is appropriate to

initialize the multipliers to zero at time t = 0, because then there are no past

promises about u to honor. But the multipliers µx take nonzero values there-

after, reflecting future costs to the government of adhering to its commitment.

18.3. Solving the Stackelberg problem

This section describes a remarkable three-step algorithm for solving the Stack-

elberg problem.

18.3.1. Step 1: solve an optimal linear regulator

Step 1 seems to disregard the forward-looking aspect of the problem (step 3 will

take account of that). If we temporarily ignore the fact that the x0 component

of the state y0 =

[
z0

x0

]
is not actually a state vector, then superficially the

Stackelberg problem (18.2.2), (18.2.5) has the form of an optimal linear regu-

lator problem. It can be solved by forming a Bellman equation and iterating on

it until it converges. The optimal value function has the form v(y) = −y′Py ,

where P satisfies the Riccati equation (18.3.5). A reader not wanting to be

reminded of the details of the Bellman equation can now move directly to step

2. For those wanting a reminder, here it is.

5 The government would make different choices were it to choose sequentially, that is, were

it to select its time t action at time t .
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The linear regulator is

v(y0) = −y′0Py0 = max{ut,yt+1} −
∞∑

t=0

βt (y′tRyt + u′tQut) (18.3.1)

where the maximization is subject to a fixed initial condition for y0 and the law

of motion

yt+1 = Ayt +But. (18.3.2)

Associated with problem (18.3.1), (18.3.2) is the Bellman equation

−y′Py = maxu,y∗ {−y′Ry − u′Qu− βy∗′Py∗} (18.3.3)

where the maximization is subject to

y∗ = Ay +Bu (18.3.4)

where y∗ denotes next period’s value of the state. Problem (18.3.3), (18.3.4)

gives rise to the matrix Riccati equation

P = R+ βA′PA− β2A′PB(Q+ βB′PB)−1B′PA (18.3.5)

and the formula for F in the decision rule ut = −Fyt

F = β(Q+ βB′PB)−1BPA. (18.3.6)

Thus, we can solve problem (18.2.2), (18.2.5) by iterating to convergence on

the Riccati equation (18.3.5), or by using a faster computational method that

emerges as a by-product in step 2. This method is described in Appendix 18B.

The next steps note how the value function v(y) = −y′Py encodes the

objects that solve the Stackelberg problem, then tell how to decode them.
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18.3.2. Step 2: use the stabilizing properties of shadow price Pyt

At this point we decode the information in the matrix P in terms of shadow

prices that are associated with a Lagrangian. Thus, another way to pose the

Stackelberg problem (18.2.2), (18.2.5) is to attach a sequence of Lagrange mul-

tipliers βt+1µt+1 to the sequence of constraints (18.2.5) and then to form the

Lagrangian:

L = −
∞∑

t=0

βt
[
y′tRyt + u′tQut + 2βµ′

t+1(Ayt +But − yt+1)
]
. (18.3.7)

For the Stackelberg problem, it is important to partition µt conformably with

our partition of yt =

[
zt

xt

]
, so that µt =

[
µzt

µxt

]
, where µxt is an nx× 1 vector

of multipliers adhering to the implementability constraints. For now, we can

ignore the partitioning of µt , but it will be very important when we turn our

attention to the specific requirements of the Stackelberg problem in step 3.

We want to maximize (18.3.7) with respect to sequences for ut and yt+1 .

The first-order conditions with respect to ut, yt , respectively, are:

0 = Qut + βB′µt+1 (18.3.8a)

µt = Ryt + βA′µt+1. (18.3.8b)

Solving (18.3.8a) for ut and substituting into (18.2.5) gives

yt+1 = Ayt − βBQ−1B′µt+1. (18.3.9)

We can represent the system formed by (18.3.9) and (18.3.8b) as
[
I βBQ−1B′

0 βA′

] [
yt+1

µt+1

]
=

[
A 0

−R I

] [
yt

µt

]
(18.3.10)

or

L∗

[
yt+1

µt+1

]
= N

[
yt

µt

]
. (18.3.11)

We seek a “stabilizing” solution of (18.3.11), i.e., one that satisfies

∞∑

t=0

βty′tyt < +∞.
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18.3.3. Stabilizing solution

By the same argument used in chapter 5, a stabilizing solution satisfies µ0 =

Py0 where P solves the matrix Riccati equation (18.3.5). The solution for µ0

replicates itself over time in the sense that

µt = Pyt. (18.3.12)

Appendix A verifies that the P that satisfies the Riccati equation (18.3.5) is

the same P that defines the stabilizing initial conditions (y0, Py0). In Ap-

pendix B, we describe a way to find P by computing generalized eigenvalues

and eigenvectors.

18.3.4. Step 3: convert implementation multipliers

18.3.4.1. Key insight

We now confront the fact that the x0 component of y0 consists of variables that

are not state variables, i.e., they are not inherited from the past but are to be

determined at time t . In the optimal linear regulator problem, y0 is a state

vector inherited from the past; the multiplier µ0 jumps at t to satisfy µ0 =

Py0 and thereby stabilize the system. For the Stackelberg problem, pertinent

components of both y0 and µ0 must adjust to satisfy µ0 = Py0 . In particular,

we have partitioned µt conformably with the partition of yt into [ z′t x′t ]
′
:6

µt =

[
µzt

µxt

]
.

For the Stackelberg problem, the first nz elements of yt are predetermined but

the remaining components are free. And while the first nz elements of µt are

free to jump at t , the remaining components are not. The third step completes

the solution of the Stackelberg problem by acknowledging these facts. After

6 This argument just adapts one in Pearlman (1992). The Lagrangian associated with the

Stackelberg problem remains (18.3.7), which means that the same logic as above implies that

the stabilizing solution must satisfy (18.3.12). It is only in how we impose (18.3.12) that the

solution diverges from that for the linear regulator.
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we have performed the key step of computing the P that solves the Riccati

equation (18.3.5), we convert the last nx Lagrange multipliers µxt into state

variables by using the following procedure

Write the last nx equations of (18.3.12) as

µxt = P21zt + P22xt, (18.3.13)

where the partitioning of P is conformable with that of yt into [ zt xt ]
′
.

The vector µxt becomes part of the state at t , while xt is free to jump at t .

Therefore, we solve (18.3.12) for xt in terms of (zt, µxt):

xt = −P−1
22 P21zt + P−1

22 µxt. (18.3.14)

Then we can write

yt =

[
zt

xt

]
=

[
I 0

−P−1
22 P21 P−1

22

] [
zt

µxt

]
(18.3.15)

and from (18.3.13)

µxt = [P21 P22 ] yt. (18.3.16)

With these modifications, the key formulas (18.3.6) and (18.3.5) from the

optimal linear regulator for F and P , respectively, continue to apply. Using

(18.3.15), the optimal decision rule is

ut = −F
[

I 0

−P−1
22 P21 P−1

22

] [
zt

µxt

]
. (18.3.17)

Then we have the following complete description of the Stackelberg plan:7

[
zt+1

µx,t+1

]
=

[
I 0

P21 P22

]
(A − BF )

[
I 0

−P−1
22 P21 P−1

22

][
zt
µxt

]
(18.3.19a)

xt = [−P−1
22 P21 P−1

22 ]

[
zt
µxt

]
. (18.3.19b)

7 When a random shock Cεt+1 is present, we must add

[
I 0

P21 P22

]
Cεt+1 (18.3.18)

to the right side of (18.3.19a).



Solving the Stackelberg problem 623

The difference equation (18.3.19a) is to be initialized from the given value of

z0 and the value µ0,x = 0. Setting µ0,x = 0 asserts that at time 0 there are no

past promises to keep.

In summary, we solve the Stackelberg problem by formulating a partic-

ular optimal linear regulator, solving the associated matrix Riccati equation

(18.3.5) for P , computing F , and then partitioning P to obtain representation

(18.3.19).

18.3.5. History-dependent representation of decision rule

For some purposes, it is useful to eliminate the implementation multipliers µxt

and to express the decision rule for ut as a function of zt, zt−1 and ut−1 . This

can be accomplished as follows.8 First represent (18.3.19a) compactly as
[
zt+1

µx,t+1

]
=

[
m11 m12

m21 m22

] [
zt

µxt

]
(18.3.20)

and write the feedback rule for ut

ut = f11zt + f12µxt. (18.3.21)

Then where f−1
12 denotes the generalized inverse of f12 , (18.3.21) implies µx,t =

f−1
12 (ut− f11zt). Equate the right side of this expression to the right side of the

second line of (18.3.20) lagged once and rearrange by using (18.3.21) lagged

once to eliminate µx,t−1 to get

ut = f12m22f
−1
12 ut−1 + f11zt + f12(m21 −m22f

−1
12 f11)zt−1 (18.3.22a)

or

ut = ρut−1 + α0zt + α1zt−1 (18.3.22b)

for t ≥ 1. For t = 0, the initialization µx,0 = 0 implies that

u0 = f11z0. (18.3.22c)

By making the instrument feed back on itself, the form of (18.3.22) po-

tentially allows for “instrument-smoothing” to emerge as an optimal rule under

commitment.9

8 Peter Von Zur Muehlen suggested this representation to us.
9 This insight partly motivated Woodford (2003) to use his model to interpret empirical

evidence about interest rate smoothing in the United States.
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18.3.6. Digression on determinacy of equilibrium

Appendix 18B describes methods for solving a system of difference equations

of the form (18.2.3) or (18.2.4) with an arbitrary feedback rule that expresses

the decision rule for ut as a function of current and previous values of yt and

perhaps previous values of itself. The difference equation system has a unique

solution satisfying the stability condition
∑∞
t=0 β

tyt ·yt if the eigenvalues of the

matrix (18.B.1) split, with half being greater than unity and half being less

than unity in modulus. If more than half are less than unity in modulus, the

equilibrium is said to be indeterminate in the sense that there are multiple equi-

libria starting from any initial condition. If we choose to represent the solution

of a Stackelberg or Ramsey problem in the form (18.3.22), we can substitute

that representation for ut into (18.2.4), obtain a difference equation system

in yt, ut , and ask whether the resulting system is determinate. To answer this

question, we would use the method of Appendix 18B, form system (18.B.1),

then check whether the generalized eigenvalues split as required. Researchers

have used this method to study the determinacy of equilibria under Stackelberg

plans with representations like (18.3.22) and have discovered that on occasion,

an equilibrium can be indeterminate.10 See Evans and Honkapohja (2003) for a

discussion of determinacy of equilibria under commitment in a class of equilib-

rium monetary models and how determinacy depends on the way the decision

rule of the Stackelberg leader is represented. Evans and Honkapohja argue that

casting a government decision rule in a way that leads to indeterminacy is a bad

idea.

10 The existence of a Stackelberg plan is not at issue because we know how to construct

one using the method in the text.
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18.4. A large firm with a competitive fringe

As an example, this section studies the equilibrium of an industry with a large

firm that acts as a Stackelberg leader with respect to a competitive fringe.

The industry produces a single nonstorable homogeneous good. One large firm

produces Qt and a representative firm in a competitive fringe produces qt . The

representative firm in the competitive fringe acts as a price taker and chooses

sequentially. The large firm commits to a policy at time 0, taking into account

its ability to manipulate the price sequence, both directly through the effects

of its quantity choices on prices, and indirectly through the responses of the

competitive fringe to its forecasts of prices.11

The costs of production are Ct = eQt + .5gQ2
t + .5c(Qt+1 − Qt)

2 for the

large firm and σt = dqt+ .5hq2t + .5c(qt+1− qt)
2 for the competitive firm, where

d > 0, e > 0, c > 0, g > 0, h > 0 are cost parameters. There is a linear inverse

demand curve

pt = A0 −A1(Qt + qt) + vt, (18.4.1)

where A0, A1 are both positive and vt is a disturbance to demand governed by

vt+1 = ρvt + Cεε̌t+1 (18.4.2)

and where |ρ| < 1 and ε̌t+1 is an i.i.d. sequence of random variables with mean

zero and variance 1. In (18.4.1), qt is equilibrium output of the representative

competitive firm. In equilibrium, qt = qt , but we must distinguish between qt

and qt in posing the optimum problem of a competitive firm.

11 Hansen and Sargent (2003) use this model as a laboratory to illustrate an equilibrium

concept featuring robustness in which both the followers and the leader have doubts about

the specification of the demand shock process.
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18.4.1. The competitive fringe

The representative competitive firm regards {pt}∞t=0 as an exogenous stochastic

process and chooses an output plan to maximize

E0

∞∑

t=0

βt {ptqt − σt} , β ∈ (0, 1) (18.4.3)

subject to q0 given, where c > 0, d > 0, h > 0 are cost parameters, and Et is

the mathematical expectation based on time t information. Let it = qt+1 − qt.

We regard it as the representative firm’s control at t . The first-order conditions

for maximizing (18.4.3) are

it = Etβit+1 − c−1βhqt+1 + c−1βEt(pt+1 − d) (18.4.4)

for t ≥ 0. We appeal to the certainty equivalence principle stated on page 113
to justify working with a non-stochastic version of (18.4.4) formed by dropping
the expectation operator and the random term ε̌t+1 from (18.4.2). We use a
method of Sargent (1979) and Townsend (1983).12 We shift (18.4.1) forward
one period, replace conditional expectations with realized values, use (18.4.1)
to substitute for pt+1 in (18.4.4), and set qt = qt for all t ≥ 0 to get

it = βit+1 − c−1βhqt+1 + c−1β(A0 − d) − c−1βA1qt+1 − c−1βA1Qt+1 + c−1βvt+1.
(18.4.5)

Given sufficiently stable sequences {Qt, vt} , we could solve (18.4.5) and it =

qt+1−qt to express the competitive fringe’s output sequence as a function of the

(tail of the) monopolist’s output sequence. The dependence of it on future Qt ’s

is the source of the monopolist’s time consistency problem, i.e., the failure of the

monopolist’s problem to be recursive in the natural state variables q,Q . The

monopolist arrives at period t > 0 facing the constraint that it must confirm

the expectations about its time t decision upon which the competitive fringe

based its decisions at dates before t .

12 They used this method to compute a rational expectations competitive equilibrium. The

key step was to eliminate price and output by substituting from the inverse demand curve

and the production function into the firm’s first-order conditions to get a difference equation

in capital.
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18.4.2. The monopolist’s problem

The monopolist views the competitive firm’s sequence of Euler equations as
constraints on its own opportunities. They are implementability constraints on
the monopolist’s choices. Including (18.4.5), we can represent the constraints
in terms of the transition law impinging on the monopolist:




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

A0 − d 1 −A1 −A1 − h c







1
vt+1

Qt+1

qt+1
it+1


 =




1 0 0 0 0
0 ρ 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 c

β







1
vt
Qt
qt
it




+




0
0
1
0
0


ut,

(18.4.6)

where ut = Qt+1 −Qt is the control of the monopolist. The last row portrays

the implementability constraints (18.4.5). Represent (18.4.6) as

yt+1 = Ayt +But. (18.4.7)

Although we have entered it as a component of the “state” yt in the mo-

nopolist’s transition law (18.4.7), it is actually a “jump” variable. Nevertheless,

the analysis above implies that the solution of the large firm’s problem is en-

coded in the Riccati equation associated with (18.4.7) as the transition law.

Let’s decode it.

To match our general setup, we partition yt as y′t = [ z′t x′t ] where z′t =

[ 1 vt Qt qt ] and xt = it . The large firm’s problem is

max
{ut,pt,Qt+1,qt+1,it}

∞∑

t=0

βt {ptQt − Ct}

subject to the given initial condition for z0 , equations (18.4.1) and (18.4.5) and

it = qt+1−qt , as well as the laws of motion of the natural state variables z . The

monopolist is constrained to set µx,0 ≤ 0, but will find it optimal to set it to zero.

Notice that the monopolist in effect chooses the price sequence, as well as the

quantity sequence of the competitive fringe, albeit subject to the restrictions

imposed by the behavior of consumers, as summarized by the demand curve

(18.4.1), and the implementability constraint (18.4.5) that summarizes the best

responses of the competitive fringe.
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By substituting (18.4.1) into the above objective function, the problem can

be expressed as

max
{ut}

∞∑

t=0

βt
{
(A0 −A1(qt +Qt) + vt)Qt − eQt − .5gQ2

t − .5cu2
t

}
(18.4.8)

subject to (18.4.7). This can be written

max
{ut}

−
∞∑

t=0

βt {y′tRyt + u′tQut} (18.4.9)

subject to (18.4.7) where

R = −




0 0 A0−e
2 0 0

0 0 1
2 0 0

A0−e
2

1
2 −A1 − .5g −A1

2 0

0 0 −A1

2 0 0

0 0 0 0 0




and Q = c
2 .

18.4.3. Equilibrium representation

We can use (18.3.19) to represent the solution of the large firm’s problem

(18.4.9) in the form:

[
zt+1

µx,t+1

]
=

[
m11 m12

m21 m22

] [
zt

µx,t

]
(18.4.10)

or [
zt+1

µx,t+1

]
= m

[
zt

µx,t

]
. (18.4.11)

Recall that zt = [ 1 vt Qt qt ]
′ . Thus, (18.4.11) includes the equilibrium

law of motion for the quantity qt of the competitive fringe. By construction, qt
satisfies the Euler equation of the representative firm in the competitive fringe,

as we elaborate in Appendix 18C.
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18.4.4. Numerical example

We computed the optimal Stackelberg plan for parameter settings A0, A1, ρ, Cε,

c, d, e, g, h, β = 100, 1, .8, .2, 1, 20, 20, .2, .2, .95.13For these parameter values the

decision rule is

ut = (Qt+1 −Qt) = [ 19.78 .19 −.64 −.15 −.30 ]

[
zt

µxt

]
(18.4.12)

which can also be represented as

ut = 0.44ut−1 +




19.7827

0.1885

−0.6403

−0.1510




′

zt +




−6.9509

−0.0678

0.3030

0.0550




′

zt−1. (18.4.13)

Note how in representation (18.4.12) the monopolist’s decision for ut = Qt+1 −
Qt feeds back negatively on the implementation multiplier.14

18.5. Concluding remarks

This chapter is our first brush with a class of problems in which optimal deci-

sion rules are history dependent. We shall confront many more such problems

in chapters 19 and 22 and shall see in various contexts how history dependence

can be rendered recursive by appropriately augmenting the natural state vari-

ables with counterparts to our implementability multipliers. A hint at what

these counterparts are is gleaned by appropriately interpreting implementabil-

ity multipliers as derivatives of value functions. In chapters 19 and 22, we make

dynamic incentive and enforcement problems recursive by augmenting the state

with continuation values of other decision makers.15

13 These calculations were performed by the Matlab program oligopoly5.m
14 We also computed impulse responses to the demand innovation εt . The impulse re-

sponses show that a demand innovation pushes the implementation multiplier down and leads

the large firm to expand output while the representative competitive firm contracts output in

subsequent periods. The response of price to a demand shock innovation is to rise on impact

but then to decrease in subsequent periods in response to the increase in total supply q + Q

engineered by the large firm.
15 Marcet and Marimon’s (1999) method of constructing recursive contracts is closely re-

lated to the method that we have presented in this chapter.
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A. The stabilizing µt = Pyt

We verify that the P associated with the stabilizing µ0 = Py0 satisfies the

Riccati equation associated with the Bellman equation. Substituting µt = Pyt

into (18.3.9) and (18.3.8b) gives

(I + βBQ−1BP )yt+1 = Ayt (18.A.1a)

βA′Pyt+1 = −Ryt + Pyt. (18.A.1b)

A matrix inversion identity implies

(I + βBQ−1B′P )−1 = I − βB(Q+ βB′PB)−1B′P. (18.A.2)

Solving (18.A.1a) for yt+1 gives

yt+1 = (A−BF )yt (18.A.3)

where

F = β(Q+ βB′PB)−1B′PA. (18.A.4)

Premultiplying (18.A.3) by βA′P gives

βA′Pyt+1 = β(A′PA−A′PBF )yt. (18.A.5)

For the right side of (18.A.5) to agree with the right side of (18.A.1b) for any

initial value of y0 requires that

P = R+ βA′PA− β2A′PB(Q+ βB′PB)−1B′PA. (18.A.6)

Equation (18.A.6) is the algebraic matrix Riccati equation associated with the

optimal linear regulator for the system A,B,Q,R .
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B. Matrix linear difference equations

This appendix generalizes some calculations from chapter 5 for solving systems

of linear difference equations. Returning to system (18.3.11), let L = L∗β−.5

and transform the system (18.3.11) to

L

[
y∗t+1

µ∗
t+1

]
= N

[
y∗t
µ∗
t

]
, (18.B.1)

where y∗t = βt/2yt, µ
∗
t = µtβ

t/2 . Now λL − N is a symplectic pencil,16 so

that the generalized eigenvalues of L,N occur in reciprocal pairs: if λi is an

eigenvalue, then so is λ−1
i .

We can use Evan Anderson’s Matlab program schurg.m to find a stabilizing

solution of system (18.B.1).17 The program computes the ordered real gener-

alized Schur decomposition of the matrix pencil. Thus, schurg.m computes

matrices L̄, N̄ , V such that L̄ is upper triangular, N̄ is upper block triangular,

and V is the matrix of right Schur vectors such that for some orthogonal matrix

W , the following hold:
WLV = L̄

WNV = N̄ .
(18.B.2)

Let the stable eigenvalues (those less than 1) appear first. Then the stabilizing

solution is

µ∗
t = Py∗t (18.B.3)

where

P = V21V
−1
11 ,

V21 is the lower left block of V , and V11 is the upper left block.

If L is nonsingular, we can represent the solution of the system as18

[
y∗t+1

µ∗
t+1

]
= L−1N

[
I

P

]
y∗t . (18.B.4)

16 A pencil λL−N is the family of matrices indexed by the complex variable λ . A pencil

is symplectic if LJL′ = NJN ′ , where J =

[
0 −I

I 0

]
. See Anderson, Hansen, McGratten,

and Sargent (1996).
17 This program is available at <http://www.unc.edu/˜ewanders> .
18 The solution method in the text assumes that L is nonsingular and well conditioned. If

it is not, the following method proposed by Evan Anderson will work. We want to solve for a

solution of the form

y∗t+1 = A∗
oy

∗
t .
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The solution is to be initialized from (18.B.3). We can use the first half and

then the second half of the rows of this representation to deduce the following

recursive solutions for y∗t+1 and µ∗
t+1 :

y∗t+1 = A∗
oy

∗
t

µ∗
t+1 = ψ∗y∗t .

(18.B.5)

Now express this solution in terms of the original variables:

yt+1 = Aoyt

µt+1 = ψyt,
(18.B.6)

where Ao = A∗
oβ

−.5, ψ = ψ∗β−.5 . We also have the representation

µt = Pyt. (18.B.7)

The matrix Ao = A−BF , where F is the matrix for the optimal decision rule.

Note that with (18.B.3),

L[I;P ]y∗t+1 = N [I;P ]y∗t

The solution A∗
o will then satisfy

L[I;P ]A∗
o = N [I;P ].

Thus Ao∗ can be computed via the Matlab command

A∗
o = (L ∗ [I;P ])\(N ∗ [I;P ]).



Exercises 633

C. Forecasting formulas

The decision rule for the competitive fringe incorporates forecasts of future prices

from (18.4.11) under m . Thus, the representative competitive firm uses equa-

tion (18.4.11) to forecast future values of (Qt, qt) in order to forecast pt . The

representative competitive firm’s forecasts are generated from the j th iterate of

(18.4.11):19 [
zt+j

µx,t+j

]
= mj

[
zt

µx,t

]
. (18.C.1)

The following calculation verifies that the representative firm forecasts by

iterating the law of motion associated with m . Write the Euler equation for

it (18.4.4) in terms of a polynomial in the lag operator L and factor it: (1 −
(β−1 +(1+c−1h))L+β−1L2) = −(βλ)−1L(1−βλL−1)(1−λL) where λ ∈ (0, 1)

and λ = 1 when h = 0.20 By taking the nonstochastic version of (18.4.4) and

solving an unstable root forward and a stable root backward using the technique

of Sargent (1979 or 1987a, chap. IX), we obtain

it = (λ − 1)qt + c−1
∞∑

j=1

(βλ)jpt+j , (18.C.2)

or

it = (λ− 1)qt + c−1
∞∑

j=1

(βλ)j [(A0 − d) −A1(Qt+j + qt+j) + vt+j ], (18.C.3)

This can be expressed as

it = (λ− 1)qt + c−1epβλm(I − βλm)−1

[
zt

µxt

]
(18.C.4)

where ep = [ (A0 − d) 1 −A1 −A1 0 ] is a vector that forms pt − d upon

postmultiplication by

[
zt

µxt

]
. It can be verified that the solution procedure

builds in (18.C.4) as an identity, so that (18.C.4) agrees with

it = −P−1
22 P21zt + P−1

22 µxt. (18.C.5)

19 The representative firm acts as though (qt, Qt) were exogenous to it.
20 See Sargent (1979 or 1987a) for an account of the method we are using here.
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Exercises

Exercise 18.1 There is no uncertainty. For t ≥ 0, a monetary authority sets

the growth of the (log) of money according to

(1) mt+1 = mt + ut

subject to the initial condition m0 > 0 given. The demand for money is

(2) mt − pt = −α(pt+1 − pt), α > 0,

where pt is the log of the price level. Equation (2) can be interpreted as the

Euler equation of the holders of money.

a. Briefly interpret how equation (2) makes the demand for real balances vary

inversely with the expected rate of inflation. Temporarily (only for this part

of the exercise) drop equation (1) and assume instead that {mt} is a given

sequence satisfying
∑∞

t=0m
2
t < +∞ . Please solve the difference equation (2)

“forward” to express pt as a function of current and future values of ms . Note

how future values of m influence the current price level.

At time 0, a monetary authority chooses a possibly history-dependent strat-

egy for setting {ut}∞t=0 . (The monetary authority commits to this strategy.) The

monetary authority orders sequences {mt, pt}∞t=0 according to

(3) −
∞∑

t=0

.95t
[
(pt − p)2 + u2

t + .00001m2
t

]
.

Assume that m0 = 10, α = 5, p̄ = 1.

b. Please briefly interpret this problem as one where the monetary authority

wants to stabilize the price level, subject to costs of adjusting the money supply

and some implementability constraints. (We include the term .00001m2
t for

purely technical reasons that you need not discuss.)

c. Please write and run a Matlab program to find the optimal sequence {ut}∞t=0 .

d. Display the optimal decision rule for ut as a function of ut−1,mt,mt−1 .

e. Compute the optimal {mt, pt}t sequence for t = 0, . . . , 10.

Hint: The optimal {mt} sequence must satisfy
∑∞

t=0(.95)tm2
t < +∞ . You are

free to apply the Matlab program olrp.m.



Exercises 635

Exercise 18.2 A representative consumer has quadratic utility functional

(1)

∞∑

t=0

βt
{
−.5(b− ct)

2
}

where β ∈ (0, 1), b = 30, and ct is time t consumption. The consumer faces a

sequence of budget constraints

(2) ct + at+1 = (1 + r)at + yt − τt

where at is the household’s holdings of an asset at the beginning of t , r > 0 is

a constant net interest rate satisfying β(1 + r) < 1, and yt is the consumer’s

endowment at t . The consumer’s plan for (ct, at+1) has to obey the boundary

condition
∑∞

t=0 β
ta2
t < +∞ . Assume that y0, a0 are given initial conditions

and that yt obeys

(3) yt = ρyt−1, t ≥ 1,

where |ρ| < 1. Assume that a0 = 0, y0 = 3, and ρ = .9.

At time 0, a planner commits to a plan for taxes {τt}∞t=0 . The planner

designs the plan to maximize

(4)

∞∑

t=0

βt
{
−.5(ct − b)2 − τ2

t

}

over {ct, τt}∞t=0 subject to the implementability constraints (2) for t ≥ 1 and

(5) λt = β(1 + r)λt+1

for t ≥ 1, where λt ≡ (b − ct).

a. Argue that (5) is the Euler equation for a consumer who maximizes (1)

subject to (2), taking {τt} as a given sequence.

b. Formulate the planner’s problem as a Stackelberg problem.

c. For β = .95, b = 30, β(1 + r) = .95, formulate an artificial optimal linear

regulator problem and use it to solve the Stackelberg problem.

d. Give a recursive representation of the Stackelberg plan for τt .



Chapter 19

Insurance Versus Incentives

19.1. Insurance with recursive contracts

This chapter studies a planner who designs an efficient contract to supply in-

surance in the presence of incentive constraints imposed by his limited ability

either to enforce contracts or to observe households’ actions or incomes. We

pursue two themes, one substantive, the other technical. The substantive theme

is a tension that exists between providing insurance and instilling incentives.

A planner can overcome incentive problems by offering “carrots and sticks”

that adjust an agent’s future consumption and thereby provide less insurance.

Balancing incentives against insurance shapes the evolution of distributions of

wealth and consumption.

The technical theme is how incentive problems can be managed with con-

tracts that retain memory and make promises, and how memory can be encoded

recursively. Contracts issue rewards that depend on the history either of pub-

licly observable outcomes or of an agent’s announcements about his privately

observed outcomes. Histories are large-dimensional objects. But Spear and

Srivastava (1987), Thomas and Worrall (1988), Abreu, Pearce, and Stacchetti

(1990), and Phelan and Townsend (1991) discovered that the dimension can be

contained by using an accounting system cast solely in terms of a “promised

value,” a one-dimensional object that summarizes relevant aspects of an agent’s

history. Working with promised values permits us to formulate the contract

design problem recursively.

Three basic models are set within a single physical environment but assume

different structures of information, enforcement, and storage possibilities. The

first adapts a model of Thomas and Worrall (1988) and Kocherlakota (1996b)

that focuses on commitment or enforcement problems and has all information

being public. The second is a model of Thomas and Worrall (1990) that has

an incentive problem coming from private information but that assumes away

commitment and enforcement problems. Common to both of these models is

that the insurance contract is assumed to be the only vehicle for households to

– 636 –
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transfer wealth across states of the world and over time. The third model, by

Cole and Kocherlakota (2001), extends Thomas and Worrall’s (1990) model by

introducing private storage that cannot be observed publicly. Ironically, because

it lets households self-insure as in chapters 16 and 17, the possibility of private

storage reduces ex ante welfare by limiting the amount of social insurance that

can be attained when incentive constraints are present.

19.2. Basic environment

Imagine a village with a large number of ex ante identical households. Each

household has preferences over consumption streams that are ordered by

E

∞∑

t=0

βtu(ct), (19.2.1)

where u(c) is an increasing, strictly concave, and twice continuously differen-

tiable function, and β ∈ (0, 1) is a discount factor. Each household receives

a stochastic endowment stream {yt}∞t=0 , where for each t ≥ 0, yt is indepen-

dently and identically distributed according to the discrete probability distribu-

tion Prob(yt = ys) = Πs, where s ∈ {1, 2, . . . , S} ≡ S and ys+1 > ys . The

consumption good is not storable. At time t ≥ 1, the household has experienced

a history of endowments ht = (yt, yt−1, . . . , y0). The endowment processes are

independently and identically distributed both across time and across house-

holds.

In this setting, if there were a competitive equilibrium with complete mar-

kets as described in chapter 8, at date 0 households would trade history- and

date-contingent claims before the realization of endowments and insure them-

selves against idiosyncratic risk. Since all households are ex ante identical, each

household would end up consuming the per capita endowment in every period,

and its lifetime utility would be

vpool =

∞∑

t=0

βt u

(
S∑

s=1

Πsys

)
=

1

1 − β
u

(
S∑

s=1

Πsys

)
. (19.2.2)

Households would thus insure away all of the risk associated with their individual

endowment processes. But the incentive constraints that we are about to specify
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make this allocation unattainable. For each specification of incentive constraints,

we shall solve a planning problem for an efficient allocation that respects those

incentive constraints.

Following a tradition started by Green (1987), we assume that a “moneylen-

der” or “planner” is the only person in the village who has access to a risk-free

loan market outside the village. The moneylender can borrow or lend at the

constant risk-free gross interest rate R = β−1 . The households cannot borrow

or lend with one another, and can only trade with the moneylender. Further-

more, we assume that the moneylender is committed to honor his promises. We

will study three types of incentive constraints.

(a) Although the moneylender can commit to honor a contract, households

cannot commit and at any time are free to walk away from an arrangement

with the moneylender and choose autarky. They must be induced not to

do so by the structure of the contract. This is a model of “one-sided com-

mitment” in which the contract is “self-enforcing” because the household

prefers to conform to it.

(b) Households can make commitments and enter into enduring and binding

contracts with the moneylender, but they have private information about

their own income. The moneylender can see neither their income nor their

consumption. It follows that any exchanges between the moneylender and

a household must be based on the household’s own reports about income

realizations. An incentive-compatible contract must induce households to

report their incomes truthfully.

(c) The environment is the same as in b except for the additional assumption

that households have access to a storage technology that cannot be observed

by the moneylender. Households can store nonnegative amounts of goods at

a risk-free gross return of R equal to the interest rate that the moneylender

faces in the outside credit market. Since the moneylender can both borrow

and lend at the interest rate R outside of the village, the private storage

technology does not change the economy’s aggregate resource constraint,

but it does affect the set of incentive-compatible contracts between the

moneylender and the households.

When we compute efficient allocations for each of these three environments,

we shall find that the dynamics of the implied consumption allocations differ
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Figure 19.2.1.a: Typical consumption

path in environment a.
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Figure 19.2.1.b: Typical consumption

path in environment b.
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Figure 19.2.2: Typical consumption path in environment c.

dramatically. As a prelude, Figures 19.2.1 and 19.2.2 depict the different con-

sumption streams that are associated with the same realization of a random

endowment stream for households living in environments a, b, and c, respec-

tively. For all three of these economies, we set u(c) = −γ−1 exp(−γc) with
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γ = .8, β = .92, [y1, . . . , y10] = [6, . . . , 15], and Πs = 1−λ
1−λ10 λ

s−1 with λ = 2/3.

As a benchmark, a horizontal dotted line in each graph depicts the constant

consumption level that would be attained in a complete markets equilibrium

where there are no incentive problems. In all three environments, prior to date

0, the households have entered into efficient contracts with the moneylender.

The dynamics of consumption outcomes evidently differ substantially across the

three environments, increasing and then flattening out in environment a, head-

ing “south” in environment b, and heading “north” in environment c. This

chapter explains why the sample paths of consumption differ so much across

these three settings.

19.3. One-sided no commitment

Our first incentive problem is a lack of commitment. A moneylender is com-

mitted to honor his promises, but villagers are free to walk away from their

arrangement with the moneylender at any time. The moneylender designs a

contract that the villager wants to honor at every moment and contingency.

Such a contract is said to be self-enforcing. In chapter 20, we shall study an-

other economy in which there is no moneylender, only another villager, and when

no one is able to make commitments. Such a contract design problem with par-

ticipation constraints on both sides of an exchange represents a problem with

two-sided lack of commitment, as compared to the problem with one-sided lack

of commitment in this chapter.1

1 For an earlier two-period model of a one-sided commitment problem, see Holmström

(1983).
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19.3.1. Self-enforcing contract

A moneylender can borrow or lend resources from outside the village but the

villagers cannot. A contract is a sequence of functions ct = ft(ht) for t ≥ 0,

where again ht = (yt, . . . , y0). The sequence of functions {ft} assigns a history-

dependent consumption stream ct = ft(ht) to the household. The contract

specifies that each period, the villager contributes his time t endowment yt to

the moneylender who then returns ct to the villager. From this arrangement,

the moneylender earns an expected present value

P = E

∞∑

t=0

βt(yt − ct). (19.3.1)

By plugging the associated consumption process into expression (19.2.1), we

find that the contract assigns the villager an expected present value of v =

E
∑∞

t=0 β
tu (ft(ht)) .

The contract must be self-enforcing. At any point in time, the household

is free to walk away from the contract and thereafter consume its endowment

stream. Thus, if the household walks away from the contract, it must live in

autarky evermore. The ex ante value associated with consuming the endowment

stream, to be called the autarky value, is

vaut = E

∞∑

t=0

βtu(yt) =
1

1 − β

S∑

s=1

Πsu(ys). (19.3.2)

At time t , after having observed its current-period endowment, the household

can guarantee itself a present value of utility of u(yt) + βvaut by consuming its

own endowment. The moneylender’s contract must offer the household at least

this utility at every possible history and every date. Thus, the contract must

satisfy

u[ft(ht)] + βEt

∞∑

j=1

βj−1u[ft+j(ht+j)] ≥ u(yt) + βvaut, (19.3.3)

for all t ≥ 0 and for all histories ht . Equation (19.3.3) is called the participation

constraint for the villager. A contract that satisfies equation (19.3.3) is said to

be sustainable.
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19.3.2. Recursive formulation and solution

A difficulty with constraints like equation (19.3.3) is that there are so many of

them: the dimension of the argument ht grows exponentially with t . Fortu-

nately, a recursive formulation of history-dependent contracts applies. We can

represent the sequence of functions {ft} recursively by finding a state variable

xt such that the contract takes the form

ct = g(xt, yt),

xt+1 = `(xt, yt).

Here g and ` are time-invariant functions. Notice that by iterating the `(·)
function t times starting from (x0, y0), one obtains

xt = mt(x0; yt−1, . . . , y0), t ≥ 1.

Thus, xt summarizes histories of endowments ht−1 . In this sense, xt is a

“backward-looking” variable.

A remarkable fact is that the appropriate state variable xt is a promised

expected discounted future value vt = Et−1

∑∞
j=0 β

ju(ct+j). This “forward-

looking” variable summarizes the stream of future utilities. We shall formulate

the contract recursively by having the moneylender arrive at t , before yt is

realized, with a previously made promised vt . He delivers vt by letting ct and

the continuation value vt+1 both respond to yt .

Thus, we shall treat the promised value v as a state variable, then formulate

a functional equation for a moneylender. The moneylender gives a prescribed

value v by delivering a state-dependent current consumption c and a promised

value starting tomorrow, say v′ , where c and v′ each depend on the current

endowment y and the preexisting promise v . The moneylender provides v in a

way that maximizes his profits (19.3.1).

Each period, the household must be induced to surrender the time t en-

dowment yt to the moneylender, who invests it outside the village at a constant

one-period gross interest rate of β−1 . In exchange, the moneylender delivers a

state-contingent consumption stream to the household that keeps it participat-

ing in the arrangement every period and after every history. The moneylender

wants to do this in the most efficient way, that is, the profit-maximizing way.

Let P (v) be the expected present value of the “profit stream” {yt − ct} for a
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moneylender who delivers value v in the optimal way. The optimum value P (v)

obeys the functional equation

P (v) = max
{cs,ws}

S∑

s=1

Πs[(ys − cs) + βP (ws)] (19.3.4)

where the maximization is subject to the constraints

S∑

s=1

Πs[u(cs) + βws] ≥ v, (19.3.5)

u(cs) + βws ≥ u(ys) + βvaut, s = 1, . . . , S; (19.3.6)

cs ∈ [cmin,cmax], (19.3.7)

ws ∈ [vaut,v̄]. (19.3.8)

Here ws is the promised value with which the consumer enters next period,

given that y = ys this period; [cmin, cmax] is a bounded set to which we restrict

the choice of ct each period. We restrict the continuation value ws to be in the

set [vaut, v̄] , where v̄ is a very large number. Soon we’ll compute the highest

value that the moneylender would ever want to set ws . All we require now is

that v̄ exceed this value. Constraint (19.3.5) is the promise-keeping constraint.

It requires that the contract deliver at least promised value v . Constraints

(19.3.6), one for each state s , are the participation constraints. Evidently, P

must be a decreasing function of v because the higher the consumption stream

of the villager, the lower must be the profits of the moneylender.

The constraint set is convex. The one-period return function in equation

(19.3.4) is concave. The value function P (v) that solves equation (19.3.4)

is concave. In fact, P (v) is strictly concave as will become evident from our

characterization of the optimal contract that solves this problem. Form the

Lagrangian

L =

S∑

s=1

Πs[(ys − cs) + βP (ws)]

+ µ

{
S∑

s=1

Πs[u(cs) + βws] − v

}

+

S∑

s=1

λs{u(cs) + βws − [u(ys) + βvaut]}.

(19.3.9)
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For each v and for s = 1, . . . , S , the first-order conditions for maximizing L

with respect to cs, ws , respectively, are

(λs + µΠs)u
′(cs) = Πs, (19.3.10)

λs + µΠs = −ΠsP
′(ws). (19.3.11)

By the envelope theorem, if P is differentiable, then P ′(v) = −µ . We will

proceed under the assumption that P is differentiable but it will become evident

that P is indeed differentiable when we learn about the optimal contract that

solves this problem.

Equations (19.3.10) and (19.3.11) imply the following relationship between

cs and ws :

u′(cs) = −P ′(ws)
−1. (19.3.12)

This condition states that the household’s marginal rate of substitution between

cs and ws , given by u′(cs)/β , should equal the moneylender’s marginal rate of

transformation as given by −[βP ′(ws)]
−1 . The concavity of P and u means

that equation (19.3.12) traces out a positively sloped curve in the c, w plane,

as depicted in Figure 19.3.1. We can interpret this condition as making cs a

function of ws . To complete the optimal contract, it will be enough to find how

ws depends on the promised value v and the income state ys .

Condition (19.3.11) can be written

P ′(ws) = P ′(v) − λs/Πs. (19.3.13)

How ws varies with v depends on which of two mutually exclusive and exhaus-

tive sets of states (s, v) falls into after the realization of ys : those in which the

participation constraint (19.3.6) binds (i.e., states in which λs > 0) or those in

which it does not (i.e., states in which λs = 0).

We shall analyze what happens in those states in which λs > 0 and those

in which λs = 0.

States where λs > 0

When λs > 0, the participation constraint (19.3.6) holds with equality. When

λs > 0, (19.3.13) implies that P ′(ws) < P ′(v), which in turn implies, by the

concavity of P , that ws > v . Further, the participation constraint at equality

implies that cs < ys (because ws > v ≥ vaut ). Taken together, these results
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Figure 19.3.1: Determination of consumption and promised

utility (c, w ). Higher realizations of ys are associated with

higher indifference curves u(c) + βw = u(ys) + βvaut . For

a given v , there is a threshold level ȳ(v) above which the

participation constraint is binding and below which the mon-

eylender awards a constant level of consumption, as a func-

tion of v , and maintains the same promised value w = v .

The cutoff level ȳ(v) is determined by the indifference curve

going through the intersection of a horizontal line at level v

with the “expansion path” u′(c)P ′(w) = −1.

say that when the participation constraint (19.3.6) binds, the moneylender in-

duces the household to consume less than its endowment today by raising its

continuation value.

When λs > 0, cs and ws are determined by solving the two equations

u(cs) + βws = u(ys) + βvaut, (19.3.14)

u′(cs) = −P ′(ws)
−1. (19.3.15)

The participation constraint holds with equality. Notice that these equations

are independent of v . This property is a key to understanding the form of the

optimal contract. It imparts to the contract what Kocherlakota (1996b) calls

amnesia: when incomes yt are realized that cause the participation constraint
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to bind, the contract disposes of all history dependence and makes both con-

sumption and the continuation value depend only on the current income state

yt . We portray amnesia by denoting the solutions of equations (19.3.14) and

(19.3.15) by

cs = g1(ys), (19.3.16a)

ws = `1(ys). (19.3.16b)

Later, we’ll exploit the amnesia property to produce a computational algorithm.

States where λs = 0

When the participation constraint does not bind, λs = 0 and first-order condi-

tion (19.3.11) imply that P ′(v) = P ′(ws), which implies that ws = v . There-

fore, from (19.3.12), we can write u′(cs) = −P ′(v)−1 , so that consumption in

state s depends on promised utility v but not on the endowment in state s .

Thus, when the participation constraint does not bind, the moneylender awards

cs = g2(v), (19.3.17a)

ws = v, (19.3.17b)

where g2(v) solves u′[g2(v)] = −P ′(v)−1 .

The optimal contract

Combining the branches of the policy functions for the cases where the partici-

pation constraint does and does not bind, we obtain

c = max{g1(y), g2(v)}, (19.3.18)

w = max{`1(y), v}. (19.3.19)

The optimal policy is displayed graphically in Figures 19.3.1 and 19.3.2. To

interpret the graphs, it is useful to study equations (19.3.6) and (19.3.12) for

the case in which ws = v . By setting ws = v , we can solve these equations for

a “cutoff value,” call it ȳ(v), such that the participation constraint binds only

when ys ≥ ȳ(v). To find ȳ(v), we first solve equation (19.3.12) for the value cs

associated with v for those states in which the participation constraint is not

binding:

u′[g2(v)] = −P ′(v)−1,
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and then substitute this value into (19.3.6) at equality to solve for ȳ(v):

u[ȳ(v)] = u[g2(v)] + β(v − vaut). (19.3.20)

By the concavity of P , the cutoff value ȳ(v) is increasing in v .

g   (v)2

y (v)

c

y
_

Figure 19.3.2: The shape of consumption as a function of

realized endowment, when the promised initial value is v .

Associated with a given level of vt ∈ (vaut, v̄), there are two numbers g2(vt),

ȳ(vt) such that if yt ≤ ȳ(vt) the moneylender offers the household ct = g2(vt)

and leaves the promised utility unaltered, vt+1 = vt . The moneylender is thus

insuring against the states ys ≤ ȳ(vt) at time t . If yt > ȳ(vt), the participa-

tion constraint is binding, prompting the moneylender to induce the household

to surrender some of its current-period endowment in exchange for a raised

promised utility vt+1 > vt . Promised values never decrease. They stay con-

stant for low-y states ys < ȳ(vt) and increase in high-endowment states that

threaten to violate the participation constraint. Consumption stays constant

during periods when the participation constraint fails to bind and increases

during periods when it threatens to bind. Thus, a household that realizes the

highest endowment yS is permanently awarded the highest consumption level

with an associated promised value v̄ that satisfies

u[g2(v̄)] + βv̄ = u(yS) + βvaut.
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19.3.3. Recursive computation of contract

Suppose that the initial promised value v0 is vaut . We can compute the optimal

contract recursively by using the fact that the villager will ultimately receive a

constant welfare level equal to u(yS) + βvaut after ever having experienced the

maximum endowment yS . We can characterize the optimal policy in terms of

numbers {cs, ws}Ss=1 ≡ {g1(ys), `1(ys)}Ss=1 where g1(ys) and `1(s) are given by

(19.3.16). These numbers can be computed recursively by working backward as

follows. Start with s = S and compute (cS , wS) from the nonlinear equations:

u(cS) + βwS = u(yS) + βvaut, (19.3.21a)

wS =
u(cS)

1 − β
. (19.3.21b)

Working backward for j = S− 1, . . . , 1, compute cj , wj from the two nonlinear

equations

u(cj) + βwj = u(yj) + βvaut, (19.3.22a)

wj = [u(cj) + βwj ]

j∑

k=1

Πk +

S∑

k=j+1

Πk[u(ck) + βwk]. (19.3.22b)

These successive iterations yield the optimal contract characterized by {cs, ws}Ss=1 .

Ex ante, before the time 0 endowment has been realized, the contract offers the

household

v0 =

S∑

k=1

Πk[u(ck) + βwk] =

S∑

k=1

Πk[u(yk) + βvaut] = vaut, (19.3.23)

where we have used (19.3.22a) to verify that the contract indeed delivers v0 =

vaut .

Some additional manipulations will enable us to express {cj}Sj=1 solely in

terms of the utility function and the endowment process. First, solve for wj

from (19.3.22b),

wj =
u(cj)

∑j
k=1 Πk +

∑S
k=j+1 Πk[u(yk) + βvaut]

1 − β
∑j

k=1 Πk

, (19.3.24)
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where we have invoked (19.3.22a) when replacing [u(ck) + βwk] by [u(yk) +

βvaut] . Next, substitute (19.3.24) into (19.3.22a) and solve for u(cj),

u(cj) =

[
1 − β

j∑

k=1

Πk

]
[
u(yj) + βvaut

]
− β

S∑

k=j+1

Πk [u(yk) + βvaut]

= u(yj) + βvaut − βu(yj)

j∑

k=1

Πk − β2vaut − β

S∑

k=j+1

Πku(yk)

= u(yj) + βvaut − βu(yj)

j∑

k=1

Πk − β2vaut − β

[
(1 − β)vaut −

j∑

k=1

Πku(yk)

]

= u(yj) − β

j∑

k=1

Πk

[
u(yj) − u(yk)

]
. (19.3.25)

According to (19.3.25), u(c1) = u(y1) and u(cj) < u(yj) for j ≥ 2. That is, a

household that realizes a record high endowment of yj must surrender some of

that endowment to the moneylender unless the endowment is the lowest possible

value y1 . Households are willing to surrender parts of their endowments in

exchange for promises of insurance (i.e., future state-contingent transfers) that

are encoded in the associated continuation values, {wj}Sj=1 . For those unlucky

households that have so far realized only endowments equal to y1 , the profit-

maximizing contract prescribes that the households retain their endowment,

c1 = y1 and by (19.3.22a), the associated continuation value is w1 = vaut .

That is, to induce those low-endowment households to adhere to the contract,

the moneylender has only to offer a contract that assures them an autarky

continuation value in the next period.

Contracts when v0 > w1 = vaut

We have shown how to compute the optimal contract when v0 = w1 = vaut by

computing quantities (cs, ws) for s = 1, . . . , S . Now suppose that we want to

construct a contract that assigns initial value v0 ∈ [wk−1, wk) for 1 < k ≤ S .

Given v0 , we can deduce k , then solve for c̃ satisfying

v0 =




k−1∑

j=1

Πj



 [u(c̃) + βv0] +

S∑

j=k

Πj [u(cj) + βwj ] . (19.3.26)



650 Insurance Versus Incentives

The optimal contract promises (c̃, v0) so long as the maximum yt to date is less

than or equal to yk−1 . When the maximum yt experienced to date equals yj
for j ≥ k , the contract offers (cj , wj).

It is plausible that a higher initial expected promised value v0 > vaut can

be delivered in the most cost-effective way by choosing a higher consumption

level c̃ for households that experience low endowment realizations, c̃ > cj for

j = 1, . . . , k−1. The reason is that those unlucky households have high marginal

utilities of consumption. Therefore, transferring resources to them minimizes the

resources that are needed to increase the ex ante promised expected utility. As

for those lucky households that have received relatively high endowment real-

izations, the optimal contract prescribes an unchanged allocation characterized

by {cj , wj}Sj=k .

If we want to construct a contract that assigns initial value v0 ≥ wS , the

efficient solution is simply to find the constant consumption level c̃ that delivers

lifetime utility v0 :

v0 =

S∑

j=1

Πj [u(c̃) + βv0] =⇒ v0 =
u(c̃)

1 − β
.

This contract trivially satisfies all participation constraints, and a constant con-

sumption level maximizes the expected profit of delivering v0 .

Summary of optimal contract

Define

s(t) = {j : yj = max{y0, y1, . . . , yt}}.
That is, ys(t) is the maximum endowment that the household has experienced

up until period t .

The optimal contract has the following features. To deliver promised value

v0 ∈ [vaut, wS ] to the household, the contract offers stochastic consumption and

continuation values, {ct, vt+1}∞t=0 , that satisfy

ct = max{c̃, cs(t)}, (19.3.27a)

vt+1 = max{v0, ws(t)}, (19.3.27b)

where c̃ is given by (19.3.26).
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19.3.4. Profits

We can use (19.3.4) to compute expected profits from offering continuation

value wj , j = 1, . . . , S . Starting with P (wS), we work backward to compute

P (wk), k = S − 1, S − 2, . . . , 1:

P (wS) =

S∑

j=1

Πj

(
yj − cS

1 − β

)
, (19.3.28a)

P (wk) =

k∑

j=1

Πj(yj − ck) +

S∑

j=k+1

Πj(yj − cj)

+ β




k∑

j=1

ΠjP (wk) +

S∑

j=k+1

ΠjP (wj)


 . (19.3.28b)

Strictly positive profits for v0 = vaut

We will now demonstrate that a contract that offers an initial promised value of

vaut is associated with strictly positive expected profits. In order to show that

P (vaut) > 0, let us first examine the expected profit implications of the following

limited obligation. Suppose that a household has just experienced yj for the first

time and that the limited obligation amounts to delivering cj to the household in

that period and in all future periods until the household realizes an endowment

higher than yj . At the time of such a higher endowment realization in the

future, the limited obligation ceases without any further transfers. Would such

a limited obligation be associated with positive or negative expected profits?

In the case of yj = y1 , this would entail a deterministic profit equal to zero,

since we have shown above that c1 = y1 . But what is true for other endowment

realizations?

To study the expected profit implications of such a limited obligation for

any given yj , we first compute an upper bound for the obligation’s consumption

level cj by using (19.3.25):

u(cj) =

[
1 − β

j∑

k=1

Πk

]
u(yj) + β

j∑

k=1

Πku(yk)

≤ u

([
1 − β

j∑

k=1

Πk

]
yj + β

j∑

k=1

Πkyk

)
,
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where the weak inequality is implied by the strict concavity of the utility func-

tion, and evidently the expression holds with strict inequality for j > 1. There-

fore, an upper bound for cj is

cj ≤
[
1 − β

j∑

k=1

Πk

]
yj + β

j∑

k=1

Πkyk. (19.3.29)

We can sort out the financial consequences of the limited obligation by

looking separately at the first period and then at all future periods. In the first

period, the moneylender obtains a nonnegative profit,

yj − cj ≥ yj −
([

1 − β

j∑

k=1

Πk

]
yj + β

j∑

k=1

Πkyk

)

= β

j∑

k=1

Πk

[
yj − yk

]
, (19.3.30)

where we have invoked the upper bound on cj in (19.3.29). After that first pe-

riod, the moneylender must continue to deliver cj for as long as the household

does not realize an endowment greater than yj . So the probability that the

household remains within the limited obligation for another t number of peri-

ods is (
∑j

i=1 Πi)
t . Conditional on remaining within the limited obligation, the

household’s average endowment realization is (
∑j

k=1 Πkyk)/(
∑j

k=1 Πk). Conse-

quently, the expected discounted profit stream associated with all future periods

of the limited obligation, expressed in first-period values, is

∞∑

t=1

βt

[
j∑

i=1

Πi

]t [∑j
k=1 Πkyk∑j
k=1 Πk

− cj

]
=

[
β
∑j

i=1 Πi

]

1 − β
∑j

i=1 Πi

[∑j
k=1 Πkyk∑j
k=1 Πk

− cj

]

≥ −β
j∑

k=1

Πk

[
yj − yk

]
, (19.3.31)

where the inequality is obtained after invoking the upper bound on cj in (19.3.29).

Since the sum of (19.3.30) and (19.3.31) is nonnegative, we conclude that the

limited obligation at least breaks even in expectation. In fact, for yj > y1 we

have that (19.3.30) and (19.3.31) hold with strict inequalities, and thus, each

such limited obligation is associated with strictly positive profits.
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Since the optimal contract with an initial promised value of vaut can be

viewed as a particular constellation of all of the described limited obligations,

it follows immediately that P (vaut) > 0.

Contracts with P (v0) = 0

In exercise 19.2 , you will be asked to compute v0 such that P (v0) = 0. Here

is a good way to do this. Suppose that after computing the optimal contract

for v0 = vaut that we can find some k satisfying 1 < k ≤ S such that for

j ≥ k, P (wj) ≤ 0 and for j < k , P (wk) > 0. Use a zero-profit condition to find

an initial c̃ level:

0 =
k−1∑

j=1

Πj(yj − c̃) +
S∑

j=k

Πj

[
yj − cj + βP (wj)

]
.

Given c̃ , we can solve (19.3.26) for v0 .

However, such a k will fail to exist if P (wS) > 0. In that case, the efficient

allocation associated with P (v0) = 0 is a trivial one. The moneylender would

simply set consumption equal to the average endowment value. This contract

breaks even on average, and the household’s utility is equal to the first-best

unconstrained outcome, v0 = vpool , as given in (19.2.2).

19.3.5. P (v) is strictly concave and continuously differentiable

Consider a promised value v0 ∈ [wk−1, wk) for 1 < k ≤ S . We can then use

equation (19.3.26) to compute the amount of consumption c̃(v0) awarded to a

household with promised value v0 , as long as the household is not experiencing

an endowment greater than yk−1 ;

u[c̃(v0)] =

[
1 − β

∑k−1
j=1 Πj

]
v0 −

∑S
j=k Πj [u(cj) + βwj ]

∑k−1
j=1 Πj

≡ Φk(v0), (19.3.32)

that is,

c̃(v0) = u−1 [Φk(v0)] . (19.3.33)

Since the utility function is strictly concave, it follows that c̃(v0) is strictly

convex in the promised value v0 ;

c̃′(v0) =

[
1 − β

∑k−1
j=1 Πj

]

∑k−1
j=1 Πj

u−1′ [Φk(v0)] > 0, (19.3.34a)
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c̃′′(v0) =

[
1 − β

∑k−1
j=1 Πj

]2

[∑k−1
j=1 Πj

]2 u−1′′ [Φk(v0)] > 0. (19.3.34b)

Next, we evaluate the expression for expected profits in (19.3.4) at the optimal

contract,

P (v0) =

k−1∑

j=1

Πj

[
yj − c̃(v0) + βP (v0)

]
+

S∑

j=k

Πj

[
yj − cj + βP (wj)

]
,

which can be rewritten as

P (v0) =

∑k−1
j=1 Πj

[
yj − c̃(v0)

]
+
∑S

j=k Πj

[
yj − cj + βP (wj)

]

1 − β
∑k−1

j=1 Πj

.

We can now verify that P (v0) is strictly concave for v0 ∈ [wk−1, wk),

P ′(v0) = −
∑k−1
j=1 Πj

1 − β
∑k−1
j=1 Πj

c̃′(v0) = −u−1′ [Φk(v0)] < 0, (19.3.35a)

P ′′(v0) = −
∑k−1
j=1 Πj

1 − β
∑k−1
j=1 Πj

c̃′′(v0)

= −

[
1 − β

∑k−1
j=1 Πj

]

∑k−1
j=1 Πj

u−1′′ [Φk(v0)] < 0, (19.3.35b)

where we have invoked expressions (19.3.34).

To shed light on the properties of the value function P (v0) around the

promised value wk , we can establish that

lim
v0↑wk

Φk(v0) = Φk(wk) = Φk+1(wk), (19.3.36)

where the first equality is a trivial limit of expression (19.3.32) while the second

equality can be shown to hold because a rearrangement of that equality becomes

merely a restatement of a version of expression (19.3.22b). On the basis of

(19.3.36) and (19.3.33) we can conclude that the consumption level c̃(v0) is

continuous in the promised value which in turn implies continuity of the value

function P (v0). Moreover, expressions (19.3.36) and (19.3.35a) ensure that the

value function P (v0) is continuously differentiable in the promised value.
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19.3.6. Many households

Consider a large village in which a moneylender faces a continuum of such

households. At the beginning of time t = 0, before the realization of y0 , the

moneylender offers each household vaut (or maybe just a small amount more).

As time unfolds, the moneylender executes the contract for each household.

A society of such households would experience a “fanning out” of the distri-

butions of consumption and continuation values across households for a while,

to be followed by an eventual “fanning in” as the cross-sectional distribution

of consumption asymptotically becomes concentrated at the single point g2(v̄)

computed earlier (i.e., the minimum c such that the participation constraint

will never again be binding). Notice that early on the moneylender would on

average, across villagers, be collecting money from the villagers, depositing it

in the bank, and receiving the gross interest rate β−1 on the bank balance.

Later he could be using the interest on his account outside the village to finance

payments to the villagers. Eventually, the villagers are completely insured, i.e.,

they experience no fluctuations in their consumptions.

For a contract that offers initial promised value v0 ∈ [vaut, wS ] , constructed

as above, we can compute the dynamics of the cross-section distribution of

consumption by appealing to a law of large numbers of the kind used in chapter

17. At time 0, after the time 0 endowments have been realized, the cross-section

distribution of consumption is evidently

Prob{c0 = c̃} =

(
k−1∑

s=1

Πs

)
(19.3.37a)

Prob{c0 ≤ cj} =

(
j∑

s=1

Πs

)
, j ≥ k. (19.3.37b)

After t periods,

Prob{ct = c̃} =

(
k−1∑

s=1

Πs

)t+1

(19.3.38a)

Prob{ct ≤ cj} =

(
j∑

s=1

Πs

)t+1

, j ≥ k. (19.3.38b)

From the cumulative distribution functions (19.3.37) and (19.3.38), it is

easy to compute the corresponding densities

fj,t = Prob(ct = cj) (19.3.39)
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where here we set cj = c̃ for all j < k . These densities allow us to compute

the evolution over time of the moneylender’s bank balance. Starting with initial

balance β−1B−1 = 0 at time 0, the moneylender’s balance at the bank evolves

according to

Bt = β−1Bt−1 +




S∑

j=1

Πjyj −
S∑

j=1

fj,tcj


 (19.3.40)

for t ≥ 0, where Bt denotes the end-of-period balance in period t . Let β−1 =

1 + r . After the cross-section distribution of consumption has converged to a

distribution concentrated on cS , the moneylender’s bank balance will obey the

difference equation

Bt = (1 + r)Bt−1 + E(y) − cS , (19.3.41)

where E(y) is the mean of y .

A convenient formula links P (v0) to the tail behavior of Bt , in particular,

to the behavior of Bt after the consumption distribution has converged to cS .

Here we are once again appealing to a law of large numbers so that the expected

profits P (v0) becomes a nonstochastic present value of profits associated with

making a promise v0 to a large number of households. Since the moneylender

lets all surpluses and deficits accumulate in the bank account, it follows that

P (v0) is equal to the present value of the sum of any future balances Bt and the

continuation value of the remaining profit stream. After all households’ promised

values have converged to wS , the continuation value of the remaining profit

stream is evidently equal to βP (wS). Thus, for t such that the distribution of

c has converged to cs , we deduce that

P (v0) =
Bt + βP (wS)

(1 + r)t
. (19.3.42)

Since the term βP (wS)/(1 + r)t in expression (19.3.42) will vanish in the

limit, the expression implies that the bank balances Bt will eventually change at

the gross rate of interest. If the initial v0 is set so that P (v0) > 0 (P (v0) < 0),

then the balances will eventually go to plus infinity (minus infinity) at an expo-

nential rate. The asymptotic balances would be constant only if the initial v0 is

set so that P (v0) = 0. This has the following implications. First, recall from our

calculations above that there can exist an initial promised value v0 ∈ [vaut, wS ]

such that P (v0) = 0 only if it is true that P (wS) ≤ 0, which by (19.3.28a)
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implies that E(y) ≤ cS . After imposing P (v0) = 0 and using the expression for

P (wS) in (19.3.28a), equation (19.3.42) becomes Bt = −βE(y)−cS

1−β , or

Bt = cS − E(y) ≥ 0,

where we have used the definition β−1 = 1+r . Thus, if the initial promised value

v0 is such that P (v0) = 0, then the balances will converge when all households’

promised values converge to wS . The interest earnings on those stationary

balances will equal the one-period deficit associated with delivering cS to every

household while collecting endowments per capita equal to E(y) ≤ cS .

After enough time has passed, all of the villagers will be perfectly insured

because according to (19.3.38), limt→+∞ Prob(ct = cS) = 1. How much time

it takes to converge depends on the distribution Π. Eventually, everyone will

have received the highest endowment realization sometime in the past, after

which his continuation value remains fixed. Thus, this is a model of temporary

imperfect insurance, as indicated by the eventual “fanning in” of the distribution

of continuation values.

19.3.7. An example

Figures 19.3.3 and 19.3.4 summarize aspects of the optimal contract for a version

of our economy in which each household has an i.i.d. endowment process that

is distributed as

Prob(yt = ys) =
1 − λ

1 − λS
λs−1

where λ ∈ (0, 1) and ys = s + 5 is the sth possible endowment value, s =

1, . . . , S . The typical household’s one-period utility function is u(c) = (1 −
γ)−1c1−γ , where γ is the household’s coefficient of relative risk aversion. We

have assumed the parameter values (β, S, γ, λ) = (.5, 20, 2, .95). The initial

promised value v0 is set so that P (v0) = 0.

The moneylender’s bank balance in Figure 19.3.3, panel d, starts at zero.

The moneylender makes money at first, which he deposits in the bank. But as

time passes, the moneylender’s bank balance converges to the point that he is

earning just enough interest on his balance to finance the extra payments he

must make to pay cS to each household each period. These interest earnings

make up for the deficiency of his per capita period income E(y), which is less

than his per period per capita expenditures cS .
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Figure 19.3.3: Optimal contract when P (v0) = 0. Panel

a: cs as function of maximum ys experienced to date. Panel

b: ws as function of maximum ys experienced. Panel c:

P (ws) as function of maximum ys experienced. Panel d:

The moneylender’s bank balance.

19.4. A Lagrangian method

Marcet and Marimon (1992, 1999) have proposed an approach that applies

to most of the contract design problems of this chapter. They form a La-

grangian and use the Lagrange multipliers on incentive constraints to keep track

of promises. Their approach extends the work of Kydland and Prescott (1980)

and is related to Hansen, Epple, and Roberds’ (1985) formulation for linear
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Figure 19.3.4: Cumulative distribution functions Ft(ct) for

consumption for t = 0, 2, 5, 10, 25, 100 when P (v0) = 0 (later

dates have c.d.f.s shifted to right).

quadratic environments.2 We can illustrate the method in the context of the

preceding model.

Marcet and Marimon’s approach would be to formulate the problem directly

in the space of stochastic processes (i.e., random sequences) and to form a

Lagrangian for the moneylender. The contract specifies a stochastic process for

consumption obeying the following constraints:

u(ct) + Et

∞∑

j=1

βju(ct+j) ≥ u(yt) + βvaut , ∀t ≥ 0, (19.4.1a)

E−1

∞∑

t=0

βtu(ct) ≥ v, (19.4.1b)

where E−1(·) denotes the conditional expectation before y0 has been realized.

Here v is the initial promised value to be delivered to the villager starting in

period 0. Equation (19.4.1a) gives the participation constraints.

2 Marcet and Marimon’s method is a variant of the method used to compute Stackelberg

or Ramsey plans in chapter 18. See chapter 18 for a more extensive review of the history of

the ideas underlying Marcet and Marimon’s approach, in particular, some work from Great

Britain in the 1980s by Miller, Salmon, Pearlman, Currie, and Levine.
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The moneylender’s Lagrangian is

J = E−1

∞∑

t=0

βt
{

(yt − ct) + αt

[
Et

∞∑

j=0

βju(ct+j) − [u(yt) + βvaut]
]}

+ φ
[
E−1

∞∑

t=0

βtu(ct) − v
]
,

(19.4.2)

where {αt}∞t=0 is a stochastic process of nonnegative Lagrange multipliers on the

participation constraint of the villager and φ is the strictly positive multiplier

on the initial promise-keeping constraint that states that the moneylender must

deliver v . It is useful to transform the Lagrangian by making use of the following

equality, which is a version of the “partial summation formula of Abel” (see

Apostol, 1975, p. 194):

∞∑

t=0

βtαt

∞∑

j=0

βju(ct+j) =

∞∑

t=0

βtµtu(ct), (19.4.3)

where

µt = µt−1 + αt, with µ−1 = 0. (19.4.4)

Formula (19.4.3) can be verified directly. If we substitute formula (19.4.3) into

formula (19.4.2) and use the law of iterated expectations to justify E−1Et(·) =

E−1(·), we obtain

J = E−1

∞∑

t=0

βt {(yt − ct) + (µt + φ)u(ct)

−(µt − µt−1) [u(yt) + βvaut]} − φv. (19.4.5)

For a given value v , we seek a saddle point: a maximum with respect to {ct} ,

a minimum with respect to {µt} and φ . The first-order condition with respect

to ct is

u′(ct) =
1

µt + φ
, (19.4.6a)

which is a version of equation (19.3.12). Thus, −(µt+φ) equals P ′(w) from the

previous section, so that the multipliers encode the information contained in the

derivative of the moneylender’s value function. We also have the complementary

slackness conditions

u(ct) + Et

∞∑

j=1

βju(ct+j) − [u(yt) + βvaut] ≥ 0, = 0 if αt > 0; (19.4.6b)
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E−1

∞∑

t=0

βtu(ct) − v = 0. (19.4.6c)

Equation (19.4.6) together with the transition law (19.4.4) characterizes the

solution of the moneylender’s maximization problem.

To explore the time profile of the optimal consumption process, we now

consider some period t ≥ 0 when (yt, µt−1, φ) are known. First, we tentatively

try the solution αt = 0 (i.e., the participation constraint is not binding). Equa-

tion (19.4.4) instructs us then to set µt = µt−1 , which by first-order condition

(19.4.6a) implies that ct = ct−1 . If this outcome satisfies participation con-

straint (19.4.6b), we have our solution for period t . If not, it signifies that the

participation constraint binds. In other words, the solution has αt > 0 and

ct > ct−1 . Thus, equations (19.4.4) and (19.4.6a) immediately show us that ct

is a nondecreasing random sequence, that ct stays constant when the participa-

tion constraint is not binding, and that it rises when the participation constraint

binds.

The numerical computation of a solution to equation (19.4.5) is compli-

cated by the fact that slackness conditions (19.4.6b) and (19.4.6c) involve condi-

tional expectations of future endogenous variables {ct+j} . Marcet and Marimon

(1992) handle this complication by resorting to the parameterized expectation

approach; that is, they replace the conditional expectation by a parameterized

function of the state variables.3 Marcet and Marimon (1992, 1999) describe a

variety of other examples using the Lagrangian method. See Kehoe and Perri

(2002) for an application to an international trade model.

3 For details on the implementation of the parameterized expectation approach in a simple

growth model, see den Haan and Marcet (1990).
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19.5. Insurance with asymmetric information

The moneylender-villager environment of section 19.3 has a commitment prob-

lem, because agents are free to choose autarky each period but there is no infor-

mation problem. We now study a contract design problem where the incentive

problem comes not from a commitment problem, but instead from asymmetric

information. As before, the moneylender or planner can borrow or lend outside

the village at the constant risk-free gross interest rate of β−1 , and each house-

hold’s income yt is independently and identically distributed across time and

across households. However, we now assume that both the planner and house-

holds can credibly enter into enduring and binding contracts. At the beginning

of time, let vo be the expected lifetime utility that the planner promises to de-

liver to a household. The initial promise vo could presumably not be less than

vaut , since a household would not accept a contract that gives a lower utility as

compared to remaining in autarky. We defer discussing how vo is determined

until the end of the section. The other new assumption here is that house-

holds have private information about their own income, and the planner can see

neither their income nor their consumption. It follows that any insurance pay-

ments between the planner and a household must be based on the household’s

own reports about income realizations. An incentive-compatible contract makes

households choose to report their incomes truthfully.

Our analysis follows the work by Thomas and Worrall (1990), who make

a few additional assumptions about the preferences in expression (19.2.1): u :

(a,∞) → R is twice continuously differentiable with supu(c) < ∞ , inf u(c) =

−∞ , limc→a u
′(c) = ∞ . Thomas and Worrall also use the following special

assumption:

Condition A: −u′′/u′ is nonincreasing.

This is a sufficient condition to make the value function concave, as we will

discuss. The roles of the other restrictions on preferences will also be revealed.

The efficient insurance contract again solves a dynamic programming prob-

lem. A planner maximizes expected discounted profits, P (v), where v is the

household’s promised utility from last period. The planner’s current payment to

the household, denoted b (repayments from the household register as negative

numbers), is a function of the state variable v and the household’s reported cur-

rent income y . Let bs and ws be the payment and continuation utility awarded

to the household if it reports income ys . The optimum value function P (v)
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obeys the functional equation

P (v) = max
{bs,ws}

S∑

s=1

Πs[−bs + βP (ws)] (19.5.1)

where the maximization is subject to the constraints

S∑

s=1

Πs [u(ys + bs) + βws] = v (19.5.2)

Cs,k ≡ u(ys + bs) + βws −
[
u(ys + bk) + βwk

]
≥ 0, s, k ∈ S× S (19.5.3)

bs ∈ [a− ys, ∞] , s ∈ S (19.5.4)

ws ∈ [−∞, vmax] , s ∈ S (19.5.5)

where vmax = supu(c)/(1 − β). Equation (19.5.2) is the “promise-keeping”

constraint guaranteeing that the promised utility v is delivered. Note that

the earlier weak inequality in (19.3.5) is replaced by an equality. The planner

cannot award a higher utility than v because it might then violate an incentive-

compatibility constraint for telling the truth in earlier periods. The set of con-

straints (19.5.3) ensures that the households have no incentive to lie about their

endowment realization in each state s ∈ S . Here s is the actual income state,

and k is the reported income state. We express the incentive compatibility

constraints when the endowment is in state s as Cs,k ≥ 0 for k ∈ S . Note

also that there are no “participation constraints” like expression (19.3.6) in the

Kocherlakota model, an absence that reflects the assumption that both parties

are committed to the contract.

It is instructive to establish bounds for the value function P (v). Consider

first a contract that pays a constant amount b̄ in all periods, where b̄ satisfies∑S
s=1 Πsu(ys + b̄)/(1 − β) = v . It is trivially incentive compatible and delivers

the promised utility v . Therefore, the discounted profits from this contract,

−b̄/(1 − β), provide a lower bound to P (v). However, P (v) cannot exceed the

value of the unconstrained first-best contract that pays c̄ − ys in all periods,

where c̄ satisfies
∑S

s=1 Πsu(c̄)/(1−β) = v . Thus, the value function is bounded

by

−b̄(v)/(1 − β) ≤ P (v) ≤
S∑

s=1

Πs[ys − c̄(v)]/(1 − β) . (19.5.6)

The bounds are depicted in Figure 19.5.1, which also illustrates a few other

properties of P (v). Since limc→a u
′(c) = ∞ , it becomes very cheap for the
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planner to increase the promised utility when the current promise is very low,

that is, limv→−∞ P ′(v) = 0. The situation is the opposite when the house-

hold’s promised utility is close to the upper bound vmax where the household

has a low marginal utility of additional consumption, which implies that both

limv→vmax P
′(v) = −∞ and limv→vmax P (v) = −∞ .

v

P(v)

P(v)

0 v
max

Figure 19.5.1: Value function P (v) and the two dashed

curves depict the bounds on the value function. The vertical

solid line indicates vmax = supu(c)/(1 − β).
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19.5.1. Efficiency implies bs−1 ≥ bs, ws−1 ≤ ws

An incentive-compatible contract must satisfy bs−1 ≥ bs and ws−1 ≤ ws . This

requirement can be seen by adding the “downward constraint” Cs,s−1 ≥ 0 and

the “upward constraint” Cs−1,s ≥ 0 to get

u(ys + bs) − u(ys−1 + bs) ≥ u(ys + bs−1) − u(ys−1 + bs−1) ,

where the concavity of u(c) implies bs ≤ bs−1 . It then follows directly from

Cs,s−1 ≥ 0 that ws ≥ ws−1 . In other words, a household reporting a lower

income receives a higher transfer from the planner in exchange for a lower future

utility.

19.5.2. Local upward and downward constraints are enough

Constraint set (19.5.3) can be simplified. We can show that if the local down-

ward constraints Cs,s−1 ≥ 0 and upward constraints Cs,s+1 ≥ 0 hold for each

s ∈ S , then the global constraints Cs,k ≥ 0 hold for each s, k ∈ S . The argu-

ment goes as follows: Suppose we know that the downward constraint Cs,k ≥ 0

holds for some s > k ,

u(ys + bs) + βws ≥ u(ys + bk) + βwk . (19.5.7)

From above we know that bs ≤ bk , so the concavity of u(c) implies

u(ys+1 + bs) − u(ys + bs) ≥ u(ys+1 + bk) − u(ys + bk) . (19.5.8)

By adding expressions (19.5.7) and (19.5.8) and using the local downward con-

straint Cs+1,s ≥ 0, we arrive at

u(ys+1 + bs+1) + βws+1 ≥ u(ys+1 + bk) + βwk,

that is, we have shown that the downward constraint Cs+1,k ≥ 0 holds. In this

recursive fashion we can verify that all global downward constraints are satisfied

when the local downward constraints hold. A symmetric reasoning applies to

the upward constraints. Starting from any upward constraint Ck,s ≥ 0 with

k < s , we can show that the local upward constraint Ck−1,k ≥ 0 implies that

the upward constraint Ck−1,s ≥ 0 must also hold, and so forth.



666 Insurance Versus Incentives

19.5.3. Concavity of P

Thus far, we have not appealed to the concavity of the value function, but

henceforth we shall have to. Thomas and Worrall showed that under condition

A, P is concave.

Proposition: The value function P (v) is concave.

We recommend just skimming the following proof on first reading:

Proof: Let T (P ) be the operator associated with the right side of equation

(19.5.1). We would compute the optimum value function by iterating to con-

vergence on T . We want to show that T maps strictly concave P to strictly

concave function T (P ). Thomas and Worrall use the following argument:

Let Pk−1(v) be the k − 1 iterate on T . Assume that Pk−1(v) is strictly

concave. We want to show that Pk is strictly concave. Consider any vo and

v′ with associated contracts (bos, w
o
s)s∈S , (b

′
s, w

′
s)s∈S . Let w∗

s = δwos + (1− δ)w′
s

and define b∗s by u(b∗s + ys) = δu(bos + ys) + (1 − δ)u(b′s + ys) where δ ∈ (0, 1).

Therefore, (b∗s, w
∗
s)s∈S gives the borrower a utility that is the weighted aver-

age of the two utilities, and gives the lender no less than the average utility

δPk(v
o) + (1 − δ)Pk(v

′). Then C∗
s,s−1 = δCos,s−1 + (1 − δ)C′

s,s−1 + [δu(bos−1 +

ys) + (1 − δ)u(b′s−1 + ys) − u(b∗s−1 + ys)] . Because the downward constraints

Cos,s−1 and C′
s,s−1 are satisfied, and because the third term is nonnegative under

condition A, the downward incentive constraints C∗
s,s−1 ≥ 0 are satisfied. How-

ever, (b∗s, w
∗
s)s∈S may violate the upward incentive constraints. But Thomas

and Worrall construct a new contract from (b∗s, w
∗
s)s∈S that is incentive com-

patible and that offers both the lender and the borrower no less utility. Thus,

keep w1 fixed and reduce w2 until C2,1 = 0 or w2 = w1 . Then reduce w3 in the

same way, and so on. Add the constant necessary to leave
∑

sΠsws constant.

This step will not make the lender worse off, by the concavity of Pk−1v . Now

if w2 = w1 , which implies b∗2 > b∗1 , reduce b2 until C2,1 = 0, and proceed in

the same way for b3 , and so on. Since bs + ys > bs−1 + ys−1 , adding a con-

stant to each bs to leave
∑
s Πsbs constant cannot make the borrowers worse

off. So in this new contract, Cs,s−1 = 0 and bs−1 ≥ bs . Thus, the upward

constraints also hold. Strict concavity of Pk(v) then follows because it is not

possible to have both bos = b′s and wos = w′
s for all s ∈ S and vo 6= v′ , so the

contract (b∗s, w
∗
s) yields the lender strictly more than δPk(v

o) + (1 − δ)Pk(v
′).

To complete the induction argument, note that starting from P0(v) = 0, P1(v)

is strictly concave. Therefore, limk=∞ Pk(v) is concave.
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We will now turn to some properties of the optimal allocation that require

strict concavity of the value function. Thomas and Worrall derive these re-

sults for the finite horizon problem with value function Pk(v), which is strictly

concave by the preceding proposition. In order for us to stay with the in-

finite horizon value function P (v), we make the following assumption about

limk=∞ Pk(v):

Assumption: The value function P (v) is strictly concave.

Concerning the following main result that all households become impoverished

in the limit, Thomas and Worrall provide a proof that only requires concavity

of P (v) as established in the preceding proposition.

19.5.4. Local downward constraints always bind

At the optimal solution, the local downward incentive constraints always bind,

while the local upward constraints never do. That is, a household is always

indifferent about reporting that its income was actually a little lower than it

was but would never want to report that its income was in fact higher. To see

that the downward constraints must be binding, suppose to the contrary that

Ck,k−1 > 0 for some k ∈ S . Since bk ≤ bk−1 , it must then be the case that

wk > wk−1 . Consider changing {bs, ws; s ∈ S} as follows. Keep w1 fixed, and

if necessary reduce w2 until C2,1 = 0. Next reduce w3 until C3,2 = 0, and so

on, until Cs,s−1 = 0 for all s ∈ S . (Note that any reductions cumulate when

moving up the sequence of constraints.) Thereafter, add the necessary constant

to each ws to leave the overall expected value of future promises unchanged,∑S
s=1 Πsws . The new contract offers the household the same utility and is

incentive compatible because bs ≤ bs−1 and Cs,s−1 = 0 together imply that the

local upward constraint Cs−1,s ≥ 0 does not bind. At the same time, since the

mean of promised values is unchanged and the differences (ws−ws−1) have either

been left the same or reduced, the strict concavity of the value function P (v)

implies that the planner’s profits have increased. That is, we have engineered a

mean-preserving decrease in the spread in the continuation values w . Because

P (v) is strictly concave,
∑

s∈S ΠsP (ws) rises and therefore P (v) rises. Thus,

the original contract with a nonbinding local downward constraint could not

have been an optimal solution.
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19.5.5. Coinsurance

The optimal contract is characterized by coinsurance, i.e., both the household’s

utility and the planner’s profits increase with a higher income realization:

u(ys + bs) + βws > u(ys−1 + bs−1) + βws−1 (19.5.9)

−bs + βP (ws) ≥ −bs−1 + βP (ws−1) . (19.5.10)

The higher utility of the household in expression (19.5.9) follows trivially from

the downward incentive-compatibility constraint Cs,s−1 = 0. Concerning the

planner’s profits in expression (19.5.10), suppose to the contrary that −bs +

βP (ws) < −bs−1 + βP (ws−1). Then replacing (bs, ws) in the contract by

(bs−1, ws−1) raises the planner’s profits but leaves the household’s utility un-

changed because Cs,s−1 = 0, and the change is also incentive compatible. Thus,

an optimal contract must be such that the planner’s profits weakly increase in

the household’s income realization.

19.5.6. P ′(v) is a martingale

If we let λ and µs , s = 2, . . . , S , be the multipliers associated with the con-

straints (19.5.2) and Cs,s−1 ≥ 0, s = 2, . . . , S , the first-order necessary condi-

tions with respect to bs and ws , s ∈ S , are

Πs

[
1 − λu′(ys + bs)

]
= µs u

′(ys + bs) − µs+1 u
′(ys+1 + bs), (19.5.11)

Πs

[
P ′(ws) + λ

]
= µs+1 − µs , (19.5.12)

for s ∈ S , where µ1 = µS+1 = 0. (There are no constraints corresponding to

µ1 and µS+1 .) From the envelope condition,

P ′(v) = −λ . (19.5.13)

Summing equation (19.5.12) over s ∈ S and using
∑S

s=1(µs+1−µs) = µS+1 = 0

and equation (19.5.13) yields

S∑

s=1

Πs P
′(ws) = P ′(v) . (19.5.14)
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19.5.7. Comparison to model with commitment problem

In the earlier model with a commitment problem, the efficient allocation had to

satisfy equation (19.3.12), i.e., u′(ys+bs) = −P ′(ws)
−1 . As we then explained,

this condition sets the household’s marginal rate of substitution equal to the

planner’s marginal rate of transformation with respect to transfers in the current

period and continuation values in the next period. This condition fails to hold

in the present framework with incentive-compatibility constraints for telling the

truth. The efficient trade-off between current consumption and a continuation

value for a household with income realization ys can no longer be determined

without taking into account the incentives for other households to untruthfully

report ys in order to obtain the corresponding bundle of current and future

transfers from the planner. However, it is instructive to note that equation

(19.3.12) would continue to hold in the present framework if the incentive-

compatibility constraints for truth telling were not binding. That is, set the

multipliers µs , s = 2, . . . , S , equal to zero and substitute first-order condition

(19.5.12) into (19.5.11) to obtain u′(ys + bs) = −P ′(ws)
−1 .

19.5.8. Spreading continuation values

An efficient contract requires that the promised future utility falls (rises) when

the household reports the lowest (highest) income realization, that is, that w1 <

v < wS . To show that wS > v , suppose to the contrary that wS ≤ v . Since

wS ≥ ws for all s ∈ S and P (v) is strictly concave, equation (19.5.14) implies

that ws = v for all s ∈ S . The substitution of equation (19.5.13) into equation

(19.5.12) then yields a zero on the left side of equation (19.5.12). Moreover, the

right side of equation (19.5.12) is equal to µ2 when s = 1 and −µS when s = S ,

so we can successively unravel from the constraint set (19.5.12) that µs = 0 for

all s ∈ S . Turning to equation (19.5.11), it follows that the marginal utility

of consumption is equalized across income realizations, u′(ys + bs) = λ−1 for

all s ∈ S . Such consumption smoothing requires bs−1 > bs , but from incentive

compatibility, ws−1 = ws implies bs−1 = bs , a contradiction. We conclude that

an efficient contract must have wS > v . A symmetric argument establishes

w1 < v .

It is understandable that the planner must spread out promises to future

utility, since otherwise it would be impossible to provide any insurance in the
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form of contingent payments today. How the planner balances the delivery

of utility today as compared to future utilities is characterized by equation

(19.5.14). To understand this expression, consider having the planner increase

the household’s promised utility v by one unit. One way of doing so is to increase

every ws by an increment 1/β while keeping every bs constant. Such a change

preserves incentive compatibility at an expected discounted cost to the planner

of
∑S

s=1 ΠsP
′(ws). By the envelope theorem, this is locally as good a way to

increase v as any other, and its cost is therefore equal to P ′(v); that is, we obtain

expression (19.5.14). In other words, given a planner’s obligation to deliver

utility v to the agent, it is cost-efficient to choose a balance between today’s

contingent deliveries of goods, {bs} , and the bundle of future utilities, {ws} ,

such that the expected marginal cost of next period’s promises,
∑S

s=1 ΠsP
′(ws),

is equal to the marginal cost of the current obligation, P ′(v). There is no

intertemporal price involved in this trade-off, since any interest earnings on

postponed payments are just sufficient to compensate the agent for his own

subjective rate of discounting, (1 + r) = β−1 .

19.5.9. Martingale convergence and poverty

Expression (19.5.14) has an intriguing implication for the long-run tendency

of a household’s promised future utility. Recall that limv→−∞ P ′(v) = 0 and

limv→vmax P
′(v) = −∞ , so P ′(v) in expression (19.5.14) is a nonpositive mar-

tingale. By a theorem of Doob (1953, p. 324), P ′(v) then converges almost

surely. We can show that P ′(v) must converge to 0, so that v converges to

−∞ . Suppose to the contrary that P ′(v) converges to a nonzero limit, which

implies that v converges to a finite limit. However, this assumption contradicts

our earlier result where future ws are always spread out to aid incentive com-

patibility. The contradiction is avoided only for v converging to −∞ ; that is,

the limit of P ′(v) must be zero.

The result that all households become impoverished in the limit can be

understood from the concavity of P (v). First, if there were no asymmetric in-

formation, the least expensive way of delivering lifetime utility v would be to

assign the household a constant consumption stream, given by the upper bound

on the value function in expression (19.5.6). On the one hand, the concav-

ity of P (v) and standard intertemporal considerations favor a time-invariant
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consumption stream. But the presence of asymmetric information makes it nec-

essary for the planner to vary promises of future utility to induce truth telling,

which is costly due to the concavity of P (v). For example, as pointed out by

Thomas and Worrall, if S = 2, the cost of spreading w1 and w2 an equally small

amount ε either side of their average value w̄ is approximately −0.5ε2P ′′(w̄).4

In general, we cannot say how this cost differs for any two values of w̄ , but it

follows from the properties of P (v) at its endpoints that limv→−∞ P ′′(v) = 0,

and limv→vmax P
′′(v) = −∞ . Thus, the cost of spreading promised values goes

to zero at one endpoint and to infinity at the other endpoint. Therefore, the

concavity of P (v) and incentive compatibility considerations favor a downward

drift in future utilities and, consequently, consumption. That is, the ideal time-

invariant consumption level is abandoned in favor of an expected consumption

path tilted toward the present because of incentive problems.

Finally, one possibility is that the initial utility level vo is determined in

competition between insurance providers. If there are no costs associated with

administering contracts, vo would then be implicitly determined by the zero-

profit condition, P (vo) = 0. It remains important that such a contract is en-

forceable because, as we have seen, the household will eventually want to return

to autarky. However, since the contract is the solution to a dynamic program-

ming problem where the continuation of the contract is always efficient at every

date, the insurer and the household will never mutually agree to renegotiate the

contract.

4 The expected discounted profits of providing promised values w1 = w̄−ε and w2 = w̄+ε

with equal probabilities, can be approximated with a Taylor series expansion around w̄ ,∑2
s=1

1
2P (ws) ≈

∑2
s=1

1
2

[
P (w̄) + (ws − w̄)P ′(w̄) +

(ws−w̄)2

2 P ′′(w̄)

]
= P (w̄) + ε2

2 P
′′(w̄).
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19.5.10. Extension to general equilibrium

Atkeson and Lucas (1992) provide examples of closed economies where the con-

strained efficient allocation also has each household’s expected utility converg-

ing to the minimum level with probability 1. Here the planner chooses the

incentive-compatible allocation for all agents subject to a constraint that the

total consumption handed out in each period to the population of households

cannot exceed some constant endowment level. Households are assumed to ex-

perience unobserved idiosyncratic taste shocks ε that are i.i.d. over time and

households. The taste shock enters multiplicatively into preferences that take

either the logarithmic form u(c, ε) = ε log(c), the constant relative risk aversion

(CRRA) form u(c, ε) = εcγ/γ , γ < 1, γ 6= 0, or the constant absolute risk

aversion (CARA) form u(c, ε) = −ε exp(−γc), γ > 0. The assumption of a

utility function belonging to these preference families greatly simplifies the ana-

lytics of the evolution of the wealth distribution. Atkeson and Lucas show that

the general equilibrium analysis of this model yields an efficient allocation that

delivers an ever-increasing fraction of resources to an ever-diminishing fraction

of the economy’s population.

19.5.11. Comparison with self-insurance

We have just seen how in the Thomas and Worrall model, the planner re-

sponds to the incentive problem created by the consumer’s private information

by putting a downward tilt into temporal consumption profiles. It is useful to

recall how in the savings problem of chapters 16 and 17, the martingale con-

vergence theorem was used to show that the consumption profile acquired an

upward tilt coming from the motive of the consumer to self-insure.
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19.6. Insurance with unobservable storage

We now augment the model of the previous section by assuming that households

have access to a technology that enables them to store nonnegative amounts of

goods at a risk-free gross return of R > 0. The planner cannot observe private

storage. The planner can borrow and lend outside the village at a risk-free gross

interest rate that also equals R so that private and public storage yield identical

rates of return. The planner retains the advantage over households of being the

only one able to borrow outside of the village.

The outcome of our analysis will be to show that allowing households to

store amounts that are not observable to the planner so impedes the planner’s

ability to manipulate the household’s continuation valuations that no social

insurance can be supplied. Instead, the planner helps households overcome the

nonnegativity constraint on the household’s storage by in effect allowing them

to engage also in private borrowing at the risk-free rate R , subject to natural

borrowing limits. Thus, outcomes share many features of the allocations studied

in chapters 16 and 17.

Our analysis follows Cole and Kocherlakota (2001), who assume that the

households’ utility function u(·) is strictly concave and twice continuously dif-

ferentiable over (0,∞) with limc→0 u
′(c) = ∞ . The domain of u is the entire

real line with u(c) = −∞ for c < 0.5 They also assume that u satisfies con-

dition A above. This preference specification allows Cole and Kocherlakota to

characterize the efficient solution to a finite horizon model. Their extension to

an infinite horizon involves a few other assumptions, including upper and lower

bounds on the utility function.

While we retain our assumption from above that the planner has access to

a risk-free loan market outside of the village, Cole and Kocherlakota (2001) pos-

tulate a closed economy where the planner is constrained to choose nonnegative

amounts of storage. Hence, our concept of feasibility is different from theirs.

5 Allowing for negative consumption while setting utility equal to −∞ is a convenient

device for avoiding having to deal with transfers that exceed the household’s resources.
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19.6.1. Feasibility

Anticipating that our characterization of efficient outcomes will be in terms of

sequences of quantities, we let the complete history of a household’s reported

income enter as an argument in the function specifying the planner’s transfer

scheme. In period t , a household with an earlier history ht−1 and a currently

reported income of yt receives a transfer equal to bt({ht−1, yt}) that can be

either positive or negative. If all households report their incomes truthfully, the

planner’s time t budget constraint is

Kt +
∑

ht

π(ht)bt(ht) ≤ RKt−1, (19.6.1)

where Kt is the planner’s end-of-period savings (or, if negative, borrowing) and

π(ht) is the unconditional probability that a household experiences history ht ,

which in the planner’s budget constraint becomes the fraction of all households

that experience history ht . Given a finite horizon with a final period T , solvency

of the planner requires that KT ≥ 0.

We use a household’s history ht to index consumption and storage at time

t ; ct(ht) ≥ 0 and kt(ht) ≥ 0. The household’s resource constraint at time t is

ct(ht) + kt(ht) ≤ yt(ht) +Rkt−1(ht−1) + bt(ht), (19.6.2)

where the function for current income yt(ht) simply picks the tth element of

the household’s history ht . We assume that the household has always reported

its income truthfully, so that the transfer in period t is given by bt(ht).

Given initial conditions K0 = k0 = 0, an allocation (c, k, b,K) ≡ {ct(ht),
kt(ht), bt(ht), Kt} is feasible if inequalities (19.6.1), (19.6.2) and kt(ht) ≥ 0

are satisfied for all periods t and all histories ht , and KT ≥ 0.
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19.6.2. Incentive compatibility

Since both income realizations and private storage are unobservable, households

can deviate from an allocation (c, k, b,K) in two ways. First, households can lie

about their income and thereby receive the transfer payments associated with

the reported but untrue income history. Second, households can choose different

levels of storage. Let ΩT be the set of reporting and storage strategies (ŷ, k̂) ≡
{ŷt(ht), k̂t(ht); for all t, ht} where ht denotes the household’s true history.

Let ĥt denote the history of reported incomes, ĥt(ht) = {ŷ1(h1), ŷ2(h2),

. . . , ŷt(ht)} . With some abuse of notation, we let y denote the truth-telling

strategy for which ŷt({ht−1, yt}) = yt for all t , ht−1 , and hence for which

ĥt(ht) = ht .

Given a transfer scheme b , the expected utility of following a reporting and

storage strategy (ŷ, k̂) is given by

Γ(ŷ, k̂; b) ≡
T∑

t=1

βt−1
∑

ht

π(ht)

· u
(
yt(ht) +Rk̂t−1(ht−1) + bt(ĥt(ht)) − k̂t(ht)

)
, (19.6.3)

given k0 = 0. An allocation is incentive compatible if

Γ(y, k; b) = max
(ŷ,k̂)∈ΩT

Γ(ŷ, k̂; b). (19.6.4)

An allocation that is both incentive compatible and feasible is called an incentive

feasible allocation. The following proposition asserts that any incentive feasible

allocation with private storage can be attained with an alternative incentive

feasible allocation without private storage.

Proposition 1: Given any incentive feasible allocation (c, k, b,K), there

exists another incentive feasible allocation (c, 0, bo,Ko).

Proof: We claim that (c, 0, bo,Ko) is incentive feasible where

bot (ht) ≡ bt(ht) − kt(ht) +Rkt−1(ht−1), (19.6.5)

Ko
t ≡

∑

ht

π(ht)kt(ht) +Kt. (19.6.6)

Feasibility follows from the assumed feasibility of (c, k, b,K). Note also that

Γ(y, 0; bo) = Γ(y, k; b). The proof of incentive compatibility is by contradiction.
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Suppose that (c, 0, bo,Ko) is not incentive compatible, i.e., that there exists a

reporting and storage strategy (ŷ, k̂) ∈ ΩT such that

Γ(ŷ, k̂; bo) > Γ(y, 0; bo) = Γ(y, k; b). (19.6.7)

After invoking expression (19.6.5) for the value of the transfer payment bot (ĥt(ht)),

the left side of inequality (19.6.7) becomes

Γ(ŷ, k̂; bo) =

T∑

t=1

βt−1
∑

ht

π(ht)u
(
yt(ht) +Rk̂t−1(ht−1) − k̂t(ht)

+
[
bt(ĥt(ht)) − kt(ĥt(ht)) +Rkt−1(ĥt−1(ht−1))

])

= Γ(ŷ, k∗; b),

where we have defined k∗t (ht) ≡ k̂t(ht) + kt(ĥt(ht)). Thus, inequality (19.6.7)

implies that

Γ(ŷ, k∗; b) > Γ(y, k; b),

which contradicts the assumed incentive compatibility of (c, k, b,K).

19.6.3. Efficient allocation

An incentive feasible allocation that maximizes ex ante utility is called an effi-

cient allocation and solves the following problem.

(P1) max
{c,k,b,K}

T∑

t=1

βt−1
∑

ht

π(ht)u(ct(ht))

subject to

Γ(y, k; b) = max
(ŷ,k̂)∈ΩT

Γ(ŷ, k̂; b)

ct(ht) + kt(ht) = yt(ht) +Rkt−1(ht−1) + bt(ht), ∀t, ht
Kt +

∑

ht

π(ht)bt(ht) ≤ RKt−1, ∀t

kt(ht) ≥ 0, ∀t, ht
KT ≥ 0,

given K0 = k0 = 0.
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The incentive compatibility constraint with unobservable private storage

makes problem (P1) exceedingly difficult to solve. To find the efficient allocation

we will adopt a guess-and-verify approach. We will guess that the consumption

allocation that solves (P1) coincides with the optimal consumption allocation in

another economic environment. For example, we might guess that the consump-

tion allocation that solves (P1) is the same as in a complete markets economy

with complete enforcement. Another guess could be the autarkic consumption

allocation where each household stores goods only for its own use. Our analy-

sis of the model without private storage in the previous section makes the first

guess doubtful. In fact, both guesses are wrong. What turns out to be true is

the following.

Proposition 2: An incentive feasible allocation (c, k, b,K) is efficient if

and only if c = c∗ , where c∗ is the consumption allocation that solves

(P2) max
{c}

T∑

t=1

βt−1
∑

ht

π(ht)u(ct(ht))

subject to
T∑

t=1

R1−t [yt(hT ) − ct(ht(hT ))] ≥ 0, ∀hT .

The proposition says that the consumption allocation that solves (P1) is the

same as that in an economy where each household can borrow or lend outside the

village at the risk-free gross interest rate R subject to a solvency requirement.6

Below we will provide a proof for the case of two periods (T = 2) while referring

the readers to Cole and Kocherlakota (2001) for a general proof.

Central to the proof are the first-order conditions of problem (P2), namely,

u′(ct(ht)) = βR
S∑

s=1

Πsu
′ (ct+1({ht, ys})) , ∀t, ht (19.6.8)

T∑

t=1

R1−t [yt(hT ) − ct(ht(hT ))] = 0, ∀hT . (19.6.9)

6 The solvency requirement is the same as the natural debt limit discussed in chapters 16

and 17.
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Given the continuous, strictly concave objective function and the compact, con-

vex constraint set in problem (P2), the solution c∗ is unique and the first-order

conditions are both necessary and sufficient.

In the efficient allocation, the planner chooses transfers for which the non-

negativity constraint on a household’s storage is not binding, i.e., consumption

smoothing condition (19.6.8) is satisfied. However, the optimal transfer scheme

offers no insurance across households because the present value of transfers is

zero for any history hT , i.e., net-present value condition (19.6.9) is satisfied.

19.6.4. The case of two periods (T = 2)

In a finite horizon model, an immediate implication of the incentive constraints is

that transfers in the final period T must be independent of households’ reported

values of yT . In the case of two periods, we can therefore encode permissible

transfer schemes as

b1(ys) = bs, ∀s ∈ S,

b2({ys, yj}) = es, ∀s, j ∈ S,

where bs and es denote the transfer in the first and second period, respectively,

when the household reports income ys in the first period.

Following Cole and Kocherlakota (2001), we will first characterize the solu-

tion to a modified planner’s problem (P3) that has the same objective function

as (P1) but a larger constraint set. In particular, we enlarge the constraint set

by considering a smaller set of reporting strategies for the households, Ω2
R . A

household strategy (ŷ, k̂) is an element of Ω2
R if

ŷ1(ys) ∈ {ys−1, ys}, for s = 2, 3, . . . , S

ŷ1(y1) = y1.

That is, a household can either tell the truth or lie downward by one notch

in the grid of possible income realizations. There is no restriction on possible

storage strategies.

Given T = 2, we state problem (P3) as follows.

(P3) max

S∑

s=1

Πs



u(ys + bs) + β

S∑

j=1

Πju(yj + es)




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subject to

Γ(y, 0; b) = max
(ŷ,k̂)∈Ω2

R

Γ(ŷ, k̂; b)

ct(ht) = yt(ht) + bt(ht), ∀t, ht
kt(ht) = 0, ∀t, ht
Kt +

∑

ht

π(ht)bt(ht) ≤ RKt−1, ∀t

K2 ≥ 0,

given K0 = k0 = 0.

Beyond the restricted strategy space Ω2
R , problem (P3) differs from (P1) in con-

sidering only allocations that have zero private storage. But by Proposition 1,

we know that this is an innocuous restriction that does not affect the maximized

value of the objective.

Here it is useful to explain why we are first studying the contrived prob-

lem (P3) rather than turning immediately to the real problem (P1). A trivial

reflection is that problem (P3) is an easier problem to solve because we are

exogenously restricting the households’ reporting strategies to either telling the

truth or making one specific lie. But how can knowledge of the solution to

problem (P3) help us to understand problem (P1)? Well, suppose that problem

(P3) has a unique solution given by consumption allocation c∗ in Proposition

2 (which will in fact turn out to be true). In that case, it follows that c∗ is

also the solution to problem (P1) because of the following argument. First, it

is straightforward to verify that c∗ is incentive compatible with respect to the

unrestricted set Ω2 of reporting strategies. Second, given that no better alloca-

tion than c∗ can be supported with the restricted set Ω2
R of reporting strategies

(telling the truth or making one specific lie), it is impossible that we can attain

better outcomes by merely introducing additional ways of lying.

Let us therefore first study problem (P3). In particular, using a proof by

contradiction, we now show that any allocation (c, 0, b,K) that solves problem

(P3) must satisfy three conditions:7

7 The proof by contradiction goes as follows. Suppose that an allocation (c, 0, b,K) solves

problem (P3) but violates one of our conditions. Then we can show that either (c, 0, b,K)

cannot be incentive feasible with respect to (P3) or there exists another incentive feasible

allocation (co, 0, bo,Ko) that yields an even higher ex ante utility than (c, 0, b,K) .
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(i) The aggregate resource constraint (19.6.1) holds with equality in both peri-

ods and K2 = 0;

(ii) u′(c1(ys)) = βR
∑S
j=1 Πju

′
(
c2({ys, yj})

)
, ∀s;

(iii) bs +R−1es = 0, ∀s.

Condition (i) is easy to establish given the restricted strategy space Ω2
R . Suppose

that condition (i) is violated and hence, some aggregate resources have not been

transferred to the households. In that case, the planner should store all unused

resources until period 2 and give them to any household who reported the highest

income in period 1. Given strategy space Ω2
R , households are only allowed to

lie downward so the proposed allocation cannot violate the incentive constraints

for truthful reporting. Also, transferring more consumption in the last period

will not lead to any private storage. We conclude that condition (i) must hold

for any solution to problem (P3).

Next, suppose that condition (ii) is violated, i.e., for some i ∈ S ,

u′(c1(yi)) > βR

S∑

s=1

Πsu
′ (c2({yi, ys})) . (19.6.10)

(The reverse inequality is obviously inconsistent with the incentive constraints

since households are free to store goods between periods.) We can then construct

an alternative incentive feasible allocation that yields higher ex ante utility as

follows. Set Ko
1 = K1 − εΠi , b

o
i = bi + ε , eoi = ei − δ , and choose (ε, δ) such

that

u(yi+bi + ε) + β
S∑

s=1

Πsu (ys + ei − δ)

= u(yi + bi) + β

S∑

s=1

Πsu (ys + ei) , (19.6.11)

u′(yi + bi + ε) ≥ βR

S∑

s=1

Πsu
′ (ys + ei − δ) . (19.6.12)

By the envelope condition, (19.6.10) implies that δ > Rε , so this alternative

allocation frees up resources that can be used to improve ex ante utility. But we

have to check that the incentive constraints are respected. Concerning house-

holds experiencing yi , the proposed allocation is clearly incentive compatible,
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since their payoffs of reporting truthfully or lying are unchanged, and condition

(19.6.12) ensures that they are not deviating from zero private storage. It re-

mains to be checked that households with the next higher income shock yi+1

would not like to lie downward. This is also true, since a household with a

higher income yi+1 would not like to accept the proposed loan against the fu-

ture at the implied interest rate, δ/ε > R , at which the lower-income household

is indifferent to the transaction. The following lemma shows this formally.

Lemma: Let ε , δ > 0 satisfy δ > Rε , and define

Z(m) ≡ max
k≥0

[
u(m− k) + βEy(y +Rk)

]

W (m) ≡ max
k≥0

[
u(m− k + ε) + βEy(y +Rk − δ)

]
,

where u is a strictly concave function and the expectation Ey is taken with

respect to a random second-period income y . If Z(ma) = W (ma) and mb >

ma , then Z(mb) > W (mb).

Proof: Let the unique, weakly increasing sequence of maximizers of the sav-

ings problems Z and W be denoted kZ(m) and kW (m), respectively, which

are guaranteed to exist by the strict concavity of u . The proof of the lemma

proceeds by contradiction. Suppose that Z(mb) ≤ W (mb). Then by the mean

value theorem, there exists mc ∈ (ma,mb) such that Z ′(mc) ≤ W ′(mc). This

implies that

u′(mc − kZ(mc)) ≤ u′(mc − kW (mc) + ε).

The concavity of u implies that

0 ≤ kZ(mc) ≤ kW (mc) − ε.

The weak monotonicity of kW implies that kW (mb) ≥ kW (mc), so we know

that 0 ≤ kW (mb) − ε and we can write

Z(mb) ≥ u(mb − kW (mb) + ε) + βEyu(y +Rkw(mb) −Rε)

> u(mb − kW (mb) + ε) + βEyu(y +Rkw(mb) − δ) = W (mb),

which is a contradiction.

Finally, suppose that condition (iii) is violated, i.e., for some i ∈ S ,

Ψs ≡ bs +R−1es 6= bs−1 +R−1es−1 ≡ Ψs−1.
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First, we can rule out Ψs < Ψs−1 because it would compel households with

income shock ys in the first period to lie downward. This is so because our

condition (ii) implies that the nonnegative storage constraint binds for neither

these households nor the households with the lower income shock ys−1 . Hence,

households with income shock ys will only report truthfully if Z(ys + Ψs) ≥
Z(ys + Ψs−1), where Z is the savings problem defined in the lemma above.

Thus, we conclude that Ψs ≥ Ψs−1 .

Second, we can rule out Ψs > Ψs−1 by constructing an alternative incentive

feasible allocation that attains a higher ex ante utility. Compute the certainty

equivalent Ψ̃ such that

ΠsZ(ys + Ψ̃) + Πs−1Z(ys−1 + Ψ̃) = ΠsZ(ys + Ψs) + Πs−1Z(ys−1 + Ψs−1).

Then change the transfer scheme so that households reporting ys or ys−1 get

the same present value of transfers equal to Ψ̃. Because of the strict concavity

of the utility function, the new scheme frees up resources that can be used to

improve ex ante utility. Also, the new scheme does not violate any incentive

constraints. Households with income shock ys−1 are now better off when re-

porting truthfully, households with income shock ys are indifferent to telling the

truth, and households with income shock ys+1 will not lie because the present

value of the transfers associated with lying has gone down. Since the planner

satisfies the aggregate resource constraint at equality in our condition (i), we

conclude that all households receive the same present value of transfers equal to

zero.

By establishing conditions (i)–(iii), we have in effect shown that any solution

to (P3) must satisfy equations (19.6.8) and (19.6.9). Thus, problem (P3) has

a unique solution (c∗, 0, b∗,K∗), where c∗ is given by Proposition 2 and

b∗t (ht) = c∗t (ht) − yt(ht),

K∗
t = −

∑

ht

π(ht)

t∑

j=1

Rt−1b∗j (hj(ht)).

Moreover, (c∗, 0, b∗,K∗) is incentive compatible with respect to the unrestricted

strategy set Ω2 . If a household tells the truth, its consumption is optimally

smoothed. Hence, households weakly prefer to tell the truth and not store.

The proof of Proposition 2 for T = 2 is then completed by noting that by

construction, if some allocation (c∗, 0, b∗,K∗) solves (P3), and (c∗, 0, b∗,K∗) is
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incentive compatible with respect to Ω2 , then (c∗, 0, b∗,K∗) solves (P1). Also,

since equations (19.6.8) and (19.6.9) fully characterize the consumption allo-

cation c∗ , we have uniqueness with respect to c∗ (but there exists a multitude

of storage and transfer schemes that the planner can use to implement c∗ in

problem (P1)).

19.6.5. Role of the planner

Proposition 2 states that any allocation (c, k, b,K) that solves the planner’s

problem (P1) has the same consumption outcome c = c∗ as the solution to

(P2), i.e., the market outcome when each household can lend or borrow at the

risk-free interest rate R . This result has both positive and negative messages

about the role of the planner. Because households have access only to a stor-

age technology, the planner implements the efficient allocation by designing an

elaborate transfer scheme that effectively undoes each household’s nonnegativity

constraint on storage while respecting solvency requirements. In this sense, the

planner has an important role to play. However, the optimal transfer scheme of-

fers no insurance across households and implements only a self-insurance scheme

tantamount to a borrowing-and-lending outcome for each household. Thus, the

planner’s accomplishments as an insurance provider are very limited.

If we had assumed that households themselves have direct access to the

credit market outside of the village, it would follow immediately that the planner

would be irrelevant, since the households themselves could then implement the

efficient allocation. Allen (1985) made this observation first. Given any transfer

scheme, he showed that all households would choose to report the income that

yields the highest present value of transfers regardless of what the actual income

is. In our setting where the planner has no resources of his own, we get the

zero net present value condition for the stream of transfers to any individual

household.
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19.6.6. Decentralization in a closed economy

Suppose that consumption allocation c∗ in Proposition 2 satisfies

∑

ht

π(ht)

t∑

j=1

Rt−j
[
yj(ht) − c∗j (hj(ht))

]
≥ 0, ∀t. (19.6.13)

That is, aggregate storage is nonnegative at all dates. It follows that the ef-

ficient allocation in Proposition 2 would then also be the solution to a closed

system where the planner has no access to outside borrowing. Moreover, c∗

can then be decentralized as the equilibrium outcome in an incomplete markets

economy where households competitively trade consumption and risk-free one-

period bonds that are available in zero net supply in each period. Here we are

assuming complete enforcement so that households must pay off their debts in

every state of the world, and they cannot end their lives in debt.

In the decentralized equilibrium, let at(ht) and kdt (ht) denote bond hold-

ings and storage, respectively, of a household indexed by its history ht . The

gross interest rate on bonds between periods t and t + 1 is denoted 1 + rt .

We claim that the efficient allocation (c∗, 0, b∗,K∗) can be decentralized by

recursively defining

rt ≡ R− 1, (19.6.14)

kdt (ht) ≡ K∗
t , (19.6.15)

at(ht) ≡ yt(ht) − c∗t (ht) −K∗
t +RK∗

t−1 +Rat−1(ht−1), (19.6.16)

with a0 = 0. First, we verify that households are behaving optimally. Note

that we have chosen the interest rate so that households are indifferent between

lending and storing. Because we also know that the household’s consumption

is smoothed at c∗ , we need only to check that households’ budget constraints

hold with equality. By substituting (19.6.15) into (19.6.16), we obtain the

household’s one-period budget constraint. The consolidation of all one-period

budget constraints yields

aT (hT ) = − kdT (hT ) +

T∑

t=1

RT−t [yt(hT ) − c∗t (ht(hT ))]

+RT−1(kd0 + a0) = 0
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where the last equality is implied by K∗
T = K0 = a0 = 0 and (19.6.9). Second,

we verify that the bond market clears by summing all households’ one-period

budget constraints,

∑

ht

π(ht)at(ht) =
∑

ht

π(ht)
[
yt(ht) − c∗t (ht) − kdt (ht)

+Rkdt−1(ht−1(ht)) +Rat−1(ht−1(ht))
]
.

After invoking (19.6.15) and the fact that b∗t (ht) = c∗t (ht) − yt(ht), we can

rewrite this expression as

∑

ht

π(ht)at(ht) = −K∗
t +RK∗

t−1

−
∑

ht

π(ht)
[
b∗t (ht) −Rat−1(ht−1(ht))

]

=R
∑

ht−1

π(ht−1)at−1(ht−1) = 0 ,

where the second equality is implied by (19.6.1) holding with equality at the

allocation (c∗, 0, b∗,K∗), and the last equality follows from successive substitu-

tions leading back to the initial condition a0 = 0.

It is straightforward to make the reverse argument and show that if 1 +

rt = R for all t in our incomplete markets equilibrium, then the equilibrium

consumption allocation is efficient and equal to c∗ , as given in Proposition 2.

Cole and Kocherlakota note that seemingly ad hoc restrictions on the secu-

rities available for trade are consistent with the implementation of the efficient

allocation in this setting, and they argue that their framework provides an ex-

plicit micro foundation for incomplete markets models such as Aiyagari’s (1994)

model that we studied in chapter 17.
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19.7. Concluding remarks

The idea of using promised values as a state variable has made it possible to

use dynamic programming to study problems with history dependence. In this

chapter we have studied how using a promised value as a state variable helps

to study optimal risk-sharing arrangements when there are incentive problems

coming from limited enforcement or limited information. The next several chap-

ters apply and extend this idea in other contexts. Chapter 20 discusses how to

build a closed-economy, or general equilibrium, version of our model with im-

perfect enforcement. Chapter 21 discusses ways of designing unemployment

insurance that optimally compromise between supplying insurance and provid-

ing incentives for unemployed workers to search diligently. Chapter 22 uses

a continuation value as a state variable to encode a government’s reputation.

Chapter 23 discusses some models of contracts and government policies that

have been applied to some enforcement problems in international trade.

A. Historical development

19.A.1. Spear and Srivastava

Spear and Srivastava (1987) introduced the following recursive formulation of

an infinitely repeated, discounted repeated principal-agent problem: A principal

owns a technology that produces output qt at time t , where qt is determined

by a family of c.d.f.’s F (qt|at), and at is an action taken at the beginning of

t by an agent who operates the technology. The principal has access to an

outside loan market with constant risk-free gross interest rate β−1 . The agent

has preferences over consumption streams ordered by

E0

∞∑

t=0

βtu(ct, at).

The principal is risk neutral and offers a contract to the agent designed to

maximize

E0

∞∑

t=0

βt{qt − ct}
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where ct is the payment from the principal to the agent at t .

19.A.2. Timing

Let w denote the discounted utility promised to the agent at the beginning of

the period. Given w , the principal selects three functions a(w), c(w, q), and

w̃(w, q) determining the current action at = a(wt), the current consumption

c = c(wt, qt), and a promised utility wt+1 = w̃(wt, qt). The choice of the

three functions a(w), c(w, q), and w̃(w, q) must satisfy the following two sets

of constraints:

w =

∫
{u[c(w, q), a(w)] + βw̃(w, q)} dF [q|a(w)] (19.A.1)

and
∫
{u[c(w, q), a(w)] + βw̃(w, q)} dF [q|a(w)]

≥
∫
{u[c(w, q), â] + βw̃(w, q)}dF (q|â) , ∀ â ∈ A. (19.A.2)

Equation (19.A.1) requires the contract to deliver the promised level of dis-

counted utility. Equation (19.A.2) is the incentive compatibility constraint re-

quiring the agent to want to deliver the amount of effort called for in the contract.

Let v(w) be the value to the principal associated with promising discounted util-

ity w to the agent. The principal’s Bellman equation is

v(w) = max
a,c,w̃

{q − c(w, q) + β v[w̃(w, q)]} dF [q|a(w)] (19.A.3)

where the maximization is over functions a(w), c(w, q), and w̃(w, q) and is

subject to the constraints (19.A.1) and (19.A.2). This value function v(w) and

the associated optimum policy functions are to be solved by iterating on the

Bellman equation (19.A.3).
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19.A.3. Use of lotteries

In various implementations of this approach, a difficulty can be that the con-

straint set fails to be convex as a consequence of the structure of the incen-

tive constraints. This problem has been overcome by Phelan and Townsend

(1991) by convexifying the constraint set through randomization. Thus, Phe-

lan and Townsend simplify the problem by extending the principal’s choice to

the space of lotteries over actions a and outcomes c, w′ . To introduce Phelan

and Townsend’s formulation, let P (q|a) be a family of discrete probability dis-

tributions over discrete spaces of outputs and actions Q,A , and imagine that

consumption and values are also constrained to lie in discrete spaces C,W , re-

spectively. Phelan and Townsend instruct the principal to choose a probability

distribution Π(a, q, c, w′) subject first to the constraint that for all fixed (ā, q̄)

∑

C×W

Π(ā, q̄, c, w′) = P (q̄|ā)
∑

Q×C×W

Π(ā, q, c, w′) (19.A.4a)

Π(a, q, c, w′) ≥ 0 (19.A.4b)
∑

A×Q×C×W

Π(a, q, c, w′) = 1. (19.A.4c)

Equation (19.A.4a) simply states that Prob(ā, q̄) = Prob(q̄|ā)Prob(ā). The

remaining pieces of (19.A.4) just require that “probabilities are probabilities.”

The counterpart of Spear-Srivastava’s equation (19.A.1) is

w =
∑

A×Q×C×W

{u(c, a) + βw′} Π(a, q, c, w′). (19.A.5)

The counterpart to Spear-Srivastava’s equation (19.A.2) for each a, â is

∑

Q×C×W

{u(c, a) + βw′} Π(c, w′|q, a)P (q|a)

≥
∑

Q×C×W

{u(c, â) + βw′} Π(c, w′|q, a)P (q|â).

Here Π(c, w′|q, a)P (q|â) is the probability of (c, w′, q) if the agent claims to be

working a but is actually working â . Express

Π(c, w′|q, a)P (q|â) =

Π(c, w′|q, a)P (q|a) P (q|â)
P (q|a) = Π(c, w′, q|a) · P (q|â)

P (q|a) .
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To write the incentive constraint as

∑

Q×C×W

{u(c, a) + βw′}Π(c, w′, q|a)

≥
∑

Q×C×W

{u(c, â) + βw′} Π(c, w′, q|â) · P (q|â)
P (q|a) .

Multiplying both sides by the unconditional probability P (a) gives expression

(19.A.6).

∑

Q×C×W

{u(c, a) + βw′} Π(a, q, c, w′)

≥
∑

Q×C×W

{u(c, â) + βw′} P (q|â)
P (q|a) Π(a, q, c, w′) (19.A.6)

The Bellman equation for the principal’s problem is

v(w) = max
Π

{(q − c) + βv(w′)}Π(a, q, c, w′), (19.A.7)

where the maximization is over the probabilities Π(a, q, c, w′) subject to equa-

tions (19.A.4), (19.A.5), and (19.A.6). The problem on the right side of equa-

tion (19.A.7) is a linear programming problem. Think of each of (a, q, c, w′)

being constrained to a discrete grid of points. Then, for example, the term

(q − c) + βv(w′) on the right side of equation (19.A.7) can be represented as a

fixed vector that multiplies a vectorized version of the probabilities Π(a, q, c, w′).

Similarly, each of the constraints (19.A.4), (19.A.5), and (19.A.6) can be repre-

sented as a linear inequality in the choice variables, the probabilities Π. Phelan

and Townsend compute solutions of these linear programs to iterate on the Bell-

man equation (19.A.7). Note that at each step of the iteration on the Bellman

equation, there is one linear program to be solved for each point w in the space

of grid values for W .

In practice, Phelan and Townsend have found that lotteries are often re-

dundant in the sense that most of the Π(a, q, c, w′)’s are zero, and a few are

1.
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Exercises

Exercise 19.1 Thomas and Worrall meet Markov

A household orders sequences {ct}∞t=0 by

E

∞∑

t=0

βtu(ct), β ∈ (0, 1)

where u is strictly increasing, twice continuously differentiable, and strictly

concave with u′(0) = +∞ . The good is nondurable. The household receives an

endowment of the consumption good of yt that obeys a discrete-state Markov

chain with Pij = Prob(yt+1 = yj |yt = yi), where the endowment yt can take

one of the I values [y1, . . . , yI ] .

a. Conditional on having observed the time t value of the household’s endow-

ment, a social insurer wants to deliver expected discounted utility v to the

household in the least costly way. The insurer observes yt at the beginning of

every period, and contingent on the observed history of those endowments, can

make a transfer τt to the household. The transfer can be positive or negative

and can be enforced without cost. Let C(v, i) be the minimum expected dis-

counted cost to the insurance agency of delivering promised discounted utility v

when the household has just received endowment yi . (Let the insurer discount

with factor β .) Write a Bellman equation for C(v, i).

b. Characterize the consumption plan and the transfer plan that attains C(v, i);

find an associated law of motion for promised discounted value.

c. Now assume that the household is isolated and has no access to insurance.

Let va(i) be the expected discounted value of utility for a household in au-

tarky, conditional on current income being yi . Formulate Bellman equations

for va(i), i = 1, . . . , I .

d. Now return to the problem of the insurer mentioned in part b, but assume

that the insurer cannot enforce transfers because each period the consumer is

free to walk away from the insurer and live in autarky thereafter. The insurer

must structure a history-dependent transfer scheme that prevents the household

from every exercising the option to revert to autarky. Again, let C(v, i) be the

minimum cost for an insurer that wants to deliver promised discounted utility

v to a household with current endowment i . Formulate Bellman equations
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for C(v, i), i = 1, . . . , I . Briefly discuss the form of the law of motion for v

associated with the minimum cost insurance scheme.

Exercise 19.2 Wealth dynamics in moneylender model

Consider the model in the text of the village with a moneylender. The village

consists of a large number (e.g., a continuum) of households, each of which has

an i.i.d. endowment process that is distributed as

Prob(yt = ys) =
1 − λ

1 − λS
λs−1

where λ ∈ (0, 1) and ys = s + 5 is the sth possible endowment value, s =

1, . . . , S . Let β ∈ (0, 1) be the discount factor and β−1 the gross rate of return

at which the moneylender can borrow or lend. The typical household’s one-

period utility function is u(c) = (1 − γ)−1c1−γ , where γ is the household’s

coefficient of relative risk aversion. Assume the parameter values (β, S, γ, λ) =

(.95, 20, 2, .95).

Hint: The formulas given in the section 19.3.3 will be helpful in answering the

following questions.

a. Using Matlab, compute the optimal contract that the moneylender offers

a villager, assuming that the contract leaves the villager indifferent between

refusing and accepting the contract.

b. Compute the expected profits that the moneylender earns by offering this

contract for an initial discounted utility that equals the one that the household

would receive in autarky.

c. Let the cross-section distribution of consumption at time t ≥ 0 be given by

the c.d.f. Prob(ct ≤ C) = Ft(C). Compute Ft . Plot it for t = 0, t = 5, t = 10,

t = 500.

d. Compute the moneylender’s savings for t ≥ 0 and plot it for t = 0, . . . , 100.

e. Now adapt your program to find the initial level of promised utility v > vaut

that would set P (v) = 0.

Exercise 19.3 Thomas and Worrall (1988)

There is a competitive spot market for labor always available to each of a con-

tinuum of workers. Each worker is endowed with one unit of labor each period
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that he supplies inelastically to work either permanently for “the company” or

each period in a new one-period job in the spot labor market. The worker’s

productivity in either the spot labor market or with the company is an i.i.d.

endowment process that is distributed as

Prob(wt = ws) =
1 − λ

1 − λS
λs−1

where λ ∈ (0, 1) and ws = s+5 is the sth possible marginal product realization,

s = 1, . . . , S . In the spot market, the worker is paid wt . In the company,

the worker is offered a history-dependent payment ωt = ft(ht) where ht =

wt, . . . , w0 . Let β ∈ (0, 1) be the discount factor and β−1 the gross rate of

return at which the company can borrow or lend. The worker cannot borrow or

lend. The worker’s one-period utility function is u(ω) = (1 − γ)−1w1−γ where

ω is the period wage from the company, which equals consumption, and γ is

the worker’s coefficient of relative risk aversion. Assume the parameter values

(β, S, γ, λ) = (.95, 20, 2, .95).

The company’s discounted expected profits are

E

∞∑

t=0

βt (wt − ωt) .

The worker is free to walk away from the company at the start of any period,

but must then stay in the spot labor market forever. In the spot labor market,

the worker receives continuation value

vspot =
Eu(w)

1 − β
.

The company designs a history-dependent compensation contract that must be

sustainable (i.e., self-enforcing) in the face of the worker’s freedom to enter the

spot labor market at the beginning of period t after he has observed wt but

before he receives the t period wage.

Hint: Do these questions ring a bell? See exercise 19.2 .

a. Using Matlab, compute the optimal contract that the company offers the

worker, assuming that the contract leaves the worker indifferent between refusing

and accepting the contract.
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b. Compute the expected profits that the firm earns by offering this contract for

an initial discounted utility that equals the one that the worker would receive

by remaining forever in the spot market.

c. Let the distribution of wages that the firm offers to its workers at time t ≥ 0

be given by the c.d.f. Prob(ωt ≤ w) = Ft(w). Compute Ft . Plot it for t = 0,

t = 5, t = 10, t = 500.

d. Plot an expected wage-tenure profile for a new worker.

e. Now assume that there is competition among companies and free entry. New

companies enter by competing for workers by raising initial promised utility with

the company. Adapt your program to find the initial level of promised utility

v > vspot that would set expected profits from the average worker P (v) = 0.

Exercise 19.4 Thomas-Worrall meet Phelan-Townsend

Consider the Thomas Worrall environment and denote Π(y) the density of the

i.i.d. endowment process, where y belongs to the discrete set of endowment levels

Y = [y1, . . . , yS ] . The one-period utility function is u(c) = (1 − γ)−1(c− a)1−γ

where γ > 1 and yS > a > 0.

Discretize the set of transfers B and the set of continuation values W . We

assume that the discrete set B ⊂ (a − yS , b] . Notice that with the one-period

utility function above, the planner could never extract more than a − yS from

the agent. Denote Πv(b, w|y) the joint density over (b, w) that the planner

offers the agent who reports y and to whom he has offered beginning-of-period

promised value v . For each y ∈ Y and each v ∈ W , the planner chooses a set

of conditional probabilities Πv(b, w|y) to satisfy the Bellman equation

P (v) = max
Πv(b,w,y)

∑

B×W×Y

[−b+ βP (w)] Πv(b, w, y) (1)

subject to the following constraints:

v =
∑

B×W×Y

[u(y + b) + βw] Πv(b, w, y) (2)

∑

B×W

[u(y + b) + βw] Πv(b, w|y) ≥
∑

B×W

[u(y + b) + βw] Πv(b, w|ỹ)

∀(y, ỹ) ∈ Y × Y (3)

Πv(b, w, y) = Π(y)Πv(b, w|y) ∀(b, w, y) ∈ B ×W × Y (4)
∑

B×W×Y

Πv(b, w, y) = 1. (5)
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Here (2) is the promise-keeping constraint, (3) are the truth-telling constraints,

and (4), (5) are restrictions imposed by the laws of probability.

a. Verify that given P (w), one step on the Bellman equation is a linear pro-

gramming problem.

b. Set β = .94, a = 5, γ = 3. Let S,NB, NW be the number of points in

the grids for Y,B,W , respectively. Set S = 10, NB = NW = 25. Set Y =

[ 6 7 . . . 15 ], Prob(yt = ys) = S−1 . Set W = [wmin, . . . , wmax] and B =

[bmin, . . . , bmax] , where the intermediate points in W and B , respectively, are

equally spaced. Please set wmin = 1
1−β

1
1−γ (ymin − a)

1−γ
and wmax = wmin/20

(these are negative numbers, so wmin < wmax ). Also set bmin = (1− ymax + .33)

and bmax = ymax − ymin .

For these parameter values, compute the optimal contract by formulating

a linear program for one step on the Bellman equation, then iterating to con-

vergence on it.

c. Notice the following probability laws:

Prob(bt, wt+1, yt|wt) ≡ Πwt(bt, wt+1, yt)

Prob(wt+1|wt) =
∑

b∈B,y∈Y

Πwt(b, wt+1, y)

Prob(bt, yt|wt) =
∑

wt+1∈W

Πwt(bt, wt+1, yt).

Please use these and other probability laws to compute Prob(wt+1|wt). Show

how to compute Prob(ct), assuming a given initial promised value w0 .

d. Assume that w0 ≈ −2. Compute and plot Ft(c) = Prob(ct ≤ c) for

t = 1, 5, 10, 100. Qualitatively, how do these distributions compare with those

for the simple village and moneylender model with no information problem and

one-sided lack of commitment?

Exercise 19.5 The IMF

Consider the problem of a government of a small country that has to finance

an exogenous stream of expenditures {gt} . For time t ≥ 0, gt is i.i.d. with

Prob(gt = gs) = πs where πs > 0,
∑S
s=1 πs = 1 and 0 < g1 < · · · < gS . Raising

revenues by taxation is distorting. In fact, the government confronts a dead-

weight loss function W (Tt) that measures the distortion at time t . Assume that
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W is an increasing, twice continuously differentiable, strictly convex function

that satisfies W (0) = 0,W ′(0) = 0,W ′(T ) > 0 for T > 0 and W ′′(T ) > 0 for

T ≥ 0. The government’s intertemporal loss function for taxes is such that it

wants to minimize

E−1

∞∑

t=0

βtW (Tt), β ∈ (0, 1)

where E−1 is the mathematical expectation before g0 is realized. If it cannot

borrow or lend, the government’s budget constraint is gt = Tt . In fact, the gov-

ernment is unable to borrow and lend except through an international coalition

of lenders called the IMF. If it does not have an arrangement with the IMF, the

country is in autarky and the government’s loss is the value

vaut = E
∞∑

t=0

βtW (gt).

The IMF itself is able to borrow and lend at a constant risk-free gross rate

of interest of R = β−1 . The IMF offers the country a contract that gives the

country a net transfer of gt − Tt . A contract is a sequence of functions for

t ≥ 0, the time t component of which maps the history gt into a net transfer

g−Tt . The IMF has the ability to commit to the contract. However, the country

cannot commit to honor the contract. Instead, at the beginning of each period,

after gt has been realized but before the net transfer gt−Tt has been received,

the government can default on the contract, in which case it receives loss W (gt)

this period and the autarky value ever after. A contract is said to be sustainable

if it is immune to the threat of repudiation, i.e., if it provides the country with

the incentive not to leave the arrangement with the IMF. The present value of

the contract to the IMF is

E

∞∑

t=0

βt(Tt − gt).

a. Write a Bellman equation that can be used to find an optimal sustainable

contract.

b. Characterize an optimal sustainable contract that delivers initial promised

value vaut to the country (i.e., a contract that renders the country indifferent

between accepting and not accepting the IMF contract starting from autarky).
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c. Can you say anything about a typical pattern of government tax collections Tt

and distortions W (Tt) over time for a country in an optimal sustainable contract

with the IMF? What about the average pattern of government surpluses gt−Tt
across a panel of countries with identical gt processes and W functions? Would

there be a “cohort” effect in such a panel (i.e., would the calendar date when

the country signed up with the IMF matter)?

d. If the optimal sustainable contract gives the country value vaut , can the IMF

expect to earn anything from the contract?



Chapter 20
Equilibrium without Commitment

20.1. Two-sided lack of commitment

In section 19.3 of the previous chapter, we studied insurance without commit-

ment. That was a partial equilibrium analysis since the moneylender could

borrow or lend resources outside of the village at a given interest rate. Recall

also the asymmetry in the environment where villagers could not make any com-

mitments while the moneylender was assumed to be able to commit. We will

now study a closed system without access to an outside credit market. Any

household’s consumption in excess of its own endowment must then come from

the endowments of the other households in the economy. We will also adopt the

symmetric assumption that everyone is unable to make commitments. That is,

any contract prescribing an exchange of goods today in anticipation of future

exchanges of goods represents a sustainable allocation only if both current and

future exchanges are incentive compatible to all households involved in the con-

tractual arrangement. Households are free to walk away from the arrangement

at any point in time and to defect into autarky. Such a contract design problem

with participation constraints on both sides of an exchange represents a problem

with two-sided lack of commitment, as compared to the problem with one-sided

lack of commitment in section 19.3.

This chapter draws on the work of Thomas and Worrall (1988, 1994) and

Kocherlakota (1996b). At the end of the chapter, we also discuss market arrange-

ments for decentralizing the constrained Pareto optimal allocation, as studied

by Kehoe and Levine (1993) and Alvarez and Jermann (2000).

– 697 –
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20.2. A closed system

Thomas and Worrall’s (1988) model of self-enforcing wage contracts is an an-

tecedent to our villager-moneylender environment. The counterpart to our mon-

eylender in their model is a risk-neutral firm that forms a long-term relationship

with a risk-averse worker. In their model, there is also a competitive spot mar-

ket for labor where a worker is paid yt at time t . The worker is always free

to walk away from the firm and work in that spot market. But if he does, he

can never again enter into a long-term relationship with another firm. The firm

seeks to maximize the discounted stream of expected future profits by designing

a long-term wage contract that is self-enforcing in the sense that it never gives

the worker an incentive to quit. In a contract that stipulates a wage ct at time

t , the firm earns time t profits of yt − ct (as compared to hiring a worker in

the spot market for labor). If Thomas and Worrall had assumed a commitment

problem only on the part of the worker, their model would be formally identical

to our villager-moneylender environment. However, Thomas and Worrall also

assume that the firm itself can renege on a wage contract and buy labor at

the random spot market wage. Hence, they require that a self-enforcing wage

contract be one in which neither party ever has an incentive to renege.

Kocherlakota (1996b) studies a model that has some valuable features in

common with Thomas and Worrall’s.1 Kocherlakota’s counterpart to Thomas

and Worrall’s firm is a risk-averse second household. In Kocherlakota’s model,

two households receive stochastic endowments. The contract design problem is

to find an insurance/transfer arrangement that reduces consumption risk while

respecting participation constraints for both households: both households must

be induced each period not to walk away from the arrangement to live in autarky.

Kocherlakota uses his model in an interesting way to help interpret empirically

estimated conditional consumption-income covariances that seem to violate the

hypothesis of complete risk sharing. Kocherlakota investigates the extent to

which those failures reflect impediments to enforcement that are captured by

his participation constraints.

For the purpose of studying those conditional covariances in a stationary

stochastic environment, Kocherlakota’s use of an environment with two-sided

1 The working paper of Thomas and Worrall (1994) also analyzed a multiple agent closed

model like Kocherlakota’s. Thomas and Worrall’s (1994) analysis evolved into an article by

Ligon, Thomas, and Worrall (2002) that we discuss in section 20.13.
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lack of commitment is important. In our model of villagers facing a moneylender

in section 19.3, imperfect risk sharing is temporary and so would not prevail in

a stochastic steady state. In Kocherlakota’s model, imperfect risk sharing can

be perpetual. There are equal numbers of two types of households in the village.

Each of the households has the preferences, endowments, and autarkic utility

possibilities described in chapter 19. Here we assume that the endowments

of the two types of households are perfectly negatively correlated. Whenever a

household of type 1 receives ys , a household of type 2 receives 1−ys . We assume

that yt is independently and identically distributed according to the discrete

probability distribution Prob(yt = ys) = Πs , where we assume that ys ∈ [0, 1].

We also assume that the Πs ’s are such that the distribution of yt is identical to

that of 1−yt . Also, now the planner has access to neither borrowing nor lending

opportunities, and is confined to reallocating consumption goods between the

two types of households. This limitation leads to two participation constraints.

At time t , the type 1 household receives endowment yt and consumption ct ,

while the type 2 household receives 1 − yt and 1 − ct .

In this setting, an allocation is said to be sustainable 2 if for all t ≥ 0 and

for all histories ht

u(ct) − u(yt)+βEt

∞∑

j=1

βj−1 [u(ct+j) − u(yt+j)] ≥ 0, (20.2.1a)

u(1 − ct) − u(1 − yt)+βEt

∞∑

j=1

βj−1 [u(1 − ct+j) − u(1 − yt+j)] ≥ 0. (20.2.1b)

Let Γ denote the set of sustainable allocations. We seek the following

function:

Q(4) =max
{ct}

E−1

∞∑

t=0

βt [u(1 − ct) − u(1 − yt)] (20.2.2a)

subject to

{ct} ∈ Γ, (20.2.2b)

E−1

∞∑

t=0

βt [u(ct) − u(yt)] ≥ 4. (20.2.2c)

The function Q(4) depicts a (constrained) Pareto frontier. It portrays the

maximized value of the expected lifetime utility of the type 2 household, where

2 Kocherlakota says subgame perfect rather than sustainable.
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the maximization is subject to requiring that the type 1 household receive an

expected lifetime utility that exceeds its autarkic welfare level by at least 4
utils. To find this Pareto frontier, we first solve for the consumption dynamics

that characterize all efficient contracts. From these optimal consumption dy-

namics, it will be straightforward to compute the ex ante division of gains from

an efficient contract.

20.3. Recursive formulation

We choose to study Kocherlakota’s model using the approach proposed by

Thomas and Worrall.3 Thomas and Worrall (1988) formulate the contract de-

sign problem as a dynamic program, where the state of the system prior to the

current period’s endowment realization is given by a vector [x1 x2 . . . xs . . . xS ] .

Here xs is the value of the expression on the left side of (20.2.1a) that is

promised to a type 1 agent conditional on the current period’s endowment real-

ization being ys . Let Qs(xs) then denote the corresponding value of expression

(20.2.1b) that is promised to a type 2 agent.4 When the endowment realization

ys is associated with a promise to a type 1 agent equal to xs = x , we can write

the Bellman equation as

Qs(x) = max
c, {χj}S

j=1

{
u(1 − c) − u(1 − ys) + β

S∑

j=1

ΠjQj(χj)
}

(20.3.1a)

subject to

u(c) − u(ys) + β

S∑

j=1

Πjχj ≥ x, (20.3.1b)

3 Kocherlakota uses an approach that can be regarded as extending the approach that we

used in the villager-moneylender model of section 19.3 to an environment with two-sided lack

of commitment. We followed Kocherlakota in using this approach in chapter 15 of the first

edition of this book. However, when applied to problems with two-sided lack of commitment,

this approach encounters a technical difficulty associated with possible kinks in the Pareto

frontier. (We first encountered this difficulty when we assigned a version of exercise 20.3 to

our students.) Thomas and Worrall’s approach avoids this nondifferentiability problem by

using conditional Pareto frontiers, one for each realization of the endowment.
4 Qs(·) is a Pareto frontier conditional on the endowment realization ys , while Q(·) in

(20.2.2a) is an ex ante Pareto frontier before observing any endowment realization.
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χj ≥ 0, j = 1, . . . , S; (20.3.1c)

Qj(χj) ≥ 0, j = 1, . . . , S; (20.3.1d)

c ∈ [0, 1], (20.3.1e)

where expression (20.3.1b) is the promise-keeping constraint, expression (20.3.1c)

is the participation constraint for the type 1 agent, and expression (20.3.1d) is

the participation constraint for the type 2 agent. The set of feasible c is given

by expression (20.3.1e).

Thomas and Worrall prove the existence of a compact interval that contains

all permissible continuation values χj :

χj ∈ [0, xj ] for j = 1, 2, . . . , S. (20.3.1f)

Thomas and Worrall also show that the Pareto-frontier Qj(·) is decreasing,

strictly concave, and continuously differentiable on [0, xj ] . The bounds on χj

are motivated as follows. The contract cannot award the type 1 agent a value of

χj less than zero because that would correspond to an expected future lifetime

utility below the agent’s autarky level. There exists an upper bound xj above

which the planner would never find it optimal to award the type 1 agent a

continuation value conditional on next period’s endowment realization being yj .

It would simply be impossible to deliver a higher continuation value because of

the participation constraints. In particular, the upper bound xj is such that

Qj(xj) = 0. (20.3.2)

Here a type 2 agent receives an expected lifetime utility equal to his autarky

level if the next period’s endowment realization is yj and a type 1 agent is

promised the upper bound xj . Our two- and three-state examples in sections

20.10 and 20.11 illustrate what determines xj .

Attach Lagrange multipliers µ , βΠjλj , and βΠjθj to expressions (20.3.1b),

(20.3.1c), and (20.3.1d), then get the following first-order conditions for c and

χj :
5

c : − u′(1 − c) + µu′(c) = 0, (20.3.3a)

χj : βΠjQ
′
j(χj) + µβΠj + βΠjλj + βΠjθjQ

′
j(χj) = 0. (20.3.3b)

5 Here we are proceeding under the conjecture that the nonnegativity constraints on con-

sumption in (20.3.1e ), c ≥ 0 and 1 − c ≥ 0, are not binding. This conjecture is confirmed

below when it is shown that optimal consumption levels satisfy c ∈ [y1, yS ] .
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By the envelope theorem,

Q′
s(x) = −µ. (20.3.4)

After substituting (20.3.4) into (20.3.3a) and (20.3.3b), respectively, the opti-

mal choices of c and χj satisfy

Q′
s(x) = −u

′(1 − c)

u′(c)
, (20.3.5a)

Q′
s(x) = (1 + θj)Q

′
j(χj) + λj . (20.3.5b)

20.4. Equilibrium consumption

20.4.1. Consumption dynamics

From equation (20.3.5a), the consumption c of a type 1 agent is an increasing

function of the promised value x . The properties of the Pareto frontier Qs(x)

imply that c is a differentiable function of x on [0, xs] . Since x ∈ [0, xs] , c is

contained in the nonempty compact interval [cs, cs] , where

Q′
s(0) = −u

′(1 − cs)

u′(cs)
and Q′

s(xs) = −u
′(1 − cs)

u′(cs)
.

Thus, if c = cs , x = 0, so that a type 1 agent gets no gain from the contract

from then on. If c = cs , Qs(x) = Qs(x̄s) = 0, so that a type 2 agent gets no

gain.

Equation (20.3.5a) can be expressed as

c = g(Q′
s(x)) , (20.4.1)

where g is a continuously and strictly decreasing function. By substituting the

inverse of that function into equation (20.3.5b), we obtain the expression

g−1(c) = (1 + θj) g
−1(cj) + λj , (20.4.2)

where c is again the current consumption of a type 1 agent and cj is his next

period’s consumption when next period’s endowment realization is yj . The
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optimal consumption dynamics implied by an efficient contract are evidently

governed by whether or not agents’ participation constraints are binding. For

any given endowment realization yj next period, only one of the participation

constraints in (20.3.1c) and (20.3.1d) can bind. Hence, there are three regions

of interest for any given realization yj :

1. Neither participation constraint binds. When λj = θj = 0, the consumption

dynamics in (20.4.2) satisfy

g−1(c) = g−1(cj) =⇒ c = cj,

where c = cj follows from the fact that g−1(·) is a strictly decreasing function.

Hence, consumption is independent of the endowment and the agents are offered

full insurance against endowment realizations so long as there are no binding

participation constraints. The constant consumption allocation is determined

by the “temporary relative Pareto weight” µ in equation (20.3.3a).

2. The participation constraint of a type 1 person binds (λj > 0), but θj = 0.

Thus, condition (20.4.2) becomes

g−1(c) = g−1(cj) + λj =⇒ g−1(c) > g−1(cj) =⇒ c < cj .

The planner raises the consumption of the type 1 agent in order to satisfy his

participation constraint. The strictly positive Lagrange multiplier, λj > 0, im-

plies that (20.3.1c) holds with equality, χj = 0. That is, the planner raises the

welfare of a type 1 agent just enough to make her indifferent between choosing

autarky and staying with the optimal insurance contract. In effect, the planner

minimizes the change in last period’s relative welfare distribution that is needed

to induce the type 1 agent not to abandon the contract. The welfare of the type

1 agent is raised both through the mentioned higher consumption cj > c and

through the expected higher future consumption. Recall our earlier finding that

implies that the new higher consumption level will remain unchanged so long as

there are no binding participation constraints. It follows that the contract for

agent 1 displays amnesia when agent 1’s participation constraint is binding, be-

cause the previously promised value x becomes irrelevant for the consumption

allocated to agent 1 from now on.

3. The participation constraint of a type 2 person binds (θj > 0), but λj = 0.

Thus, condition (20.4.2) becomes

g−1(c) = (1 + θj) g
−1(cj) =⇒ g−1(c) < g−1(cj) =⇒ c > cj ,
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where we have used the fact that g−1(·) is a negative number. This situation is

the mirror image of the previous case. When the participation constraint of the

type 2 agent binds, the planner induces the agent to remain with the optimal

contract by increasing her consumption (1 − cj) > (1 − c) but only by enough

that she remains indifferent to the alternative of choosing autarky, Qj(χj) = 0.

And once again, the change in the welfare distribution persists in the sense that

the new consumption level will remain unchanged so long as there are no binding

participation constraints. The amnesia property prevails again.

We can assemble these results to characterize the contract by arguing that

when c < cj , the participation constraint of the type 1 agent binds, while if

c > cj , the participation constraint of a type 2 agent binds. Thus, assume that

c < cj . Then since it must be that cj ≥ cj , it follows that c ≤ cj , so we must be

in the region where the participation constraint of the type 1 agent binds, which

in turn implies that cj = cj . A symmetric argument that applies when the

participation constraint of a type 2 argument applies, allowing us to summarize

the consumption dynamics of an efficient contract as follows. Given the current

consumption c of the type 1 agent, next period’s consumption conditional on

the endowment realization yj satisfies

cj =





cj if c < cj (p.c. of type 1 binds),

c if c ∈ [cj , cj ] (p.c. of neither type binds),

cj if c > cj (p.c. of type 2 binds).

(20.4.3)

20.4.2. Consumption intervals cannot contain each other

We will show that

yk > yq =⇒ ck > cq and ck > cq. (20.4.4)

Hence, no consumption interval can contain another. Depending on parameter

values, the consumption intervals can be either overlapping or disjoint.

As an intermediate step, it is useful to first verify that the following assertion

is correct for any k, q = 1, 2, . . . , S , and for any x ∈ [0, xq] :

Qk
(
x+ u(yq) − u(yk)

)
= Qq(x) + u(1 − yq) − u(1 − yk). (20.4.5)
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After invoking functional equation (20.3.1), the left side of (20.4.5) is equal to

Qk
(
x+ u(yq) − u(yk)

)
= max
c, {χj}S

j=1

{
u(1 − c) − u(1 − yk) + β

S∑

j=1

ΠjQj(χj)
}

subject to

u(c) − u(yk) + β
S∑

j=1

Πjχj ≥ x+ u(yq) − u(yk)

and (20.3.1c) – (20.3.1e); and the right side of (20.4.5) is equal to

Qq(x) + u(1 − yq) − u(1 − yk)

= max
c, {χj}S

j=1

{
u(1 − c) − u(1 − yq) + β

S∑

j=1

ΠjQj(χj)
}

+ u(1 − yq) − u(1 − yk)

subject to

u(c) − u(yq) + β
S∑

j=1

Πjχj ≥ x

and (20.3.1c) – (20.3.1e). We can then verify (20.4.5).6 And after differenti-

ating that expression with respect to x ,

Q′
k

(
x+ u(yq) − u(yk)

)
= Q′

q(x). (20.4.6)

To show that yk > yq implies ck > cq , set x = xq in expression (20.4.5),

Qk
(
xq + u(yq) − u(yk)

)
= u(1 − yq) − u(1 − yk) > 0, (20.4.7)

where we have used Qq(xq) = 0. After also invoking Qk(xk) = 0 and the fact

that Qk(·) is decreasing, it follows from Qk
(
xq + u(yq) − u(yk)

)
> 0 that

xk > xq + u(yq) − u(yk).

6 The two optimization problems on the left side and the right side, respectively, of ex-

pression (20.4.5) share the common objective of maximizing the expected utility of the type

2 agent, minus an identical constant. The optimization is subject to the same constraints,

u(c) − u(yq) + β
∑S

j=1 Πjχj ≥ x and (20.3.1c ) – (20.3.1e ). Hence, they are identical well-

defined optimization problems. The observant reader should not be concerned with the fact

that Qk(·) on the left side of (20.4.5) might be evaluated at a promised value outside of

the range [0, x̄k] . This constitutes no problem because the optimization problem imposes

no participation constraint in the current period, in contrast to the restrictions on future

continuation values in (20.3.1c ) and (20.3.1d).
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So by the strict concavity of Qk(·), we have

Q′
k(xk) < Q′

k

(
xq + u(yq) − u(yk)

)
= Q′

q(xq), (20.4.8)

where the equality is given by (20.4.6). Finally, by using function (20.4.1) and

the present finding that Q′
k(xk) < Q′

q(xq), we can verify our assertion that

ck = g(Q′
k(xk)) > g

(
Q′
q(xq)

)
= cq.

We leave it to the reader as an exercise to construct a symmetric argument

to show that yk > yq implies ck > cq .

20.4.3. Endowments are contained in the consumption intervals

We will show that

ys ∈ [cs, cs], ∀s; and y1 = c1 and yS = cS . (20.4.9)

First, we show that ys ≤ cs for all s ; and yS = cS . Let x = xs in the functional

equation (20.3.1), then c = cs and

u(1 − cs) − u(1 − ys) + β

S∑

j=1

ΠjQj(χj) = 0 (20.4.10)

with {χj}Sj=1 being optimally chosen. Since Qj(χj) ≥ 0, it follows immediately

that

u(1 − cs) − u(1 − ys) ≤ 0 =⇒ ys ≤ cs.

To establish strict equality for s = S , we note that

Q′
j(χj) ≤ Q′

j(xj) ≤ Q′
S(xS),

where the first weak inequality follows from the fact that all permissible χj ≤
xj and Qj(·) is strictly concave, and the second weak inequality is given by

(20.4.8). In fact, we showed above that the second inequality holds strictly for

j < S and therefore, by the condition for optimality in (20.3.5b),

Q′
S(xS) = (1 + θj)Q

′
j(χj) with θj > 0, for j < S; and θS = 0,
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which imply χj = xj for all j . After also invoking the corresponding expression

(20.4.10) for s = S , we can complete the argument:

β

S∑

j=1

ΠjQj(xj) = 0 =⇒ u(1 − cS) − u(1 − yS) = 0 =⇒ yS = cS .

We leave it as an exercise for the reader to construct a symmetric argument

showing that ys ≥ cs for all s ; and y1 = c1 .

20.4.4. All consumption intervals are nondegenerate (unless
autarky is the only sustainable allocation)

Suppose that the consumption interval associated with endowment realization

yk is degenerate, i.e., ck = ck = yk . (The last inequality follows from section

20.4.3, where we established that the endowment is contained in the consump-

tion interval.) Since the consumption interval is degenerate, it follows that the

range of permissible continuation values associated with endowment realization

yk is also degenerate, i.e., χk ∈ [0, xk] = {0} . Recall that χk is the amount of

utils awarded to the type 1 household over and above its autarkic welfare level,

given endowment realization yk :

0 = χk = u(yk) − u(yk) + β

S∑

j=1

Πj χj

where we have invoked the degenerate consumption interval, c = yk , and where

χj are optimally chosen subject to the constraints χj ≥ 0 for all j ∈ S . It

follows immediately that χj = 0 for all j ∈ S , given the current endowment

realization yk .

Due to the degenerate range of continuation values associated with endow-

ment realization yk , i.e., χk ∈ {0} , it must be the case that the type 2 household

also receives its autarkic welfare level, given endowment realization yk :7

0 = Qk(χk) = u(1 − yk) − u(1 − yk) + β
S∑

j=1

Πj Qj(χj)

7 Obviously, there would be a contradiction if the type 2 household were to receive Qk(χk) >

0. Because then it would be possible to transfer current consumption from the type 2 house-

hold to the type 1 household without violating the type 2 household’s participation constraint,

and hence the consumption interval associated with endowment realization yk could not be

degenerate.
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where we have invoked the degenerate consumption interval, and where contin-

uation values Qj(χj) are subject to the constraints Qj(χj) ≥ 0 for all j ∈ S . It

follows immediately that Qj(χj) = 0 for all j ∈ S , given the current endowment

realization yk . Hence, given endowment realization yk , we have continuation

values of the type 2 household satisfying Qj(χj) = 0, so it must be the case that

the optimally chosen χj are set at their maximum permissible values, χj = xj .

Moreover, we know from above that the optimal values also satisfy χj = 0, and

therefore we can conclude that xj = 0 for all j ∈ S .

We have shown that if one consumption interval is degenerate, then all

consumption intervals must be degenerate, i.e., cs = cs = ys for all s ∈ S . This

finding seems rather intuitive. A degenerate consumption interval associated

with any endowment realization yk implies that, given the realization of yk ,

none of the households have anything to gain from the optimal contract, neither

from current transfers nor from future risk sharing. That can only happen if

autarky is the only sustainable allocation.

20.5. Pareto frontier and ex ante division of the gains

We have characterized the optimal consumption dynamics of any efficient con-

tract. The consumption intervals {[cj , cj ]}Sj=1 and the updating rules in (20.4.3)

are identical for all efficient contracts. The ex ante division of gains from an effi-

cient contract can be viewed as being determined by an implicit past consump-

tion level, c4 ∈ [c1, cS ] (by (20.4.9), this can also be written as c4 ∈ [y1, yS ]).

A contract with an implicit past consumption level c4 = c1 gives all of the sur-

plus to the type 2 agent and none to the type 1 agent. This follows immediately

from the updating rules in (20.4.3) that prescribe a first-period consumption

level equal to cj if the endowment realization is yj . The corresponding promised

value to the type 1 agent, conditional on endowment realization yj , is χj = 0.

Thus, the ex ante gain to the type 1 agent in expression (20.2.2c) becomes

4
∣∣∣
c4=c1

=

S∑

j=1

Πjχj

∣∣∣
c4=c1

= 0.

We can similarly show that a contract with an implicit consumption level c4 =

cS gives all of the surplus to the type 1 agent and none to the type 2 agent. The



Consumption distribution 709

updating rules in (20.4.3) will then prescribe a first-period consumption level

equal to cj if the endowment realization is yj with a corresponding promised

value of χj = xj . We can compute the ex ante gain to the type 1 agent as

4
∣∣∣
c4=cS

=

S∑

j=1

Πjxj ≡ 4max.

For these two endpoints of the interval c4 ∈ [c1, cS ] , the ex ante gains

attained by the type 2 agent in expression (20.2.2a) become

Q(4)
∣∣∣
c4=c

1

= Q(0) =
S∑

j=1

ΠjQj(0) = 4max,

Q(4)
∣∣∣
c4=cS

= Q(4max) =

S∑

j=1

ΠjQj(xj) = 0,

where the equality Q(0) = 4max follows from the symmetry of the environ-

ment with respect to the type 1 and type 2 agents’ preferences and endowment

processes.

20.6. Consumption distribution

20.6.1. Asymptotic distribution

The asymptotic consumption distribution depends sensitively on whether there

exists any first-best sustainable allocation. We say that a sustainable allocation

is first best if the participation constraint of neither agent ever binds. As we

have seen, nonbinding participation constraints imply that consumption remains

constant over time. Thus, a first-best sustainable allocation can exist only if the

intersection of all the consumption intervals {[cj , cj ]}Sj=1 is nonempty. Define

the following two critical numbers

cmin ≡ min{cj}Sj=1 = c1, (20.6.1a)

cmax ≡ max{cj}Sj=1 = cS , (20.6.1b)

where the two equalities are implied by (20.4.4). A necessary and sufficient

condition for the existence of a first-best sustainable allocation is that cmin ≥
cmax . Within a first-best sustainable allocation, there is complete risk sharing.
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For high enough values of β , sufficient endowment risk, and enough cur-

vature of u(·), there will exist a set of first-best sustainable allocations, i.e.,

cmin ≥ cmax . If the ex ante division of the gains is then given by an implicit

initial consumption level c4 ∈ [cmax, cmin] , it follows by the updating rules in

(20.4.3) that consumption remains unchanged forever, and therefore the asymp-

totic consumption distribution is degenerate.

But what happens if the ex ante division of gains is associated with an

implicit initial consumption level outside of this range, or if there does not exist

any first-best sustainable allocation (cmin < cmax )? To understand the con-

vergence of consumption to an asymptotic distribution in general, we make the

following observations. According to the updating rules in (20.4.3), any increase

in consumption between two consecutive periods has consumption attaining the

lower bound of some consumption interval. It follows that in periods of increas-

ing consumption, the consumption level is bounded above by cmax (= cS ) and

hence increases can occur only if the initial consumption level is less than cmax .

Similarly, any decrease in consumption between two consecutive periods has

consumption attain the upper bound of some consumption interval. It follows

that in periods of decreasing consumption, consumption is bounded below by

cmin (= c1 ) and hence decreases can only occur if initial consumption is higher

than cmin . Given a current consumption level c , we can then summarize the

permissible range for next-period consumption c′ as follows:

if c ≤ cmax then c′ ∈ [min{c, cmin}, cmax] , (20.6.2a)

if c ≥ cmin then c′ ∈ [cmin, max{c, cmax}] . (20.6.2b)
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20.6.2. Temporary imperfect risk sharing

We now return to the case that there exist first-best sustainable allocations,

cmin ≥ cmax , but we let the ex ante division of gains be given by an implicit

initial consumption level c4 6∈ [cmax, cmin] . The permissible range for next-

period consumption, as given in (20.6.2), and the support of the asymptotic

consumption becomes

if c ≤ cmax then c′ ∈ [c, cmax] and lim
t→∞

ct = cmax = cS , (20.6.3a)

if c ≥ cmin then c′ ∈ [cmin, c] and lim
t→∞

ct = cmin = c1. (20.6.3b)

We have monotone convergence in (20.6.3a) for two reasons. First, consumption

is bounded from above by cmax . Second, consumption cannot decrease when

c ≤ cmin and by assumption cmin ≥ cmax , so consumption cannot decrease

when c ≤ cmax . It follows immediately that cmax is an absorbing point that

is attained as soon as the endowment yS is realized with its consumption level

cS = cmax . Similarly, the explanation for monotone convergence in (20.6.3b)

goes as follows. First, consumption is bounded from below by cmin . Second,

consumption cannot increase when c ≥ cmax and by assumption cmin ≥ cmax , so

consumption cannot increase when c ≥ cmin . It follows immediately that cmin

is an absorbing point that is attained as soon as the endowment y1 is realized

with its consumption level c1 = cmin .

These convergence results assert that imperfect risk sharing is at most tem-

porary if the set of first-best sustainable allocations is nonempty. Notice that

when an economy begins with an implicit initial consumption outside of the

interval of sustainable constant consumption levels, the subsequent monotone

convergence to the closest endpoint of that interval is reminiscent of our ear-

lier analysis in section 19.3 of the moneylender and the villagers with one-sided

lack of commitment. In the current setting, the agent who is relatively disad-

vantaged under the initial welfare assignment will see her consumption weakly

increase over time until she has experienced the endowment realization that is

most favorable to her. From there on, the consumption level remains constant

forever, and the participation constraints will never bind again.
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20.6.3. Permanent imperfect risk sharing

If the set of first-best sustainable allocations is empty (cmin < cmax ), it breaks

the monotone convergence to a constant consumption level. The updating rules

in (20.4.3) imply that the permissible range for next-period consumption in

(20.6.2) will ultimately shrink to [cmin, cmax] , regardless of the initial welfare

assignment. If the implicit initial consumption lies outside of that set, consump-

tion is bound to converge to it, again because of the monotonicity of consumption

when c ≤ cmin or c ≥ cmax . And as soon as there is a binding participation

constraint with an associated consumption level that falls inside of the interval

[cmin, cmax] , the updating rules in (20.4.3) will never take us outside of this

interval again. Thereafter, the only observed consumption levels belong to the

ergodic set {
[cmin, cmax]

⋂
{cj , cj}Sj=1

}
, (20.6.4)

with a unique asymptotic distribution. Within this invariant set, the partici-

pation constraints of both agents occasionally bind, reflecting imperfections in

risk sharing.

If autarky is the only sustainable allocation, then each consumption interval

is degenerate with cj = cj = yj for all j ∈ S , as discussed in section 20.4.4.

Hence, the ergodic consumption set in (20.6.4) is then trivially equal to the set

of endowment levels, {yj}Sj=1 .

20.7. Alternative recursive formulation

Kocherlakota (1996b) used an alternative recursive formulation of the contract

design problem, one that more closely resembles our treatment of the mon-

eylender villager economy of section 19.3. After replacing the argument in the

function of (20.2.2a) by the expected utility of the type 1 agent, Kocherlakota

writes the Bellman equation as

P (v) = max
{cs,ws}S

s=1

S∑

s=1

Πs

{
u(1 − cs) + βP (ws)

}
(20.7.1a)

subject to

S∑

s=1

Πs[u(cs) + βws] ≥ v, (20.7.1b)
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u(cs) + βws ≥ u(ys) + βvaut, s = 1, . . . , S; (20.7.1c)

u(1 − cs) + βP (ws) ≥ u(1 − ys) + βvaut, s = 1, . . . , S; (20.7.1d)

cs ∈ [0, 1], (20.7.1e)

ws ∈ [vaut, vmax]. (20.7.1f)

Here the planner comes into a period with a state variable v that is a promised

expected utility to the type 1 agent. Before observing the current endowment

realization, the planner chooses a consumption level cs and a continuation value

ws for each possible realization of the current endowment. This state-contingent

portfolio {cs, ws}Ss=1 must deliver at least the promised value v to the type

1 agent, as stated in (20.7.1b), and must also be consistent with the agents’

participation constraints in (20.7.1c) and (20.7.1d).

Notice the difference in timing with our presentation, which we have based

on Thomas and Worrall’s (1988) analysis. Kocherlakota’s planner leaves the

current period with only one continuation value ws and postpones the question

of how to deliver that promised value across future states until the beginning

of next period but before observing next period’s endowment. In contrast, in

our setting, in the current period the planner chooses a state-contingent set of

continuation values for the next period, {χj}Sj=1 , where χj is the number of

utils that the type 1 agent’s expected utility should exceed her autarky level

in the next period if that period’s endowment is yj . We can evidently express

Kocherlakota’s one state variable in terms of our state vector,

ws =

S∑

j=1

Πj

[
χj + u(yj) + βvaut

]
= vaut +

S∑

j=1

Πjχj,

where vaut is the ex ante welfare level in autarky as given by (19.3.2). Similarly,

Kocherlakota’s upper bound on permissible values of next period’s continuation

value in (20.7.1f ) is related to our upper bounds {xj}Sj=1 ,

vmax = vaut +

S∑

j=1

Πjxj = vaut + 4max.
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20.8. Pareto frontier revisited

Given our earlier characterization of the optimal solution, we can map Kocher-

lakota’s promised value v into an implicit promised consumption level c4 ∈
[c1, cS ] = [y1, yS ] . Let that mapping be encoded in the function v(c4). Hence,

given a promised a value v(c4), the optimal consumption dynamics in section

20.4.1 instructs us to set Kocherlakota’s choice variables, {cs, ws}Ss=1 , as follows:

cs = c4 + max{0, cs − c4} − max{0, c4 − cs}, (20.8.1a)

ws = v(cs). (20.8.1b)

For a given value of c4 , we define the following three sets that partition

the set S of endowment realizations:

So(c4) ≡
{
j ∈ S : c4 ∈ (cj , cj)

}
, (20.8.2a)

S−(c4) ≡
{
j ∈ S : c4 ≥ cj

}
, (20.8.2b)

S+(c4) ≡
{
j ∈ S : c4 ≤ cj

}
. (20.8.2c)

According to our characterization of consumption intervals in (20.4.4), these

three sets are mutually exclusive and their union is equal to S . So(c4) is the

set of states, i.e., endowment realizations, for which the optimal consumption

level is cs = c4 . But if the endowment realization falls outside of So(c4),

the optimal consumption cs is determined by either the upper or lower bound

of the consumption interval associated with that endowment realization. In

particular, for s ∈ S−(c4), consumption should drop to the upper bound of

the consumption interval, cs = cs ; and for s ∈ S+(c4), consumption should

increase to the lower bound of the consumption interval, cs = cs .

The continuation value v(c4) can then be expressed as

v(c4) =
∑

s∈So(c4)

Πs

[
u(c4) + βv(c4)

]
+

∑

s∈S−(c4)

Πs

[
u(cs) + βv(cs)

]

+
∑

s∈S+(c4)

Πs

[
u(cs) + βv(cs)

]
(20.8.3)

which can be rewritten as

v(c4) =



1 − β
∑

s∈So(c4)

Πs




−1
u(c4)

∑

s∈So(c4)

Πs
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+
∑

s∈S−(c4)

Πs

[
u(cs) + βv(cs)

]
+

∑

s∈S+(c4)

Πs

[
u(cs) + βv(cs)

]



 . (20.8.4)

Similarly, the promised value to the type 2 household can be expressed as

P (v(c4)) =


1 − β

∑

s∈So(c4)

Πs




−1

u(1 − c4)
∑

s∈So(c4)

Πs

+
∑

s∈S−(c4)

Πs

[
u(1 − cs) + βP (v(cs))

]

+
∑

s∈S+(c4)

Πs

[
u(1 − cs) + βP (v(cs))

]



 . (20.8.5)

20.8.1. Values are continuous in implicit consumption

Both v(c4) and P (v(c4)) are continuous in the implicit consumption level c4 .

From (20.8.4) and (20.8.5) this is trivially true when variations in c4 do not

change the partition of states given by the sets So(·), S−(·) and S+(·). It

can also be shown to be true when variations in c4 do involve changes in the

partition of states. As an illustration, let us compute the limiting values of

v(c4) when c4 approaches ck from below and from above, respectively, where

we recall that ck is the upper bound of the consumption interval associated with

endowment yk .

We can choose a sufficiently small ε > 0 such that

{cs, cs}Ss=1

⋂
[ck − ε, ck + ε] = ck.

In particular, the findings in (20.4.4) ensure that we can choose a sufficiently

small ε so that this intersection contains no upper bounds on consumption

intervals other than ck . Similarly, ε can be chosen sufficiently small so that the

intersection does not contain any lower bound on consumption intervals unless

there exists a consumption interval with a lower bound that is exactly equal to

ck , i.e., if for some j ≥ 1, ck+j = ck . We will have to keep this possibility in

mind as we proceed in our characterization of the sets So(·), S−(·) and S+(·).
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All the three sets are constant for an implicit consumption c4 ∈ [ck−ε, ck)
with max{S−(c4)} = k−1. Concerning an implicit consumption c4 ∈ [ck, ck+

ε] , the set S−(c4) is constant with max{S−(c4)} = k while the configuration

of the other two sets depends on which one of the following two possible cases

applies.

Case a: ck 6= cs for all s ∈ S . Here it follows that the set S+(c4) is constant for

any implicit consumption c4 ∈ [ck−ε, ck+ε] . Using (20.8.3) the limiting values

of v(c4) when c4 approaches ck from below and from above, respectively, are

then equal to

lim
c4↑ck

v(c4) =
∑

s∈So(ck−ε)

Πs

[
u(ck) + βv(ck)

]
+

k−1∑

s=1

Πs

[
u(cs) + βv(cs)

]

+
∑

s∈S+(ck−ε)

Πs

[
u(cs) + βv(cs)

]

=
∑

s∈So(ck+ε)

Πs

[
u(ck) + βv(ck)

]
+

k∑

s=1

Πs

[
u(cs) + βv(cs)

]

+
∑

s∈S+(ck+ε)

Πs

[
u(cs) + βv(cs)

]
= lim

c4↓ck

v(c4). (20.8.6)

Case b: ck = ck+j for some j ≥ 1. Here it follows that the set S+(c4)

is constant with min{S+(c4)} = k + j for any implicit consumption c4 ∈
[ck − ε, ck] ; and S+(c4) is constant with min{S+(c4)} = k + j + 1 for any

implicit consumption c4 ∈ (ck, ck + ε] . Using (20.8.3) the limiting values of

v(c4) when c4 approaches ck from below and from above, respectively, are

then equal to

lim
c4↑ck

v(c4) =

k+j−1∑

s=k

Πs

[
u(ck) + βv(ck)

]
+

k−1∑

s=1

Πs

[
u(cs) + βv(cs)

]

+

S∑

s=k+j

Πs

[
u(cs) + βv(cs)

]

=

k+j∑

s=k+1

Πs

[
u(ck) + βv(ck)

]
+

k∑

s=1

Πs

[
u(cs) + βv(cs)

]
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+

S∑

s=k+j+1

Πs

[
u(cs) + βv(cs)

]
= lim

c4↓ck

v(c4), (20.8.7)

where we have invoked the fact the ck+j = ck .

We have shown that v(c4) is continuous at the upper bound of any con-

sumption interval even though the partition of states changes at such a point.

Similarly, we can show that v(c4) is continuous at the lower bound of any con-

sumption interval. And in the same manner, we can also establish that P (v(c4))

is continuous in the implicit consumption c4 .

20.8.2. Differentiability of the Pareto frontier

Consider an implicit consumption level c4 ∈ [y1, yS ] that falls strictly inside

at least one consumption interval. We can then use expressions (20.8.4) and

(20.8.5) to compute the derivative of the Pareto frontier at v(c4) by differen-

tiating with respect to c4 :

P ′(v(c4)) =

dP (v(c4))

dc4
dv(c4)

dc4

= −u
′(1 − c4)

u′(c4)
. (20.8.8)

It can be verified that (20.8.8) is the derivative of the Pareto frontier so long as

the set So(c4) remains nonempty. That is, changes in the set So(c4) induced

by varying c4 do not affect the expression for the derivative in (20.8.8). This

follows from the fact that the derivatives are the same to the left and to the

right of an implicit consumption level where the set So(c4) changes, and the

fact that v(c4) and P (v(c4)) are continuous in the implicit consumption level,

as shown in section 20.8.1. It can also be verified that the derivative in (20.8.8)

exists in the knife-edged case that happens when So(c4) becomes empty at a

single point because two adjacent consumption intervals share only one point,

i.e., when ck = ck+1 which implies that So(ck) = So(ck+1) = ∅ .

The Pareto frontier becomes nondifferentiable when two adjacent consump-

tion intervals are disjoint. Consider such a situation where an implicit consump-

tion level c4 ∈ [y1, yS ] does not fall inside any consumption interval, which

implies that the set So(c4) is empty. Let yk and yk+1 be the endowment re-

alizations associated with the consumption interval to the left and to the right
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of c4 , respectively. That is,

ck < c4 < ck+1.

According to (20.8.3), the continuation value for any implicit consumption level

c ∈ [ck, ck+1] is then constant and equal to

v̂ =
∑

s∈S−(c4)

Πs

[
u(cs) + βv(cs)

]
+

∑

s∈S+(c4)

Πs

[
u(cs) + βv(cs)

]
. (20.8.9)

By using expression (20.8.8), we can compute the derivative of the Pareto fron-

tier on the left side and the right side of v̂ ,

lim
v↑v̂

P ′(v) = lim
c↑ck

dP (v(c))

dc
dv(c)

dc

= −u
′(1 − ck)

u′(ck)
,

lim
v↓v̂

P ′(v) = lim
c↓c

k+1

dP (v(c))

dc
dv(c)

dc

= −u
′(1 − ck+1)

u′(ck+1)
.

Since ck < ck+1 , it follows that

lim
v↑v̂

P ′(v) > lim
v↓v̂

P ′(v)

and hence, the Pareto frontier is not differentiable at v̂ .8

8 Kocherlakota (1996b) prematurely assumed that Thomas and Worrall’s (1988) demon-

stration of the differentiability of the Pareto frontier Qs(·) would imply that his conceptually

different frontier P (·) would be differentiable. Koeppl (2003) uses the approach of Benveniste

and Scheinkman (1979) to establish a sufficient condition for differentiability of the Pareto

frontier P (v) . For a given value of v , the sufficient condition is that there exist at least one

realization of the endowment such that the participation constraints are not binding for any

household in that state, i.e., our set So(c4) should be nonempty for the implicit consump-

tion level c4 associated with that particular value of v . That condition is sufficient but not

necessary, since we have seen above that P (v) is also differentiable at a knife-edged case with

c4 = ck = ck+1 , even though the set So(c4) would then be empty.
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20.9. Continuation values à la Kocherlakota

20.9.1. Asymptotic distribution is nondegenerate for imperfect risk
sharing (except for when S = 2)

Here we assume that there exist sustainable allocations other than autarky but

that first-best outcomes are not attainable, i.e., there exist sustainable alloca-

tions with imperfect risk sharing. Kocherlakota (1996b, Proposition 4.2) states

that the continuation values will then converge to a unique nondegenerate dis-

tribution. Here we will verify that the claim of a nondegenerate asymptotic

distribution is correct except for when there are only two states (S = 2).

The assumption that the distribution of yt is identical to that of 1 − yt

means that

Πj = ΠS+1−j , (20.9.1a)

yj = 1 − yS+1−j , (20.9.1b)

for all j ∈ S . The symmetric environment bestows symmetry on the consump-

tion intervals of section 20.4

cj = 1 − cS+1−j , (20.9.1c)

for all j ∈ S , and symmetry on the continuation values of the type 1 and type

2 household

v(c4) = P (v(1 − c4)) . (20.9.1d)

As discussed in section 20.6.1, the condition for the nonexistence of first-

best sustainable allocations is that cmin < cmax , which by (20.6.1) is the same

as

c1 < cS =⇒ cS > 0.5 (20.9.2)

where the implication follows from using c1 = 1− cS as given by (20.9.1c). It is

quite intuitive that the consumption interval [cS , cS ] associated with the highest

endowment realization yS cannot contain the average value of the stochastic

endowment,
∑S

i=1 Πiyi = 0.5. Otherwise, there would certainly exist first-best

sustainable allocations, i.e., a contradiction.

To prove the existence of a nondegenerate asymptotic distribution of con-

tinuation values, it is sufficient to show that the continuation value of an agent
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experiencing the highest endowment, say, the type 1 household, exceeds the

continuation value of the other agent who is then experiencing the lowest en-

dowment, say, the type 2 household. Given her current realization of the highest

endowment yS , the type 1 household is awarded the highest consumption level

cS (= cmax ) in the ergodic consumption set of (20.6.4). Conditional on next

period’s endowment realization yi , the type 1 household’s consumption ĉi in

the next period is determined by (20.8.1a), where c4 = cS . From (20.4.4) we

know that cS ≥ ci for all i ∈ S , so next period’s consumption of the type 1

household as determined by (20.8.1a) can be written as

ĉi = min{ci, cS}. (20.9.3)

Given the vector {ĉi}Si=1 for next period’s consumption, we can use (20.8.3)

to compute the type 1 household’s outgoing continuation value in the current

period,

v(cS) =

S∑

i=1

Πi

[
u(ĉi) + βv(ĉi)

]
.

Next, we are interested in computing the difference between the continuation

values of the type 1 and the type 2 households,

v(cS)−P (v(cS))) =
S∑

i=1

Πi

[
u(ĉi) + βv(ĉi) − u(1 − ĉi) − βP (v(ĉi))

]

=

S∑

i=1

Πi

[
u(ĉi) + βv(ĉi) − u(1 − ĉS+1−i) − βP (v(ĉS+1−i))

]

=

S∑

i=1

Πi

[
u(ĉi) + βv(ĉi) − u(1 − ĉS+1−i) − βv(1 − ĉS+1−i)

]
, (20.9.4)

where the second equality emerges from the symmetric probabilities in (20.9.1a),

and the third equality follows from (20.9.1d). To establish that the difference

in (20.9.4) is strictly positive, it is sufficient to show that

ĉi ≥ 1 − ĉS+1−i,

or, by using (20.9.3),

min{ci, cS} ≥ 1 − min{cS+1−i, cS} (20.9.5)
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for all i ∈ S , and at least one of them holds with strict inequality. The proof

proceeds by considering four possible cases for each i ∈ S .

Case a: ci ≤ cS and cS+1−i ≤ cS . According to (20.9.1c) cS+1−i = 1 − ci , so

inequality (20.9.5) can then be written as

ci ≥ 1 − cS+1−i = ci which is true since ci > ci for all i ∈ S,

as established in section 20.4.4.

Case b: ci ≤ cS and cS+1−i > cS . According to (20.9.1c) ci = 1 − cS+1−i , so

inequality (20.9.5) can then be written as

ci = 1 − cS+1−i ≥ 1 − cS which is true since cS+1−i < cS for all i 6= 1,

as established in section 20.4.2.

Case c: ci > cS and cS+1−i ≤ cS . According to (20.9.1c) cS+1−i = 1 − ci , so

inequality (20.9.5) can then be written as

cS ≥ 1 − cS+1−i = ci which is true since cS > ci for all i 6= S,

as established in section 20.4.2.

Case d: ci > cS and cS+1−i > cS . The inequality (20.9.5) can then be written

as

cS ≥ 1 − cS which is true since cS > 0.5

as established in (20.9.2).

We can conclude that the inequality (20.9.5) holds with strict inequality

with only two exceptions: (1) when i = 1 and case b applies; and (2) when i = S

and case c applies. It follows that the difference in (20.9.4) is definitely strictly

positive if there are more than two states, and hence the asymptotic distribution

of continuation values is nondegenerate. But what about when there are only

two states (S = 2)? Since c1 < cS by (20.9.2) and cS > cS , it follows that

case b applies when i = 1 and case c applies when i = 2 = S . Therefore,

the difference in (20.9.4) is zero, and thus the continuation value of an agent
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experiencing the highest endowment is equal to that of the other agent who is

then experiencing the lowest endowment. Since there are no other continuation

values in an economy with only two possible endowment realizations, it follows

that the asymptotic distribution of continuation values is degenerate when there

are only two states (S = 2).

A two-state example in section 20.10 illustrates our findings. The intuition

for the degenerate asymptotic distribution of continuation values is straightfor-

ward. On the one hand, the planner would like to vary continuation values

and thereby avoid large changes in current consumption that would otherwise

be needed to satisfy binding participation constraints. But, on the other hand,

different continuation values presuppose that there exist “intermediate” states

in which a higher continuation value can be awarded. In our two-state example,

the participation constraint of either one or the other type of agent always binds,

and the asymptotic distribution is degenerate with only one continuation value.

20.9.2. Continuation values do not always respond to binding
participation constraints

Evidently, continuation values will eventually not respond to binding partici-

pation constraints in a two-state economy, since we have just shown that the

asymptotic distribution is degenerate with only one continuation value. But the

outcome that continuation values might not respond to binding participation

constraints occurs even with more states when endowments are i.i.d. In fact,

it is present whenever the consumption intervals of two adjacent endowment

realizations, yk and yk+1 , do not overlap, i.e., when ck < ck+1 . Here is how

the argument goes.

Since ck < ck+1 it follows from (20.6.4) that both ck and ck+1 belong

to the ergodic set of consumption. Moreover, (20.4.4) implies that So(ck) =

So(ck+1) = ∅ , where So(·) is defined in (20.8.2a). Using expression (20.8.3),

we can compute a common continuation value v(ck) = v(ck+1) = v̂ , where v̂

is given by (20.8.9) when that expression is evaluated for any c4 ∈ [ck, ck+1] .

Given this identical continuation value, it follows that there are situations where

households’ continuation values will not respond to binding participation con-

straints.
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As an example, let the current consumption and continuation value of the

type 1 household be ck and v(ck) = v̂ , and suppose that the household next

period realizes the endowment yk+1 . It follows that the participation constraint

of the type 1 household is binding and that the optimal solution in (20.8.1) is to

award the household a consumption level ck+1 and continuation value v(ck+1).

That is, the household is induced not to defect into autarky by increasing its con-

sumption, ck+1 > ck , but its continuation value is kept unchanged, v(ck+1) = v̂ .

Suppose next that the type 1 household experiences yk in the following period.

This time it will be the participation constraint of the type 2 households that

binds and the optimal solution in (20.8.1) prescribes that the type 1 house-

hold is awarded consumption ck and continuation value v(ck) = v̂ . Hence,

only consumption levels but not continuation values are adjusted in these two

realizations with alternating binding participation constraints.

We use a three-state example in section 20.11 to elaborate on the point that

even though an incoming continuation value lies in the interior of the range of

permissible continuation values in (20.7.1f ), a binding participation constraint

still might not trigger a change in the outgoing continuation value because there

may not exist any efficient way to deliver a changed continuation value. Con-

tinuation values that do not respond to binding participation constraints are

a manifestation of the possibility that the Pareto frontier P (·) need not be

differentiable everywhere on the interval [vaut, vmax] , as shown in section 20.8.2.

20.10. A two-state example: amnesia overwhelms
memory

In this example and the three-state example of the following section, we use the

term “continuation value” to denote the state variable of Kocherlakota (1996b)

as described in the preceding section.9 That is, at the end of a period, the

continuation value v is the promised expected utility to the type 1 agent that

will be delivered at the start of the next period.

Assume that there are only two possible endowment realizations, S = 2,

with {y1, y2} = {1 − y, y} , where y ∈ (.5, 1). Each endowment realization is

equally likely to occur, {Π1,Π2} = {0.5, 0.5} . Hence, the two types of agents

9 See Krueger and Perri (2003b) for another analysis of a two-state example.
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face the same ex ante welfare level in autarky,

vaut =
.5

1 − β
[u(y) + u(1 − y)] .

We will focus on parameterizations for which there exist no first-best sustainable

allocations (i.e., cmin < cmax , which here amounts to c1 < c2 ). An efficient al-

location will then asymptotically enter the ergodic consumption set in (20.6.4)

that here is given by two points, {c1, c2} . Because of the symmetry in prefer-

ences and endowments, it must be true that c2 = 1 − c1 ≡ c , where we let c

denote the consumption allocated to an agent whose participation constraint is

binding and 1− c be the consumption allocated to the other agent.

Before determining the optimal values {1−c, c} , we will first verify that any

such stationary allocation delivers the same continuation value to both types of

agent. Let v+ be the continuation value for the consumer who last received a

high endowment and let v− be the continuation value for the consumer who

last received a low endowment. The promise-keeping constraint for v+ is

v+ = .5[u(c) + βv+] + .5[u(1 − c) + βv−]

and the promise-keeping constraint for v− is

v− = .5[u(c) + βv+] + .5[u(1 − c) + βv−].

Notice that the promise-keeping constraints make v+ and v− identical. There-

fore, there is a unique stationary continuation value v ≡ v+ = v− that is

independent of the current period endowment, as established in section 20.9.1

for S = 2. Setting v+ = v− = v in one of the two equations above and solving

gives the stationary continuation value:

v =
.5

1 − β
[u(c) + u(1 − c)] . (20.10.1)

To determine the optimal c in this two-state example, we use the following

two facts. First, c is the lower bound of the consumption interval [c2, c2] ; c

is the consumption level that should be awarded to the type 1 agent when she

experiences the highest endowment y2 = y and we want to maximize the welfare

of the type 2 agent subject to the type 1 agent’s participation constraint. Sec-

ond, c belongs also to the ergodic set {c1, c2} that characterizes the stationary
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Figure 20.10.1: Welfare of the agent with low endowment

as a function of c .

efficient allocation, and we know that the associated efficient continuation values

are then the same for all agents and given by v in (20.10.1). The maximization

problem above can therefore be written as

max
c

u(1 − c) + βv (20.10.2a)

subject to u(c) + βv − [u(y) + βvaut] ≥ 0, (20.10.2b)

where v is given by (20.10.1). We graphically illustrate how c is chosen in order

to maximize (20.10.2a) subject to (20.10.2b) in Figures 20.10.1 and 20.10.2 for

utility function (1− γ)−1c1−γ and parameter values (β, γ, y) = (.85, 1.1, .6). It

can be verified numerically that c = .536. Figure 20.10.1 shows (20.10.2a) as

a decreasing function of c in the interval [.5, .6]. Figure 20.10.2 plots the left

side of (20.10.2b) as a function of c . Values of c for which the expression is

negative are not sustainable (i.e., values less than .536). Values of c for which

the expression is nonnegative are sustainable. Since the welfare of the agent

with a low endowment realization in (20.10.2a) is decreasing as a function of

c in the interval [.5, .6], the best sustainable value of c is the lowest value for

which the expression in (20.10.2b) is nonnegative. This value for c gives the

most risk sharing that is compatible with the participation constraints.
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Figure 20.10.2: The participation constraint is satisfied for

values of c for which the difference u(c)+βv− [u(y) + βvaut]

plotted here is positive.

20.10.1. Pareto frontier

It is instructive to find the entire set of sustainable values V . In addition to the

value v above associated with a stationary sustainable allocation, other values

can be sustained, for example, by promising a value v̂ > v to a type 1 agent who

has yet to receive a low endowment realization. Thus, let v̂ be a promised value

to such a consumer and let c+ be the consumption assigned to that consumer in

the event that his endowment is high. Then promise keeping for the two types

of agents requires

v̂ = .5[u(c+) + βv̂] + .5[u(1 − c) + βv], (20.10.3a)

P (v̂) = .5[u(1 − c+) + βP (v̂)] + .5[u(c) + βv]. (20.10.3b)

If the type 1 consumer receives the high endowment, sustainability of the allo-

cation requires

u(c+) + βv̂ ≥ u(y) + βvaut, (20.10.4a)

u(1 − c+) + βP (v̂) ≥ u(1 − y) + βvaut. (20.10.4b)
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If the type 2 consumer receives the high endowment, awarding him c, v au-

tomatically satisfies the sustainability requirements because these are already

built into the construction of the stationary sustainable value v .

Let’s solve for the highest sustainable initial value of v̂ , namely, vmax . To do

so, we must solve the three equations formed by the promise-keeping constraints

(20.10.3a) and (20.10.3b) and the participation constraint (20.10.4b) of a type

2 agent when it receives 1 − y at equality:

u(1 − c+) + βP (v̂) = u(1 − y) + βvaut. (20.10.5)

Equation (20.10.3b) and (20.10.5) are two equations in (c+, P (vmax)). After

solving them, we can solve (20.10.3a) for vmax . Substituting (20.10.5) into

(20.10.3b) gives

P (vmax) = .5[u(1 − y) + βvaut] + .5[u(c) + βv]. (20.10.6)

But from the participation constraint of a high endowment household in a sta-

tionary allocation, recall that u(c) + βv = u(y) + βvaut . Substituting this into

(20.10.6) and rearranging gives

P (vmax) = vaut

and therefore by (20.10.5), c+ = y .10 Solving (20.10.3a) for vmax we find

vmax =
1

2 − β
[u(y) + u(1 − c) + βv]. (20.10.7)

Now let us study what happens when we set v ∈ (v, vmax) and drive v

toward v from above. Totally differentiating (20.10.3a) and (20.10.3b), we find

dP (v̂)

dv̂
= −u

′(1 − c+)

u′(c+)
.

Evidently

lim
v↓v

dP (v)

dv
= −u

′(1 − c)

u′(c)
< −1.

10 According to our general characterization of the ex ante division of the gains of an efficient

contract in section 20.5, it can be viewed as determined by an implicit initial consumption

level c4 ∈ [y1, yS ] . Notice that the present calculations have correctly computed the upper

bound of that interval for our two-state example, yS = y2 ≡ y .
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By symmetry,

lim
v↑v

dP (v)

dv
= − u′(c)

u′(1 − c)
> −1.

Thus, there is a kink in the value function P (v) at v = v . At v , the value

function is not differentiable as established in section 20.8.2 when two adjacent

consumption intervals are disjoint. At v , P ′(v) exists only in the sense of a

subgradient in the interval [−u′(1 − c)/u′(c), −u′(c)/u′(1 − c)] . Figure 20.10.3

depicts the kink in P (v).

v

v̄

v̄

P (v)

vmax

vmax = P (vaut)

vaut

vaut

Figure 20.10.3: The kink in P (v) at the stationary value

of v for the two-state symmetric example.
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20.10.2. Interpretation

Recall our characterization of the optimal consumption dynamics in (20.4.3).

Consumption remains unchanged between periods when neither participation

constraint binds, and hence the efficient contract displays memory or history

dependence. When either of the participation constraints binds, history depen-

dence is limited to selecting either the lower or the upper bound of a consumption

range [cj , cj ] , where the range and its bounds are functions of the current en-

dowment realization yj . After someone’s participation constraint has once been

binding, history becomes irrelevant, because past consumption has no additional

impact on the level of current consumption.

Now, in the case of our two-state example, there are only two consumption

ranges, [c1, c1] and [c2, c2] . And as a consequence, the asymptotic consumption

distribution has only two points, c1 and c2 (or in our notation, 1− c and c). It

follows that history becomes irrelevant because consumption is then determined

by the endowment realization. Thus, it can be said that “amnesia overwhelms

memory” in this example, and the asymptotic distribution of continuation values

becomes degenerate with a single point v .11

We further explore the variation or the lack of variation in continuation

values in the three-state example of the following section.

20.11. A three-state example

As the two-state example stresses, any variation of continuation values in an

efficient allocation requires that the environment be such that when a house-

hold’s participation constraint is binding, the planner has room to increase both

the current consumption and the continuation value of that household. In the

stationary allocation in the two-state example, there is no room to adjust the

continuation value because of the restrictions that promise keeping imposes.

We now analyze the stationary allocation of a three-state (S = 3) example in

11 If we adopt the recursive formulation of Thomas and Worrall in (20.3.1), amnesia mani-

fests itself as a time-invariant state vector [x1, x2] where x1 = u(1−c)−u(1−y)+β[v−vaut]

and x2 = u(c) − u(y) + β[v − vaut] .
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which the environment still limits the planner’s ability to manipulate continua-

tion values, but nevertheless sometimes allows adjustments in the continuation

value.

Thus, consider an environment in which S = 3. We assume that the

distributions of yt and 1 − yt are identical. In particular, we let {y1, y2, y3} =

{1 − y, 0.5, y} and {Π1,Π2,Π3} = {Π/2, 1 − Π,Π/2} where y ∈ (.5, 1] and

Π ∈ [0, 1]. Given parameter values such that there is no first-best sustainable

allocation (i.e., c1 < c3 ), we will study the efficient allocation that is attained

asymptotically. According to (20.6.4), this ergodic consumption set is given by

{
[c1, c3]

⋂
{c1, c2, c2, c3}

}
, (20.11.1)

which contains at least two points (c1 , c3 ) and maybe two additional points

(c2 , c2 ).

When there are no first-best sustainable allocations, the efficient stationary

allocation must be such that the participation constraints of a type 1 person and

a type 2 person bind in state 3 and state 1, respectively. Let c ∈ [0.5, 1] and

w̄+ be the consumption and continuation value allocated to the agent whose

participation constraint is binding because his endowment is equal to y :

u(c) + βw̄+ = u(y) + βvaut. (20.11.2)

In such a state, the agent whose participation constraint is not binding consumes

1−c and is assigned continuation value w̄− . Because of the assumed symmetries

with respect to preferences and endowments, we have c = c3 = 1 − c1 .

The consumption allocation in state 2 depends on the different promised

continuation values with which agents enter a period. The symmetry in our

environment and the existence of only three states imply that there is a single

consumption level ĉ that is granted to the type of person that last realized

the highest endowment y . Let ŵ+ be the continuation value that in state 2 is

allocated to the type of person that last received endowment y . According to

our earlier characterization of an efficient allocation, the agents who realize the

highest endowment y are induced not to defect into autarky by granting them

both higher current consumption and a higher continuation value. Hence, state

2 is “payback time” for the agents who were promised a higher continuation

value and it must be true that ĉ ∈ [0.5, 1]. In state 2, the type of person that

did not last receive y is allocated consumption 1 − ĉ and continuation value
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ŵ− . The participation constraint of this type of person might conceivably be

binding in state 2,

u(1 − ĉ) + βŵ− ≥ u(0.5) + βvaut. (20.11.3)

According to the optimal consumption dynamics in (20.4.3), we know that

ĉ = min{c, c2} . That is, a person who had the highest endowment realization

y with associated consumption level c will retain that consumption level when

moving into state 2 ( ĉ = c) unless the participation constraint of the other

agent becomes binding in state 2. In the latter case, the person who had the

highest endowment realization is awarded consumption ĉ = c2 in state 2 and the

participation constraint for the other person in (20.11.3) will hold with strict

equality.

While there can exist four different consumption levels in the efficient sta-

tionary allocation, {1− c, 1− ĉ, ĉ, c} , it is possible to have at most two distinct

continuation values:

w̄+ = ŵ+ =(Π/2)
[
u(c) + βw̄+

]
+ (1 − Π)

[
u(ĉ) + βŵ+

]

+ (Π/2)
[
u(1 − c) + βw̄−

]
, (20.11.4a)

w̄− = ŵ− =(Π/2)
[
u(c) + βw̄+

]
+ (1 − Π)

[
u(1 − ĉ) + βŵ−

]

+ (Π/2)
[
u(1 − c) + βw̄−

]
. (20.11.4b)

As can be seen on the right side of (20.11.4a), the expressions for w̄+ and ŵ+

are the same, and so w̄+ = ŵ+ ≡ w+ . The same holds true for w̄− and ŵ− in

(20.11.4b), and hence w̄− = ŵ− ≡ w− . By manipulating equations (20.11.4),

we can express the two continuation values in terms of (c, ĉ):

w+ =
{
(Π/2) [1 + βκΠ/2] [u(c) + u(1 − c)]

+ (1 − Π) [u(ĉ) + βκΠu(1 − ĉ)/2]
}

·
{
[1 − β(1 − Π)] (1 − β)κ

}−1

(20.11.5a)

w− = w+ − 1 − Π

1 − β(1 − Π)
[u(ĉ) − u(1 − ĉ)] , (20.11.5b)

where κ = [1 − (1 − Π/2)β]−1 .

To determine the optimal {c, ĉ} in this three-state example, it is helpful

to focus on a state in which the agents realize different endowments, say, state
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3 in which the type 1 agent realizes the highest endowment y and is awarded

consumption level c . We can then exploit the following two facts. First, c is the

lower bound of the consumption interval [c3, c3] , so c is the consumption level

that should be awarded to the type 1 agent when she experiences the highest

endowment y3 = y and we want to maximize the welfare of the type 2 agent

subject to the type 1 agent’s participation constraint. Second, c belongs also to

the ergodic set in (20.11.1) that characterizes the stationary efficient allocation,

and we know that the associated efficient continuation values are w+ for the

agents with high endowment and w− for the other agents. By invoking functions

(20.11.5) that express these continuation values in terms of {c, ĉ} and by using

participation constraint (20.11.2) that determines permissible values of ĉ , the

optimization problem above becomes:

max
c, ĉ

u(1 − c) + βw− (20.11.6a)

subject to u(c) + βw+ − [u(y) + βvaut] ≥ 0 (20.11.6b)

u(1 − ĉ) + βw− − [u(0.5) + βvaut] ≥ 0, (20.11.6c)

where w− and w+ are given by (20.11.5).

To illustrate graphically how an efficient stationary allocation {c, ĉ} can

be computed from optimization problem (20.11.6), we assume a utility func-

tion c1−γ/(1 − γ) and parameter values (β, γ,Π, y) = (0.7, 1.1, 0.6, 0.7). It

should now be evident that we can restrict attention to consumption levels

c ∈ [0.5, y] and ĉ ∈ [0.5, c] . Figures 20.11.1a and 20.11.1b show the sets

(c, ĉ) ∈ [0.5, y] × [0.5, c] that satisfy participation constraint (20.11.6b) and

(20.11.6c), respectively. The intersection of these sets is depicted in Figure

20.11.2 where the circle indicates the efficient stationary allocation that maxi-

mizes (20.11.6a).
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Figure 20.11.1a: Pairs of (c, ĉ) that satisfy

u(c) + βw+ ≥ u(y) + βvaut .
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Figure 20.11.1b: Pairs of (c, ĉ) that satisfy

u(1 − ĉ) + βw− ≥ u(0.5) + βvaut .
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Figure 20.11.2: Pairs of (c, ĉ) that satisfy u(c) + βw+ ≥
u(y) + βvaut and u(1 − ĉ) + βw− ≥ u(0.5) + βvaut . The

efficient stationary allocation within this set is marked with

a circle.
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20.11.1. Perturbation of parameter values

We also compute efficient stationary allocations for different values of Π ∈ [0, 1]

while retaining all other parameter values. As a function of Π, Figures 20.11.3a

and 20.11.3b depict consumption levels and continuation values, respectively.

For low values of Π, we see that there cannot be any risk sharing among the

agents, so that autarky is the only sustainable allocation. The explanation for

this is as follows. Given a low value of Π, an agent who has realized the high

endowment y is heavily discounting the insurance value of any transfer in a

future state when her endowment might drop to 1 − y because such a state

occurs only with a small probability equal to Π/2. Hence, in order for that

agent to surrender some of her endowment in the current period, she must be

promised a significant combined payoff in that unlikely event of a low endowment

in the future and a positive transfer in the most common state 2. But such

promises are difficult to make compatible with participation constraints, because

all agents will be discounting the value of any insurance arrangement as soon

as the common state 2 is realized since then there is once again only a small

probability of experiencing anything else.

When the probability of experiencing extreme values of the endowment

realization is set sufficiently high, there exist efficient allocations that deliver risk

sharing. When Π exceeds 0.4 in Figure 20.11.3a, the lucky agent is persuaded

to surrender some of her endowment, and her consumption becomes c < y . The

lucky agent is compensated for her sacrifice not only through the insurance value

of being entitled to an equivalent transfer in the future when she herself might

realize the low endowment 1− y but also through a higher consumption level in

state 2, ĉ > 0.5.12 In fact, if the consumption smoothing motive could operate

unhindered in this situation, the lucky agent’s consumption would indeed by

equalized across states. But what hinders such an outcome is the participation

constraint of the unlucky agent when entering state 2. It must be incentive

compatible for that earlier unlucky agent to give up parts of her endowment

in state 2 when both agents now have the same endowment and the value of

the insurance arrangement lies in the future. Notice that this participation

constraint of the earlier unlucky agent is no longer binding in our example when

12 Recall that we established in section 20.4.4 that all consumption intervals are nonde-

generate if there is risk sharing. We can use this fact to prove that as soon as the parame-

ter value for Π exceeds the critical value where risk sharing becomes viable, it follows that

ĉ = c2 > y2 = 0.5.
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Π is greater than 0.94, because the efficient allocation prescribes ĉ = c . In

terms of Thomas and Worrall’s characterization of the optimal consumption

dynamics, the parameterization is then such that c2 > c3 and the ergodic set

in (20.11.1) is given by {c1, c3} or, in our notation, by {1 − c, c} .
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Figure 20.11.3a: Consumption levels as

a function of Π. The solid line depicts

c , i.e., consumption in states 1 and 3 of

a person who realizes the highest endow-

ment y . The dashed line depicts ĉ , i.e.,

consumption in state 2 of the type of per-

son that was the last one to have received

y .
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Figure 20.11.3b: Continuation values as

a function of Π. The solid line depicts w+ ,

i.e., continuation value of the type of person

that was the last one to have received y .

The dashed line is the continuation value

of the other type of person, i.e., w− .

The fact that the efficient allocation raises the consumption of the lucky

agent in future realizations of state 2 is reflected in the spread of continuation

values in Figure 20.11.3b. The spread vanishes only in the limit when Π = 1

because then the three-state example turns into our two-state example of the

preceding section where there is only a single continuation value. But while

the planner is able to vary continuation values in the three-state example, there

remains an important limitation to when those continuation values can be varied.

Consider a parameterization with Π ∈ (0.4, 0.94) for which we know that ĉ < c

in Figure 20.11.3a. The agent who last experienced the highest endowment y



736 Equilibrium without Commitment

is consuming ĉ in state 2 in the efficient stationary allocation, and is awarded

continuation value w+ . Suppose now that agent once again realizes the highest

endowment y and his participation constraint becomes binding. To prevent him

from defecting to autarky, the planner responds by raising his consumption to

c (> ĉ) but keeps his continuation value unchanged at w+ . In other words, the

optimal consumption dynamics in the efficient stationary allocation leaves no

room for increasing the continuation value further. The unchanging continuation

value is a reflection of the nondifferentiability of the Pareto frontier at v = w+ .

20.11.2. Pareto frontier

As described in section 20.8, the ex ante division of the gains from an effi-

cient contract can be viewed as determined by an implicit initial consump-

tion level, c4 ∈ [y1, yS ] . In our symmetric environment, it is sufficient to

focus on half of this range because the other half will just be the mirror im-

age of those computations. Let us therefore compute the Pareto frontier for

c4 ∈ [0.5, y3] ≡ [0.5, y] . We assume a parameterization such that the consump-

tion intervals, {[cj , cj ]}3
j=1 , are disjoint, i.e., the parameterization is such that

ĉ < c , which corresponds to a parameterization with Π ∈ (0.4, 0.94) in Figure

20.11.3a.

First, we study the formulas for computing v and P (v) in the range c4 ∈
[0.5, ĉ] :

v =
Π

2

{
u(1 − c) + βw−

}
+ (1 − Π)

{
u(c4) + βv

}
+

Π

2

{
u(c) + βw+

}
,

P (v) =
Π

2

{
u(c) + βw+

}
+ (1 − Π)

{
u(1 − c4) + βP (v)

}

+
Π

2

{
u(1 − c) + βw−

}
.

When the type 1 agent is assigned an implicit initial consumption level c4 ∈
[0.5, ĉ] , her consumption is indeed equal to c4 for any initial uninterrupted

string of realizations of state 2 with some continuation value v , and the corre-

sponding consumption of the type 2 agent is 1− c4 with an associated continu-

ation value P (v). But as soon as either state 1 or state 3 is realized for the first

time, the updating rules in (20.4.3) imply that the economy enters the ergodic

set of the efficient stationary allocation. In particular, if state 1 is realized and
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the participation constraint of the type 2 agent becomes binding, the type 1

agent is awarded consumption c1 ≡ 1 − c and continuation value w− while the

type 2 agent consumes 1− c1 ≡ c with continuation value P (w−) = w+ . But if

state 3 is realized and the participation constraint of the type 1 agent becomes

binding, the type 1 agent is awarded consumption c3 ≡ c and continuation value

w+ while the type 2 agent consumes 1 − c3 ≡ 1 − c with continuation value

P (w+) = w− . Given the implicit initial consumption level c4 , it is straight-

forward to solve for the initial welfare assignment {v, P (v)} from the equations

above.

Similarly, we can use the updating rules (20.4.3) to get formulas for com-

puting v and P (v) in the range c4 ∈ [c, y] :

v =
Π

2

{
u(1 − c) + βw−

}
+ (1 − Π)

{
u(ĉ) + βw+

}
+

Π

2

{
u(c4) + βv

}
,

P (v) =
Π

2

{
u(c) + βw+

}
+ (1 − Π)

{
u(1 − c̄) + βw−

}

+
Π

2

{
u(1 − c4) + βP (v)

}
.

Concerning the remaining range of implicit initial consumption levels c4 ∈
(ĉ, c), we can immediately verify that either pair of equations above can be used

when setting c4 = ĉ in the first pair of equations or c4 = c in the second

pair of equations. Hence, the initial welfare assignment is the same for implicit

initial consumption c4 ∈ [ĉ, c] , and it is given by {w+, P (w+)} . At this point

in Figure 20.11.4 the Pareto frontier becomes nondifferentiable.

20.12. Empirical motivation

Kocherlakota was interested in the case of perpetual imperfect risk sharing be-

cause he wanted to use his model to think about the empirical findings from

panel studies by Mace (1991), Cochrane (1991), and Townsend (1994). Those

studies found that, after conditioning on aggregate income, individual consump-

tion and earnings are positively correlated, belying the risk-sharing implications

of the complete markets models with recursive utility of the type we studied in

chapter 8. So long as no first-best allocation is sustainable, the action of the

occasionally binding participation constraints lets the model with two-sided lack

of commitment reproduce that positive conditional covariation. In recent work,
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Figure 20.11.4: Pareto frontier P (v) for the three-state

symmetric example. Kinks occur at coordinates (v, P (v)) =

(w−, w+) and (v, P (v)) = (w+, w−).

Albarran and Attanasio (2003) and Kehoe and Perri (2003a, 2003b) pursue more

implications of models like Kocherlakota’s.

20.13. Generalization

Our formal analysis has followed the approach taken by Thomas and Worrall

(1988). We have converted the risk-neutral firm into a risk-averse household,

as suggested by Kocherlakota (1996b). Another difference is that our analysis

is cast in a general equilibrium setting while Thomas and Worrall formulate

a partial equilibrium model where the firm implicitly has access to an outside

credit market with a given gross interest rate of β−1 when maximizing the ex-

pected present value of profits. However, this difference is not material, since an

efficient contract is such that wages never exceed output.13 Hence, Thomas and

13 The outcome that efficient wages do not exceed output in Thomas and Worrall’s (1988)

analysis is related to our ability to solve optimization problem (20.3.1) without imposing

nonnegativity constraints on consumption. See footnote 5.
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Worrall’s (1988) analysis can equally well be thought of as a general equilibrium

analysis.

Ligon, Thomas, and Worrall (2002) further generalize the environment by

assuming that the endowment follows a Markov process. This allows for the pos-

sibility of both aggregate and idiosyncratic risk and serial correlation. The effi-

cient contract is characterized by an updating rule for the ratio of the marginal

utilities of the two households which resembles our updating rule for consump-

tion in (20.4.3). Each state of nature is associated with a particular interval

of permissible ratios of marginal utilities. Given the current state and the pre-

vious period’s ratio of marginal utilities, the new ratio lies within the interval

associated with the current state, such that the change is minimized. That is,

if last period’s ratio falls outside of the current interval, then the ratio must

change to an endpoint of the current interval, and one of the households will

be constrained. But whenever possible, the ratio is kept constant over time.

This is consistent with our analysis in chapter 8 of competitive equilibria with

complete markets (and full commitment). Expression (8.5.5) states that these

unconstrained first-best allocations are such that ratios of marginal utilities be-

tween pairs of agents are constant across all histories and dates.

20.14. Decentralization

By imposing constraints on each household’s budget sets above and beyond

those imposed by the standard household’s budget constraint, Kehoe and Levine

(1993) describe how to decentralize the optimal allocation in an economy like

Kocherlakota’s with complete competitive markets at time 0. Thus, let q0t (ht)

be the Arrow-Debreu time 0 price of a unit of time t consumption after history

ht . The two households’ budget constraints are

∞∑

t=0

∑

ht

q0t (ht)ct(ht) ≤
∞∑

t=0

∑

ht

q0t (ht)yt (20.14.1a)

∞∑

t=0

∑

ht

q0t (ht)(1 − ct(ht)) ≤
∞∑

t=0

∑

ht

q0t (ht)(1 − yt). (20.14.2a)

Kehoe and Levine augment these standard budget constraints with what were

the planner’s “participation constraints” (20.2.1a), (20.2.1b), but which now
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have to be interpreted as exogenous restrictions on the households’ budget sets,

one restriction for each consumer for each t ≥ 0 for each history ht .

Adding those restrictions leaves the household’s budget sets convex. That

allows all of the assumptions of the second welfare theorem to be fulfilled. That

then implies that a competitive equilibrium (defined in the standard way to

include optimization and market clearing, but with household budget sets being

further restricted by (20.2.1)) will implement the planner’s optimal allocation.

Although mechanically this decentralization works like a charm, it can nev-

ertheless be argued that it conflicts with the spirit of a competitive equilibrium

in which agents take prices as given and budget constraints are the only re-

strictions on agents’ consumption sets. In contrast, participation constraints

(20.2.1a) and (20.2.1b) are now modelled as direct restrictions on agents’ con-

sumption possibility sets. Partly because of this controversial feature of the

Kehoe-Levine decentralization, Alvarez and Jermann use another decentraliza-

tion, one that imposes portfolio/solvency constraints and is cast in terms of

sequential trading of Arrow securities. The endogenously determined solvency

constraints are agent and state specific and ensure that the participation con-

straints are satisfied. We turn to the Alvarez-Jermann decentralization in the

next section.

In all fairness, one could argue that the alternative decentralization solely

converts one set of participation constraints into another one. For both specifi-

cations we have a substantial departure from a decentralized equilibrium under

full commitment. When removing the assumption of commitment, we are as-

signing a very demanding task to the “invisible hand” who must not only look

for market-clearing prices but also check participation/solvency constraints for

all agents and all states of the world.
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20.15. Endogenous borrowing constraints

Alvarez and Jermann (2000) alter Kehoe and Levine’s decentralization to attain

a model with sequentially complete markets in which households face what can

be interpreted as endogenous borrowing constraints. Essentially, they accom-

plish this by showing how the standard quantity constraints on Arrow securities

(see chapter 8) can be appropriately tightened to implement the optimal al-

location as constrained by the participation constraints. Their idea is to find

borrowing constraints tight enough to make the highest endowment agents ad-

here to the allocation, while letting prices alone prompt lower endowment agents

to go along with it.

For expositional simplicity, we let yi(y) denote the endowment of a house-

hold of type i when a representative household of type 1 receives y . Recall

the earlier assumption that [y1(y), y2(y)] = (y, 1 − y). The state of the econ-

omy is the current endowment realization y and the beginning-of-period asset

holdings A = (A1, A2), where Ai is the asset holding of a household of type

i and A1 + A2 = 0. Because asset holdings add to zero, it is sufficient to use

A1 to characterize the wealth distribution. Define the state of the economy as

X = [ y A1 ]
′
. There is a complete set of markets in one-period Arrow secu-

rities. In particular, let Q(X ′|X) be the price of one unit of consumption in

state X ′ tomorrow given state X today. A household of type i with beginning-

of-period assets a can purchase and sell these securities subject to the budget

constraint

ci +
∑

X′

Q(X ′|X)ai(X ′) ≤ yi(y) + ai, (20.15.1)

where ai(X ′) is the quantity purchased (if positive) or sold (if negative) of

Arrow securities that pay one unit of consumption tomorrow if X ′ is realized,

and also subject to the borrowing constraints

ai(X ′) ≥ Bi(X ′). (20.15.2)

Notice that there is one constraint for each next period state X ′ and that the

borrowing constraints reflect history dependence through the presence of A′ .

The Bellman equation for the household in the decentralized economy is

V i(a,X) = max
c,{a(X′)}X′∈X

{
u(c) + β

∑

X′

V i[a(X ′), X ′]Π(X ′|X)
}
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subject to the budget constraint (20.15.1) and borrowing constraints (20.15.2).

The equilibrium law of motion for the asset distribution, A1 is embedded in the

conditional distribution Π(X ′|X).

Alvarez and Jermann define a competitive equilibrium with borrowing con-

straints in a standard way, with the qualification that among the equilibrium

objects are the borrowing constraints Bi(X ′), functions that the households take

as given. Alvarez and Jermann show how to choose the borrowing constraints

to make the allocation that solves the planning problem be an equilibrium allo-

cation. They do so by construction, identifying the elements of the borrowing

constraints that are binding from having identified the states in the planning

problem where one or another agent’s participation constraint is binding.

It is easy for Alvarez and Jermann to compute the equilibrium pricing

kernel from the allocation that solves the planning problem. The pricing kernel

satisfies

q(X ′|X) = max
i=1,2

β
u′[ci(a′i, X

′)]

u′[ci(ai, X)]
Π(X ′|X), (20.15.3)

where ci(a,X) is the consumption decision rule of a household of type i with

beginning-of-period assets a .14 People with the highest valuation of an asset

buy it. Buyers of state-contingent securities are unconstrained, so they equate

their marginal rate of substitution to the price of the asset. At equilibrium

prices, sellers of state-contingent securities would like to issue more, but are

constrained from doing so by state-by-state restrictions on the amounts that they

can sell. Thus, the intertemporal marginal rate of substitution of an agent whose

participation constraint (or borrowing constraint) is not binding determines the

pricing kernel. In effect, constrained and unconstrained agents have their own

“personal interest rates” at which they are just indifferent between borrowing

or lending a infinitesimally more. A constrained agent wants to consume more

tomorrow at equilibrium prices (i.e., at the shadow prices (20.15.3) evaluated at

the solution of the planning problem), and thus has a high personal interest rate.

He would like to sell more of the state-contingent security than he is allowed to

at the equilibrium state-date prices. An agent would like to sell state-contingent

claims on consumption tomorrow in those states in which he will be well endowed

tomorrow. But those high endowment states are also the ones in which he will

14 For the two-state example with β = .85, γ = 1.1, y = .6, described in Figure 20.10.1, we

computed that c = .536, which implies that the risk-free interest rate is 1.0146. Note that

with complete markets the risk-free claim would be β−1 = 1.1765.
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have an incentive to default. He must be restrained from doing so by limiting

the volume of debt that he is able to carry into those high endowment states.

This limits his ability to smooth consumption across high and low endowment

states. Thus, his consumption and continuation value increases when he enters

one of those high endowment states precisely because he has been prevented

from selling enough claims to smooth his consumption over time and across

states.

The quantity constraints do not bind for the agents who receive a low en-

dowment and a declining continuation value. Price signals in the form of low

interest rates can reconcile them to accept the declining consumption allocations

that they face. Quantity constraints for the unconstrained agents don’t bind, but

the unconstrained agents must be induced to accept a consumption trajectory

that they expect to be decreasing, i.e., their continuation values must decrease

as the planner moves continuation values along the Pareto frontier P (v) in order

to increase the continuation values of the constrained agents. In the decentral-

ization, higher one-period state-contingent prices, or what are the same things,

lower state-contingent interest rates (see (20.15.3)), induce the unconstrained

agents to accept a decreasing consumption trajectory. Thus, when compared to

a corresponding complete markets economy without enforcement problems, this

is a low-interest-rate economy, a property it shares with the Bewley economies

studied in chapter 17.15

Alvarez and Jermann study how the state-contingent prices (20.15.3) be-

have as they vary the discount factor and the stochastic process for y . They use

the additional fluctuation in the stochastic discount factor injected by the par-

ticipation constraints to explain some asset pricing puzzles. See Zhang (1979)

and Lustig (2000, 2003) for further work along these lines.

15 In exercise 20.4 , we ask the reader to compute the allocation and interest rate in such

an economy.
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20.16. Concluding remarks

The model in this chapter assumes that the economy reverts to an autarkic

allocation in the event that a household chooses to deviate from the allocation

assigned in the contract. Of course, assigning autarky continuation values to

everyone puts us inside the Pareto frontier and so is inefficient. In terms of

sustaining an allocation, the important feature of the autarky allocation is just

the continuation value that it assigns to an agent who is tempted to default,

i.e., an agent whose participation constraint binds. Kletzer and Wright (2000)

recognize that it can be possible to promise an agent who is tempted to default

an autarky continuation value while giving those agents whose participation

constraints aren’t binding enough to stay on the Pareto frontier. Continuation

values that lie on the Pareto frontier are said to be “renegotiation proof”.

Further thought about how to model the consequences of default in these

settings is likely to be fruitful. By permitting coalitions of consumers to break

away and thereafter share risks among themselves, Genicot and Ray (2003)

refine a notion of sustainability in a multi-consumer economy.

Exercises

Exercise 20.1 Lagrangian method with two-sided no commitment

Consider the model of Kocherlakota with two-sided lack of commitment. Two

consumers each have preferences E0

∑∞
t=0 β

tu[ci(t)] , where u is increasing, twice

differentiable, and strictly concave, and where ci(t) is the consumption of con-

sumer i . The good is not storable, and the consumption allocation must sat-

isfy c1(t) + c2(t) ≤ 1. In period t , consumer 1 receives an endowment of

yt ∈ [0, 1], and consumer 2 receives an endowment of 1 − yt . Assume that

yt is i.i.d. over time and is distributed according to the discrete distribution

Prob(yt = ys) = Πs . At the start of each period, after the realization of ys but

before consumption has occurred, each consumer is free to walk away from the

loan contract.

a. Find expressions for the expected value of autarky, before the state ys is

revealed, for consumers of each type. (Note: These need not be equal.)
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b. Using the Lagrangian method, formulate the contract design problem of

finding an optimal allocation that for each history respects feasibility and the

participation constraints of the two types of consumers.

c. Use the Lagrangian method to characterize the optimal contract as com-

pletely as you can.

Exercise 20.2 A model of Dixit, Grossman, and Gul (2000)

For each date t ≥ 0, two political parties divide a “pie” of fixed size 1.

Party 1 receives a sequence of shares y = {yt}t≥0 and has utility function

E
∑∞

t=0 β
tU(yt), where β ∈ (0, 1), E is the mathematical expectation opera-

tor, and U(·) is an increasing, strictly concave, twice differentiable period utility

function. Party 2 receives share 1−yt and has utility function E
∑∞
t=0 β

tU(1−
yt). A state variable Xt is governed by a Markov process; X resides in one of

K states. There is a partition S1, S2 of the state space. If Xt ∈ S1 , party 1

chooses the division yt, 1 − yt , where yt is the share of party 1. If Xt ∈ S2 ,

party 2 chooses the division. At each point in time, each party has the option

of choosing “autarky,” in which case its share is 1 when it is in power and zero

when it is not in power.

Formulate the optimal history-dependent sharing rule as a recursive con-

tract. Formulate the Bellman equation. (Hint: Let V [u0(x), x] be the optimal

value for party 1 in state x when party 2 is promised value u0(x).)

Exercise 20.3 Two-state numerical example of social insurance

Consider an endowment economy populated by a large number of individuals

with identical preferences,

E

∞∑

t=0

βtu(ct) = E

∞∑

t=0

βt
(

4ct −
c2t
2

)
, with β = 0.8.

With respect to endowments, the individuals are divided into two types of equal

size. All individuals of a particular type receive zero goods with probability 0.5

and two goods with probability 0.5 in any given period. The endowments of

the two types of individuals are perfectly negatively correlated so that the per

capita endowment is always one good in every period.

The planner attaches the same welfare weight to all individuals. Without

access to outside funds or borrowing and lending opportunities, the planner

seeks to provide insurance by simply reallocating goods between the two types
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of individuals. The design of the social insurance contract is constrained by a

lack of commitment on behalf of the individuals. The individuals are free to

walk away from any social arrangement, but they must then live in autarky

evermore.

a. Compute the optimal insurance contract when the planner lacks memory;

that is, transfers in any given period can be a function only of the current

endowment realization.

b. Can the insurance contract in part a be improved if we allow for history-

dependent transfers?

c. Explain how the optimal contract changes when the parameter β goes to 1.

Explain how the optimal contract changes when the parameter β goes to zero.

Exercise 20.4 Kehoe-Levine without risk

Consider an economy in which each of two types of households has preferences

over streams of a single good that are ordered by v =
∑∞

t=0 β
tu(ct), where

u(c) = (1 − γ)−1(c+ b)1−γ for γ ≥ 1 and β ∈ (0, 1), and b > 0. For ε > 0 and

t ≥ 0, households of type 1 are endowed with an endowment stream y1,t = 1+ ε

in even-numbered periods and y1,t = 1−ε in odd-numbered periods. Households

of type 2 own an endowment stream of y2,t that equals 1−ε in even periods and

1 + ε in odd periods. There are equal numbers of the two types of household.

For convenience, you can assume that there is one of each type of household.

Assume that β = .8, b = 5, γ = 2, and ε = .5.

a. Compute autarky levels of discounted utility v for the two types of house-

holds. Call them vaut,h and vaut,` .

b. Compute the competitive equilibrium allocation and prices. Here assume

that there are no enforcement problems.

c. Compute the discounted utility to each household for the competitive equi-

librium allocation. Denote them vCEi for i = 1, 2.

d. Verify that the competitive equilibrium allocation is not self-enforcing in

the sense that at each t > 0, some households would prefer autarky to the

competitive equilibrium allocation.

e. Now assume that there are enforcement problems because at the beginning

of each period, each household can renege on contracts and other social arrange-

ments with the consequence that it receives the autarkic allocation from that
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period on. Let vi be the discounted utility at time 0 of consumer i . Formulate

the consumption smoothing problem of a planner who wants to maximize v1

subject to v2 ≥ ṽ2 , and constraints that make the allocation self-enforcing.

f. Find an efficient self-enforcing allocation of the periodic form c1,t = č, 2 −
č, č, . . . and c2,t = 2− č, č, 2− č, . . . , where continuation utilities of the two agents

oscillate between two values vh and v` . Compute č . Compute discounted

utilities vh for the agent who receives 1 + ε in the period and v` for the agent

who receives 1 − ε in the period.

Plot consumption paths for the two agents for (i) autarky, (ii) complete markets

without enforcement problems, and (iii) complete markets with the enforcement

constraint. Plot continuation utilities for the two agents for the same three

allocations. Comment on them.

g. Compute one-period gross interest rates in the complete markets economies

with and without enforcement constraints. Plot them over time. In which

economy is the interest rate higher? Explain.

h. Keep all parameters the same, but gradually increase the discount factor.

As you raise β toward 1, compute interest rates as in part g. At what value of

β do interest rates in the two economies become equal? At that value of β is

either participation constraint ever binding?

Exercise 20.5 The kink

A pure endowment economy consists of two ex ante identical consumers each

of whom values streams of a single nondurable consumption good according to

the utility functional

v = E

∞∑

t=0

βtu(ct), β ∈ (0, 1)

where E is the mathematical expectation operator and u(·) is a strictly con-

cave, increasing, and twice continuously differentiable function. The endow-

ment sequence of consumer 1 is an i.i.d. process with Prob(yt = y) = .5 and

Prob(yt = 1 − y) = .5 where y ∈ [.5, 1). The endowment sequence of consumer

2 is identically distributed with that of consumer 1, but perfectly negatively

correlated with it: whenever consumer 1 receives y , consumer 2 receives 1− y .
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Part I. (Complete markets)

In this part, please assume that there are no enforcement (or commitment)

problems.

a. Solve the Pareto problem for this economy, attaching equal weights to the

two types of consumer.

b. Show how to decentralize the allocation that solves the Pareto problem with

a competitive equilibrium with ex ante (i.e., before time 0) trading of a complete

set of history-contingent commodities. Please calculate the price of a one-period

risk-free security.

Part II. (Enforcement problems)

In this part, assume that there are enforcement problems. In particular, assume

that there is two-sided lack of commitment.

c. Pose an ex ante Pareto problem in which, after having observed its current

endowment but before receiving his allocation from the Pareto planner, each

consumer is free at any time to defect from the social contract and live thereafter

in autarky. Show how to compute the value of autarky for each type of consumer.

d. Call an allocation sustainable if neither household would ever choose to defect

to autarky. Formulate the enforcement-constrained Pareto problem recursively.

That is, please write a programming problem that can be used to compute an

optimal sustainable allocation.

e. Under what circumstance will the allocation that you found in part I solve

the enforcement-constrained Pareto problem in part d? I.e., state conditions on

u, β, y that are sufficient to make the enforcement constraints never bind.

Some useful background: For the remainder of this problem, please assume

that u, β, y, are such that the allocation computed in part I is not sustainable.

Recall that the amnesia property implies that the consumption allocated to an

agent whose participation constraint is binding is independent of the ex ante

promised value with which he enters the period. With the present i.i.d., two-

state, symmetric endowment pattern, ex ante, each period each of our two agents

has an equal chance that it is his participation constraint that is binding. In

a symmetric sustainable allocation, let each agent enter the period with the

same ex ante promised value v , and let c be the consumption allocated to the
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high endowment agent whose participation constraint is binding and let 1 − c

be the consumption allocated to the low endowment agent whose participation

constraint is not binding. By the above argument, c is independent of the

promised value v that an agent enters the period with, which means that the

current allocation to both types of agent does not depend on the promised value

with which they entered the period. And in a symmetric stationary sustainable

allocation, both consumers enter each period with the same promised value v .

f. Please give a formula for the promised value v within a symmetric stationary

sustainable allocation.

g. Use a graphical argument to show how to determine the v, c that are asso-

ciated with an optimal stationary symmetric allocation.

h. In the optimal stationary sustainable allocation that you computed in part

g, why doesn’t the planner adjust the continuation value of the consumer whose

participation constraint is binding?

i. Alvarez and Jermann showed that, provided that the usual constraints on

issuing Arrow securities are tightened enough, the optimal sustainable allocation

can be decentralized by trading in a complete set of Arrow securities with price

q(y′|y) = max
i=1,2

β
u′(cit+1(y

′))

u′(cit(y))
.5,

where q(y′|y) is the price of one unit of consumption tomorrow, contingent on

tomorrow’s endowment of the type 1 person being y′ when it is y today. This

formula has each Arrow security being priced by the agent whose participation

constraint is not binding. Heuristically, the agent who wants to buy the state-

contingent security determines its price because the agent who wants to sell it is

constrained from selling more by a limitation on the quantity of Arrow securities

that he can promise to deliver in that future state. Evidently the gross rate of

interest on a one-period risk-free security is

R(y) =
1∑

y′ q(y
′|y) ,

for y = y and y = 1 − y .

For the case in which the parameters are such that the allocation computed

in part I is not sustainable (so that the participation constraints bind), please
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compute the risk-free rate of interest. Is it higher or lower than that for the

complete markets economy without enforcement problems that you analyzed in

part I?



Chapter 21
Optimal Unemployment Insurance

21.1. History-dependent unemployment insurance

This chapter applies the recursive contract machinery studied in chapters 19,

20, and 22 in contexts that are simple enough that we can go a long way toward

computing the optimal contracts by hand. The contracts encode history depen-

dence by mapping an initial value and a random time t observation into a time

t consumption allocation and a continuation value to bring into next period.

We use recursive contracts to study good ways of insuring unemployment when

incentive problems come from the insurance authority’s inability to observe the

effort that an unemployed person exerts searching for a job. We begin by study-

ing a setup of Shavell and Weiss (1979) and Hopenhayn and Nicolini (1997)

that focuses on a single isolated spell of unemployment followed by a single

spell of employment. Later we take up settings of Wang and Williamson (1996)

and Zhao (2001) with alternating spells of employment and unemployment in

which the planner has limited information about a worker’s effort while he is on

the job, in addition to not observing his search effort while he is unemployed.

Here history dependence manifests itself in an optimal contract with intertem-

poral tie-ins across these spells. Zhao uses her model to offer a rationale for a

“replacement ratio” in unemployment compensation programs.

– 751 –
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21.2. A one-spell model

This section describes a model of optimal unemployment compensation along

the lines of Shavell and Weiss (1979) and Hopenhayn and Nicolini (1997). We

shall use the techniques of Hopenhayn and Nicolini to analyze a model closer

to Shavell and Weiss’s. An unemployed worker orders stochastic processes of

consumption and search effort {ct, at}∞t=0 according to

E

∞∑

t=0

βt [u(ct) − at] (21.2.1)

where β ∈ (0, 1) and u(c) is strictly increasing, twice differentiable, and strictly

concave. We assume that u(0) is well defined. We require that ct ≥ 0 and

at ≥ 0. All jobs are alike and pay wage w > 0 units of the consumption good

each period forever. An unemployed worker searches with effort a and with

probability p(a) receives a permanent job at the beginning of the next period.

Once a worker has found a job, he is beyond the grasp of the unemployment

insurance agency.1 Furthermore, a = 0 once the worker is employed. The

probability of finding a job is p(a) where p is an increasing and strictly concave

and twice differentiable function of a , satisfying p(a) ∈ [0, 1] for a ≥ 0, p(0) =

0. The consumption good is nonstorable. The unemployed worker has no savings

and cannot borrow or lend. The insurance agency is the unemployed worker’s

only source of consumption smoothing over time and across states.

1 This is Shavell and Weiss’s assumption, but not Hopenhayn and Nicolini’s. Hopenhayn

and Nicolini allow the unemployment insurance agency to impose history-dependent taxes

on previously unemployed workers. Since there is no incentive problem after the worker has

found a job, it is optimal for the agency to provide an employed worker with a constant level

of consumption, and hence, the agency imposes a permanent per-period history-dependent

tax on a previously unemployed worker.
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21.2.1. The autarky problem

As a benchmark, we first study the fate of the unemployed worker who has no

access to unemployment insurance. Because employment is an absorbing state

for the worker, we work backward from that state. Let V e be the expected

sum of discounted utility of an employed worker. Once the worker is employed,

a = 0, making his period utility be u(c) − a = u(w) forever. Therefore,

V e =
u(w)

(1 − β)
. (21.2.2)

Now let V u be the expected present value of utility for an unemployed worker

who chooses the current period pair (c, a) optimally. The Bellman equation for

V u is

V u = max
a≥0

{u(0) − a+ β [p(a)V e + (1 − p(a))V u]} . (21.2.3)

The first-order condition for this problem is

βp′(a) [V e − V u] ≤ 1 , (21.2.4)

with equality if a > 0. Since there is no state variable in this infinite horizon

problem, there is a time-invariant optimal search intensity a and an associated

value of being unemployed that we denote Vaut .

Equations (21.2.3) and (21.2.4) form the basis for an iterative algorithm

for computing V u = Vaut . Let V uj be the estimate of Vaut at the j th iteration.

Use this value in equation (21.2.4) and solve for an estimate of effort aj . Use

this value in a version of equation (21.2.3) with V uj on the right side to compute

V uj+1 . Iterate to convergence.
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21.2.2. Unemployment insurance with full information

As another benchmark, we study the provision of insurance with full informa-

tion. An insurance agency can observe and control the unemployed person’s

consumption and search effort. The agency wants to design an unemployment

insurance contract to give the unemployed worker discounted expected value

V > Vaut . The planner wants to deliver value V in the most efficient way,

meaning the way that minimizes expected discounted costs, using β as the

discount factor. We formulate the optimal insurance problem recursively. Let

C(V ) be the expected discounted costs of giving the worker expected discounted

utility V . The cost function is strictly convex because a higher V implies a

lower marginal utility of the worker; that is, additional expected “utils” can

be granted to the worker only at an increasing marginal cost in terms of the

consumption good. Given V , the planner assigns first-period pair (c, a) and

promised continuation value V u , should the worker be unlucky and not find a

job; (c, a, V u) will all be chosen to be functions of V and to satisfy the Bellman

equation

C(V ) = min
c,a,V u

{c+ β[1 − p(a)]C(V u)} , (21.2.5)

where the minimization is subject to the promise-keeping constraint

V ≤ u(c) − a+ β {p(a)V e + [1 − p(a)]V u} . (21.2.6)

Here V e is given by equation (21.2.2), which reflects the assumption that once

the worker is employed, he is beyond the reach of the unemployment insurance

agency. The right side of the Bellman equation is attained by policy functions

c = c(V ), a = a(V ), and V u = V u(V ). The promise-keeping constraint, equa-

tion (21.2.6), asserts that the 3-tuple (c, a, V u) attains at least V . Let θ be

the multiplier on constraint (21.2.6). At an interior solution, the first-order

conditions with respect to c, a , and V u , respectively, are

θ =
1

u′(c)
, (21.2.7a)

C(V u) = θ

[
1

βp′(a)
− (V e − V u)

]
, (21.2.7b)

C′(V u) = θ . (21.2.7c)

The envelope condition C′(V ) = θ and equation (21.2.7c) imply that

C′(V u) = C′(V ). Strict convexity of C then implies that V u = V . Applied
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repeatedly over time, V u = V makes the continuation value remain constant

during the entire spell of unemployment. Equation (21.2.7a) determines c , and

equation (21.2.7b) determines a , both as functions of the promised V . That

V u = V then implies that c and a are held constant during the unemployment

spell. Thus, the worker’s consumption is “fully smoothed” during the unem-

ployment spell. But the worker’s consumption is not smoothed across states of

employment and unemployment unless V = V e .

21.2.3. The incentive problem

The preceding insurance scheme requires that the insurance agency control both

c and a . It will not do for the insurance agency simply to announce c and then

allow the worker to choose a . Here is why.

The agency delivers a value V u higher than the autarky value Vaut by doing

two things. It increases the unemployed worker’s consumption c and decreases

his search effort a . But the prescribed search effort is higher than what the

worker would choose if he were to be guaranteed consumption level c while

he remains unemployed. This follows from equations (21.2.7a) and (21.2.7b)

and the fact that the insurance scheme is costly, C(V u) > 0, which imply

[βp′(a)]−1 > (V e − V u). But look at the worker’s first-order condition (21.2.4)

under autarky. It implies that if search effort a > 0, then [βp(a)]−1 = [V e−V u] ,
which is inconsistent with the preceding inequality [βp′(a)]−1 > (V e−V u) that

prevails when a > 0 under the social insurance arrangement. If he were free

to choose a , the worker would therefore want to fulfill (21.2.4), at equality so

long as a > 0, or by setting a = 0 otherwise. Starting from the a associated

with the social insurance scheme, he would establish the desired equality in

(21.2.4) by lowering a , thereby decreasing the term [βp′(a)]−1 (which also

lowers (V e − V u) when the value of being unemployed V u increases]). If an

equality can be established before a reaches zero, this would be the worker’s

preferred search effort; otherwise the worker would find it optimal to accept

the insurance payment, set a = 0, and never work again. Thus, since the

worker does not take the cost of the insurance scheme into account, he would

choose a search effort below the socially optimal one. Therefore, the efficient

contract exploits the agency’s ability to control both the unemployed worker’s

consumption and his search effort.
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21.2.4. Unemployment insurance with asymmetric information

Following Shavell and Weiss (1979) and Hopenhayn and Nicolini (1997), now

assume that the unemployment insurance agency cannot observe or enforce a ,

though it can observe and control c . The worker is free to choose a , which puts

expression (21.2.4) back in the picture.2 Given any contract, the individual

will choose search effort according to the first-order condition (21.2.4). This

fact leads the insurance agency to design the unemployment insurance contract

to respect this restriction. Thus, the recursive contract design problem is now

to minimize equation (21.2.5) subject to expression (21.2.6) and the incentive

constraint (21.2.4).

Since the restrictions (21.2.4) and (21.2.6) are not linear and generally

do not define a convex set, it becomes difficult to provide conditions under

which the solution to the dynamic programming problem results in a convex

function C(V ). As discussed in Appendix A of chapter 19, this complication

can be handled by convexifying the constraint set through the introduction

of lotteries. However, a common finding is that optimal plans do not involve

lotteries, because convexity of the constraint set is a sufficient but not necessary

condition for convexity of the cost function. Following Hopenhayn and Nicolini

(1997), we therefore proceed under the assumption that C(V ) is strictly convex

in order to characterize the optimal solution.

Let η be the multiplier on constraint (21.2.4), while θ continues to denote

the multiplier on constraint (21.2.6). But now we replace the weak inequality

in (21.2.6) by an equality. The unemployment insurance agency cannot award

a higher utility than V because that might violate an incentive-compatibility

constraint for exerting the proper search effort in earlier periods. At an interior

solution, the first-order conditions with respect to c, a , and V u , respectively,

are3

θ =
1

u′(c)
, (21.2.8a)

C(V u) = θ

[
1

βp′(a)
− (V e − V u)

]
− η

p′′(a)

p′(a)
(V e − V u)

2 We are assuming that the worker’s best response to the unemployment insurance ar-

rangement is completely characterized by the first-order condition (21.2.4), the so-called

“first-order” approach to incentive problems.
3 Hopenhayn and Nicolini let the insurance agency also choose V e , the continuation value

from V, if the worker finds a job. This approach reflects their assumption that the agency

can tax a previously unemployed worker after he becomes employed.
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= −η p
′′(a)

p′(a)
(V e − V u) , (21.2.8b)

C′(V u) = θ − η
p′(a)

1 − p(a)
, (21.2.8c)

where the second equality in equation (21.2.8b) follows from strict equality of

the incentive constraint (21.2.4) when a > 0. As long as the insurance scheme is

associated with costs, so that C(V u) > 0, first-order condition (21.2.8b) implies

that the multiplier η is strictly positive. The first-order condition (21.2.8c) and

the envelope condition C′(V ) = θ together allow us to conclude that C′(V u) <

C′(V ). Convexity of C then implies that V u < V . After we have also used

equation (21.2.8a), it follows that in order to provide him with the proper

incentives, the consumption of the unemployed worker must decrease as the

duration of the unemployment spell lengthens. It also follows from (21.2.4) at

equality that search effort a rises as V u falls, i.e., it rises with the duration of

unemployment.

The duration dependence of benefits is designed to provide incentives to

search. To see this, from (21.2.8c), notice how the conclusion that consumption

falls with the duration of unemployment depends on the assumption that more

search effort raises the prospect of finding a job, i.e., that p′(a) > 0. If p′(a) = 0,

then (21.2.8c) and the strict convexity of C imply that V u = V . Thus, when

p′(a) = 0, there is no reason for the planner to make consumption fall with the

duration of unemployment.

21.2.5. Computed example

For parameters chosen by Hopenhayn and Nicolini, Figure 21.2.1 displays the

replacement ratio c/w as a function of the duration of the unemployment spell.4

This schedule was computed by finding the optimal policy functions

V ut+1 = f(V ut )

ct = g(V ut ).

4 This figure was computed using the Matlab programs hugo.m, hugo1a.m, hugofoc1.m,

valhugo.m. These are available in the subdirectory hugo, which contains a readme file. These

programs were composed by various members of Economics 233 at Stanford in 1998, especially

Eva Nagypal, Laura Veldkamp, and Chao Wei.
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Figure 21.2.1: Top panel: replacement ratio c/w as a func-

tion of duration of unemployment in the Shavell-Weiss model.

Bottom panel: effort a as a function of duration.

and iterating on them, starting from some initial V u0 > Vaut , where Vaut is

the autarky level for an unemployed worker. Notice how the replacement ratio

declines with duration. Figure 21.2.1 sets V u0 at 16,942, a number that has to

be interpreted in the context of Hopenhayn and Nicolini’s parameter settings.

We computed these numbers using the parametric version studied by Hopen-

hayn and Nicolini.5 Hopenhayn and Nicolini chose parameterizations and pa-

rameters as follows: They interpreted one period as one week, which led them

to set β = .999. They took u(c) = c(1−σ)

1−σ and set σ = .5. They set the wage

w = 100 and specified the hazard function to be p(a) = 1 − exp(−ra), with r

chosen to give a hazard rate p(a∗) = .1, where a∗ is the optimal search effort

under autarky. To compute the numbers in Figure 21.2.1 we used these same

settings.

5 In section 4.7.3, we described a computational strategy of iterating to convergence on

the Bellman equation (21.2.5), subject to expressions (21.2.6) at equality, and (21.2.4).
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21.2.6. Computational details

Exercise 21.1 asks the reader to solve the Bellman equation numerically. In

doing so, it is useful to note that there are natural lower and upper bounds to

the set of continuation values V u . The lower bound is the expected lifetime

utility in autarky, Vaut . To compute the upper bound, represent condition

(21.2.4) as

V u ≥ V e − [βp′(a)]−1,

with equality if a > 0. If there is zero search effort, then V u ≥ V e− [βp′(0)]−1 .

Therefore, to rule out zero search effort we require

V u < V e − [βp′(0)]−1.

(Remember that p′′(a) < 0.) This step gives our upper bound for V u .

To formulate the Bellman equation numerically, we suggest using the con-

straints to eliminate c and a as choice variables, thereby reducing the Bellman

equation to a minimization over the one choice variable V u . First express the

promise-keeping constraint (21.2.6) as u(c) = V +a−β{p(a)V e+[1−p(a)]V u} .

That is, consumption is equal to

c = u−1 (V + a− β[p(a)V e + (1 − p(a))V u]) . (21.2.9)

Similarly, solving the inequality (21.2.4) for a and using the assumed functional

form for p(a) leads to

a = max

{
0,

log[rβ(V e − V u)]

r

}
. (21.2.10)

Formulas (21.2.9) and (21.2.10) express (c, a) as functions of V and the contin-

uation value V u . Using these functions allows us to write the Bellman equation

in C(V ) as

C(V ) = min
V u

{c+ β[1 − p(a)]C(V u)} (21.2.11)

where c and a are given by equations (21.2.9) and (21.2.10).
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21.2.7. Interpretations

The substantial downward slope in the replacement ratio in Figure 21.2.1 comes

entirely from the incentive constraints facing the planner. We saw earlier that

without private information, the planner would smooth consumption over the

unemployment spell by keeping the replacement ratio constant. In the situation

depicted in Figure 21.2.1, the planner can’t observe the worker’s search effort and

therefore makes the replacement ratio fall and search effort rise as the duration

of unemployment increases, especially early in an unemployment spell. There is

a “carrot-and-stick” aspect to the replacement rate and search effort schedules:

the “carrot” occurs in the forms of high compensation and low search effort

early in an unemployment spell. The “stick” occurs in the low compensation

and high effort later in the spell. We shall see this carrot-and-stick feature in

some of the credible government policies analyzed in chapters 22 and 23.

The planner offers declining benefits and asks for increased search effort

as the duration of an unemployment spell rises in order to provide unemployed

workers with proper incentives, not to punish an unlucky worker who has been

unemployed for a long time. The planner believes that a worker who has been

unemployed a long time is unlucky, not that he has done anything wrong (i.e.,

not lived up to the contract). Indeed, the contract is designed to induce the

unemployed workers to search in the way the planner expects. The falling con-

sumption and rising search effort of the unlucky ones with long unemployment

spells are simply the prices that have to be paid for the common good of pro-

viding proper incentives.

21.2.8. Extension: an on-the-job tax

Hopenhayn and Nicolini allow the planner to tax the worker after he becomes

employed, and they let the tax depend on the duration of unemployment. Giving

the planner this additional instrument substantially decreases the rate at which

the replacement ratio falls during a spell of unemployment. Instead, the planner

makes use of a more powerful tool: a permanent bonus or tax after the worker

becomes employed. Because it endures, this tax or bonus is especially potent

when the discount factor is high. In exercise 21.2 , we ask the reader to set up

the functional equation for Hopenhayn and Nicolini’s model.
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21.2.9. Extension: intermittent unemployment spells

In Hopenhayn and Nicolini’s model, employment is an absorbing state and there

are no incentive problems after a job is found. There are not multiple spells of

unemployment. Wang and Williamson (1996) built a model in which there

can be multiple unemployment spells, and in which there is also an incentive

problem on the job. As in Hopenhayn and Nicolini’s model, search effort affects

the probability of finding a job. In addition, while on a job, effort affects the

probability that the job ends and that the worker becomes unemployed again.

Each job pays the same wage. In Wang and Williamson’s setup, the promised

value keeps track of the duration and number of spells of employment as well as

of the number and duration of spells of unemployment. One contract transcends

employment and unemployment.

21.3. A multiple-spell model with lifetime contracts

Rui Zhao (2001) modifies and extends features of Wang and Williamson’s model.

In her model, effort on the job affects output as well as the probability that

the job will end. In Zhao’s model, jobs randomly end, recurrently returning a

worker to the state of unemployment. The probability that a job ends depends

directly or indirectly on the effort that workers expend on the job. A planner

observes the worker’s output and employment status, but never his effort, and

wants to insure the worker. Using recursive methods, Zhao designs a history-

dependent assignment of unemployment benefits, if unemployed, and wages, if

employed, that balance a planner’s desire to insure the worker with the need

to provide incentives to supply effort in work and search. The planner uses

history dependence to tie compensation while unemployed (or employed) to

earlier outcomes that partially inform the planner about the workers’ efforts

while employed (or unemployed). These intertemporal tie-ins give rise to what

Zhao interprets broadly as a “replacement rate” feature that we seem to observe

in unemployment compensation systems.
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21.3.1. The setup

In a special case of Zhao’s model, there are two effort levels. Where a ∈ {aL, aH}
is a worker’s effort and yi > yi−1 , an employed worker produces yt ∈ [y1, · · · , yn]
with probability

Prob(yt = yi) = p(yi; a).

Zhao assumes:

Assumption 1: p(yi; a) satisfies the monotone likelihood ratio property:
p(yi;aH)
p(yi;aL) increases as yi increases.

At the end of each period, jobs end with probability πeu . Zhao embraces

one of two alternative assumptions about the job separation rate πeu , allowing

it to depend on either current output y or current work effort a . She assumes:

Assumption 2: Either πeu(y) decreases with y or πeu(a) decreases with

a .

Unemployed workers produce nothing and search for a job subject to the

following assumption about the job finding rate πue(a):

Assumption 3: πue(a) increases with a .

The worker’s one-period utility function is U(c, a) = u(c) − φ(a) where

u(·) is continuously differentiable, strictly increasing and strictly concave, and

φ(a) is continuous, strictly increasing, and strictly convex. The worker orders

random {ct, at}∞t=0 sequences according to

E
∞∑

t=0

βtU(ct, at), β ∈ (0, 1). (21.3.1)

We shall regard a planner as being a coalition of firms united with an

unemployment insurance agency. The planner is risk neutral and can borrow

and lend at a constant risk-free gross one-period interest rate of R = β−1 .

Let the worker’s employment state be st ∈ S = {e, u} where e denotes

employed, u unemployed. The worker’s output at t is

zt =

{
0 if st = u,

yt if st = e.

For t ≥ 1, the time t component of the publicly observed information is

xt = (zt−1, st),
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and x0 = s0 . At time t , the planner observes the history xt and the worker

observes (xt, at).

The transition probability for xt+1 ≡ (zt, st+1) can be factored as follows:

π(xt+1|st, at) = πz(zt; st, at)πs(st+1; zt, st, at) (21.3.2)

where πz is the distribution of output conditioned on the state and the action,

and πs encodes the transition probabilities of employment status conditional

on output, current employment status, and effort. In particular, Zhao assumes

that
πs(u; 0, u, a) = 1 − πue(a)

πs(e; 0, u, a) = πue(a)

πs(u; y, e, a) = πeu(y, a)

πs(e; y, e, a) = 1 − πeu(y, a).

(21.3.3)

21.3.2. A recursive lifetime contract

Consider a worker with beginning-of-period employment status s and promised

value v . For given (v, s), let w(z, s′) be the continuation value of promised

utility (21.3.1) for next period when today’s output is z and tomorrow’s em-

ployment state is s′ . At the beginning of next period, (z, s′) will be the labor

market outcome most recently observed by the planner. Let W = {Ws}s∈{u,e}

be two compact sets of continuation values, one set for s = u and another for

s = e . For each (v, s), a recursive contract specifies a recommended effort level

a today, an output-contingent consumption level c(z) today, and continuation

values w(z, s′) to be used to reset v tomorrow.

For each (v, s), the contract (a, c(z), w(z, s′)) must satisfy:

∑

z

πz(z; s, a)

(
u(c(z)) + β

∑

s′

πs(s
′; z, s, a)w(z, s′)

)
− φ(a) = v (21.3.4)

and

∑

z

πz(z; s, a)

(
u(c(z)) + β

∑

s′

πs(s
′; z, s, a)w(z, s′)

)
− φ(a) ≥

∑

z

πz(z; s, ã)

(
u(c(z)) + β

∑

s′

πs(s
′; z, s, ã)w(z, s′)

)
− φ(ã) ∀ã.

(21.3.5)
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Constraint (21.3.4) entails promise keeping, while (21.3.5) are the incentive-

compatibility or “effort-inducing” constraints. In addition, a contract has to

satisfy c ≤ c(z) ≤ c for all z and w(z, s′) ∈Ws′ for all (z, s′). A contract is said

to be incentive compatible if it satisfies the incentive compatibility constraints

(21.3.5).6

Definition: A recursive contract (a, c(z), w(z, s′)) is said to be feasible with

respect to W for a given (v, s) pair if it is incentive compatible in state s ,

delivers promised value v , and w(z, s′) ∈Ws′ for all (z, s′).

Let C(v, s) be the minimum cost to the planner of delivering promised

value v to a worker in employment state s . We can represent the Bellman

equation for C(v, s) in terms of the following two-part optimization:

Ψ(v, s, a) = min
c(z),w(z,s′)

{
∑

z

πz(z; s, a)
(
−z + c(z)

+ β
∑

s′

πs(s
′; z, s, a)C(w(z, s′), s′)

)}
(21.3.6a)

subject to constraints (21.3.4) and (21.3.5), and

C(v, s) = min
a∈[aL,aH ]

Ψ(v, s, a). (21.3.6b)

The function Ψ(v, s, a) assumes that the worker exerts effort level a . Later, we

shall typically assume that parameters are such that C(v, s) = Ψ(v, s, aH), so

that the planner finds it optimal always to induce high effort. Put a Lagrange

multiplier λ(v, s, a) on the promise-keeping constraint (21.3.4) and another mul-

tiplier ν(v, s, a) on the effort-inducing constraint (21.3.5) given a , and form the

6 We assume two-sided commitment to the contract and therefore ignore the participation

constraints that Zhao imposes on the contract. She requires that continuation values w(z, s′)

be at least as great as the autarky values Vs′,aut for each (z, s′) .
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Lagrangian:

L =
∑

z

πz(z; s, a)

{
−z + c(z) + β

∑

s′

πs(s
′; z, s, a)C(w(z, s′), s′)

− λ(v, s, a)

[
u(c(z)) + β

∑

s′

πs(s
′; z, s, a)w(z, s′)) − φ(a) − v

]

− ν(v, s, a)

[
u(c(z)) + β

∑

s′

πs(s
′; z, s, a)w(z, s′) − φ(a)

− πz(z; s, ã)

πz(z; s, a)

(
u(c(z)) + β

∑

s′

πs(s
′; z, s, ã)w(z, s′) − φ(ã)

)]}
,

where ã ∈ {aL, aH} and ã 6= a . First-order conditions for c(z) and w(z, s′),

respectively, are

1

u′(c(z))
=λ(v, s, a) + ν(v, s, a)

(
1 − πz(z; s, ã)

πz(z; s, a)

)
(21.3.7a)

Cv(w(z, s′), s′) =λ(v, s, a)

+ ν(v, s, a)

[
1 − πz(z; s, ã)

πz(z; s, a)

πs(s
′; s, z, ã)

πs(s′; z, s, a)

]
. (21.3.7b)

The envelope conditions are

Ψv(v, s, a) = λ(v, s, a) (21.3.8a)

Cv(v, s) = Ψv(v, s, a
∗) (21.3.8b)

where a∗ is the planner’s optimal choice of a .

To deduce the dynamics of compensation, Zhao’s strategy is to study the

first-order conditions (21.3.7) and envelope conditions (21.3.8) under two cases,

s = u and s = e .
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21.3.3. Compensation dynamics when unemployed

In the unemployed state (s = u), the first-order conditions become

1

u′(c)
= λ(v, u, a) (21.3.9a)

Cv(w(0, u), u) = λ(v, u, a) + ν(v, u, a)

[
1 − 1 − πue(ã)

1 − πue(a)

]
(21.3.9b)

Cv(w(0, e), e) = λ(v, u, a) + ν(v, u, a)

[
1 − πue(ã)

πue(a)

]
. (21.3.9c)

The effort-inducing constraint (21.3.5) can be rearranged to become

β(πue(a) − πue(ã))(w(0, e) − w(0, u)) ≥ φ(a) − φ(ã).

Like Hopenhayn and Nicolini, Zhao describes how compensation and effort de-

pend on the duration of unemployment:

Proposition: To induce high search effort, unemployment benefits must

fall over an unemployment spell.

Proof: When search effort is high, the effort-inducing constraint binds. By

assumption 3,
1 − πue(aL)

1 − πue(aH)
> 1 >

πue(aL)

πue(aH)
.

These inequalities and the first-order condition (21.3.9) then imply

Cv(w(0, e), e) > Ψv(v, u, aH) > Cv(w(0, u), u). (21.3.10)

Let cu(t), vu(t), respectively, be consumption and the continuation value for an

unemployed worker. Equations (21.3.9) and the envelope conditions imply

1

u′(cu(t))
= Ψv(vu(t), u, aH) > Cv(vu(t+ 1), u) =

1

u′(cu(t+ 1))
. (21.3.11)

Concavity of u then implies that cu(t) > cu(t+ 1). In addition, notice that

Cv(w(0, u), u) − Cv(v, u) = ν(v, u, aH)

(
1 − 1 − πue(aL)

1 − πue(aH)

)
, (21.3.12)

which follows from the first-order conditions (21.3.9) and the envelope condi-

tions. Equation (21.3.12) implies that continuation values fall with the duration

of unemployment.
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21.3.4. Compensation dynamics while employed

When the worker is employed, for each promised value v , the contract specifies

output-contingent consumption and continuation values a c(y), w(y, s′). When

s = e , the first-order conditions (21.3.7) become

1

u′(c(y))
= λ(v, e, a) + ν(v, e, a)

(
1 − p(y; ã)

p(y; a)

)
(21.3.13a)

Cv(w(y, u), u) = λ(v, e, a) + ν(v, e, a)

(
1 − p(y; ã)

p(y; a)

πeu(y, ã)

πeu(y, a)

)
(21.3.13b)

Cv(w(y, e), e) = λ(v, e, a) + ν(v, e, a)

(
1 − p(y; ã)

p(y; a)

1 − πeu(y, ã)

1 − πeu(y, a)

)
. (21.3.13b)

Zhao uses these first-order conditions to characterize how compensation depends

on output:

Proposition: To induce high work effort, wages and continuation values

increase with current output.

Proof: For any y > ỹ , let d = p(ỹ;aL)
p(ỹ;aH) −

p(y;aL)
p(y;aH) . Assumption 1 about p(y; a)

implies that d > 0. The first-order conditions (21.3.13) imply that

1

u′(c(y))
− 1

u′(c(ỹ))
= ν(v, e, a)d > 0, (21.3.14a)

Cv(w(y, u), u) − Cv(w(ỹ, u), u) ∝ ν(v, e, a)d > 0, (21.3.14b)

Cv(w(y, e), e) − Cv(w(ỹ, e), e) ∝ ν(v, e, a)d > 0. (21.3.14c)

Concavity of u and convexity of C give the result.

In the following proposition, Zhao shows how continuation values at the

start of unemployment spells should depend on the history of the worker’s out-

comes during previous employment and unemployment spells.

Proposition: If the job separation rate depends on current output, then

the replacement rate immediately after a worker loses a job is 100%. If the job

separation rate depends on work effort, then the replacement rate is less than

100%.

Proof: If the job separation rate depends on output , the first-order conditions

(21.3.13) imply

1

u′(c(y))
= Cv(w(y, u), u) = Cv(w(y, e), e)). (21.3.15)
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This is because πeu(y, ã) = πeu(y, a) when the job separation rate depends on

output. Let ce(t), cu(t) be consumption of employed and unemployed workers,

and let ve(t), vu(t) be the assigned promised values at t . Then

1

u′(ce(t))
= Cv(vu,t+1, u) =

1

cu(t+ 1)

where the first equality follows from (21.3.15) and the second from the envelope

condition. If the job separation rate depends on work effort , then the first-order

conditions (21.3.13) imply

1

u′(c(y))
− Cv(w(y, u), u) = ν(v, e, a)

p(y; aL)

p(y; aH)

(
πeu(aL)

πeu(aH)
− 1

)
. (21.3.16)

Assumption 2 implies that the right side of (21.3.16) is positive, which implies

that
1

u′(ce(t))
> Cv(vu(t+ 1), u) =

1

u′(cu(t+ 1))
.

21.3.5. Summary

A worker in Zhao’s model enters a lifetime contract that makes compensation

respond to the history of outputs on the current and past jobs, as well as on the

durations of all previous spells of unemployment.7 Her model has the outcome

that compensation at the beginning of an unemployment spell varies directly

with the compensation attained on the previous job. This aspect of her model

offers a possible explanation for why unemployment insurance systems often

feature a “replacement rate” that gives more unemployment insurance payments

to workers who had higher wages in their prior jobs.

7 We have analyzed a version of Zhao’s model in which the worker is committed to obey

the contract. Zhao incorporates an enforcement problem in her model by allowing the worker

to accept an outside option each period.
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21.4. Concluding remarks

The models that we have studied in this chapter isolate the worker from capital

markets so that the worker cannot transfer consumption across time or states

except by adhering to the contract offered by the planner. If the worker in the

models of this chapter were allowed to save or issue a risk-free asset bearing a

gross one-period rate of return approaching β−1 , it would interfere substantially

with the planner’s ability to provide incentives by manipulating the worker’s

continuation value in response to observed current outcomes. In particular,

forces identical to those analyzed in the Cole and Kocherlakota setup that we

analyzed at length in chapter 19 would circumscribe the planner’s ability to

supply insurance. In the context of unemployment insurance models like that

of this chapter, this point has been studied in detail in papers by Ivan Werning

(2002) and Kocherlakota (2004).

Exercises

Exercise 21.1 Optimal unemployment compensation

a. Write a program to compute the autarky solution, and use it to reproduce

Hopenhayn and Nicolini’s calibration of r , as described in text.

b. Use your calibration from part a. Write a program to compute the optimum

value function C(V ) for the insurance design problem with incomplete infor-

mation. Use the program to form versions of Hopenhayn and Nicolini’s table 1,

column 4 for three different initial values of V , chosen by you to belong to the

set (Vaut, V
e).

Exercise 21.2 Taxation after employment

Show how the functional equation (21.2.5), (21.2.6) would be modified if the

planner were permitted to tax workers after they became employed.

Exercise 21.3 Optimal unemployment compensation with unobserv-

able wage offers

Consider an unemployed person with preferences given by

E

∞∑

t=0

βtu(ct) ,
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where β ∈ (0, 1) is a subjective discount factor, ct ≥ 0 is consumption at time

t , and the utility function u(c) is strictly increasing, twice differentiable, and

strictly concave. Each period the worker draws one offer w from a uniform

wage distribution on the domain [wL, wH ] with 0 ≤ wL < wH < ∞ . Let the

cumulative density function be denoted F (x) = Prob{w ≤ x} , and denote its

density by f , which is constant on the domain [wL, wH ] . After the worker

has accepted a wage offer w , he receives the wage w per period forever. He

is then beyond the grasp of the unemployment insurance agency. During the

unemployment spell, any consumption smoothing has to be done through the

unemployment insurance agency because the worker holds no assets and cannot

borrow or lend.

a. Characterize the worker’s optimal reservation wage when he is entitled to a

time-invariant unemployment compensation b of indefinite duration.

b. Characterize the optimal unemployment compensation scheme under full

information. That is, we assume that the insurance agency can observe and

control the unemployed worker’s consumption and reservation wage.

c. Characterize the optimal unemployment compensation scheme under asym-

metric information where the insurance agency cannot observe wage offers,

though it can observe and control the unemployed worker’s consumption. Dis-

cuss the optimal time profile of the unemployed worker’s consumption level.

Exercise 21.4 Full unemployment insurance

An unemployed worker orders stochastic processes of consumption, search effort

{ct, at}∞t=0 according to

E
∞∑

t=0

βt [u(ct) − at]

where β ∈ (0, 1) and u(c) is strictly increasing, twice differentiable, and strictly

concave. It is required that ct ≥ 0 and at ≥ 0. All jobs are alike and pay wage

w > 0 units of the consumption good each period forever. After a worker has

found a job, the unemployment insurance agency can tax the employed worker

at a rate τ consumption goods per period. The unemployment agency can make

τ depend on the worker’s unemployment history. The probability of finding a

job is p(a), where p is an increasing and strictly concave and twice differentiable

function of a , satisfying p(a) ∈ [0, 1] for a ≥ 0, p(0) = 0. The consumption

good is nonstorable. The unemployed person cannot borrow or lend and holds
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no assets. If the unemployed worker is to do any consumption smoothing, it

has to be through the unemployment insurance agency. The insurance agency

can observe the worker’s search effort and can control his consumption. An

employed worker’s consumption is w − τ per period.

a. Let Vaut be the value of an unemployed worker’s expected discounted utility

when he has no access to unemployment insurance. An unemployment insurance

agency wants to insure unemployed workers and to deliver expected discounted

utility V > Vaut at minimum expected discounted cost C(V ). The insurance

agency also uses the discount factor β . The insurance agency controls c, a, τ ,

where c is consumption of an unemployed worker. The worker pays the tax τ

only after he becomes employed. Formulate the Bellman equation for C(V ).

Exercise 21.5 Two effort levels

An unemployment insurance agency wants to insure unemployed workers in the

most efficient way. An unemployed worker receives no income and chooses a

sequence of search intensities at ∈ {0, a} to maximize the utility functional

(1) E0

∞∑

t=0

βt {u(ct) − at} , β ∈ (0, 1)

where u(c) is an increasing, strictly concave, and twice continuously differen-

tiable function of consumption of a single good. There are two values of the

search intensity, 0 and a . The probability of finding a job at the beginning of

period t+ 1 is

(2) π(at) =

{
π(a), if at = a;

π(0) < π(a), if at = 0,

where we assume that a > 0. Note that the worker exerts search effort in

period t and possibly receives a job at the beginning of period t + 1. Once

the worker finds a job, he receives a fixed wage w forever, sets a = 0, and

has continuation utility Ve = u(w)
1−β . The consumption good is not storable and

workers can neither borrow nor lend. The unemployment agency can borrow

and lend at a constant one-period risk-free gross interest rate of R = β−1 . The

unemployment agency cannot observe the worker’s effort level.
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Subproblem A

a. Let V be the value of (1) that the unemployment agency has promised an

unemployed worker at the start of a period (before he has made his search deci-

sion). Let C(V ) be the minimum cost to the unemployment insurance agency of

delivering promised value V . Assume that the unemployment insurance agency

wants the unemployed worker to set at = a for as long as he is unemployed

(i.e., it wants to promote high search effort). Formulate a Bellman equation for

C(V ), being careful to specify any promise-keeping and incentive constraints.

(Assume that there are no participation constraints: the unemployed worker

must participate in the program.)

b. Show that if the incentive constraint binds, then the unemployment agency

offers the worker benefits that decline as the duration of unemployment grows.

c. Now alter assumption (2) so that π(a) = π(0). Do benefits still decline with

increases in the duration of unemployment? Explain.

Subproblem B

d. Now assume that the unemployment insurance agency can tax the worker

after he has found a job, so that his continuation utility upon entering a state

of employment is u(w−τ)
1−β , where τ is a tax that is permitted to depend on

the duration of the unemployment spell. Defining V as above, formulate the

Bellman equation for C(V ).

e. Show how the tax τ responds to the duration of unemployment.



Chapter 22
Credible Government Policies

22.1. Introduction

The timing of actions can matter.1 Kydland and Prescott (1977) opened the

modern discussion of time consistency in macroeconomics with some examples

that show how outcomes differ in otherwise identical economies when the as-

sumptions about the timing of government policy choices are altered. In par-

ticular, they compared a timing protocol in which a government determines its

(possibly state-contingent) policies once and for all at the beginning of the econ-

omy with one in which the government chooses sequentially. Because outcomes

are worse when the government chooses sequentially, Kydland and Prescott’s

examples illustrate the value to a government of having access to a commitment

technology that binds it not to choose sequentially.

Subsequent work on time consistency focused on how a reputation can substi-

tute for a commitment technology when the government chooses sequentially.2

The issue is whether incentives and expectations can be arranged so that a gov-

ernment adheres to an expected pattern of behavior because it would worsen its

reputation if it did not.

The “folk theorem” states that if there is no discounting of future payoffs,

then virtually any first-period payoff can be sustained by a reputational equilib-

rium. A main purpose of this chapter is to study how discounting might shrink

the set of outcomes that are attainable with a reputational mechanism.

Modern formulations of reputational models of government policy exploit

ideas from dynamic programming. Each period, a government faces choices

whose consequences include a first-period return and a reputation to pass on to

next period. Under rational expectations, any reputation that the government

1 Consider two extensive-form versions of the “battle of the sexes” game described by Kreps

(1990), one in which the man chooses first, the other in which the woman chooses first.

Backward induction recovers different outcomes in these two different games. Though they

share the same choice sets and payoffs, these are different games.
2 Barro and Gordon (1983a, 1983b) are early contributors to this literature. See Kenneth

Rogoff (1989) for a survey.

– 773 –
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carries into next period must be one that it will want to confirm. We shall study

the set of possible values that the government can attain with reputations that

it could conceivably want to confirm.

This chapter applies an apparatus of Abreu, Pearce, and Stacchetti (1986,

1990) to reputational equilibria in a class of macroeconomic models. Their work

builds upon their insight that it is much more convenient to work with the set

of continuation values associated with equilibrium strategies than it is to work

directly with the set of equilibrium strategies. We use an economic model like

those of Chari, Kehoe, and Prescott (1989) and Stokey (1989, 1991) to exhibit

what Chari and Kehoe (1990) call sustainable government policies and what

Stokey calls credible public policies. The literature on sustainable or credible

government policies in macroeconomics adapts ideas from the literature on re-

peated games so that they can be applied in contexts in which a single agent (a

government) behaves strategically, and in which the remaining agents’ behavior

can be summarized as a competitive equilibrium that responds nonstrategically

to the government’s choices.3

Abreu, Pearce, and Stacchetti exploit ideas from dynamic programming.

This chapter closely follow Stacchetti (1991), who applies Abreu, Pearce, and

Stacchetti (1986, 1990) to a more general class of models than that treated

here.4

3 For descriptions of theories of credible government policy, see Chari and Kehoe (1990),

Stokey (1989, 1991), Rogoff (1989), and Chari, Kehoe, and Prescott (1989). For applications of

the framework of Abreu, Pearce, and Stacchetti, see Chang (1998), and Phelan and Stacchetti

(1999).
4 Stacchetti also studies a class of setups in which the private sector observes only a noise-

ridden signal of the government’s actions.
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22.2. Dynamic programming squared: synopsis

Like chapter 19, this chapter uses continuation values as state variables in terms

of which a Bellman equation is cast. Because the continuation values themselves

satisfy another Bellman, we give the general method the nickname “dynamic

programming squared”: one Bellman equation chooses a law of motion for a

state variable that must itself satisfy another Bellman equation.5

For possible future reference, we outline the main concepts here. In formulat-

ing dynamic-programming-squared problems, we use the following circle of ideas

about histories, values, and strategy profiles. (Later we shall define precisely

what we mean by history, value, and strategy profile.) A value for each agent

in the economy is a discounted sum of future outcomes. A history of outcomes

generates a sequence of profiles of values for the various agents. A pure strategy

profile is a sequence of functions mapping histories up to t − 1 into actions at

t . A strategy profile generates a history and therefore a sequence of values. A

strategy profile contains within it a profile of one-period continuation strategies

for every possible value of next period’s history. Therefore, it also generates

a profile of continuation values for each possible one-period continuation his-

tory. The main idea of dynamic programming squared is to reorient attention

away from strategies and toward values, one-period outcomes, and continuation

values.

Ordinary dynamic programming iterates to a fixed point on a mapping from

continuation values to values: v = T (v). Similarly, dynamic programming

squared iterates on a mapping from continuation values to values. But now,

multiple continuation values are required to support a given first-period out-

come and a given value. For example, in models with a commitment problem,

like those in chapter 19 and in this chapter, a decision maker receives one con-

tinuation value if he does what is expected under the contract, and something

else if he deviates. How do we generalize to this context the idea of iterating on

v = T (v)? Abreu, Pearce, and Stacchetti showed that the natural generaliza-

tion is to iterate on an operator that maps pairs (and more generally sets) of

continuation values into sets of values. They call this operator B and form it in

the same spirit that the T operator was constructed: it embraces optimal one-

period behavior of all decision makers involved, assuming arbitrary one-period

continuation values.

5 Recall also the closely related ideas described in chapter 18.
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The reader might want to revisit this synopsis of the structure of dynamic

programming squared as he or she wades through various technicalities that put

content on this structure.

22.3. The one-period economy

There is a continuum of households, each of which chooses an action ξ ∈ X . A

government chooses an action y ∈ Y . The sets X and Y are compact. The

average level of ξ across households is denoted x ∈ X . The utility of a particular

household is u(ξ, x, y) when it chooses ξ , when the average household’s choice

is x , and when the government chooses y . The payoff function u(ξ, x, y) is

strictly concave and continuously differentiable.6

22.3.1. Competitive equilibrium

For given levels of y and x , the representative household faces the problem

maxξ∈X u(ξ, x, y). Let the solution be a function ξ = f(x, y). When a house-

hold thinks that the government’s choice is y and believes that the average

level of other households’ choices is x , it acts to set ξ = f(x, y). Because

all households are alike, this fact implies that the actual level of x is f(x, y).

For expectations about the average to be consistent with the average outcome,

we require that ξ = x , or x = f(x, y). This makes the representative agent

representative. We use the following:

Definition 1: A competitive equilibrium or a rational expectations equilib-

rium is an x ∈ X that satisfies x = f(x, y).

A competitive equilibrium satisfies u(x, x, y) = maxξ∈X u(ξ, x, y).

For each y ∈ Y , let x = h(y) denote the corresponding competitive equilib-

rium. We adopt:

Definition 2: The set of competitive equilibria is C = {(x, y) | u(x, x, y) =

maxξ∈X u(ξ, x, y)} , or equivalently C = {(x, y) | x = h(y)} .

6 The discrete-choice examples given later violate some of these assumptions.
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22.3.2. The Ramsey problem

The following timing of actions underlies a Ramsey plan. First, the government

selects a y ∈ Y . Then, knowing the setting for y , the aggregate of households

responds with a competitive equilibrium. The government evaluates policies

y ∈ Y with the payoff function u(x, x, y); that is, the government is benevolent.

In making its choice of y , the government has to forecast how the economy

will respond. The government correctly forecasts that the economy will respond

to y with a competitive equilibrium, x = h(y). We use these definitions:

Definition 3: The Ramsey problem is maxy∈Y u[h(y), h(y), y] , or equiva-

lently max(x,y)∈C u(x, x, y).

Definition 4: The policy that attains the maximum for the Ramsey problem

is denoted yR . Let xR = h(yR). Then (yR, xR) is called the Ramsey outcome

or Ramsey plan.

Two remarks about the Ramsey problem are in order. First, the Ramsey

outcome is typically inferior to the “dictatorial outcome” that solves the unre-

stricted problem maxx∈X, y∈Y u(x, x, y), because the restriction (x, y) ∈ C is

in general binding. Second, the timing of actions is important. The Ramsey

problem assumes that the government has a technology that permits it to choose

first and not to reconsider its action.

If the government were granted the opportunity to reconsider its plan after

households had chosen xR , it would in general want to deviate from yR because

often there exists an α 6= yR for which u(xR, xR, α) > u(xR, xR, yR). The “time

consistency problem” is the incentive it would have to deviate from the Ramsey

plan if the government were given a chance to react after households had set

x = xR . In this one-shot setting, to support the Ramsey plan requires a timing

protocol that forces the government to choose first.
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22.3.3. Nash equilibrium

Consider an alternative timing protocol that makes households face a forecast-

ing problem because the government chooses after or simultaneously with the

households. Households forecast that, given x , the government will set y to

solve maxy∈Y u(x, x, y). We use:

Definition 5: A Nash equilibrium (xN , yN ) satisfies

(1) (xN , yN) ∈ C ;

(2) Given xN , u(xN , xN , yN ) = maxη∈Y u(xN , xN , η).

Condition (1) asserts that xN = h(yN ), or that the economy responds to yN

with a competitive equilibrium. In other words, condition (1) says that given

(xN , yN), each individual household wants to set ξ = xN ; that is, it has no

incentive to deviate from xN . Condition (2) asserts that given xN , the govern-

ment chooses a policy yN from which it has no incentive to deviate.7

We can use the solution of the problem in condition (2) to define the govern-

ment’s best response function y = H(x). The definition of a Nash equilibrium

can be phrased as a pair (x, y) ∈ C such that y = H(x).

There are two timings of choices for which a Nash equilibrium is a natural

equilibrium concept. One is where households choose first, forecasting that the

government will respond to the aggregate outcome x by setting y = H(x).

Another is where the government and all households choose simultaneously, in

which case the Nash equilibrium (xN , yN) depicts a situation in which everyone

has rational expectations: given that each household expects the aggregate vari-

ables to be (xN , yN ), each household responds in a way to make x = xN , and

given that the government expects that x = xN , it responds by setting y = yN .

We let vN = u(xN , xN , yN) and vR = u(xR, xR, yR). Note that vN ≤
vR . Because of the additional constraint embedded in the Nash equilibrium,

outcomes are ordered according to

vN ≤ max
{(x,y)∈C: y=H(x)}

u(x, x, y) ≤ max
(x,y)∈C

u(x, x, y) = vR .

7 Much of the language of this chapter is borrowed from game theory, but the object under

study is not a game, because we do not specify all of the objects that formally define a game.

In particular, we do not specify the payoffs to all agents for all feasible choices. We only

specify the payoffs u(ξ, x, y) where each agent chooses the same value of ξ .
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22.4. Examples of economies

To illustrate these concepts, we consider two examples: taxation within a fully

specified economy, and a black-box model with discrete-choice sets.

22.4.1. Taxation example

Each of a continuum of households has preferences over leisure ` , private con-

sumption c , and per capita government expenditures g . The utility function

is

U(`, c, g) = `+ log(α+ c) + log(α + g), α ∈ (0, 1/2).

Each household is endowed with one unit of time that can be devoted to leisure or

work. The production technology is linear in labor, and the economy’s resource

constraint is

c+ g = 1 − `,

where c and ` are the average levels of private consumption and leisure, respec-

tively.

A benevolent government that maximizes the welfare of the representative

household would choose ` = 0 and c = g = 1/2 . This “dictatorial outcome”

yields welfare W d = 2 log(α+ 1/2).

Here we will focus on competitive equilibria where the government finances

its expenditures by levying a flat-rate tax τ on labor income. The household’s

budget constraint becomes c = (1−τ)(1−`). Given a government policy (τ, g),

an individual household’s optimal decision rule for leisure is

`(τ) =

{ α
1 − τ if τ ∈ [0, 1 − α];

1 if τ > 1 − α.

Due to the linear technology and the fact that government expenditures enter

additively in the utility function, the household’s decision rule `(τ) is also the

equilibrium value of individual leisure at a given tax rate τ . Imposing govern-

ment budget balance, g = τ(1 − `), the representative household’s welfare in a

competitive equilibrium is indexed by τ and equal to

W c(τ) = `(τ) + log
{
α+ (1 − τ)[1 − `(τ)]

}
+ log

{
α+ τ [1 − `(τ)]

}
.
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Figure 22.4.1: Welfare outcomes in the taxation example. The

solid portion of the curve depicts the set of competitive equilibria,

W c(τ). The set of Nash equilibria is the horizontal portion of the

solid curve and the equilibrium at τ = 1/2 . The Ramsey outcome

is marked with an asterisk. The “time inconsistency problem” is

indicated with the triangle showing the outcome if the government

were able to reset τ after households had chosen the Ramsey labor

supply. The dashed line describes the welfare level at the uncon-

strained optimum, W d . The graph sets α = 0.3.

The Ramsey tax rate and allocation are determined by the solution to

maxτ W
c(τ). The government’s problem in a Nash equilibrium is maxτ

{
` +

log[α + (1 − τ)(1 − `)] + log[α + τ(1 − `)]
}

. If ` < 1, the optimizer is τ = .5.

There is a continuum of Nash equilibria indexed by τ ∈ [1−α, 1] where agents

choose not to work, and consequently c = g = 0. The only Nash equilibrium

with production is τ = 1/2 with welfare level W c(1/2). This conclusion follows

directly from the fact that the government’s best response is τ = 1/2 for any

` < 1. These outcomes are illustrated numerically in Figure 22.4.1. Here the

time inconsistency problem surfaces in the government’s incentive, if offered the

choice, to reset the tax rate τ , after the household has set its labor supply.

The objects of the general setup in the preceding section can be mapped

into the present taxation example as follows: ξ = ` , x = ` , X = [0, 1], y = τ ,
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Y = [0, 1], u(ξ, x, y) = ξ+log[α+(1−y)(1−ξ)]+log[α+y(1−x)] , f(x, y) = `(y),

h(y) = `(y), and H(x) = 1/2 if x < 1; and H(x) ∈ [0, 1] if x = 1.

22.4.2. Black-box example with discrete-choice sets

Consider a black box example with X = {xL, xH} and Y = {yL, yH} , in

which u(x, x, y) assume the values given in Table 22.4.1. Assume that values

of u(ξ, x, y) for ξ 6= x are such that the values with asterisks for ξ = x are

competitive equilibria. In particular, we might assume that

u(ξ, xi, yj) = 0 when ξ 6= xi and i = j,

u(ξ, xi, yj) = 20 when ξ 6= xi and i 6= j.

These payoffs imply that u(xL, xL, yL) > u(xH , xL, yL) (i.e., 3 > 0), and

u(xH , xH , yH) > u(xL, xH , yH) (i.e., 10 > 0). Therefore, (xL, xL, yL) and

(xH , xH , yH) are competitive equilibria. Also, u(xH , xH , yL) < u(xL, xH , yL)

(i.e., 12 < 20), so the dictatorial outcome cannot be supported as a competitive

equilibrium.

xL xH
yL 3* 12
yH 1 10*

Table 22.4.1: One-period payoffs u(xi, xi, yj);
∗ denotes (x, y) ∈

C ; the Ramsey outcome is (xH , yH) and the Nash equilibrium

outcome is (xL, yL).

Figure 22.4.2 depicts a timing of choices that supports the Ramsey outcome

for this example. The government chooses first, then walks away. The Ramsey

outcome (xH , yH) is the competitive equilibrium yielding the highest value of

u(x, x, y).

Figure 22.4.3 diagrams a timing of choices that supports the Nash equilib-

rium. Recall that by definition, every Nash equilibrium outcome has to be

a competitive equilibrium outcome. We denote competitive equilibrium pairs
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Figure 22.4.2: Timing of choices that supports Ramsey outcome.

Here P and G denote nodes at which the public and the gov-

ernment, respectively, choose. The government has a commitment

technology that binds it to “choose first.” The government chooses

the y ∈ Y that maximizes u[h(y), h(y), y] , where x = h(y) is the

function mapping government actions into equilibrium values of x .

(x, y) with asterisks. The government sector chooses after knowing that the pri-

vate sector has set x , and chooses y to maximize u(x, x, y). With this timing,

if the private sector chooses x = xH , the government has an incentive to set

y = yL , a setting of y that does not support xH as a Nash equilibrium. The

unique Nash equilibrium is (xL, yL), which gives a lower utility u(x, x, y) than

does the competitive equilibrium (xH , yH).
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Figure 22.4.3: Timing of actions in a Nash equilibrium in which

the private sector acts first. Here G denotes a node at which the

government chooses and P denotes a node at which the public

chooses. The private sector sets x ∈ X before knowing the govern-

ment’s setting of y ∈ Y . Competitive equilibrium pairs (x, y) are

denoted with an asterisk. The unique Nash equilibrium is (xL, yL).

22.5. Reputational mechanisms: General idea

In a finitely repeated economy, the government will certainly behave opportunis-

tically the last period, implying that nothing better than a Nash outcome can be



784 Credible Government Policies

supported the last period. In a finite horizon economy with a unique Nash equi-

librium, we won’t be able to sustain anything better than a Nash equilibrium

outcome for any earlier period.8

We want to study situations in which a government might sustain a Ram-

sey outcome. Therefore, we shall study economies repeated an infinite number

of times. Here a system of history-dependent expectations interpretable as a

government reputation might be arranged to sustain something better than the

Nash outcome. The aim is to set things up so that the government badly enough

wants to fulfill a reputation that it will not submit to the temptation to behave

opportunistically and so that the market does not make false assessments of the

government’s reputation. A reputation is said to be sustainable if it is always

in the government’s interests to confirm it.

A reputational variable is peculiar because it is both “backward looking” and

“forward looking.” It is backward looking because it encodes historical behavior.

It is forward-looking behavior because it measures average discounted future

payoffs to the government. We are about to study the ingenious machinery

of Abreu, Pearce, and Stacchetti that exploits these aspects of a reputational

variable. They will show us how the ideal reputational variable is a “promised

value.”

22.5.1. Dynamic programming squared

Rather than finding all possible sustainable reputations, Abreu, Pearce, and

Stacchetti (henceforth APS) (1986, 1990) used dynamic programming to char-

acterize all values for the government that are associated with sustainable rep-

utations. This section briefly describes their main ideas, while later sections fill

in many details.

First we need some language. A strategy profile is a pair of plans, one each

for the private sector and the government, mapping the observed history of the

economy into first-period outcomes (x, y). A subgame perfect equilibrium (SPE)

strategy profile has the first-period outcome being a competitive equilibrium

8 If there are multiple Nash equilibria, it is sometimes possible to sustain a better-than-Nash

equilibrium outcome for a while in a finite horizon economy. See exercise 22.1 , which uses an

idea of Benoit and Krishna (1985).
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(xt, yt) whose yt component the government would want to confirm at each

t ≥ 1 and for every possible history of the economy.

To characterize SPE, the method of APS is to formulate a Bellman equation

that describes the value to the government of a strategy profile and that por-

trays the idea that the government wants to confirm the private sector’s beliefs

about y . For each t ≥ 1, the government’s strategy describes its first-period

action y ∈ Y , which, because the public had expected it, determines an associ-

ated first-period competitive equilibrium (x, y) ∈ C . Furthermore, the strategy

implies two continuation values for the government at the beginning of next

period, a continuation value v1 if it carries out the first-period choice y , and

another continuation value v2 if for any reason the government deviates from

the expected first-period choice y . Associated with the government’s strategy

is a current value v that obeys the Bellman equation

v = (1 − δ)u(x, x, y) + δv1, (22.5.1a)

where (x, y) ∈ C , v1 is the continuation value for confirming the private sector’s

expectations and (y, v1) are constrained to satisfy the incentive constraint

v ≥ (1 − δ)u(x, x, η) + δv2, ∀η ∈ Y, (22.5.1b)

or equivalently

v ≥ (1 − δ)u
[
x, x,H(x)

]
+ δv2,

where H(x) = argmaxy u(x, x, y). Because it receives continuation value v2 for

any deviation, if it does deviate the government will choose the most rewarding

action, which is to set η = H(x).

Inequalities (22.5.1) define a Bellman equation that maps a pair of continua-

tion values (v1, v2) into a value v and first-period outcomes (x, y). Figure 22.5.1

illustrates this mapping for the infinitely repeated version of the taxation exam-

ple. Given a pair (v1, v2), the solid curve depicts v in equation (22.5.1a), and

the dashed curve describes the right side of the incentive constraint (22.5.1b).

The region in which the solid curve is above the dashed curve identifies tax

rates and competitive equilibria that satisfy (22.5.1b) at the given continuation

values (v1, v2). As can be seen, when δ = .8, tax rates below 18 percent cannot

be sustained for the particular (v1, v2) pair we have chosen.
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Figure 22.5.1: Mapping of continuation values (v1, v2) into val-

ues v in the infinitely repeated version of the taxation exam-

ple. The solid curve depicts v = (1 − δ)u[`(τ), `(τ), τ ] + δv1 .

The dashed curve is the right side of the incentive constraint,

v ≥ (1 − δ)u{`(τ), `(τ), H [`(τ)]} + δv2 , where H is the govern-

ment’s best response function. The part of the solid curve that is

above the dashed curve shows competitive equilibrium values that

are sustainable for continuation values (v1, v2). The parameteri-

zation is α = 0.3 and δ = 0.8, and the continuation values are set

as (v1, v2) = (−0.6, −0.63).

APS calculate the set of equilibrium values by iterating on the mapping

defined by the Bellman equation (22.5.1). Let W be a set of candidate contin-

uation values. As we vary (v1, v2) ∈W ×W , the Bellman equation maps out a

set of values, say, v ∈ B(W ). Thus, the Bellman equation maps sets of values

W (from which we can draw a pair of continuation values v1, v2 ) into sets of

values B(W ) (giving current values v ). To qualify as SPE values, we require

that W ⊂ B(W ), i.e., the continuation values drawn from W must themselves

be values that are in turn supported by continuation values drawn from the

same set W . APS seek the largest set for which W = B(W ), i.e., the set of all

SPE values. APS show how iterations on the Bellman equation can determine

the set of equilibrium values, provided that one starts with a big enough but
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bounded initial set of candidate continuation values. Furthermore, after that

set of values has been found, APS show how to find a strategy that attains any

equilibrium value in the set. The remainder of the chapter describes details of

APS’s formulation. We also explain why APS want to get their hands on the

entire set of equilibrium values.

22.6. The infinitely repeated economy

Consider an economy that repeats the preceding one-period economy forever.

At each t ≥ 1, each household chooses ξt ∈ X , with the result that the

average xt ∈ X ; the government chooses yt ∈ Y . We use the notation

(~x, ~y) = {(xt, yt)}∞t=1,
~ξ = {ξt}∞t=1 . To denote the history of (xt, yt) up to

t we use the notation xt = {xs}ts=1, y
t = {ys}ts=1 . These histories live in the

spaces Xt and Y t , respectively, where Xt = X×· · ·×X , the Cartesian product

of X taken t times, and Y t is the Cartesian product of Y taken t times.9

For the repeated economy, each household and the government, respectively,

evaluate paths (~ξ, ~x, ~y) according to

Vh(~ξ, ~x, ~y) =
(1 − δ)

δ

∞∑

t=1

δtu(ξt, xt, yt), (22.6.1a)

Vg(~x, ~y) =
(1 − δ)

δ

∞∑

t=1

δt r(xt, yt), (22.6.1b)

where r(xt, yt) ≡ u(xt, xt, yt) and 0 < δ < 1. (Note that we have not defined

the government’s payoff when ξt 6= xt .) A pure strategy is defined as a sequence

of functions, the tth element of which maps the history (xt−1, yt−1) observed

at the beginning of t into an action at t . In particular, for the aggregate of

9 Marco Bassetto’s work (2002, 2003) shows that this specification, which is common in the

literature, excludes some interesting applications. In particular, it rules out contexts in which

the set of time t actions available to the government is influenced by past actions taken by

households. Such excluded examples prevail, for example, in the fiscal theory of the price level.

To construct sustainable plans in those interesting environments, Bassetto (2002, 2003) refines

the notion of sustainability to include a more complete theory of the government’s behavior

off an equilibrium path.
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households, a strategy is a sequence σh = {σht }∞t=1 such that

σh1 ∈ X

σht : Xt−1 × Y t−1 → X for each t ≥ 2 .

Similarly, for the government, a strategy σg = {σgt }∞t=1 is a sequence such that

σg1 ∈ Y

σgt : Xt−1 × Y t−1 → Y for each t ≥ 2.

We let σt = (σht , σ
g
t ) be the tth component of the strategy profile, which is a

pair of functions mapping Xt−1×Y t−1 → X×Y . There is no history at t = 1.

Therefore, the t = 1 component of a strategy profile is just a point in the set

X × Y .

22.6.1. A strategy profile implies a history and a value

A key insight with which APS begin is that a strategy profile σ = (σg, σh)

evidently recursively generates a trajectory of outcomes {[x(σ)t, y(σ)t]}∞t=1 :

[
x(σ)1, y(σ)1

]
= (σh1 , σ

g
1)

[
x(σ)t, y(σ)t

]
= σt

[
x(σ)t−1, y(σ)t−1

]
.

Therefore, a strategy profile also generates a pair of values for the government

and the representative private agent. In particular, the value for the government

of a strategy profile σ = (σh, σg) is the value of the trajectory that it generates

Vg(σ) = Vg
[
~x(σ), ~y(σ)

]
.
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22.6.2. Recursive formulation

A key step in APS’s recursive formulation comes from defining continuation

stategies and their associated continuation values . Since the value of a path

(ξ, x, y) in equation (22.6.1a) or (22.6.1b) is additively separable in its one-

period returns, we can express the value recursively in terms of a one-period

economy and a continuation economy. In particular, the value to the government

of an outcome sequence (x, y) can be represented

Vg(~x, ~y) = (1 − δ) r(x1, y1) + δVg({xt}∞t=2 , {yt}∞t=2) (22.6.2)

and the value for a household can also be represented recursively. Notice that

a strategy profile σ induces a strategy profile for the continuation economy, as

follows: We let σ|(xt,yt) denote the strategy profile for a continuation economy

whose first period is t + 1 and that is initiated after history (xt, yt) has been

observed; here (σ|(xt,yt))s is the sth component of (σ|(xt,yt)), which for s ≥ 2

is a function that maps Xs−1 × Y s−1 into X × Y , and for s = 1 is a point in

X ×Y . Thus, after a first-period outcome pair (x1, y1), strategy σ induces the

continuation strategy

(σ|(x1,y1))s+1 (νs, ηs) = σs+2 (x1, ν1, . . . , νs, y1, η1, . . . , ηs)

for all (νs, ηs) ∈ Xs × Y s , ∀s ≥ 0.

It might be helpful to write out a few terms for s = 0, 1, . . .:

(σ|(x1,y1))1 = σ2(x1, y1) = (ν1, η1)

(σ|(x1,y1))2(ν1, η1) = σ3(x1, ν1, y1, η1) = (ν2, η2)

(σ|(x1,y1))3(ν1, ν2, η1, η2) = σ4(x1, ν1, ν2, y1, η1, η2) = (ν3, η3).

More generally, define the continuation strategy

(σ|(xt,yt))1 =σt+1(x
t, yt)

(σ|(xt,yt))s+1(ν
s, ηs) =σt+s+1 (x1, . . . , xt, ν1, . . . , νs; y1, . . . , yt, η1, . . . , ηs)

for all s ≥ 1 and all (νs, ηs) ∈ Xs × Y s .

Here (σ|(xt,yt))s+1 (νs, ηs) is the induced strategy pair to apply in the (s+1)th

period of the continuation economy. This equation says we attain this strategy

by shifting the original strategy forward t periods and evaluating it at history

(x1, . . . , xt, ν1, . . . , νs; y1, . . . , yt, η1, . . . , ηs) for the original economy.
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In terms of the continuation strategy σ|(x1,y1) , from equation (22.6.2) we

know that Vg(σ) can be represented as

Vg(σ) = (1 − δ)r(x1, y1) + δVg(σ|(x1,y1)). (22.6.3)

Representation (22.6.3) decomposes the value to the government of strategy

profile σ into a one-period return and the continuation value Vg(σ|(x1,y1)) as-

sociated with the continuation strategy σ|(x1,y1) .

Any sequence (x, y) in equation (22.6.2) or any strategy profile σ in equation

(22.6.3) can be assigned a value. We want a notion of an equilibrium strategy.

The recursive structure of the economy motivates the following definition of

equilibrium.

22.7. Subgame perfect equilibrium (SPE)

Definition 6: A strategy profile σ = (σh, σg) is a subgame perfect equilib-

rium (SPE) of the infinitely repeated economy if for each t ≥ 1 and each history

(xt−1, yt−1) ∈ Xt−1 × Y t−1

(a) The outcome xt = σht (xt−1, yt−1) is consistent with competitive equilibrium

when yt = σgt (xt−1, yt−1);

(b) For each η ∈ Y

(1 − δ)r(xt, yt) + δVg(σ|(xt,yt)) ≥ (1 − δ) r(xt, η) + δVg(σ|(xt;yt−1,η)).

Requirement a says two things. It attributes a theory of forecasting government

behavior to members of the public, in particular, that they use the time t

component σgt of the government’s strategy and information available at the

end of period t−1 to forecast the government’s behavior at t . Condition a also

asserts that a competitive equilibrium appropriate to the public’s forecast value

for yt is the outcome at time t . Requirement b says that at each point in time

and following each history, the government has no incentive to deviate from the

first-period outcome called for by its strategy σg ; that is, the government always

has the incentive to behave as the public expects. Notice how in condition b,

the government contemplates setting its time t choice ηt at something other
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than the value forecast by the public, but confronts consequences of its choices

that deter it from choosing an ηt that fails to confirm the public’s expectations

of it.

Later, we’ll discuss the following question: who chooses σg , the govern-

ment or the public? This question arises because σg is both the government’s

sequence of policy functions and the private sector’s rule for forecasting govern-

ment behavior. Condition b of definition 6 says that the government chooses to

confirm the public’s forecasts. The definition implies that for each t ≥ 2 and

each (xt−1, yt−1) ∈ Xt−1×Y t−1 , the continuation strategy σ|(xt−1,yt−1) is itself

an SPE. We state this formally for t = 2.

Proposition 1: Assume that σ is an SPE. Then for all (ν, η) ∈ X × Y ,

σ|(ν,η) is an SPE.

Proof: Write out requirements a and b of Definition 6, which the continuation

strategy σ|(ν,η) must satisfy to qualify as an SPE. In particular, for all s ≥ 1

and for all (xs−1, ys−1) ∈ Xs−1 × Y s−1 , we require

(xs, ys) ∈ C, (22.7.1)

where xs = σh|(ν,η)(xs−1, ys−1), ys = σg|(ν,η)(xs−1, ys−1). We also require that

for all η̃ ∈ Y ,

(1 − δ)r(xs, ys) + δVg(σ|(η,xs;ν,ys)) ≥ (1 − δ)r(xs, η̃) + δVg(σ|(ν,xs;η,ys−1,η̃))

(22.7.2)

Notice that requirements a and b of Definition 6 for t = 2, 3, . . . imply expres-

sions (22.7.1) and (22.7.2) for s = 1, 2, . . ..

The statement that σ|(ν,η) is subgame perfect for all (ν, η) ∈ X ×Y ensures

that σ is almost an SPE. If we know that σ|(ν,η) is an SPE for all (ν, η) ∈
(X ×Y ), we must add only two requirements to ensure that σ is an SPE: first,

that the t = 1 outcome pair (x1, y1) is a competitive equilibrium, and second,

that the government’s choice of y1 satisfies the time 1 version of the incentive

constraint b in Definition 6.

This reasoning leads us to the following important lemma:

Lemma: Consider a strategy profile σ , and let the associated first-period

outcome be given by x = σh1 , y = σg1 . The profile σ is an SPE if and only if

(1) for each (ν, η) ∈ X × Y, σ|(ν,η) is an SPE;
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(2) (x, y) is a competitive equilibrium;

(3) ∀ η ∈ Y , (1 − δ) r(x, y) + δ Vg(σ|(x,y)) ≥ (1 − δ) r(x, η) + δVg(σ|(x,η)).

Proof: First, prove the “if” part. Property a of the lemma and properties

(22.7.1) and (22.7.2) of Proposition 1 show that requirements a and b of Defi-

nition 6 are satisfied for t ≥ 2. Properties (2) and (3) of the lemma imply that

requirements a and b of Definition 6 hold for t = 1.

Second, prove the “only if” part. Part (1) of the lemma follows from Propo-

sition 1. Parts (2) and (3) of the lemma follow from requirements a and b of

Definition 6 for t = 1.

The lemma is very important because it characterizes SPEs in terms of a

first-period competitive equilibrium outcome pair (x, y), and a pair of contin-

uation values: a value Vg(σ|(x,y)) to be “paid” to the government next period

if it adheres to the y component of the first-period pair (x, y), and a value

Vg(σ|(x,η)), η 6= y , to be paid to the government if it deviates from the expected

y component. Each of these values has to be selected from the set of values

possible Vg(σ) that are associated with some SPE σ . Insisting that the contin-

uation values themselves be associated with subgame perfect values embodies

the idea that the government faces future consequences of its actions today that

are credible because in the future it will want to accept those consequences. We

now illustrate this construction.
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22.8. Examples of SPE

22.8.1. Infinite repetition of one-period Nash equilibrium

It is easy to verify that the following strategy profile σN = (σh, σg) forms an

SPE:
σht = xN ∀ t , ∀ (xt−1, yt−1);

σgt = yN ∀ t , ∀ (xt−1, yt−1).

These strategies instruct the households and the government to choose the static

Nash equilibrium outcomes for all periods for all histories. Evidently, for these

strategies, Vg(σ
N ) = vN = r(xN , yN ). Furthermore, for these strategies the

continuation value Vg(σ|(xt;yt−1,η)) = vN for all outcomes η ∈ Y . These strate-

gies satisfy requirement a of Definition 6 because (xN , yN) is a competitive

equilibrium. The strategies satisfy b because r(xN , yN ) = maxy∈Y r(x
N , y) and

because the continuation value Vg(σ) = vN is independent of the action chosen

by the government in the first period. In this SPE, σNt = {σht , σgt } = (xN , yN )

for all t and for all (xt−1, yt−1), and the value Vg(σ
N ) and the continuation

values for each history (xt, yt), Vg(σ
N |(xt,yt)), all equal vN .

It is useful to look at this SPE in terms of the lemma. To verify that σN is a

SPE using the lemma, we work with the first-period outcome pair (xN , yN ) and

the pair of values Vg(σ|(xN ,yN )) = vN , Vg(σ|(x,η)) = vN , where vN = r(xN , yN).

With these settings, we proceed by verifying that (xN , yN) and vN satisfy

requirements (1), (2), and (3) of the lemma.

22.8.2. Supporting better outcomes with trigger strategies

The public can have a system of expectations about the government’s behav-

ior that induces the government to choose a better-than-Nash outcome ( x̃, ỹ ).

Thus, suppose that the public expects that as long as the government chooses

ỹ , it will continue to do so in the future, but that once the government deviates

from this choice, the public expects that it will choose yN thereafter, prompt-

ing the public (really “the market”) to react with xN = h(yN). This system of

expectations confronts the government with the prospect of being “punished by

the market’s expectations” if it chooses to deviate from ỹ .
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To formalize this idea, we shall use the SPE σN as a continuation strategy

and the value vN as a continuation value on the right side of part (2) of Defi-

nition 6 of an SPE (for η 6= yt ); then by working backward one step, we shall

try to construct another SPE with first-period outcome (x̃, ỹ) 6= (xN , yN). In

particular, for our new SPE we propose to set

σ̃1 = (x̃, ỹ)

σ̃|(x,y) =

{
σ̃ if (x, y) = (x̃, ỹ)

σN if (x, y) 6= (x̃, ỹ)

(22.8.1)

where (x̃, ỹ) is a competitive equilibrium that satisfies the following particular

case of part b of Definition 6:

ṽ = (1 − δ) r(x̃, ỹ) + δṽ ≥ (1 − δ) r(x̃, η) + δvN , (22.8.2)

for all η ∈ Y . Inequality (22.8.2) is equivalent with

max
η∈Y

r(x̃, η) − r(x̃, ỹ) ≤ δ

1 − δ
(ṽ − vN ). (22.8.3)

For any (x̃, ỹ) ∈ C that satisfies expression (22.8.3) with ṽ = r(x̃, ỹ), strategy

(22.8.1) is an SPE with value ṽ .

If (x̃, ỹ) = (xR, yR) satisfies inequality (22.8.3) with ṽ = r(xR, yR), then

repetition of the Ramsey outcome (xR, yR) is supportable by a subgame perfect

equilibrium of the form (22.8.1).

This construction uses the following objects:

1. A proposed first-period equilibrium (x̃, ỹ) ∈ C ;

2. An SPE σ2 with value Vg(σ
2) that is used to synthesize the continuation

strategy in the event that the first-period outcome does not equal (x̃, ỹ),

so that σ̃|(x,y) = σ2 , if (x, y) 6= (x̃, ỹ). In the example, σ2 = σN and

Vg(σ
2) = vN .

3. An SPE σ1 , with value Vg(σ
1), used to define the continuation value to

be assigned after first-period outcome (x̃, ỹ) and the continuation strategy

σ̃|(x̃,ỹ) = σ1 . In the example, σ1 = σ̃ , which is defined recursively (and

self-referentially) via equation (22.8.1).

4. A candidate for a new equilibrium σ̃ , defined in object 3, and a corresponding

value Vg(σ̃). In the example, Vg(σ̃) = r(x̃, ỹ).

In the example, objects 3 and 4 are equated.
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Note how we have used the lemma in verifying that σ̃ is an SPE. We start

with the SPE σN with associated value vN . We guess a first-period outcome

pair (x̃, ỹ) and a value ṽ for a new SPE, where ṽ = r(x̃, ỹ). Then we verify

requirements (2) and (3) of the lemma with (vN , ṽ) as continuation values and

(x̃, ỹ) as first-period outcomes.

22.8.3. When reversion to Nash is not bad enough

It is possible to find discount factors δ so small that reversion to repetition

of the one-period Nash outcome is not a bad enough consequence to support

repetition of Ramsey. In that case, anticipating that it will revert to repetition

of Nash after a deviation can at best support a value for the government that is

less than that associated with repetition of Ramsey outcome although perhaps

better than repetition of the Nash outcome. However, is there a better SPE?

To support something better requires finding an SPE that has a value worse

than that associated with repetition of the one-period Nash outcome. This kind

of reasoning directed APS to find the set of values associated with all SPEs.

Following APS, we shall see that the best and worst outcomes are tied together.

22.9. Values of all SPEs

The role played by the lemma in analyzing our two examples hints at the central

role that it plays in the methods that APS have developed for describing and

computing values for all the subgame perfect equilibria for setups like ours.

APS build on the way that the lemma characterizes SPE values in terms of a

first-period equilibrium outcome, along with a pair of continuation values, each

element of which is itself a value associated with some SPE The lemma directs

APS’s attention away from the set of strategy profiles and toward the set of

values Vg(σ) associated with those profiles. They define the set V of values

associated with subgame perfect equilibria:

V = {Vg (σ) | σ is an SPE}.

Evidently, V ⊂ IR . From the lemma, for a given competitive equilibrium

(x, y) ∈ C , there exists an SPE σ for which x = σh1 , y = σg1 if and only if
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there exist two values (v1, v2) ∈ V × V such that

(1 − δ) r(x, y) + δv1 ≥ (1 − δ) r(x, η) + δv2 ∀ η ∈ Y. (22.9.1)

Let σ1 and σ2 be subgame perfect equilibria for which v1 = Vg(σ
1), v2 =

Vg(σ
2). The SPE σ that supports (x, y) = (σh1 , σ

g
1) is completed by specifying

σ|(x,y) = σ1 and σ|(ν,η) = σ2 if (ν, η) 6= (x, y).

This construction produces out of two values (v1, v2) ∈ V × V an SPE σ

with value v ∈ V given by

v = (1 − δ) r(x, y) + δv1 .

Thus, the construction maps pairs (v1, v2) into a strategy profile σ with first-

period competitive equilibrium outcome (x, y) and a value v = Vg(σ).

APS characterize subgame perfect equilibria by studying a mapping from

pairs of continuation values (v1, v2) ∈ V × V into values v ∈ V . They use the

following definitions:

Definition 7: Let W ⊂ IR . A 4-tuple (x, y, w1, w2) is said to be admissible

with respect to W if (x, y) ∈ C, (w1, w2) ∈W ×W , and

(1 − δ) r(x, y) + δw1 ≥ (1 − δ) r(x, η) + δw2 , ∀ η ∈ Y. (22.9.2)

Notice that when W ⊂ V , the admissible 4-tuple (x, y, w1, w2) determines

an SPE with strategy profile

σ1 = (x, y), σ|(x,y) = σ1, σ|(ν,η) = σ2 for (ν, η) 6= (x, y)

where σ1 is the continuation strategy that yields the value w1 = Vg(σ
1) and

σ2 is the strategy that yields the continuation value w2 = Vg(σ
2). The value of

the equilibrium is Vg(σ) = w = (1 − δ) r(x, y) + δw1 . We want to compute V .
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22.9.1. The basic idea of dynamic programming squared

In Definition 7, W serves as a set of candidate continuation values. The idea is

to pick an (x, y) ∈ C , then to check whether you can find (w1, w2) ∈ W ×W

to use as continuation values and that would make the government want to

adhere to the y component when w1 and w2 are used as continuation values

for adhering and deviating, respectively. If the answer is yes, we say that the

4-tuple (x, y, w1, w2) is admissible with respect to W . A yes answer lets us use

that (w1, w2) pair as candidate continuation values and, having verified that the

incentive constraints are satisfied, allows us to calculate the value (i.e., the left

side of (22.9.2)) that could be supported with w1, w2 as continuation values.

Thus, the idea is to use (22.9.2) to define a mapping from values tomorrow to

values today, like that used in dynamic programming. In the next section, we’ll

define B(W ) as the set of possible values attained with admissible continuation

values drawn from W . Then we’ll view B as an operator that is analogous to

the T operator associated with ordinary dynamic programming.

To pursue this analogy further, recall the Bellman equation associated with

the basic McCall model of chapter 6:

Q =

∫
max

{
w

1 − β
, c+ βQ

}
dF (w).

Here Q is the expected discounted value of an unemployed worker’s income

before he has drawn a wage offer. The right side defines an operator T (Q), so

that the Bellman equation is

Q = T (Q). (22.9.3)

This equation can be solved by iterating to convergence starting from any initial

Q .

Just as the right side of (22.9.3) takes a candidate value Q for tomorrow

and maps it into a value T (Q) for today, APS define a mapping B(W ) that,

by considering only admissible 4-tuples, maps the set of values W tomorrow

into a new set B(W ) of values today. Thus, APS use admissible 4-tuples to

map candidate continuation values tomorrow into new candidate values today.

In the next section, we’ll iterate to convergence on B(W ), but as we’ll see, it

won’t work to start from just any initial set W . We have to start from a big

enough set.

Definition 8: For each set W ⊂ IR , let B(W ) be the set of possible values

w = (1 − δ) r(x, y) + δw1 associated with admissible tuples (x, y, w1, w2).
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Think of W as a set of potential continuation values and B(W ) as the set

of values that they support. From the definition of admissibility it immediately

follows that the operator B is monotone.

Property (monotonicity of B ): If W ⊆W ′ ⊆ R , then B(W ) ⊆ B(W ′).

Proof: It can be verified directly from the definition of admissible 4-tuples

that if w ∈ B(W ), then w ∈ B(W ′): simply use the (w1, w2) pair that supports

w ∈ B(W ) to support w ∈ B(W ′).

It can also be verified that B(·) maps compact sets W into compact sets

B(W ).

The self-referential character of subgame perfect equilibria is exploited in the

following definition:

Definition 9: The set W is said to be self-generating if W ⊆ B(W ).

Thus, a set W is said to be self-generating if it is contained in the set of

values B(W ) that are generated by continuation values that are themselves

elements of W . This description makes us suspect that if a set of values is

self-generating, it must be a set of SPE values. Indeed, notice that by virtue

of the lemma, the set V of SPE values Vg(σ) is self-generating. Thus, we can

write V ⊆ B(V ). APS show that V is the largest self-generating set. The key

to showing this point is the following theorem:10

Theorem 1 (Self-Generation): If W ⊂ IR is bounded and self-generating,

then B(W ) ⊆ V .

The proof is based on “forward induction” and proceeds by taking a point

w ∈W ⊆ B(W ) and constructing an SPE with value w .

Proof: Assume W ⊆ B(W ). Choose an element w ∈ B(W ) and transform

it as follows into a subgame perfect equilibrium:

10 The unbounded set IR (the extended real line) is self-generating but not meaningful. It

is self-generating because any value v ∈ IR can be supported if there are no limits on the

continuation values. It is not meaningful because most points in IR are values that cannot be

attained with any strategy profile.
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Step 1. Because w ∈ B(W ), we know that there exist outcomes (x, y) and

values w1 and w2 that satisfy

w = (1 − δ) r(x, y) + δw1 ≥ (1 − δ) r(x, η) + δw2 ∀η ∈ Y

(x, y) ∈ C

w1, w2 ∈ W ×W.

Set σ1 = (x, y).

Step 2. Since w1 ∈ W ⊆ B(W ), there exist outcomes (x̃, ỹ) and values

(w̃1, w̃2) ∈W that satisfy

w1 = (1 − δ) r(x̃, ỹ) + δw̃1 ≥ (1 − δ) r(x̃, η) + δw̃2, ∀ η ∈ Y

(x̃, ỹ) ∈ C.

Set the first-period outcome in period 2 (the outcome to occur given that y was

chosen in period 1) equal to (x̃, ỹ); that is, set (σ|(x,y))1 = (x̃, ỹ).

Continuing in this way, for each w ∈ B(W ), we can create a sequence of

continuation values w1, w̃1, ˜̃w1, . . . and a corresponding sequence of first-period

outcomes (x, y), (x̃, ỹ), (˜̃x, ˜̃y).

At each stage in this construction, policies are unimprovable, which means

that given the continuation values, one-period deviations from the prescribed

policies are not optimal. It follows that the strategy profile is optimal. By

construction Vg(σ) = w .

Collecting results, we know that

1. V ⊆ B(V ) (by the lemma).

2. If W ⊆ B(W ), then B(W ) ⊆ V (by self-generation).

3. B is monotone and maps compact sets into compact sets.

Facts 1 and 2 imply that V = B(V ), so that the set of equilibrium values is

a “fixed point” of B , in particular, the largest bounded fixed point.

Monotonicity of B and the fact that it maps compact sets into compact sets

provides an algorithm for computing the set V , namely, to start with a set W0

for which V ⊆ B(W0) ⊆ W0 , and to iterate to convergence on B . In more

detail, we use the following steps:

1. Start with a set W0 = [w0, w0] that we know is bigger than V , and for

which B(W0) ⊆ W0 . It will always work to set w0 = max(x,y)∈C r(x, y), w0 =

min(x,y)∈C r(x, y).
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2. Compute the boundaries of the set B(W0) = [w1, w1] . The value w1 solves

the problem

w1 = max
(x,y)∈C

(1 − δ) r(x, y) + δw0

subject to

(1 − δ) r(x, y) + δw0 ≥ (1 − δ) r(x, η) + δw0 for all η ∈ Y.

The value w1 solves the problem

w1 = min
(x,y)∈C; (w1,w2)∈[w

0
,w0]2

(1 − δ) r(x, y) + δw1

subject to

(1 − δ) r(x, y) + δw1 ≥ (1 − δ) r(x, η) + δw2 ∀ η ∈ Y.

With (w0, w0) chosen as before, it will be true that B(W0) ⊆W0 .

3. Having constructed W1 = B(W0) ⊆ W0 , continue to iterate, producing a

decreasing sequence of compact sets Wj+1 = B(Wj) ⊆ Wj . Iterate until the

sets converge.

Later, we’ll present an alternative way to compute the best and worst SPE

values, one that evades having to iterate to convergence on the B operator.

22.10. Self-enforcing SPE

The subgame perfect equilibrium with the worst value v ∈ V has the remarkable

property that it is “self-enforcing.” We use the following definition:

Definition 10: A subgame perfect equilibrium σ with first-period outcome

(x̃, ỹ) is said to be self-enforcing if

σ|(x,y) = σ if (x, y) 6= (x̃, ỹ). (22.10.1)

A strategy profile satisfying equation (22.10.1) is called self-enforcing because

after a one-shot deviation the expectation (or “punishment”) is simply to restart

the equilibrium.
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Recall our earlier characterization of a competitive equilibrium as a pair

(h(y), y), where x = h(y) is the mapping from the government’s action y to the

private sector’s equilibrium response. The value v associated with the worst

subgame perfect equilibrium σ satisfies

v = min
y,v

{
(1 − δ) r(h(y), y) + δv

}
(22.10.2)

where the minimization is subject to y ∈ Y , v ∈ V , and the incentive constraint

(1 − δ) r(h(y), y) + δv ≥ (1 − δ) r(h(y), η) + δv for all η ∈ Y. (22.10.3)

Let ṽ be a continuation value that attains the right side of equation (22.10.2),

and let σṽ be a subgame perfect equilibrium that supports continuation value

ṽ . Let (x̃, ỹ) be the first-period outcome that attains the right side of equation

(22.10.2). Since v is both the continuation value when first-period outcome

(x, y) 6= (x̃, ỹ) and the value associated with subgame perfect equilibrium σ , it

follows that
σ1 = (x̃, ỹ)

σ|(x,y) =

{
σ if (x, y) 6= (x̃, ỹ)

σṽ if (x, y) = (x̃, ỹ).

(22.10.4)

Because of the double role played by v , i.e., v is both the value of equilibrium σ

and the “punishment” continuation value of the right side of the incentive con-

straint (22.10.3), the equilibrium strategy σ that supports v is self-enforcing.11

The preceding argument thus establishes this proposition:

Proposition 2: A subgame perfect equilibrium σ associated with v =

min{v : v ∈ V } is self-enforcing.

11 As we show below, the structure of the programming problem, with the double role played

by v , makes it possible to compute the worst value directly.
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22.10.1. The quest for something worse than repetition of Nash
outcome

Notice that the first subgame perfect equilibrium that we computed, whose

outcome was infinite repetition of the one-period Nash equilibrium, is a self-

enforcing equilibrium. However, in general, the infinite repetition of the one-

period Nash equilibrium is not the worst subgame perfect equilibrium. This fact

opens up the possibility that even when an expected reversion to Nash after a

deviation is not able to support repetition of Ramsey as an SPE, we might

nevertheless support repetition of the Ramsey outcome by an expectation that

we will revert to an equilibrium with a value worse than that associated with

repetition of the Nash outcome.

22.11. Recursive strategies

This section emphasizes similarities between credible government policies and

the recursive contracts appearing in chapter 19. We will study situations where

the household’s and the government’s strategies have recursive representations.

This approach substantially restricts the space of strategies because most history-

dependent strategies cannot be represented recursively. Nevertheless, this class

of strategies excludes no equilibrium payoffs v ∈ V . We use the following defi-

nitions:

Definition 11: Households and the government follow recursive strategies

if there is a 3-tuple of functions φ = (zh, zg,V) and an initial condition v1 with

the following structure:

v1 ∈ IR is given

xt = zh(vt)

yt = zg(vt)

vt+1 = V(vt, xt, yt),

(22.11.1)

where vt is a state variable designed to summarize the history of outcomes

before t .

This recursive form of strategies operates much like an autoregression to let

time t actions (xt, yt) depend on the history {ys, xs}t−1
s=1 , as mediated through
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the state variable vt . Representation (22.11.1) induces history-dependent gov-

ernment policies, and thereby allows for reputation. We shall soon see that

beyond its role in keeping track of histories, vt also summarizes the future.12

A strategy (φ, v) recursively generates an outcome path expressed as (~x, ~y) =

(~x, ~y)(φ, v). By substituting the outcome path into equation (22.6.3), we find

that (φ, v) induces a value for the government, which we write as

V g
[
(~x, ~y)(φ, v)

]
= (1 − δ) r

[
zh(v), zg(v)

]

+ δ V g
(
(x, y)

{
φ,V [v, zh(v), zg(v)]

})
. (22.11.2)

So far, we have not interpreted the state variable v , except as a particular

measure of the history of outcomes. The theory of credible policy ties past and

future together by making the state variable v a promised value, an outcome to

be expressed

v = V g
[
(~x, ~y)(φ, v)

]
. (22.11.3)

Equations (22.11.1), (22.11.2), and (22.11.3) assert a dual role for v . In

equation (22.11.1), v accounts for past outcomes. In equations (22.11.2) and

(22.11.3), v looks forward. The state vt is a discounted future value with which

the government enters time t based on past outcomes. Depending on the out-

come (x, y) and the entering promised value v , V updates the promised value

with which the government leaves the period. Later we shall struggle with which

of two valid interpretations of the government’s strategy should be emphasized:

something chosen by the government, or a description of a system of public

expectations to which the government conforms.

Evidently, we have the following:

Definition 12: Let V be the set of SPE values. A recursive strategy (φ, v)

in equation (22.11.1) is a subgame perfect equilibrium (SPE) if and only if v ∈ V

and

(1) The outcome x = zh(v) is a competitive equilibrium, given that y =

zg(v).

12 By iterating equations (22.11.1), we can construct a pair of sequences of functions indexed

by t ≥ 1 {Zht (It), Z
g
t (It)} , mapping histories that are augmented by initial conditions It =

({xs, ys}
t−1
s=1, v1) into time t actions (xt, yt) ∈ X × Y . Strategies for the repeated economy

are a pair of sequences of such functions without the restriction that they have a recursive

representation.
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(2) For each η ∈ Y , V(v, zh(v), η) ∈ V .

(3) For each η ∈ Y ,

v = (1 − δ)r
[
zh(v), zg(v)

]
+ δV

[
v, zh(v), zg(v)

]

≥ (1 − δ)r
[
zh(v), η

]
+ δV

[
v, zh(v), η

]
.

(22.11.4)

Condition (1) asserts that the first-period outcome pair (x, y) is a competi-

tive equilibrium. Each member of the private sector forms an expectation about

the government’s action according to yt = zg(vt), and the “market” responds

with a competitive equilibrium xt ,

xt = h(yt) = h
[
zg(vt)

]
≡ zh(vt). (22.11.5)

This argument builds in rational expectations, because the private sector knows

both the state variable vt and the government’s decision rule zg .

Besides the first-period outcome (x, y), conditions (2) and (3) associate with

a subgame perfect equilibrium three additional objects: a promised value v , a

continuation value v′ = V [v, zh(v), zg(v)] if the required first-period outcome is

observed, and another continuation value ṽ(η) = V [v, zh(v), η] if the required

first-period outcome is not observed but rather some pair (x, η). All of the

continuation values must themselves be attained as subgame perfect equilibria.

In terms of these objects, condition (3) is an incentive constraint inspiring the

government to adhere to the equilibrium

v = (1 − δ)r(x, y) + δv′

≥ (1 − δ)r(x, η) + δṽ(η), ∀η ∈ Y.

This formula states that the government receives more if it adheres to an action

called for by its strategy than if it departs. To ensure that these values constitute

“credible expectations,” part (2) of Definition 12 requires that the continuation

values be values for subgame perfect equilibria. The definition is circular, be-

cause members of the same class of objects, namely, equilibrium values v , occur

on each side of expression (22.11.4). Circularity comes with recursivity.

One implication of the work of APS (1986, 1990) is that recursive equilibria

of form (22.11.1) can attain all subgame perfect equilibrium values. As we have

seen, APS’s innovation was to shift the focus away from the set of equilibrium

strategies and toward the set of values V attainable with subgame perfect equi-

librium strategies. They described a set V such that for all v ∈ V , v is the

value associated with an SPE.
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22.12. Examples of SPE with recursive strategies

Our two earlier examples of subgame perfect equilibria were already of a recur-

sive nature. But to highlight this property, we recast those SPE in the present

notation for recursive strategies. Equilibria are constructed by using a guess-

and-verify technique. First, guess (v1, z
h, zg,V) in equations (22.11.1), then

verify parts (1), (2), and (3) of Definition 12.

The examples parallel the historical development of the theory. (1) The first

example is infinite repetition of a one-period Nash outcome, which was Kydland

and Prescott’s (1977) time-consistent equilibrium. (2) Barro and Gordon (1983a,

1983b) and Stokey (1989) used the value from infinite repetition of the Nash

outcome as a continuation value to deter deviation from the Ramsey outcome.

For sufficiently high discount factors, the continuation value associated with

repetition of the Nash outcome can deter the government from deviating from

infinite repetition of the Ramsey outcome. This is not possible for low discount

factors. (3) Abreu (1988) and Stokey (1991) showed that Abreu’s “stick-and-

carrot” strategy induces more severe consequences than repetition of the Nash

outcome.

22.12.1. Infinite repetition of Nash outcome

It is easy to construct an equilibrium whose outcome path forever repeats the

one-period Nash outcome. Let vN = r(xN , yN). The proposed equilibrium is

v1 = vN ,

zh(v) = xN ∀ v,
zg(v) = yN ∀ v, and

V(v, x, y) = vN , ∀ (v, x, y).

Here vN plays all the roles of all three values in condition (3) of Definition 12.

Conditions (1) and (2) are satisfied by construction, and condition (3) collapses

to

r(xN , yN ) ≥ r
[
xN , H(xN )

]
,

which is satisfied at equality by the definition of a best response function.
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22.12.2. Infinite repetition of a better-than-Nash outcome

Let vb be a value associated with outcome (xb, yb) such that vb = r(xb, yb) >

vN , and assume that (xb, yb) constitutes a competitive equilibrium. Suppose

further that

r
[
xb, H(xb)

]
− r(xb, yb) ≤ δ

1 − δ
(vb − vN ). (22.12.1)

The left side is the one-period return to the government from deviating from

yb ; it is the gain from deviating. The right side is the difference in present

values associated with conforming to the plan versus reverting forever to the

Nash equilibrium; it is the cost of deviating. When the inequality is satisfied,

the equilibrium presents the government with an incentive not to deviate from

yb . Then an SPE is

v1 = vb

zh(v) =

{
xb if v = vb;

xN otherwise;

zg(v) =

{
yb if v = vb;

yN otherwise;

V(v, x, y) =

{
vb if (v, x, y) = (vb, xb, yb);

vN otherwise.

This strategy specifies outcome (xb, yb) and continuation value vb as long as

vb is the value promised at the beginning of the period. Any deviation from yb

generates continuation value vN . Inequality (22.12.1) validates condition (3)

of Definition 12.

Barro and Gordon (1983a) considered a version of this equilibrium in which

inequality (22.12.1) is satisfied with (vb, xb, yb) = (vR, xR, yR). In this case,

anticipated reversion to Nash supports the Ramsey outcome forever. When

inequality (22.12.1) is not satisfied for (vb, xb, yb) = (vR, xR, yR), we can solve

for the best SPE value vb , with associated actions (xb, yb), supportable by

infinite reversion to Nash from

vb = r(xb, yb) = (1 − δ)r
[
xb, H(xb)

]
+ δvN > vN . (22.12.2)

The payoff from following the strategy equals that from deviating and reverting

to Nash. Any value lower than this can be supported, but none higher.

When vb < vR , Abreu (1988) searched for a way to support something better

than vb . First, one must construct an equilibrium that yields a value worse than
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permanent repetition of the Nash outcome. The expectation of reverting to this

equilibrium supports something better than vb in equation (22.12.2).

Somehow the government must be induced temporarily to take an action y#

that yields a worse period-by-period return than the Nash outcome, meaning

that the government in general would be tempted to deviate. An equilibrium

system of expectations has to be constructed that makes the government expect

to do better in the future only by conforming to expectations that it temporarily

adheres to the bad policy y# .

22.12.3. Something worse: a stick-and-carrot strategy

To get something worse than repetition of the one-period Nash outcome, Abreu

(1988) proposed a “stick-and-carrot punishment.” The “stick” part is an out-

come (x#, y#) ∈ C , which relative to (xN , yN ) is a bad competitive equilibrium

from the government’s viewpoint. The “carrot” part is the Ramsey outcome

(xR, yR), which the government attains forever after it has accepted the stick

in the first period of its punishment.

We want a continuation value v∗ for deviating to support the first-period

outcome (x#, y#) and attain the value13

ṽ = (1 − δ)r(x#, y#) + δ vR ≥ (1 − δ)r
[
x#, H(x#)

]
+ δ v∗. (22.12.3)

Abreu proposed to set v∗ = ṽ so that the continuation value from deviating

from the first-period action equals the original value. If the stick part is severe

enough, the associated strategy attains a value worse than repetition of Nash.

The strategy induces the government to accept the temporarily bad outcome by

promising a high continuation value.

An SPE featuring stick-and-carrot punishments that attains ṽ is

v1 = ṽ

zh(v) =

{
xR if v = vR;

x# otherwise;

zg(v) =

{
yR if v = vR;

y# otherwise;

V(v, x, y) =

{
vR if (x, y) = [zh(v), zg(v)] ;

ṽ otherwise.

(22.12.4)

13 This is a “one-period stick.” The worst SPE can require more than one period of a

worse-than-one-period Nash outcome.
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When the government deviates from the bad prescribed first-period action y# ,

the consequence is to restart the equilibrium. In other words, the equilibrium

is self-enforcing.

22.13. The best and the worst SPE values

The value associated with Abreu’s stick-and-carrot strategy might still not be

bad enough to deter the government from deviating from repetition of the Ram-

sey outcome. We are therefore interested in finding the worst SPE value. We

now display a pair of simple programming problems to find the best and worst

SPE values. APS (1990) showed how to find the entire set of equilibrium values

V . In the current setting, their ideas imply the following:

1. The set of equilibrium values V attainable by the government is a compact

subset [v, v] of [min(x,y)∈C r(x, y), r(x
R, yR)] .

2. The worst equilibrium value v can be computed from a simple programming

problem.

3. Given the worst equilibrium value v , the best equilibrium value v can be

computed from a programming problem.

4. Given a v ∈ [v, v] , it is easy to construct an equilibrium that attains it.

Recall from Proposition 2 that the worst equilibrium is self-enforcing, and

here we repeat versions of equations (22.10.2) and (22.10.3),

v = min
y∈Y, v1∈V

{
(1 − δ) r

[
h(y), y

]
+ δv1

}
(22.13.1)

where the minimization is subject to the incentive constraint

(1 − δ) r[h(y), y] + δv1 ≥ (1 − δ) r
{
h(y), H [h(y)]

}
+ δv. (22.13.2)

In expression (22.13.2), we use the worst SPE as the continuation value in

the event of a deviation. The minimum will be attained when the constraint

is binding, which implies that14 v = r{h(y), H [h(y)]} , for some government

action y . Thus, the problem of finding the worst SPE reduces to solving

v = min
y∈Y

r
{
h(y), H [h(y)]

}
,

14 An equivalent way to express v is v = miny∈Y maxη∈Y r(h(y), η) .
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then computing v1 from (1 − δ)r[h(y), y] + δv1 = v , where y = argmin r{h(y),
H [h(y)]} , and finally checking that v1 is itself a value associated with an SPE.

To check this condition, we need to know v .

The computation of v utilizes the fact that the best SPE is self-rewarding;

that is, the best SPE has continuation value v when the government follows the

prescribed equilibrium strategy. Thus, after we have computed a candidate for

the worst SPE value v , we can compute a candidate for the best value v by

solving the programming problem

v = max
y∈Y

r
[
h(y), y

]

subject to r
[
h(y), y

]
≥ (1 − δ)r

{
h(y), H [h(y)]

}
+ δv.

Here we are using the fact that v is the maximum continuation value available

to reward adherence to the policy, so that v = (1− δ)r[h(y), y] + δv . Let yb be

the maximizing value of y . Once we have computed v , we can check that the

continuation value v1 for supporting the worst value is within our candidate set

[v, v] . If it is, we have succeeded in constructing V .

22.13.1. When v1 is outside the candidate set

If our candidate v1 is not within our candidate set [v, v] , we have to seek a

smaller set. We could find this set by pursuing the following line of reasoning.

We know that

v = r
{
h(y), H [h(y)]

}
(22.13.3)

for some y , and that for y the continuation value v1 satisfies

(1 − δ)r[h(y), y] + δv1 = (1 − δ)r
{
h(y), H [h(y)]

}
+ δv.

Solving this equation for v1 gives

v1 =
1 − δ

δ

(
r
{
h(y), H [h(y)]

}
− r[h(y), y]

)
+ r

{
h(y), H [h(y)]

}
(22.13.4)

The term in large parentheses on the right measures the one-period temp-

tation to deviate from y . It is multiplied by 1−δ
δ , which approaches +∞ as

δ ↘ 0. Therefore, as δ ↘ 0, it is necessary that the term in braces approach

0, which means that the required y must approach yN .
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For discount factors that are so small that v1 is outside the region of values

proposed in the previous subsection because the implied v1 exceeds the can-

didate v , we can proceed in the spirit of Abreu’s stick-and-carrot policy, but

instead of using vR as the continuation value to reward adherence (because

that is too much to hope for here), we can simply reward adherence to the worst

with v , which we must solve for. Using v = v1 as the continuation value for

adherence to the worst leads to the following four equations to be solved for

v, v, y, y :

v =r
{
h(y), H [h(y)]

}
(22.13.5)

v =
1 − δ

δ

(
r
{
h(y,H [h(y)]

}
− r[h(y), y]

)

+ r
{
h(y), H [h(y)]

}
(22.13.6)

v =r[h(y), y] (22.13.7)

v =(1 − δ)r {h(y), H [h(y)]} + δv. (22.13.8)

In exercise 22.3 , we ask the reader to solve these equations for a particular

example.

22.14. Examples: alternative ways to achieve the worst

We return to the situation envisioned before the last subsection, so that the

candidate v1 belongs to the required candidate set [v, v] . We describe examples

of some equilibria that attain value v .
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22.14.1. Attaining the worst, method 1

We have seen that to evaluate the best sustainable value v , we want to find the

worst value v . Many SPEs attain the worst value v . To compute one such SPE

strategy, we can use the following recursive procedure:

1. Set the first-period promised value v0 = v = r{h(y#), H [h(y#)]} , where

y# = arg min r{h(y), H [h(y)]} . The competitive equilibrium with the worst

one-period value gives value r[h(y#), y#] . Given expectations x# = h(y#),

the government is tempted toward H(x#), which yields one-period utility to

the government of r{h(y#), H [h(y#)]} . Then use v as continuation value in

the event of a deviation, and construct an increasing sequence of continuation

values to reward adherence, as follows:

2. Solve v = (1 − δ)r[h(y#), y#] + δv2 for continuation value v1 .

3. For j = 1, 2, · · ·, continue solving vj = (1 − δ)r[h(y#), y#] + δvj+1 for the

continuation values vj+1 as long as vj+1 ≤ v . If vj+1 threatens to violate this

constraint at step j = j , then go to step 4.

4. Use v as the continuation value, and solve vj = (1− δ)r[h(ỹ), ỹ] + δv for the

prescription ỹ to be followed if promised value vj is encountered.

5. Set vj+s = v for s ≥ 1.

22.14.2. Attaining the worst, method 2

To construct another equilibrium supporting the worst SPE value, follow steps

1 and 2, and follow step 3 also, except that we continue solving vj = (1 −
δ)r[h(y#), y#] + δvj+1 for the continuation values vj+1 only so long as vj+1 <

vN . As soon as vj+1 = v∗∗ > vN , we use v∗∗ as both the promised value

and the continuation value thereafter. In terms of our recursive strategy no-

tation, whenever v∗∗ = r[h(y∗∗), y∗∗] is the promised value, zh(v∗∗) = h(y∗∗),

zg(v∗∗) = y∗∗ , and v′[v∗∗, zh(v∗∗), zg(v∗∗)] = v∗∗ .
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22.14.3. Attaining the worst, method 3

Here is another subgame perfect equilibrium that supports v . Proceed as in step

1 to find the initial continuation value v1 . Now set all subsequent values and

continuation values to v1 , with associated first-period outcome ỹ that solves

v1 = r[h(ỹ), ỹ] . It can be checked that the incentive constraint is satisfied with

v the continuation value in the event of a deviation.

22.14.4. Numerical example

We now illustrate the concepts and arguments using the infinitely repeated

version of the taxation example. To make the problem of finding v nontrivial,

we impose an upper bound on admissible tax rates given by τ = 1 − α − ε ,

where ε ∈ (0, 0.5 − α). Given τ ∈ Y ≡ [0, τ ] , the model exhibits a unique

Nash equilibrium with τ = 0.5. For a sufficiently small ε , the worst one-period

competitive equilibrium is [`(τ ), τ ] .

Set [α δ τ ] = [ 0.3 0.8 0.6 ]. Compute

[ τR τN ] = [ 0.3013 0.5000 ] ,

[ vR vN v vabreu ] = [−0.6801 −0.7863 −0.9613 −0.7370 ] .

In this numerical example, Abreu’s “stick-and-carrot” strategy fails to attain

a value lower than the repeated Nash outcome. The reason is that the upper

bound on tax rates makes the least favorable one-period return (the “stick”) not

so bad.

Figure 22.14.1 describes two SPEs that attain the worst SPE value v with

the depicted sequences of time t (promised value, tax rate) pairs. The circles

represent the worst SPE attained with method 1, and the x-marks correspond

to method 2. By construction, the continuation values of method 2 are less

than or equal to the continuation values of method 1. Since both SPEs attain

the same promised value v , it follows that method 2 must be associated with

higher one-period returns in some periods. Figure 22.14.2 indicates that method

2 delivers those higher one-period returns around period 20 when the prescribed

tax rates are closer to the Ramsey outcome τR = 0.3013.

When varying the discount factor, we find that the cutoff value of δ below

which reversion to Nash fails to support Ramsey forever is 0.2194.
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Figure 22.14.1: Continuation values (on coordinate axis) of two
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Figure 22.14.2: Tax rates associated with the continuation values

of Figure 22.14.1.
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22.15. Interpretations

The notion of credibility or sustainability emerges from a ruthless and complete

application of two principles: rational expectations and self-interest. At each

moment and for each possible history, individuals and the government act in

their own best interests while expecting everyone else always to act in their best

interests. A credible government policy is one that it is in the interest of the

government to implement on every occasion.

The structures that we have studied have multiple equilibria, indexed by dif-

ferent systems of rational expectations. Multiple equilibria are essential to the

construction, because what sustains a good equilibrium is a system of expecta-

tions that raises the prospect of reverting to a bad equilibrium if the government

deviates from the good equilibrium. For the expectations of reverting to the bad

equilibrium to be credible, the bad equilibrium must itself be an equilibrium;

that is, it must be in the self-interest of all agents to behave as they are expected

to. Supporting a Ramsey outcome hinges on finding an equilibrium with out-

comes bad enough to deter the government from surrendering to the temptation

to deviate.15

Is the multiplicity of equilibria a strength or a weakness of such theories?

Here descriptions of preferences and technologies, supplemented by the restric-

tion of rational expectations, don’t pin down outcomes. There is an indepen-

dent role for expectations not based solely on fundamentals. The theory is silent

about which equilibrium will prevail; there is no sense in which the government

chooses among equilibria.

Depending on the purpose, the multiplicity of equilibria can be regarded

either as a strength or as a weakness of these theories. In inferior equilibria,

the government is caught in an “expectations trap,”16 an aspect of the theory

that highlights how the government can be regarded as simply resigning itself to

affirm the public’s expectations about it. Within the theory, the government’s

strategy plays a dual role, as it does in any rational expectations model: one

summarizing the government’s choices, the other describing the public’s rule for

15 This statement means that an equilibrium is supported by beliefs about behavior at

prospective histories of the economy that might never be attained or observed. Part of the

literature on learning in games and dynamic economies studies situations in which it is not

reasonable to expect “adaptive” agents to learn so much. See Kreps and Fudenberg (1998),

and Kreps (1990).
16 See Chari, Christiano, and Eichenbaum (1998).
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forecasting the government’s behavior. In inferior equilibria, the government

wishes that it could use a different strategy but nevertheless conforms to the

public’s expectations that it will adhere to an inferior rule.

22.16. Concluding remarks

Chang (1998) and Phelan and Stacchetti (2001) have extended the machinery of

this chapter to settings in which private agents have natural state variables like

stocks of real balances or physical capital so that their best responses to govern-

ment policies require that Euler equations (or costate equations) be satisfied.

The strategy of these authors is to merge the method described in chapter 18

with that of this chapter. They augment the natural state vector and the con-

tinuation value with the costate variable of the representative private agent and

construct an operator from sets of pairs of values and costate variables into pairs

of values and costate variables. The largest fixed point of that set identifies the

set of all sustainable plans. An equilibrium strategy for the government maps a

promised value and a costate into a current decision and next-period promised

value and costate. Chang’s and Phelan and Stacchetti’s work has considerably

broadened the class of problems to which the method described in this chapter

applies.

Exercises

Exercise 22.1 Consider the following one-period economy. Let (ξ, x, y) be the

choice variables available to a representative agent, the market as a whole, and

a benevolent government, respectively. In a rational expectations equilibrium or

competitive equilibrium, ξ = x = h(y), where h(·) is the “equilibrium response”

correspondence that gives competitive equilibrium values of x as a function of

y ; that is, [h(y), y] is a competitive equilibrium. Let C be the set of competitive

equilibria.

Let X = {xM , xH}, Y = {yM , yH} . For the one-period economy, when

ξi = xi , the payoffs to the government and household are given by the values of

u(xi, xi, yj) entered in the following table:
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One-period payoffs u(xi, xi, yj)

xM xH
yM 10* 20
yH 4 15*
∗Denotes (x, y) ∈ C .

The values of u(ξk, xi, yj) not reported in the table are such that the competitive

equilibria are the outcome pairs denoted by an asterisk (*).

a. Find the Nash equilibrium (in pure strategies) and Ramsey outcome for the

one-period economy.

b. Suppose that this economy is repeated twice. Is it possible to support the

Ramsey outcome in the first period by reverting to the Nash outcome in the

second period in case of a deviation?

c. Suppose that this economy is repeated three times. Is it possible to support

the Ramsey outcome in the first period? In the second period?

Consider the following expanded version of the preceding economy. Y =

{yL, yM , yH} , X = {xL, xM , xH} . When ξi = xi , the payoffs are given by

u(xi, xi, yj) entered here:

One-period payoffs u(xi, xi, yj)

xL xM xH
yL 3* 7 9
yM 1 10* 20
yH 0 4 15*
∗Denotes (x, y) ∈ C .

d. What are Nash equilibria in this one-period economy?

e. Suppose that this economy is repeated twice. Find a subgame perfect equi-

librium that supports the Ramsey outcome in the first period. For what values

of δ will this equilibrium work?

f. Suppose that this economy is repeated three times. Find an SPE that sup-

ports the Ramsey outcome in the first two periods (assume δ = 0.8). Is it

unique?

Exercise 22.2 Consider a version of the setting studied by Stokey (1989). Let

(ξ, x, y) be the choice variables available to a representative agent, the market as
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a whole, and a benevolent government, respectively. In a rational expectations or

competitive equilibrium, ξ = x = h(y), where h(·) is the “equilibrium response”

correspondence that gives competitive equilibrium values of x as a function of

y ; that is, [h(y), y] is a competitive equilibrium. Let C be the set of competitive

equilibria.

Consider the following special case. Let X = {xL, xH} and Y = {yL, yH} .

For the one-period economy, when ξi = xi , the payoffs to the government are

given by the values of u(xi, xi, yj) entered in the following table:

One-period payoffs u(xi, xi, yj)

xL xH
yL 0* 20
yH 1 10*
∗ Denotes (x, y) ∈ C .

The values of u(ξk, xi, yj) not reported in the table are such that the competitive

equilibria are the outcome pairs denoted by an asterisk (*).

a. Define a Ramsey plan and a Ramsey outcome for the one-period economy.

Find the Ramsey outcome.

b. Define a Nash equilibrium (in pure strategies) for the one-period economy.

c. Show that there exists no Nash equilibrium (in pure strategies) for the one-

period economy.

d. Consider the infinitely repeated version of this economy, starting with t = 1

and continuing forever. Define a subgame perfect equilibrium.

e. Find the value to the government associated with the worst subgame perfect

equilibrium.

f. Assume that the discount factor is δ = .8913 = (1/10)1/20 = .1.05 . Determine

whether infinite repetition of the Ramsey outcome is sustainable as an SPE. If

it is, display the associated subgame perfect equilibrium.

g. Find the value to the government associated with the best subgame perfect

equilibrium.

h. Find the outcome path associated with the worst subgame perfect equilib-

rium.
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i. Find the one-period continuation value v1 and the outcome path associated

with the one-period continuation strategy σ1 that induces adherence to the

worst subgame perfect equilibrium.

j. Find the one-period continuation value v2 and the outcome path associated

with the one-period continuation strategy σ2 that induces adherence to the

first-period outcome of the σ1 that you found in part i.

k. Proceeding recursively, define vj and σj , respectively, as the one-period

continuation value and the continuation strategy that induces adherence to the

first-period outcome of σj−1 , where (v1, σ
1) were defined in part i. Find vj for

j = 1, 2, . . . , and find the associated outcome paths.

l. Find the lowest value for the discount factor for which repetition of the

Ramsey outcome is an SPE.

Exercise 22.3 Finding the worst and best SPEs

Consider the following model of Kydland and Prescott (1977). A government

chooses the inflation rate y from a closed interval [0, 10]. There is a family of

Phillips curves indexed by the public’s expectation of inflation x :

(1) U = U∗ − θ(y − x)

where U is the unemployment rate, y is the inflation rate set by the government,

and U∗ > 0 is the natural rate of unemployment and θ > 0 is the slope of the

Phillips curve, and where x is the average of private agents’ setting of a forecast

of y , called ξ . Private agents’ only decision in this model is to forecast inflation.

They choose their forecast ξ to maximize

(2) −.5(y − ξ)2.

Thus, if they know y , private agents set ξ = y . All agents choose the same

ξ , so that x = ξ in a rational expectations equilibrium. The government has

one-period return function

(3) r(x, y) = −.5(U2 + y2) = −.5[(U∗ − (y − x))2 + y2].

Define a competitive equilibrium as a 3-tuple U, x, y such that given y , private

agents solve their forecasting problem and (1) is satisfied.

a. Verify that in a competitive equilibrium, x = y and U = U∗ .
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b. Define the government best response function in the one-period economy.

Compute it.

c. Define a Nash equilibrium (in the spirit of Stokey (1989) or the text of this

chapter). Compute one.

d. Define the Ramsey problem for the one-period economy. Define the Ramsey

outcome. Compute it.

e. Verify that the Ramsey outcome is better than the Nash outcome.

Now consider the repeated economy where the government cares about

(4) (1 − δ)
∞∑

t=1

δt−1r(xt, yt),

where δ ∈ (0, 1).

f. Define a subgame perfect equilibrium.

g. Define a recursive subgame perfect equilibrium.

h. Find a recursive subgame perfect equilibrium that sustains infinite repetition

of the one-period Nash equilibrium outcome.

i. For δ = .95, U∗ = 5, θ = 1, find the value of (4) associated with the worst

subgame perfect equilibrium. Carefully and completely show your method for

computing the worst subgame perfect equilibrium value. Also, compute the

values associated with the repeated Ramsey outcome, the Nash equilibrium,

and Abreu’s simple stick-and-carrot strategy.

j. Compute a recursive subgame perfect equilibrium that attains the worst

subgame perfect equilibrium value (4) for the parameter values in part i.

k. For U∗ = 5, θ = 1, find the cutoff value δc of the discount factor δ below

which the Ramsey value vR cannot be sustained by reverting to repetition of

vN as a consequence of deviation from the Ramsey y .

l. For the same parameter values as in part k, find another cut off value δ̃c for

δ below which Ramsey cannot be sustained by reverting after a deviation to an

equilibrium attaining the worst subgame perfect equilibrium value. Compute

the worst subgame perfect equilibrium value for δ̃c .

m. For δ = .08, compute values associated with the best and worst subgame

perfect equilibrium strategies.



Chapter 23
Two Topics in International Trade

23.1. Two dynamic contracting problems

This chapter studies two models in which recursive contracts are used to over-

come incentive problems commonly thought to occur in international trade. The

first is Andrew Atkeson’s model of lending in the context of a dynamic setting

that contains both a moral hazard problem due to asymmetric information and

an enforcement problem due to borrowers’ option to disregard the contract. It

is a considerable technical achievement that Atkeson managed to include both

of these elements in his contract design problem. But this substantial technical

accomplishment is not just showing off. As we shall see, both the moral hazard

and the self-enforcement requirement for the contract are required in order to

explain the feature of observed repayments that Atkeson was after: that the

occurrence of especially low output realizations prompt the contract to call for

net repayments from the borrower to the lender, exactly the occasions when an

unhampered insurance scheme would have lenders extend credit to borrowers.

The second is Bond and Park’s model of a recursive contract that induces

two countries to adopt free trade when they begin with a pair of promised values

that implicitly determine the distribution of eventual welfare gains from trade

liberalization. The new policy is accomplished by a gradual relaxation of tariffs,

accompanied by trade concessions. Bond and Park’s model of gradualism is

all about the dynamics of promised values that are used optimally to manage

participation constraints.

– 820 –



Lending with moral hazard and difficult enforcement 821

23.2. Lending with moral hazard and difficult enforce-
ment

Andrew Atkeson (1991) designed a model to explain how, in defiance of the

pattern predicted by complete markets models, low output realizations in var-

ious countries in the mid-1980s prompted international lenders to ask those

countries for net repayments. A complete markets model would have net flows

to a borrower during periods of bad endowment shocks. Atkeson’s idea was

that information and enforcement problems could produce the observed out-

come. Thus, Atkeson’s model combines two features of the models we have seen

in chapter 19: incentive problems from private information and participation

constraints coming from enforcement problems.

Atkeson showed that the optimal contract handles enforcement and informa-

tion problems through the shape of the repayment schedule, thereby indirectly

manipulating continuation values. Continuation values respond only by updat-

ing a single state variable, a measure of resources available to the borrower, that

appears in the optimum value function, which in turn is affected only through

the repayment schedule. Once this state variable is taken into account, promised

values do not appear as independently manipulated state variables.1

Atkeson’s model brings together several features. He studies a “borrower”

who by himself is situated like a planner in a stochastic growth model, with the

only vehicle for saving being a stochastic investment technology. Atkeson adds

the possibility that the planner can also borrow subject to both participation

and information constraints.

A borrower lives for t = 0, 1, 2, . . .. He begins life with Q0 units of a single

good. At each date t ≥ 0, the borrower has access to an investment technology.

If It ≥ 0 units of the good are invested at t , Yt+1 = f(It, εt+1) units of time t+1

goods are available, where εt+1 is an i.i.d. random variable. Let g(Yt+1, It) be

the probability density of Yt+1 conditioned on It . It is assumed that increased

investment shifts the distribution of returns toward higher returns.

The borrower has preferences over consumption streams ordered by

(1 − δ)E0

∞∑

t=0

δtu(ct) (23.2.1)

1 To understand how Atkeson achieves this outcome, the reader should also digest the

approach described in chapter 22.
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where δ ∈ (0, 1) and u(·) is increasing, strictly concave, twice continuously

differentiable, and u′(0) = +∞ .

Atkeson used various technical conditions to render his model tractable. He

assumed that for each investment I , g(Y, I) has finite support (Y1, . . . , Yn) ,

with Yn > Yn−1 > . . . > Y1 . He assumed that g(Yi, I) > 0 for all values of I

and all states Yi , making it impossible precisely to infer I from Y . He further

assumed that the distribution g (Y, I) is given by the convex combination of two

underlying distributions g0(Y ) and g1(Y ) as follows:

g(Y, I) = λ(I)g0(Y ) + [1 − λ(I)]g1(Y ), (23.2.2)

where g0(Yi)/g1(Yi) is monotone and increasing in i , 0 ≤ λ(I) ≤ 1, λ′ (I) > 0,

and λ′′ (I) ≤ 0 for all I . Note that

gI(Y, I) = λ′(I)[g0(Y ) − g1(Y )], (23.2.3)

where gI denotes the derivative with respect to I . Moreover, the assumption

that increased investment shifts the distribution of returns toward higher returns

implies ∑

i

Yi [g0(Yi) − g1(Yi)] > 0. (23.2.4)

We shall consider the borrower’s choices in three environments: (1) autarky,

(2) lending from risk-neutral lenders under complete observability of the bor-

rower’s choices and complete enforcement, and (3) lending under incomplete

observability and limited enforcement. Environment 3 is Atkeson’s. We can use

environments 1 and 2 to construct bounds on the value function for performing

computations described in an appendix.
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23.2.1. Autarky

Suppose that there are no lenders. Thus, the “borrower” is just an isolated

household endowed with the technology. The household chooses (ct, It) to max-

imize expression (23.2.1) subject to

ct + It ≤ Qt

Qt+1 = Yt+1.

The optimal value function U(Q) for this problem satisfies the Bellman equation

U(Q) = max
Q≥I≥0

{
(1 − δ)u(Q− I) + δ

∑

Q′

U
(
Q′
)
g(Q′, I)

}
. (23.2.5)

The first-order condition for I is

−(1 − δ)u′(Q− I) + δ
∑

Q′

U(Q′)gI(Q
′, I) ≤ 0, = 0 if I > 0. (23.2.6)

This first-order condition implicitly defines a rule for accumulating capital under

autarky.

23.2.2. Investment with full insurance

We now consider an environment in which in addition to investing I in the

technology, the borrower can issue Arrow securities at a vector of prices q(Y ′, I),

where we let ′ denote next period’s values, and d(Y ′) the quantity of one-

period Arrow securities issued by the borrower; d(Y ′) is the number of units of

next period’s consumption good that the borrower promises to deliver. Lenders

observe the level of investment I , and so the pricing kernel q(Y ′, I) depends

explicitly on I . Thus, for a promise to pay one unit of output next period

contingent on next-period output realization Y ′ , for each level of I , the borrower

faces a different price. (As we shall soon see, in Atkeson’s model lenders cannot

observe I , making it impossible to condition the price on I .) We shall assume

that the Arrow securities are priced by risk-neutral investors who also have one-

period discount factor δ . This implies that the price of Arrow securities is given

by

q(Y ′, I) = δg(Y ′, I), (23.2.7)
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which in turn implies that the gross one-period risk-free interest rate is δ−1 .

In a complete markets world where there is no problem with information

or enforcement, the borrower’s optimal investment decision is not a function of

the borrower’s own holdings of the good. Instead, the optimal investment level

maximizes the project’s present value when evaluated at the prices for Arrow

securities;

max
I≥0

{
−I +

∑

Y ′

Y ′q(Y ′, I)
}
, (23.2.8)

and after imposing expression (23.2.7)

max
I≥0

{
−I + δ

∑

Y ′

Y ′g(Y ′, I)
}
.

Hence, when the prices for Arrow securities are determined by risk-neutral in-

vestors, the optimal investment level maximizes the project’s expected payoffs

discounted at the risk-free interest rate δ−1 . The first-order condition for I is
∑

Y ′

Y ′gI(Y
′, I) ≤ δ−1, = δ−1 if I > 0; (23.2.9)

and after invoking equation (23.2.3)

λ′(I)
∑

Y ′

Y ′ [g0(Y
′) − g1(Y

′)] ≤ δ−1, = δ−1 if I > 0.

This condition uniquely determines the investment level I , since the left side is

decreasing in I and must eventually approach zero because of the upper bound

on λ(I).

As in chapter 8, we formulate the borrower’s budget constraints recursively

as

c−
∑

Y ′

q(Y ′, I∗)d(Y ′) + I∗ ≤ Q (23.2.10a)

Q′ = Y ′ − d(Y ′), (23.2.10b)

where I∗ is the solution to investment problem (23.2.8). Let W (Q) be the

optimal value for a borrower with goods Q . The borrower’s Bellman equation

is

W (Q) = max
c,d(Y ′)

{
(1 − δ)u(c) + δ

∑

Y ′

W [Y ′ − d(Y ′)]g(Y ′, I∗)

+ λ[Q− c+
∑

Y ′

q(Y ′, I∗)d(Y ′) − I∗]

}
,

(23.2.11)



Lending with moral hazard and difficult enforcement 825

where λ is a Lagrange multiplier on expression (23.2.10a). First-order condi-

tions with respect to c, d(Y ′), respectively, are

c: (1 − δ)u′(c) − λ = 0, (23.2.12a)

d(Y ′): − δW ′[Y ′ − d(Y ′)]g(Y ′, I∗) + λq(Y ′, I∗) = 0. (23.2.12b)

By substituting (23.2.7) and (23.2.12a) into first-order condition (23.2.12b), we

obtain

−W ′[Y ′ − d(Y ′)] + (1 − δ)u′(c) = 0,

and after invoking the Benveniste-Scheinkman condition, W ′(Q′) = (1−δ)u′(c′),
we arrive at the consumption-smoothing result c′ = c . This in turn implies, via

the status of Q as the state variable in the Bellman equation, that Q′ = Q = Q0 .

Thus, the solution has I constant over time at a level I∗ determined by equation

(23.2.9), and c and the functions d(Y ′) satisfying

c+ I∗ = Q0 +
∑

Y ′

q(Y ′, I∗)d(Y ′) (23.2.13a)

d(Y ′) = Y ′ −Q0. (23.2.13b)

The borrower borrows a constant
∑

Y ′ q(Y ′, I∗)d(Y ′) each period, invests the

same I∗ each period, and makes high repayments when Y ′ is high and low

repayments when Y ′ is low. This is the standard full-insurance solution.

We now turn to Atkeson’s setting where the borrower does better than under

autarky but worse than with the loan contract under perfect enforcement and

observable investment. Atkeson found a contract with value V (Q) for which

U(Q) ≤ V (Q) ≤ W (Q). We shall want to compute W (Q) and U(Q) in order

to compute the value of the borrower under the more restricted contract.
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23.2.3. Limited commitment and unobserved investment

Atkeson designed an optimal recursive contract that copes with two impedi-

ments to risk sharing: (1) moral hazard, that is, hidden action: the lender

cannot observe the borrower’s action It that affects the probability distribution

of returns Yt+1 ; and (2) one-sided limited commitment: the borrower is free to

default on the contract and can choose to revert to autarky at any state.

Each period, the borrower confronts a two-period-lived, risk-neutral lender

who is endowed with M > 0 in each period of his life. Each lender can lend or

borrow at a risk-free gross interest rate of δ−1 and must earn an expected return

of at least δ−1 if he is to lend to the borrower. The lender is also willing to

borrow at this same expected rate of return. The lender can lend up to M units

of consumption to the borrower in the first period of his life, and could repay (if

the borrower lends) up to M units of consumption in the second period of his

life. The lender lends bt ≤M units to the borrower and gets a state-contingent

repayment d(Yt+1), where −M ≤ d(Yt+1), in the second period of his life. That

the repayment is state contingent lets the lender insure the borrower.

A lender is willing to make a one-period loan to the borrower, but only if the

loan contract ensures repayment. The borrower will fulfill the contract only if

he wants. The lender observes Q , but observes neither C nor I . Next period,

the lender can observe Yt+1 . He bases the repayment on that observation.

Where ct+ It− bt = Qt , Atkeson’s optimal recursive contract takes the form

dt+1 = d (Yt+1, Qt) (23.2.14a)

Qt+1 = Yt+1 − dt+1 (23.2.14b)

bt = b(Qt). (23.2.14c)

The repayment schedule d(Yt+1, Qt) depends only on observables and is de-

signed to recognize the limited commitment and moral hazard problems.

Notice how Qt is the only state variable in the contract. Atkeson uses the

apparatus of Abreu, Pearce, and Stacchetti (1990), discussed in chapter 22, to

show that the state can be taken to be Qt , and that it is not necessary to

keep track of the history of past Q ’s. Atkeson obtains the following Bellman

equation. Let V (Q) be the optimum value of a borrower in state Q under the

optimal contract. Let A = (c, I, b, d(Y ′)), all to be chosen as functions of Q .

The Bellman equation is

V (Q) = max
A

{
(1 − δ) u ( c ) + δ

∑

Y ′

V [Y ′ − d (Y ′, Q)] g (Y ′, I)
}

(23.2.15a)
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subject to

c+ I − b ≤ Q, b ≤M, −d(Y ′, Q) ≤M, c ≥ 0, I ≥ 0 (23.2.15b)

b ≤ δ
∑

Y ′

d(Y ′) g (Y ′, I ) (23.2.15c)

V [Y ′ − d (Y ′)] ≥ U (Y ′) (23.2.15d)

I = argmax
Ĩ ε[0,Q+b]

{(
1−δ

)
u
(
Q+b−Ĩ

)
+δ
∑

Y ′

V
[
Y ′−d (Y ′, Q)

]
g (Y ′, Ĩ)

}
. (23.2.15e)

Condition (23.2.15b) is feasibility. Condition (23.2.15c) is a rationality con-

straint for lenders: it requires that the gross return from lending to the borrower

be at least as great as the alternative yield available to lenders, namely, the

risk-free gross interest rate δ−1 . Condition (23.2.15d) says that in every state

tomorrow, the borrower must want to comply with the contract; thus the value

of affirming the contract (the left side) must be at least as great as the value of

autarky. Condition (23.2.15e) states that the borrower chooses I to maximize

his expected utility under the contract.

There are many value functions V (Q) and associated contracts b(Q), d(Y ′, Q)

that satisfy conditions (23.2.15). Because we want the optimal contract, we

want the V (Q) that is the largest (hopefully, pointwise). The usual strategy of

iterating on the Bellman equation, starting from an arbitrary guess V 0(Q), say,

0, will not work in this case because high candidate continuation values V (Q′)

are needed to support good current-period outcomes. But a modified version

of the usual iterative strategy does work, which is to make sure that we start

with a large enough initial guess at the continuation value function V 0(Q′).

Atkeson (1988, 1991) verified that the optimal contract can be constructed by

iterating to convergence on conditions (23.2.15), provided that the iterations

begin from a large enough initial value function V 0(Q). (See the appendix for

a computational exercise using Atkeson’s iterative strategy.) He adapted ideas

from Abreu, Pearce, and Stacchetti (1990) to show this result.2 In the next

subsection, we shall form a Lagrangian in which the role of continuation values

is explicitly accounted for.

2 See chapter 22 for some work with the Abreu, Pearce, and Stacchetti structure, and for

how, with history dependence, dynamic programming principles direct attention to sets of

continuation value functions. The need to handle a set of continuation values appropriately is

why Atkeson must initiate his iterations from a sufficiently high initial value function.
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Binding participation constraint

Atkeson motivated his work as an effort to explain why countries often expe-

rience capital outflows in the very-low-income periods in which they would be

borrowing more in a complete markets setting. The optimal contract associated

with conditions (23.2.15) has the feature that Atkeson sought: the borrower

makes net repayments dt > bt in states with low output realizations.

Atkeson establishes this property using the following argument. First, to

permit him to capture the borrower’s best response with a first-order condition,

he assumes the following conditions about the outcomes:3

Assumptions: For the optimum contract

∑

i

di
[
g0(Yi) − g1(Yi)

]
≥ 0. (23.2.16)

This makes the value of repayments increasing in investment. In addition, as-

sume that the borrower’s constrained optimal investment level is interior.

Atkeson assumes conditions (23.2.16) and (23.2.2) to justify using the first-

order condition for the right side of equation (23.2.15e) to characterize the

investment decision. The first-order condition for investment is

−(1 − δ)u′(Q+ b− I) + δ
∑

i

V (Yi − di)gI(Yi, I) = 0.

3 The first assumption makes the lender prefer that the borrower would make larger rather

than smaller investments. See Rogerson (1985b) for conditions needed to validate the first-

order approach to incentive problems.
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23.2.4. Optimal capital outflows under distress

To deduce a key property of the repayment schedule, we will follow Atkeson

by introducing a continuation value Ṽ as an additional choice variable in a

programming problem that represents a form of the contract design problem.

Atkeson shows how (23.2.15) can be viewed as the outcome of a more elementary

programming problem in which the contract designer chooses the continuation

value function from a set of permissible values.4 Following Atkeson, let Ud(Yi) ≡
Ṽ (Yi−d(Yi)) where Ṽ (Yi−d(Yi)) is a continuation value function to be chosen

by the author of the contract. Atkeson shows that we can regard the contract

author as choosing a continuation value function along with the elements of A ,

but that in the end it will be optimal for him to choose the continuation values

to satisfy the Bellman equation (23.2.15a).

We follow Atkeson and regard the Ud(Yi)’s as choice variables. They must

satisfy Ud(Yi) ≤ V (Yi − di), where V (Yi − di) satisfies the Bellman equation

(23.2.15). Form the Lagrangian

J(A,Ud, µ) =(1 − δ)u(c) + δ
∑

i

Ud(Yi)g(Yi, I)

+ µ1(Q+ b− c− I)

+ µ2

[
δ
∑

i

dig(Yi, I) − b
]

+ δ
∑

i

µ3(Yi)g(Yi, I)
[
Ud(Yi) − U(Yi)

]

+ µ4

[
−(1 − δ)u′(Q+ b− I) + δ

∑

i

Ud(Yi)gI(Yi, I)
]

+ δ
∑

i

µ5(Yi)g(Yi, I)
[
V (Yi − di) − Ud(Yi)

]
,

(23.2.17)

where the µj ’s are nonnegative Lagrange multipliers. To investigate the conse-

quences of a binding participation constraint, rearrange the first-order condition

with respect to Ud(Yi) to get

1 + µ4
gI(Yi, I)

g(Yi, I)
= µ5(Yi) − µ3(Yi), (23.2.18)

where gI/g = λ′(I)
[ g0(Yi)−g1(Yi)

g(Y,I)

]
, which is negative for low Yi and positive for

high Yi . All the multipliers are nonnegative. Then evidently when the left side

4 See Atkeson (1991) and chapter 22.
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of equation (23.2.18) is negative, we must have µ3(Yi) > 0, so that condition

(23.2.15d) is binding and Ud(Yi) = U(Yi). Therefore, V (Yi − di) = U(Yi)

for states with µ3(Yi) > 0. Atkeson uses this finding to show that in states

Yi where µ3(Yi) > 0, new loans b′ cannot exceed repayments di = d(Yi).

This conclusion follows from the following argument. The optimality condition

(23.2.15e) implies that V (Q) will satisfy

V (Q) = max
I∈[0,Q+b]

u(Q+ b− I) + δ
∑

Y ′

V (Y ′ − d(Y ′))g(Y ′, I). (23.2.19)

Using the participation constraint (23.2.15d) on the right side of (23.2.19) im-

plies

V (Q) ≥ max
I∈[0,Q+b]

{
u(Q+ b− I) + δ

∑

Y ′

U(Y ′
i )g(Y

′, I)

}
≡ U(Q+ b) (23.2.20)

where U is the value function for the autarky problem (23.2.5). In states

in which µ3 > 0, we know that, first, V (Q) = U(Y ), and, second, that by

(23.2.20) V (Q) ≥ U(Y + (b − d)). But we also know that U is increasing.

Therefore, we must have that (b − d) ≤ 0, for otherwise U being increasing

induces a contradiction. We conclude that for those low-Yi states for which

µ3 > 0, b ≤ d(Yi), meaning that there are no capital inflows for these states.5

Capital outflows in bad times provide good incentives because they occur

only at output realizations so low that they are more likely to occur when

the borrower has undertaken too little investment. Their role is to provide

incentives for the borrower to invest enough to make it unlikely that those low-

output states will occur. The occurrence of capital outflows at low outputs is

not called for by the complete markets contract (23.2.13b). On the contrary,

the complete markets contract provides a “capital inflow” to the lender in low-

output states. That the pair of functions bt = b(Qt), dt = d(Yt, Qt−1) forming

the optimal contract specifies repayments in those distressed states is how the

contract provides incentives for the borrower to make investment decisions that

reduce the likelihood that combinations of (Yt, Qt, Qt−1) will occur that trigger

capital outflows under distress.

We remind the reader of the remarkable feature of Atkeson’s contract that

the repayment schedule and the state variable Q “do all the work.” Atkeson’s

5 This argument highlights the important role of limited enforcement in producing capital

outflows at low output realizations.
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contract manages to encode all history dependence in an extremely economical

fashion. In the end, there is no need, as occurred in the problems that we studied

in chapter 19, to add a promised value as an independent state variable.

23.3. Gradualism in trade policy

We now describe a version of Bond and Park’s (2001) analysis of gradualism

in bilateral agreements to liberalize international trade. Bond and Park cite

examples in which a large country extracts a possibly rising sequence of transfers

from a small country in exchange for a gradual lowering of tariffs in the large

country. Bond and Park interpret gradualism in terms of the history-dependent

policies that vary the continuation value of the large country in a way that

induces it gradually to reduce its distortions from tariffs while still gaining from

a move toward free trade. They interpret the transfers as trade concessions.6

We begin by laying out a simple general equilibrium model of trade between

two countries.7 The outcome of this theorizing will be a pair of indirect utility

functions rL and rS that give the welfare of a large and small country, respec-

tively, both as functions of a tariff tL that the large country imposes on the

small country, and a transfer eS that the small country voluntarily offers to the

large country.

6 Bond and Park say that in practice, the trade concessions take the form of reforms of

policies in the small country about protecting intellectual property, protecting rights of foreign

investors, and managing the domestic economy. They do not claim explicitly to model these

features.
7 Bond and Park (2001) work in terms of a partial equilibrium model that differs in details

but shares the spirit of our model.
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23.3.1. Closed-economy model

First, we describe a one-country model. The country consists of a fixed number

of identical households. A typical household has preferences

u(c, `) = c+ `− 0.5 ` 2, (23.3.1)

where c and ` are consumption of a single consumption good and leisure, re-

spectively. The household is endowed with a quantity ȳ of the consumption

good and one unit of time that can be used for either leisure or work,

1 = `+ n1 + n2, (23.3.2)

where nj is the labor input in the production of intermediate good xj , for

j = 1, 2. The two intermediate goods can be combined to produce additional

units of the final consumption good. The technology is as follows:

x1 = n1, (23.3.3a)

x2 = γ n2, γ ∈ [0, 1], (23.3.3b)

y = 2 min{x1, x2}, (23.3.3c)

c = y + ȳ, (23.3.3d)

where consumption c is the sum of production y and the endowment ȳ .

Because of the Leontief production function for the final consumption good,

a closed economy will produce the same quantity of each intermediate good.

For a given production parameter γ , let χ̃(γ) be the identical amount of each

intermediate good that would be produced per unit of labor input. That is, a

fraction χ̃(γ) of one unit of labor input would be spent on producing χ̃(γ) units

of intermediate good 1 and another fraction χ̃(γ)/γ of the labor input would

be devoted to producing the same amount of intermediate good 2:

χ̃(γ) +
χ̃(γ)

γ
= 1 =⇒ χ̃(γ) =

γ

1 + γ
. (23.3.4)

The linear technology implies a competitively determined wage at which all

output is paid out as labor compensation. The optimal choice of leisure makes

the marginal utility of consumption from an extra unit of labor input equal to the

marginal utility of an extra unit of leisure: 2 min{χ̃(γ), χ̃(γ)} = d
d`

[
`−0.5 ` 2

]
.
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Substituting for χ̃(γ) from (23.3.4) gives 2 γ
1+γ = 1− ` , which can be rearranged

to become

` = L(γ) =
1 − γ

1 + γ
. (23.3.5)

It follows that per capita, the equilibrium quantity of each intermediate good is

given by

x1 = x2 = χ(γ) ≡ χ̃(γ)[1 − L̃(γ)] =
2 γ2

(1 + γ)2
. (23.3.6)

Two countries under autarky

Suppose that there are two countries named L and S (denoting large and

small). Country L consists of N ≥ 1 identical consumers, while country S

consists of one household. All households have the same preferences (23.3.1),

but technologies differ across countries. Specifically, country L has production

parameter γ = 1 while country S has γ = γS < 1.

Under no trade or autarky, each country is a closed economy whose alloca-

tions are given by (23.3.5), (23.3.6), and (23.3.3). Evaluating these expressions,

we obtain

{`L, n1L, n2L, cL} = {0, 0.5, 0.5, ȳ + 1},
{`S, n1S , n2S , cS} = {L(γS), χ(γS), χ(γS)/γS , ȳ + 2χ(γS)}.

The relative price between the two intermediate goods is 1 in country L while for

country S , intermediate good 2 trades at a price γ−1
S in terms of intermediate

good 1. The difference in relative prices across countries implies gains from

trade.
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23.3.2. A Ricardian model of two countries under free trade

Under free trade, country L is large enough to meet both countries’ demands for

intermediate good 2 at a relative price of 1 and hence country S will specialize

in the production of intermediate good 1 with n1S = 1. To find the time n1L

that a worker in country L devotes to the production of intermediate good 1,

note that the world demand at a relative price of 1 is equal to 0.5(N + 1) and,

after imposing market clearing, that

N n1L + 1 = 0.5 (N + 1)

n1L =
N − 1

2N
.

The free-trade allocation becomes

{`L, n1L, n2L, cL} = {0, (N − 1)/(2N), (N + 1)/(2N), ȳ + 1},
{`S, n1S , n2S , cS} = {0, 1, 0, ȳ + 1}.

Notice that the welfare of a household in country L is the same as under autarky

because we have `L = 0, cL = ȳ + 1. The invariance of country L ’s allocation

to opening trade is an immediate implication of the fact that the equilibrium

prices under free trade are the same as those in country L under autarky. Only

country S stands to gain from free trade.

23.3.3. Trade with a tariff

Although country L has nothing to gain from free trade, it can gain from trade

if it is accompanied by a distortion to the terms of trade that is implemented

through a tariff on country L ’s imports. Thus, assume that country L imposes

a tariff of tL ≥ 0 on all imports into L . For any quantity of intermediate or final

goods imported into country L , country L collects a fraction tL of those goods

by levying the tariff. A necessary condition for the existence of an equilibrium

with trade is that the tariff does not exceed (1−γS), because otherwise country

S would choose to produce intermediate good 2 rather than import it from

country L .

Given that tL ≤ 1 − γS , we can find the equilibrium with trade as follows.

From the perspective of country S , (1− tL) acts like the production parameter
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γ , i.e., it determines the cost of obtaining one unit of intermediate good 2 in

terms of foregone production of intermediate good 1. Under autarky that price

was γ−1 ; with trade and a tariff tL , that price becomes (1− tL)−1 . For country

S , we can therefore draw upon the analysis of a closed economy and just replace

γ by 1 − tL . The allocation with trade for country S becomes

{`S , n1S, n2S , cS} = {L(1 − tL), 1 − L(1 − tL), 0, ȳ + 2χ(1 − tL)}. (23.3.7)

In contrast to the equilibrium under autarky, country S now allocates all labor

input 1 − L(1 − tL) to the production of intermediate good 1 but retains only

a quantity χ(1 − tL) of total production for its own use, and exports the rest

χ(1 − tL)/(1 − tL) to country L . After paying tariffs, country S purchases an

amount χ(1− tL) of intermediate good 2 from country L . Since this quantity of

intermediate good 2 exactly equals the amount of intermediate good 1 retained

in country S , production of the final consumption good given by (23.3.3c)

equals 2χ(1 − tL).

Country L receives a quantity χ(1 − tL)/(1 − tL) of intermediate good 1

from country S , partly as tariff revenue tL χ(1 − tL)/(1 − tL) and partly as

payments for its exports of intermediate good 2, χ(1 − tL). In response to the

inflow of intermediate good 1, an aggregate quantity of labor equal to χ(1 −
tL) + 0.5 tL χ(1 − tL)/(1 − tL) is reallocated in country L from the production

of intermediate good 1 to the production of intermediate good 2. This allows

country L to meet the demand for intermediate good 2 from country S and at

the same time increase its own use of each intermediate good by 0.5 tL χ(1 −
tL)/(1 − tL). The per capita trade allocation for country L becomes

{`L, n1L, n2L,cL} =

{
0, 0.5 − (1 − 0.5tL)χ(1 − tL)

(1 − tL)N
,

0.5 +
(1 − 0.5tL)χ(1 − tL)

(1 − tL)N
, ȳ + 1 + tL

χ(1 − tL)

(1 − tL)N

}
. (23.3.8)
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23.3.4. Welfare and Nash tariff

For a given tariff tL ≤ 1 − γS , we can compute the welfare levels in a trade

equilibrium. Let uS(tL) and uL(tL) be the indirect utility of country S and

country L , respectively, when the tariff is tL . After substituting the equilibrium

allocation (23.3.7) and (23.3.8) into the utility function of (23.3.1), we obtain

uS(tL) = u(cS , `S)

= ȳ + 2χ(1 − tL) + L(1 − tL) − 0.5L(1 − tL) 2,

uL(tL) = N u(cL, `L) = N (ȳ + 1) + tL
χ(1 − tL)

1 − tL
,

(23.3.9)

where we multiply the utility function of the representative agent in country L

by N because we are aggregating over all agents in a country. We now invoke

equilibrium expressions (23.3.5) and (23.3.6), and take derivatives with respect

to tL . As expected, the welfare of country S decreases with the tariff while the

welfare of country L is a strictly concave function that initially increases with

the tariff:

duS(tL)

dtL
= −4 (1 − tL)

(2 − tL)3
< 0 , (23.3.10a)

d uL(tL)

d tL
=

2 (2 − 3tL)

(2 − tL)3

{
> 0 for tL < 2/3

≤ 0 for tL ≥ 2/3
(23.3.10b)

and
d 2uL(tL)

d t2L
= − 12tL

(2 − tL)4
≤ 0 , (23.3.10c)

where it is understood that the expressions are evaluated for tL ≤ 1 − γS .

The tariff enables country L to reap some of the benefits from trade. In our

model, country L prefers a tariff tL that maximizes its tariff revenues.

Definition: In a one-period Nash equilibrium, the government of country L

imposes a tariff rate that satisfies

tNL = min
{
arg max

tL

uL(tL), 1 − γS

}
. (23.3.11)

From expression (23.3.10b), we have tNL = min{2/3, 1 − γS} .

Remark: At the Nash tariff, country S gains from trade if 2/3 < 1 − γS .

Country S gets no gains from trade if 1 − γS ≤ 2/3.
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Measure world welfare by uW (tL) ≡ uS(tL)+uL(tL). This measure of world

welfare satisfies

d uW (tL)

d tL
= − 2 tL

(2 − tL)3
≤ 0 , (23.3.12a)

and
d 2uW (tL)

d t2L
= −4 (1 + tL)

(2 − tL)4
< 0 . (23.3.12b)

We summarize our findings:

Proposition 1: World welfare uW (tL) is strictly concave, is decreasing in

tL ≥ 0, and is maximized by setting tL = 0. But uL(tL) is strictly concave in

tL and is maximized at tNL > 0. Therefore, uL(tNL ) > uL(0).

A consequence of this proposition is that country L prefers the Nash equilibrium

to free trade, but country S prefers free trade. To induce country L to accept

free trade, country S will have to transfer resources to it. We now study how

country S can do that efficiently in an intertemporal version of the model.

23.3.5. Trade concessions

To get a model in the spirit of Bond and Park (2001), we now assume that the

two countries can make trade concessions that take the form of a direct transfer

of the consumption good between them. We augment utility functions uL, uS

of the form (23.3.1) with these transfers to obtain the payoff functions

rL(tL, eS) = uL(tL) + eS (23.3.13a)

rS(tL, eS) = uS(tL) − eS, (23.3.13b)

where tL ≥ 0 is a tariff on the imports of country L , eS ≥ 0 is a transfer from

country S to country L . These definitions make sense because the indirect

utility functions (23.3.9) are linear in consumption of the final consumption

good, so that by transferring the final consumption good, the small country

transfers utility. The transfers eS are to be voluntary and must be nonnegative

(i.e., the country cannot extract transfers from the large country). We have

already seen that uL(tL) is strictly concave and twice continuously differentiable

with u′L(tL) > 0 and that uW (tL) ≡ uS(tL) + uL(tL) is strictly concave and
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twice continuously differentiable with u′W (0) = 0. We call free trade a situation

in which tL = 0. We let (tNL , e
N
S ) be the Nash equilibrium tariff rate and

transfer for a one-period, simultaneous-move game in which the two countries

have payoffs (23.3.13a) and (23.3.13b). Under Proposition 1, tNL > 0, eNS = 0.

Also, uL(tNL ) > uL(0) and uS(0) > uS(tNL ), so that country S gains and country

L loses in moving from the Nash equilibrium to free trade with eS = 0.

23.3.6. A repeated tariff game

We now suppose that the economy repeats itself indefinitely for t ≥ 0. Denote

the pair of time t actions of the two countries by ρt = (tLt, eSt). For t ≥ 1,

denote the history of actions up to time t − 1 as ρt−1 = [ρt−1, . . . , ρ0] . A

policy σS for country S is an initial eS0 and for t ≥ 1 a sequence of functions

expressing eSt = σSt(ρ
t−1). A policy σL for country L is an initial tL0 and

for t ≥ 1 a sequence of functions expressing tLt = σLt(ρ
t−1). Let σ denote the

pair of policies (σL, σS). The policy or strategy profile σ induces time t payoff

ri(σt) for country i at time t , where σt is the time t component of σ . We

measure country i ’s present discounted value by

vi(σ) =
∞∑

t=0

βtri(σt) (23.3.14)

where σ affects ri through its effect on ci . Define σ|ρt−1 as the continuation of

σ starting at t after history ρt−1 . Define the continuation value of i at time t

as

vit = vi(σ|ρt−1 ) =

∞∑

j=0

βjri(σj |ρt−1).

We use the following standard definition:

Definition: A subgame perfect equilibrium is a strategy profile σ such that

for all t ≥ 0 and all histories ρt , country L maximizes its continuation value

starting from t , given σS , and country S maximizes its continuation value

starting from t , given σL .

It is easy to verify that a strategy that forever repeats the static Nash equi-

librium outcome (tL, eS) = (tNL , 0) is a subgame perfect equilibrium.
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23.3.7. Time-invariant transfers

We first study circumstances under which there exists a time-invariant transfer

eS > 0 that will induce country L to move to free trade.

Let vNi =
ui(t

N
L )

1−β be the present discounted value of country i when the

static Nash equilibrium is repeated forever. If both countries are to prefer free

trade with a time-invariant transfer level eS > 0, the following two participation

constraints must hold:

vL ≡ uL(0) + eS
1 − β

≥ uL(tNL ) + eS + βvNL (23.3.15)

vS ≡ uS(0) − eS
1 − β

≥ uS(0) + βvNS . (23.3.16)

The timing here articulates what it means for L and S to choose simultane-

ously: when L defects from (0, eS), L retains the transfer eS for that period.

Symmetrically, if S defects, it enjoys the zero tariff for that one period. These

temporary gains provide the temptations to defect. Inequalities (23.3.15) and

(23.3.16) say that countries L and S both get higher continuation values from

remaining in free trade with the transfer eS than they get in the repeated static

Nash equilibrium. Inequalities (23.3.15) and (23.3.16) invite us to study strate-

gies that have each country respond to any departure from what it had expected

the other country to do this period by forever after choosing the Nash equilib-

rium actions tL = tNL for country L and eS = 0 for country S . Thus, the

response to any deviation from anticipated behavior is to revert to the repeated

static Nash equilibrium, itself a subgame perfect equilibrium.8

Inequality (23.3.15) (the participation constraint for L) and the definition

of vNL can be rearranged to get

eS ≥ uL(tNL ) − uL(0)

β
. (23.3.17)

Time-invariant transfers eS that satisfy inequality (23.3.17) are sufficient to in-

duce L to abandon the Nash equilibrium and set its tariff to zero. The minimum

time-invariant transfer that will induce L to accept free trade is then

eSmin =
uL(tNL ) − uL(0)

β
. (23.3.18)

8 In chapter 22, we study the consequences of reverting to a subgame perfect equilibrium

that gives worse payoffs to both S and L and how the worst subgame perfect equilibrium

payoffs and strategies can be constructed.
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Inequality (23.3.16) (the participation constraint for S ) and the definition

of vNS yield

eS ≤ β(uS(0) − uS(tNL )), (23.3.19)

which restricts the time-invariant transfer that S is willing to make to move to

free trade by setting tL = 0. Evidently, the largest time-invariant transfer that

S is willing to pay is

eSmax = β(uS(0) − uS(tNL )). (23.3.20)

If we substitute eS = eSmin into the definition of vL in (23.3.15), we find

that the lowest continuation value vL for country L that can be supported by

a stationary transfer is

v∗L = β−1(vNL − uL(0)). (23.3.21)

If we substitute eS = eSmax into the definition of vL we can conclude that the

highest vL that can be sustained by a stationary transfer is

v∗∗L =
uL(0) + β(uS(0) − uS(tNL ))

1 − β
. (23.3.22)

For there to exist a time-invariant transfer eS that induces both countries

to accept free trade, we require that v∗L < v∗∗L so that [v∗L, v
∗∗
L ] is nonempty.

For a class of world economies differing only in their discount factors, we can

compute a discount factor β that makes v∗L = v∗∗L . This is the critical value for

the discount factor below which the interval [v∗L, v
∗∗
L ] is empty. Thus, equating

the right sides of (23.3.21) and (23.3.22) and solving for β gives the critical

value

βc ≡
√
uL(tNL ) − uL(0)

uS(0) − uS(tNt )
. (23.3.23)

We know that the numerator under the square root is positive and that it is

less than the denominator (because S gains by moving to free trade more than

L loses, i.e., uW (tL) is maximized at tL = 0). Thus, (23.3.23) has a solution

βc ∈ (0, 1). For β > βc , there is a nontrivial interval [v∗L, v
∗∗
L ] . For β < βc , the

interval is empty.

Now consider the utility possibility frontier without the participation con-

straints (23.3.15), (23.3.16), namely,

vS =
uW (0)

1 − β
− vL. (23.3.24)
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Then we have the following:

Proposition 2: There is a critical value βc such that for β > βc , the

interval [v∗L, v
∗∗
L ] is nonempty. For vL ∈ [v∗L, v

∗∗
L ] , a pair (vL, vS) on the uncon-

strained utility possibility frontier (23.3.24) can be attained by a time-invariant

policy (0, es) with transfer eS > 0 from S to L . The policy is supported by

a trigger strategy profile that reverts forever to (tL, 0) if expectations are ever

disappointed.

23.3.8. Gradualism: time-varying trade policies

From now on, we assume that β > βc , so that [v∗L, v
∗∗
L ] is nonempty. We make

this assumption because we want to study settings in which the two countries

eventually move to free trade even if they don’t start there. Notice from expres-

sion (23.3.21) that

v∗L = β−1
([
uL(tNL ) + βvNL

]
− uL(0)

)

= vNL + β−1
(
uL(tNL ) − uL(0)

)
> vNL .

(23.3.25)

Thus, even when [v∗L, v
∗∗
L ] is nonempty, there is an interval of continuation values

[vNL , v
∗
L) that cannot be sustained by a time-invariant transfer scheme. Values

vL > v∗∗L also fail to be sustainable by a time-invariant transfer because the

required eS is too high. For initial values vL < v∗L or vL > v∗∗L , Bond and

Park construct time-varying tariff and transfer schemes that sustain continua-

tion value vL . They proceed by designing a recursive contract similar to ones

constructed by Thomas and Worrall (1988) and again by Kocherlakota (1996a).

Let vL(σ), vS(σ) be the discounted present values delivered to countries L

and S under policy σ . For a given initial promised value vL for country L ,

let P (vL) be the maximal continuation value vS for country S , associated with

a possibly time-varying trade policy. The value function P (vL) satisfies the

functional equation

P (vL) = sup
tL,eS ,y

{uS(tL) − eS + βP (y)} , (23.3.26)

where the maximization is subject to tL ≥ 0, eS ≥ 0 and

uL(tL) + eS + βy ≥ vL (23.3.27a)
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uL(tL) + eS + βy ≥ uL(tNL ) + eS + βvNL (23.3.27b)

uS(tL) − eS + βP (y) ≥ uS(tL) + βvNS . (23.3.27c)

Here, y is the continuation value for L , meaning next period’s value of vL .

Constraint (23.3.27a) is the promise-keeping constraint, while (23.3.27b) and

(23.3.27c) are the participation constraints for countries L and S , respectively.

The constraint set is convex and the objective is concave, so P (vL) is concave

(though not strictly concave, an important qualification, as we shall see).

As with our study of Thomas and Worrall’s and Kocherlakota’s model, we

place nonnegative multipliers θ on (23.3.27a) and µL, µS on (23.3.27b) and

(23.3.27c), respectively, form a Lagrangian, and obtain the following first-order

necessary conditions for a saddlepoint:

tL : u′S(tL) + (θ + µL)u′L(tL) ≤ 0, = 0 if tL > 0 (23.3.28a)

y : P ′(y)(1 + µS) + (θ + µL) = 0 (23.3.28b)

eS : − 1 + θ − µS ≤ 0, = 0 if eS > 0. (23.3.28c)

We analyze the consequences of these first-order conditions for the optimal con-

tract in three regions delineated by the continuation values v∗L, v
∗∗
L .

We break our analysis into two parts. We begin by displaying particular

policies that attain initial values on the constrained Pareto frontier. Later, we

show that there can be many additional policies that attain the same values,

which as we shall see is a consequence of a flat interval in the constrained Pareto

frontier.

23.3.9. Baseline policies

Region I: vL ∈ [v∗L, v
∗∗
L ] (neither PC binds)

When the initial value is in this interval, the continuation value stays in this

interval. From the envelope property, P ′(vL) = −θ . If vL ∈ [v∗L, v
∗∗
L ] , neither

participation constraint binds, and we have µS = µL = 0. Then (23.3.28b)

implies

P ′(y) = P ′(vL).

This can be satisfied by setting y = vL . Then y = vL and the always binding

promise-keeping constraint in (23.3.27a) imply that

vL = y =
uL(tL) + eS

1 − β
≥ v∗L > vNL ≡ uL(tNL )

1 − β
, (23.3.29)
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where the weak inequality states that vL trivially satisfies the lower bound of

region I, which in turn is strictly greater than the Nash value vNL according to

expression (23.3.25). Because uL(t) is maximized at tNL , the strict inequality

in expression (23.3.29) holds only if eS > 0. Then inequality (23.3.28c) and

eS > 0 imply that θ = 1. Rewrite (23.3.28a) as

u′W (tL) ≤ 0, = 0 if tL > 0.

By Proposition 1, this implies that tL = 0. We can solve for eS from

vL =
uL(0) + eS

1 − β
(23.3.30)

and then obtain P (vL) from uS(0)−eS

1−β .

Before turning to region II with vL > v∗∗L , we shall first establish that there

indeed exist such high continuation values for the large country which cannot

be sustained by a time-invariant transfer scheme. This is done by showing that

P (v∗∗L ) > vNS . That is, there is scope for further increasing the continuation

value of the large country beyond v∗∗L before the associated continuation value

of the small country is reduced vNS . The argument goes as follows:

P (v∗∗L ) =
uW (0)

1 − β
− v∗∗L

=
uL(0) + uS(0)

1 − β
− uL(0) + β(uS(0) − uS(tNL ))

1 − β

= uS(0) + β
uS(tNL ))

1 − β
> uS(tNL )) + β

uS(tNL ))

1 − β
≡ vNS ,

(23.3.31)

where the first equality uses the fact that the continuation value v∗∗L lies on the

unconstrained Pareto frontier whose slope is −1 and the second equality invokes

expression (23.3.22). It then follows that P (v∗∗L ) > vNS .

Region II: vL > v∗∗L (PCS binds)

We shall verify that in region II, there is a solution to the first-period first

order necessary conditions with µS > 0 and eS > 0. When vL > v∗∗L , µS ≥ 0

and µL = 0. When µS > 0, inequality (23.3.28c) and eS > 0 imply

θ = 1 + µS > 1. (23.3.32)
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Express (23.3.28a) as

u′W (tL) + (θ − 1)u′L(tL) ≤ 0, = 0 if tL > 0. (23.3.33)

Because u′W (0) = 0 and u′L(0) > 0, this inequality can be satisfied only if

tL > 0. Equation (23.3.28b) implies that

P ′(y) = −(1 + µS)−1θ = −1,

where the second inequality invokes (23.3.32). Therefore, y ∈ [v∗L, v
∗∗
L ] , the

region of the Pareto frontier whose slope is −1 and in which neither participation

constraint binds. We can solve for the required transfer from t = 1 onward from

the following version of (23.3.30):

y =
uL(0) + e′S

1 − β
, (23.3.34)

where e′S denotes the value of eS for t ≥ 1, because once we move into region I,

we stay there, having a time invariant e′S > 0 with t′L = 0, as our analysis of

region I indicated. We can solve for tL, eS for period zero as follows. For a

given θ > 1, solve the following equations for y, P (y), tL, eS , P (vL):

u′S(tL) + θu′L(tL) = 0 (23.3.35a)

vL = uL(tL) + eS + βy (23.3.35b)

− eS + βP (y) = βvNS (23.3.35c)

P (vL) = uS(tL) − eS + βP (y) (23.3.35d)

y + P (y) =
uW (0)

1 − β
. (23.3.35e)

To find the maximized value P (vL), we must search over solutions of (23.3.35)

for the θ > 1 that corresponds to the specified initial continuation value vL , (i.e.,

we are performing the minimization over µS entailed in finding the saddlepoint

of the Lagrangian).

Using expression (23.3.35c), we can show that the transfer eS in period zero

is also strictly positive,

eS = β[P (y) − vNS ] ≥ β
[
P (v∗∗L ) − vNS

]
> 0,

where we have used the fact that y ≤ v∗∗L and invoked the finding in expression

(23.3.31) that P (v∗∗L ) > vNS . Concerning the relative size of eS at t = 0
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compared to the transfer e′S that the small country pays in period t = 1 and

forever afterwards, we notice that e′S is also subject to a participation constraint

(23.3.27c) with the very same continuation value P (y) (but where uS(t′L) =

uS(0)). Hence, we can express (23.3.27c) for all periods t ≥ 1, given a time-

invariant continuation value P (y) determined by (23.3.35), as

e′S ≤ β[P (y) − vNS ] = eS ,

where the equality sign follows from (23.3.35c). We conclude that the transfer

is nonincreasing over time for our solution to an initial continuation value in

region II.

Thus, in region II, tL > 0 in period 0, followed by t′L = 0 thereafter.

Moreover, the initial promised value to the large country vL > v∗∗L is followed

by a lower time-invariant continuation value y ≤ v∗∗L . Subtracting (23.3.35b)

from (23.3.34) gives

y = vL + (uL(0) − uL(tL)) + (e′S − eS).

The contract sets the continuation value y < vL by making tL > 0 (thereby

making uL(0) − uL(tL) < 0) and also possibly letting e′S − eS < 0, so that

transfers can fall between periods 0 and 1. In region II, country L induces S

to accept free trade by a two-stage lowering of the tariff from the Nash level, so

that 0 < tL < tNL in period 0, with t′L = 0 for t ≥ 1; in return, it gets period

0 transfers of eS > 0 and constant transfers e′S > 0 thereafter.

Region III: vL ∈ [vNL , v
∗
L) (PCL binds)

The analysis of region III is subtle.9 It is natural to expect that µS =

0, µL > 0 in this region. However, assuming that µL > 0 can be shown to lead

to a contradiction, implying that the pair vL, P (vL) both is and is not on the

unconstrained Pareto frontier.10

We can avoid the contradiction by assuming that µL = 0, so that the partic-

ipation constraint for country L is barely binding. We shall construct a solution

to (23.3.28) and (23.3.27) with period 0 transfer eS > 0. Note that (23.3.28c)

with eS > 0 implies θ = 1, which from the envelope property P ′(vL) = −θ

9 The findings of this section reproduce ones summarized in Bond and Park’s (2001) corollary

to their Proposition 2.
10 Please show this in exercise 23.2 .



846 Two Topics in International Trade

implies that (vL, P (vL)) is actually on the unconstrained Pareto frontier, a

reflection of the participation constraint for country L barely binding. With

θ = 1 and µL = 0, (23.3.28a) implies that tL = 0, which confirms (vL, P (vL))

being on the Pareto frontier. We can then solve the following equations for

P (vL), eS , y, P (y):

P (vL) + vL =
uW (0)

1 − β
(23.3.36a)

vL = uL(0) + eS + βy (23.3.36b)

uL(0) + eS + βy = uL(tNL ) + eS + βvNL (23.3.36c)

P (vL) = uS(0) − eS + βP (y) (23.3.36d)

P (y) + y =
uW (0)

1 − β
. (23.3.36e)

We shall soon see that these constitute only four linearly independent equa-

tions. Equations (23.3.36a) and (23.3.36e) impose that both (vL, P (vL)) and

(y, P (y)) lie on the unconstrained Pareto frontier. We can solve these equa-

tions recursively. First, solve for y from (23.3.36c). Then solve for P (y) from

(23.3.36e). Next, solve for P (vL) from (23.3.36a). Get eS from (23.3.36b).

Finally, equations (23.3.36a), (23.3.36b), and (23.3.36d) imply that equation

(23.3.36e) holds, which establishes the reduced rank of the system of equations.

We can use (23.3.34) to compute e′S , the transfer from period 1 onward. In

particular, e′S satisfies y = uL(0) + e′S + βy . Subtracting (23.3.36b) from this

equation gives

y − vL = e′S − eS > 0.

Thus, when vL < v∗L , country S induces country L immediately to reduce

its tariff to zero by paying transfers that rise between period 0 and period 1 and

that thereafter remain constant. That the initial tariff is zero means that we are

immediately on the unconstrained Pareto frontier. It just takes time-varying

transfers to put us there.

Interpretations

For values of vL within regions II and III, time-invariant transfers eS from

country S to country L are not capable of sustaining immediate and enduring

free trade. But patterns of time-varying transfers and tariff reductions are able

to induce both countries to move permanently to free trade after a one-period
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Figure 23.3.1: The constrained Pareto frontier vS = P (vL) in

the Bond-Park model.

transition. There is an asymmetry between regions II and III, revealed in Figure

23.3.1 and in our finding that tL = 0 in region III, so that the move to free

trade is immediate. The asymmetry emerges from a difference in the quality

of instruments that the unconstrained country (L in region II, S in region III)

has to induce the constrained country eventually to accept free trade by moving

those instruments over time appropriately to manipulate the continuation values

of the constrained country to gain its assent. In region II, where S is constrained,

all that L can do is manipulate the time path of tL , a relatively inefficient

instrument because it is a distorting tax. By lowering tL gradually, L succeeds

in raising the continuation values of S gradually, but at the cost of imposing a

distorting tax, thereby keeping (vL, P (vL)) inside the Pareto frontier. In region

III, where L is constrained, S has at its disposal a nondistorting instrument

for raising country L ’s continuation value by increasing the transfer eS after

period 0.

The basic principle at work is to respond to make the continuation value rise

for the country whose participation constraint is binding.
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23.3.10. Multiplicity of payoffs and continuation values

We now find more equilibrium policies that support values in our three regions.

The unconstrained Pareto frontier is a straight line in the space (vL, vS) with

a slope of −1:

vL + vS =
uW (0)

1 − β
≡W.

This reflects the fact that utility is perfectly transferable between the two

countries. As a result, there is a continuum of ways to pick current payoffs

{ri; i = L, S} and continuation values {v′i; i = L, S} that deliver the promised

values vL and vS to country L and S , respectively. For example, each country

could receive a current payoff equal to the annuity value of its promised value,

ri = (1 − β)vi , and retain its promised value as a continuation value, v′i = vi .

That would clearly deliver the promised value to each country,

ri + βv′i = (1 − β)vi + βvi = vi.

Another example would reduce the prescribed current payoff to country S by

4S > 0 and increase the prescribed payoff to country L by the same amount.

Continuation values (v′S , v
′
L) would then have to be set such that

(1 − β)vS −4S + βv′S = vS ,

(1 − β)vL + 4S + βv′L = vL.

Solving from these equations, we get

4S = β(v′S − vS) = −β(v′L − vL).

Here country S is compensated for the reduction in current payoff by an equiv-

alent increase in the discounted continuation value, while country L receives

corresponding changes of opposite signs.

Since the constrained Pareto frontier coincides with the unconstrained Pareto

frontier in regions I and III, we would expect that the tariff games would also

be characterized by multiplicities of payoffs and continuation values. We will

now examine how the participation constraints shape the range of admissible

equilibrium values.
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Region I (revisited): vL ∈ [v∗L, v
∗∗
L ]

From our earlier analysis, an equilibrium in region I satisfies

uL(0) + eS + βy = vL, (23.3.37a)

uL(0) + eS + βy ≥ uL(tNL ) + eS + βvNL , (23.3.37b)

uS(0) − eS + β(W − y) ≥ uS(0) + βvNS , (23.3.37c)

where we have invoked that P (y) = W − y in regions I and III. We consider

only y ∈ [vNL , v
∗∗
L ] because our earlier analysis ruled out any transitions from

region I to region II.

Equation (23.3.37a) determines the transfer and continuation value needed

to deliver the promised value vL to country L under free trade:

eS + βy = vL − uL(0).

The participation constraint for country S requires that inequality (23.3.37c)

be satisfied, which can be rewritten as

eS + βy ≤ β(W − vNS ). (23.3.38)

Since we are postulating that we are in region I with no binding participation

constraints, this condition is indeed satisfied. Notice that incentive compatibility

on behalf of country S does not impose any restrictions on the mixture of

transfer and continuation value that deliver eS + βy to country L beyond our

restriction above that y ≤ v∗∗L .

Turning to the participation constraint for country L , we can rearrange

inequality (23.3.37b) to become

y ≥ β−1
(
uL(tNL ) + βvNL − uL(0)

)
= β−1

(
vNL − uL(0)

)
= v∗L.

Thus, there cannot be a transition from region I to region III, a result to be

interpreted as follows. We showed earlier that free trade is not incentive com-

patible with a time-invariant transfer when the promised value of country L lies

in region III. In other words, an initial promised value in region III cannot by

itself serve as a continuation value to support free trade. Now we are trying

to attain free trade by offering country L a continuation value in that very

region III together with a transfer that is even larger than the time-invariant
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transfer considered earlier. (The transfer is larger than the earlier time-invariant

transfer because the initial promised value vL is now assumed to lie in region

I.) Since that continuation value in region III was not incentive compatible for

country L at a smaller transfer from country S , it will certainly not be incentive

compatible now when the transfer is larger.

We conclude that there is a multiplicity of current payoffs and continuation

values in region I. Specifically, admissible equilibrium continuation values are

y ∈
[
v∗L, min

{
β−1 (vL − uL(0)) , v∗∗L

}]
, (23.3.39)

where the upper bound incorporates our nonnegativity constraint on transfers

from country S to country L , i.e., imposing eS ≥ 0 in equation (23.3.37a).

Region II (revisited): vL > v∗∗L

From our earlier analysis, an equilibrium in region II satisfies:

uL(tL) + eS + βy = vL (23.3.40a)

uL(tL) + eS + βy ≥ uL(tNL ) + eS + βvNL (23.3.40b)

uS(tL) − eS + β(W − y) = uS(tL) + βvNS , (23.3.40c)

where 0 < tL < tNL and we have used our earlier finding that the continuation

value y will be in the region of the constrained Pareto frontier whose slope is

−1, i.e., y ∈ [vNL , v
∗∗
L ] for which P (y) = W − y .

Equation (23.3.40c) determines the combination of the transfer and contin-

uation value received by country L :

eS + βy = β(W − vNS ).

Once again, this participation constraint for country S does not impose any

restrictions on the relative composition of the transfer versus the continuation

value assigned to country L (besides our restriction above that y ≤ v∗∗L ). For

region II, we have already shown that the combined value of eS + βy is not

sufficient to support free trade, and that the necessary tariff in period 0 can

then be computed from equation (23.3.40a).

Finally, the participation constraint (23.3.40b) for country L does impose a

restriction on admissible equilibrium continuation values y ,

y ≥ β−1
(
uL(tNL ) + βvNL − uL(tL)

)
= β−1

(
vNL − uL(tL)

)
.
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Notice that this lower bound on admissible values of y lies inside region III,

β−1
(
vNL − uL(tL)

)



> β−1

(
vNL − uL(tNL )

)
= vNL ,

< β−1
(
vNL − uL(0)

)
= v∗L.

In contrast to our analysis of region I, a transition into region III is possible when

the initial promised value belongs to region II. The reason is that the constrained

efficient tariff is then strictly positive in period 0, which relaxes the participation

constraint for country L . Hence, the range of admissible continuation values in

region II becomes

y ∈
[
β−1

(
vNL − uL(tL)

)
, v∗∗L

]
.

Region III (revisited): vL ∈ [vNL , v
∗
L)

The study of multiplicity of current payoffs and continuation values in region

III exactly parallels our analysis of region I. The range of admissible continuation

values is once again given by (23.3.39). The lower bound of v∗L is pinned down

by the participation constraint (23.3.37b) for country L and this implies an

immediate transition out of region III into region I.

For the lowest possible promised value vL = vNL , the range of continuation

values in (23.3.39) becomes degenerate, with only one admissible value of y =

v∗L . From equation (23.3.37a), we can verify that the pair (vL, y) = (vNL , v
∗
L)

implies an equilibrium transfer that is zero, eS = 0. For any other promised

value in region III, vL ∈ (vNL , v
∗
L] , there is a multiplicity of current payoffs

and continuation values. We can then pick a continuation value y > v∗L that

implies that the participation constraint for country L is not binding. Without

any binding participation constraints, it becomes apparent why our analysis of

multiplicity in region I is also valid for region III.
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23.4. Concluding remarks

Although the substantive application differs, mechanically the models of this

chapter work much like models that we studied in chapters 18, 19, and 22. The

key idea is to cope with binding incentive constraints (in this case, participation

constraints), partly by changing the continuation values for those agents whose

incentive constraints are binding. For example, that creates “intertemporal tie-

ins” that Bond and Park interpret as “gradualism.”

A. Computations for Atkeson’s model

It is instructive to compute a numerical example of the optimal contract for

Atkeson’s (1988) model. Following Atkseson, we work with the following numer-

ical example. Assume u(c) = 2c.5, λ(I) =
(

I
Yn+2M

).5
, gi(Yj) = exp−αiYj∑

n

k=1
exp−αiYk

with n = 5, Y1 = 100, Yn = 200,M = 100, α1 = α2 = −.5, δ = .9. Here is a

version of Atkeson’s numerical algorithm:

1. First, solve the Bellman equation (23.2.5) and (23.2.6) for the autarky value

U(Q). Use a polynomial for the value function.11

2. Solve the Bellman equation for the full-insurance setting for the value function

W (Q) as follows. First, solve equation (23.2.9) for I . Then solve equation

(23.2.13b) for d(Y ′) = Y ′ −Q and compute c = c(Q) from (23.2.13a). Since c

is constant, W (Q) = u[c(Q)] .

Now, solve the Bellman equation for the contract with limited commitment

and unobserved action. First, approximate V (Q) by a polynomial, using the

method described in chapter 4. Next, iterate on the Bellman equation, starting

from initial value function V 0(Q) = W (Q) computed earlier. As Atkeson shows,

it is important to start with a value function above V (Q). We know that

W (Q) ≥ V (Q).

Use the following steps:

11 We recommend the Schumaker shape-preserving spline mentioned in chapter 4 and de-

scribed by Judd (1998).
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1. Let V j(Q) be the value function at the j th iteration. Let d be the vector

[ d1 . . . dn ]
′
. Define

X(d) =
∑

i

V j(Yi − di)[g0(Yi) − g1(Yi)]. (23.A.1)

The first-order condition for the borrower’s problem (23.2.15e) is

−(1 − δ)u′(Q+ b− I) + δλ′(I)X ≥ 0, = 0 if I > 0.

Given a candidate continuation value function V j , a value Q , and b, d1, . . . , dn ,

solve the borrower’s first-order condition for a function

I = f(b, d1, . . . , dn;Q).

Evidently, when X(d) < 0, I = 0. From equation (23.A.1) and the partic-

ular example,

I = f(b, d;Q) =
δ2(Yn + 2M)X(d)2

4(1 − δ)2 + δ2(Yn + 2M)X(d)2
(Q+ b). (23.A.2)

Summarize this equation in a Matlab function.

2. Use equation (23.A.2) and the constraint (23.2.15c) at equality to form

b = δ
∑

i

dig[Yi, f(b, d)].

Solve this equation for a new function

b = m(d). (23.A.3)

3. Write one step on the Bellman equation as

V j+1(Q) =max
d

{
(1 − δ)u

[
Q+m(d) − f(m(d), d)

]

+ δ
∑

i

V j(Yi − di)g
[
Yi, f(m(d), d)

]

−
∑

i

θi

[
max

(
0, U(Yi) − V j(Yi − di)

)]

−
∑

i

ηi max[0,−di −M ] − η0 max[0,m(d) −M ]

}
,

(23.A.4)
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where V j(Q) is the value function at the j th iteration, and θi > 0, ηi are

positive penalty parameters designed to enforce the participation constraints

(23.2.15d) and the restrictions on the size of borrowing and repayments. The

idea is to set the θi ’s and ηi ’s large enough to assure that d is set so that

constraint (23.2.15d) is satisfied for all i .

Exercises

Exercise 23.1

Consider a version of Bond and Park’s model with the payoff functions (23.3.13a)

and (23.3.13b), with
uL(tL) = −.5(tL − 2)2

uW (tL) − .5t2L,

where uW (tL) = uL(tL) + uS(tL).

a. Compute the cutoff value βc from (23.3.23). For β ∈ (βc, 1), compute

v∗L, v
∗∗
L .

b. Compute the constrained Pareto frontier. (Hint: In region II, use (23.3.35)

for a grid of values vL satisfying vL > v∗∗L .)

c. For a given vL ∈ (vNL , v
∗), compute eS, e

′
S , y .

Exercise 23.2

Consider the Bond-Park model analyzed above. Assume that in region III,

µL > 0, µS = 0. Show that this leads to a contradiction.
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Classical monetary economics and search



Chapter 24
Fiscal-Monetary Theories of Inflation

24.1. The issues

This chapter introduces some issues in monetary theory that mostly revolve

around coordinating monetary and fiscal policies. We start from the observa-

tion that complete markets models have no role for inconvertible currency, and

therefore assign zero value to it.1 We describe one way to alter a complete mar-

kets economy so that a positive value is assigned to an inconvertible currency:

we impose a transaction technology with shopping time and real money balances

as inputs.2 We use the model to illustrate 10 doctrines in monetary economics.

Most of these doctrines transcend many of the details of the model. The im-

portant thing about the transactions technology is that it makes demand for

currency a decreasing function of the rate of return on currency. Our monetary

doctrines mainly emerge from manipulating that demand function and the gov-

ernment’s intertemporal budget constraint under alternative assumptions about

government monetary and fiscal policy.3

1 In complete markets models, money holdings would only serve as a store of value. The

following transversality condition would hold in a nonstochastic economy:

lim
T→∞

T−1∏

t=0

R−1
t

mT+1

pT
= 0.

The real return on money, pt/pt+1 , would have to equal the return Rt on other assets, which,

substituted into the transversality condition, yields

lim
T→∞

T−1∏

t=0

pt+1

pt

mT+1

pT
= lim
T→∞

mT+1

p0
= 0.

That is, an inconvertible money (i.e., one for which limT→∞mT+1 > 0) must be valueless,

p0 = ∞ .
2 See Bennett McCallum (1983) for an early shopping time specification.
3 Many of the doctrines were originally developed in setups differing in details from the one

in this chapter.

– 857 –
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After describing our 10 doctrines, we use the model to analyze two important

issues: the validity of Friedman’s rule in the presence of distorting taxation, and

its sustainability in the face of a time consistency problem. Here, we use the

methods for solving an optimal taxation problem with commitment in chapter

15, and for characterizing a credible government policy in chapter 22.

24.2. A shopping time monetary economy

Consider an endowment economy with no uncertainty. A representative house-

hold has one unit of time. There is a single good of constant amount y > 0 each

period t ≥ 0. The good can be divided between private consumption {ct}∞t=0

and government purchases {gt}∞t=0 , subject to

ct + gt = y. (24.2.1)

The preferences of the household are ordered by

∞∑

t=0

βtu(ct, `t), (24.2.2)

where β ∈ (0, 1), ct ≥ 0 and `t ≥ 0 are consumption and leisure at time t ,

respectively, and uc , u` > 0, ucc , u`` < 0, and uc` ≥ 0. With one unit of time

per period, the household’s time constraint becomes

1 = `t + st. (24.2.3)

We use uc(t) and so on to denote the time t values of the indicated objects,

evaluated at an allocation to be understood from the context.

To acquire the consumption good, the household allocates time to shopping.

The amount of shopping time st needed to purchase a particular level of con-

sumption ct is negatively related to the household’s holdings of real money

balances mt+1/pt . Specifically, the shopping or transaction technology is

st = H

(
ct,

mt+1

pt

)
, (24.2.4)

where H, Hc, Hcc, Hm/p,m/p ≥ 0, Hm/p, Hc,m/p ≤ 0. A parametric example of

this transaction technology is

H

(
ct,

mt+1

pt

)
=

ct
mt+1/pt

ε, (24.2.5)
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where ε > 0. This corresponds to a transaction cost that would arise in the

frameworks of Baumol (1952) and Tobin (1956). When a household spends

money holdings for consumption purchases at a constant rate ct per unit of

time, ct(mt+1/pt)
−1 is the number of trips to the bank, and ε is the time cost

per trip to the bank.

24.2.1. Households

The household maximizes expression (24.2.2) subject to the transaction tech-

nology (24.2.4) and the sequence of budget constraints

ct +
bt+1

Rt
+
mt+1

pt
= y − τt + bt +

mt

pt
. (24.2.6)

Here, mt+1 is nominal balances held between times t and t+ 1; pt is the price

level; bt is the real value of one-period government bond holdings that mature

at the beginning of period t , denominated in units of time t consumption; τt

is a lump-sum tax at t ; and Rt is the real gross rate of return on one-period

bonds held from t to t + 1. Maximization of expression (24.2.2) is subject to

mt+1 ≥ 0 for all t ≥ 0,4 no restriction on the sign of bt+1 for all t ≥ 0, and

given initial stocks m0, b0 .

After consolidating two consecutive budget constraints given by equation

(24.2.6), we arrive at

ct +
ct+1

Rt
+

(
1 − pt

pt+1

1

Rt

)
mt+1

pt
+

bt+2

RtRt+1
+
mt+2/pt+1

Rt

= y − τt +
y − τt+1

Rt
+ bt +

mt

pt
. (24.2.7)

To ensure a bounded budget set, the expression in parentheses multiplying non-

negative holdings of real balances must be greater than or equal to zero. Thus,

we have the arbitrage condition,

1 − pt
pt+1

1

Rt
= 1 − Rmt

Rt
=

it
1 + it

≥ 0, (24.2.8)

where Rmt ≡ pt/pt+1 is the real gross return on money held from t to t+1, that

is, the inverse of the inflation rate, and 1 + it ≡ Rt/Rmt is the gross nominal

4 Households cannot issue money.
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interest rate. The real return on money Rmt must be less than or equal to the

return on bonds Rt , because otherwise agents would be able to make arbitrarily

large profits by choosing arbitrarily large money holdings financed by issuing

bonds. In other words, the net nominal interest rate it cannot be negative.

The Lagrangian for the household’s optimization problem is

∞∑

t=0

βt

{
u(ct, `t) + λt

(
y − τt + bt +

mt

pt
− ct −

bt+1

Rt
− mt+1

pt

)

+µt

[
1 − `t −H

(
ct,

mt+1

pt

)]}
.

At an interior solution, the first-order conditions with respect to ct , `t , bt+1 ,

and mt+1 are

uc(t) − λt − µtHc(t) = 0, (24.2.9)

u`(t) − µt = 0, (24.2.10)

−λt
1

Rt
+ βλt+1 = 0, (24.2.11)

−λt
1

pt
− µtHm/p(t)

1

pt
+ βλt+1

1

pt+1
= 0. (24.2.12)

From equations (24.2.9) and (24.2.10),

λt = uc(t) − u`(t)Hc(t). (24.2.13)

The Lagrange multiplier on the budget constraint is equal to the marginal utility

of consumption reduced by the marginal disutility of having to shop for that

increment in consumption. By substituting equation (24.2.13) into equation

(24.2.11), we obtain an expression for the real interest rate,

Rt =
1

β

uc(t) − u`(t)Hc(t)

uc(t+ 1) − u`(t+ 1)Hc(t+ 1)
. (24.2.14)

The combination of equations (24.2.11) and (24.2.12) yields

Rt −Rmt
Rt

λt = −µtHm/p(t), (24.2.15)

which sets the cost equal to the benefit of the marginal unit of real money

balances held from t to t+1, all expressed in time t utility. The cost of holding
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money balances instead of bonds is lost interest earnings (Rt−Rmt) discounted

at the rate Rt and expressed in time t utility when multiplied by the shadow

price λt . The benefit of an additional unit of real money balances is the savings

in shopping time −Hm/p(t) evaluated at the shadow price µt . By substituting

equations (24.2.10) and (24.2.13) into equation (24.2.15), we get

(
1 − Rmt

Rt

) [uc(t)
u`(t)

−Hc(t)
]

+Hm/p(t) = 0, (24.2.16)

with uc(t) and u`(t) evaluated at `t = 1−H(ct, mt+1/pt). Equation (24.2.16)

implicitly defines a money demand function

mt+1

pt
= F (ct, Rmt/Rt), (24.2.17)

which is increasing in both of its arguments, as can be shown by applying the

implicit function rule to expression (24.2.16).

24.2.2. Government

The government finances the purchase of the stream {gt}∞t=0 subject to the

sequence of budget constraints

gt = τt +
Bt+1

Rt
−Bt +

Mt+1 −Mt

pt
, (24.2.18)

where B0 and M0 are given. Here Bt is government indebtedness to the private

sector, denominated in time t goods, maturing at the beginning of period t , and

Mt is the stock of currency that the government has issued as of the beginning

of period t .
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24.2.3. Equilibrium

We use the following definitions:

Definition: A price system is a pair of positive sequences {Rt, pt}∞t=0 .

Definition: We take as exogenous sequences {gt, τt}∞t=0 . We also take

B0 = b0 and M0 = m0 > 0 as given. An equilibrium is a price system, a con-

sumption sequence {ct}∞t=0 , a sequence for government indebtedness {Bt}∞t=1 ,

and a positive sequence for the money supply {Mt}∞t=1 for which the follow-

ing statements are true: (a) given the price system and taxes, the household’s

optimum problem is solved with bt = Bt and mt = Mt ; (b) the government’s

budget constraint is satisfied for all t ≥ 0; and (c) ct + gt = y .

24.2.4. “Short run” versus “long run”

We shall study government policies designed to ascribe a definite meaning to

a distinction between outcomes in the “short run” (initial date) and the “long

run” (stationary equilibrium). We assume

gt = g, ∀t ≥ 0;

τt = τ, ∀t ≥ 1;

Bt = B, ∀t ≥ 1.

(24.2.19)

We permit τ0 6= τ and B0 6= B .

These settings of policy variables are designed to let us study circumstances

in which the economy is in a stationary equilibrium for t ≥ 1, but starts from

some other position at t = 0. We have enough free policy variables to discuss

two alternative meanings that the theoretical literature has attached to the

phrase “open market operations.”
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24.2.5. Stationary equilibrium

We seek an equilibrium for which

pt/pt+1 = Rm, ∀t ≥ 0;

Rt = R, ∀t ≥ 0;

ct = c, ∀t ≥ 0;

st = s, ∀t ≥ 0.

(24.2.20)

Substituting equations (24.2.20) into equations (24.2.14) and (24.2.17) yields

R = β−1,
mt+1

pt
= f(Rm),

(24.2.21)

where we define f(Rm) ≡ F (c, Rm/R) and we have suppressed the constants

c and R in the money demand function f(Rm) in a stationary equilibrium.

Notice that f ′(Rm) ≥ 0, an inequality that plays an important role below.

Substituting equations (24.2.19), (24.2.20), and (24.2.21) into the govern-

ment budget constraint (24.2.18), using the equilibrium condition Mt = mt ,

and rearranging gives

g − τ +B(R− 1)/R = f(Rm)(1 −Rm), ∀t ≥ 1. (24.2.22)

Given the policy variables (g, τ, B), equation (24.2.22) determines the station-

ary rate of return on currency Rm . In (24.2.22), g − τ is the net of interest

deficit, sometimes called the operational deficit; g− τ +B(R−1)/R is the gross

of interest government deficit; and f(Rm)(1 − Rm) is the rate of seigniorage

revenues from printing currency.5 The inflation tax rate is (1 − Rm) and the

quantity of real balances f(Rm) is the base of the inflation tax.

5 The stationary value of seigniorage per period is given by

Mt+1 −Mt

pt
=
Mt+1

pt
−

Mt

pt−1

pt−1

pt
= f(Rm)(1 − Rm).
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24.2.6. Initial date (time 0)

Because M1/p0 = f(Rm), the government budget constraint at t = 0 can be

written

M0/p0 = f(Rm) − (g +B0 − τ0) +B/R. (24.2.23)

24.2.7. Equilibrium determination

Given the policy parameters (g, τ, τ0, B), the initial stocks B0 and M0 , and the

equilibrium gross real interest rate R = β−1 , equations (24.2.22) and (24.2.23)

determine (Rm, p0). The two equations are recursive: equation (24.2.22) de-

termines Rm , then equation (24.2.23) determines p0 .

It is useful to illustrate the determination of an equilibrium with a parametric

example. Let the utility function and the transaction technology be given by

u(ct, lt) =
c1−δt

1 − δ
+

l1−αt

1 − α
,

H(ct, mt+1/pt) =
ct

1 +mt+1/pt
,

where the latter is a modified version of equation (24.2.5), so that transactions

can be carried out even in the absence of money.

For parameter values (β, δ, α, c) = (0.96, 0.7, 0.5, 0.4), Figure 24.2.1 displays

the stationary gross of interest deficit g − τ + B(R − 1)/R and the stationary

seigniorage f(Rm)(1−Rm);6 Figure 24.2.2 shows f(Rm)−(g+B0−τ0)+B/R .

Stationary equilibrium is determined as follows: name constant values {g, τ, B}
which imply a stationary gross of interest deficit g− τ +B(R− 1)/R , then read

an associated stationary value Rm from Figure 24.2.1 that satisfies equation

(24.2.22); for this value of Rm , find the value of f(Rm)− (g +B0 − τ0) +B/R

in Figure 24.2.2 which is equal to M0/p0 by equation (24.2.23). Thus, the

initial price level p0 is determined because M0 is given in period 0.

6 For our parameterization in Figure 24.2.1, households choose to hold zero money balances

for Rm < 0.15, so at these rates there is no seigniorage collected. Seigniorage turns negative

for Rm > 1 because the government is then continuously withdrawing money from circulation

to raise the real return on money above 1.
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Figure 24.2.1: The stationary rate of return on currency, Rm ,

is determined by the intersection between the stationary gross of

interest deficit g− τ +B(R− 1)/R and the stationary seigniorage

f(Rm)(1 −Rm).
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Figure 24.2.2: Given Rm , the real value of initial money balances

M0/p0 is determined by f(Rm)− (g+B0 − τ0) +B/R . Thus, the

price level p0 is determined because M0 is given.
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24.3. Ten monetary doctrines

We now use equations (24.2.22) and (24.2.23) to explain some important doc-

trines about money and government finance.

24.3.1. Quantity theory of money

The classic “quantity theory of money” experiment is to increase M0 by some

factor λ > 1 (a “helicopter drop” of money), leaving all of the other parameters

of the model fixed (including the fiscal policy parameters (τ0, τ, g, B )). The

effect is to multiply the initial equilibrium price and money supply sequences

by λ and to leave all other variables unaltered.

24.3.2. Sustained deficits cause inflation

The parameterization in Figures 24.2.1 and 24.2.2 shows that there can be mul-

tiple values of Rm that solve equation (24.2.22). As can be seen in Figure

24.2.1, some values of the gross-of-interest deficit g − τ + B(R − 1)/R can be

financed with either a low or high rate of return on money. The tax rate on real

money balances is (1−Rm) in a stationary equilibrium, so the higher Rm that

solves equation (24.2.22) is on the good side of a “Laffer curve” in the inflation

tax rate.

If there are multiple values of Rm that solve equation (24.2.22), we shall

always select the highest one for the purposes of doing our comparative dynamic

exercises.7 The stationary equilibrium with the higher rate of return on currency

is associated with classical comparative dynamics: an increase in the stationary

gross-of-interest government budget deficit causes a decrease in the rate of return

on currency (i.e., an increase in the inflation rate). Notice how the stationary

equilibrium associated with the lower rate of return on currency has “perverse”

comparative dynamics, from the point of view of the classical doctrine that

sustained government deficits cause inflation.

7 In chapter 9, we studied the perfect-foresight dynamics of a closely related system and

saw that the stationary equilibrium selected here was not the limit point of those dynamics.

Our selection of the higher rate of return equilibrium can be defended by appealing to various

forms of “adaptive” (nonrational) dynamics. See Bruno and Fischer (1990), Marcet and

Sargent (1989), and Marimon and Sunder (1993). Also, see exercise 24.2.
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24.3.3. Fiscal prerequisites of zero inflation policy

Equation (24.2.22) implies a restriction on fiscal policy that is necessary and

sufficient to sustain a zero inflation (Rm = 1) equilibrium:

g − τ +B(R − 1)/R = 0,

or

B =
R

R− 1
(τ − g) =

∞∑

t=0

R−t(τ − g).

This equation states that the real value of interest-bearing government indebt-

edness equals the present value of the net-of-interest government surplus, with

zero revenues being contributed by an inflation tax. In this case, increased

government debt implies a flow of future government surpluses, with complete

abstention from the inflation tax.

24.3.4. Unpleasant monetarist arithmetic

This doctrine describes the paradoxical effects of an open market operation

defined in the standard way that withholds from the monetary authority the

ability to alter taxes or expenditures. Consider an open market sale of bonds

at time 0, defined as a decrease in M1 accompanied by an increase in B , with

all other government fiscal policy variables constant, including (τ0, τ ). This

policy can be analyzed by increasing B in equations (24.2.22) and (24.2.23).

The effect of the policy is to shift the permanent gross-of-interest deficit upward

by (R − 1)/R times the increase in B , which decreases the real return on

money Rm in Figure 24.2.1. That is, the effect is unambiguously to increase the

stationary inflation rate (the inverse of Rm ). However, the effect on the initial

price level p0 can go either way, depending on the slope of the revenue curve

f(Rm)(1 − Rm); the decrease in Rm reduces the right-hand side of equation

(24.2.23), f(Rm) − (g + B0 − τ0) + B/R , while the increase in B raises the

value. Thus, the upward shift of the curve in Figure 24.2.2 due to the higher

value of B , and the downward movement along that new curve due to the lower

equilibrium value of Rm , can cause M0/p0 to move up or down, that is, a

decrease or an increase in the initial price level p0 .

The effect of a decrease in the money supply M1 accomplished through

such an open market operation is at best temporarily to drive the price level



868 Fiscal-Monetary Theories of Inflation

downward, at the cost of causing the inflation rate to be permanently higher.

Sargent and Wallace (1981) called this “unpleasant monetarist arithmetic.”

24.3.5. An “open market” operation delivering neutrality

We now alter the definition of open market operations to be different than that

used in the unpleasant monetarist arithmetic. We supplement the fiscal powers

of the monetary authority in a way that lets open market operations have effects

like those in the quantity theory experiment. Let there be an initial equilibrium

with policy values denoted by bars over variables. Consider an open market sale

or purchase defined as a decrease in M1 and simultaneous increases in B and

τ sufficient to satisfy

(1 − 1/R)(B̂ − B̄) = τ̂ − τ̄ , (24.3.1)

where variables with hats denote the new values of the corresponding variables.

We assume that τ̂0 = τ̄0 .

As long as the tax rate from time 1 on is adjusted according to equation

(24.3.1), equation (24.2.22) will be satisfied at the initial value of Rm . Equation

(24.3.1) imposes a requirement that the lump-sum tax τ be adjusted by just

enough to service whatever additional interest payments are associated with

the alteration in B resulting from the exchange of M1 for B .8 Under this

definition of an open market operation, reductions in M1 achieved by increases

in B and the taxes needed to service B cause proportionate decreases in the

paths of the money supply and the price level, leave Rm unaltered, and fulfill

the pure quantity theory of money.

8 This definition of an “open market” operation imputes unrealistic power to a monetary

authority: on earth, central banks don’t set tax rates.
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24.3.6. The “optimum quantity” of money

Friedman’s (1969) ideas about the optimum quantity of money can be repre-

sented in Figures 24.2.1 and 24.2.2. Friedman noted that, given the stationary

levels of (g,B ), the representative household prefers stationary equilibria with

higher rates of return on currency. In particular, the higher the stationary level

of real balances, the better the household likes it. By running a sufficiently large

gross-of-interest surplus, that is, a negative value of g − τ + B(R − 1)/R , the

government can attain any value of Rm ∈ (1, β−1). Given (g,B) and the target

value of Rm in this interval, a tax rate τ can be chosen to assure the required

surplus. The proceeds of the tax are used to retire currency from circulation,

thereby generating a deflation that makes the rate of return on currency equal

to Rm . According to Friedman, the optimal policy is to satiate the system with

real balances, insofar as it is possible to do so.

The social value of real money balances in our model is that they reduce

households’ shopping time. The optimum quantity of money is the one that

minimizes the time allocated to shopping. For the sake of argument, suppose

there is a satiation point in real balances ψ(c) for any consumption level c ,

that is, Hm/p(c, mt+1/pt) = 0 for mt+1/pt ≥ ψ(c). According to condition

(24.2.15), the government can attain this optimal allocation only by choosing

Rm = R , since λt, µt > 0. (Utility is assumed to be strictly increasing in both

consumption and leisure.) Thus, welfare is at a maximum when the economy is

satiated with real balances. For the transaction technology given by equation

(24.2.5), the Friedman rule can only be approximately attained because money

demand is insatiable.

24.3.7. Legal restrictions to boost demand for currency

If the government can somehow force households to increase their real money

balances to f̃(Rm) > f(Rm), it can finance a given stationary gross of interest

deficit g − τ + B(R − 1)/R at a higher stationary rate of return on currency

Rm . The increased demand for money balances shifts the seigniorage curve

in Figure 24.2.1 upward to f̃(Rm)(1 − Rm), thereby increasing the higher of

the two intersections of the curve f̃(Rm)(1 − Rm) with the gross-of-interest

deficit line in Figure 24.2.1. By increasing the base of the inflation tax, the rate

(1−Rm) of inflation taxation can be diminished. Examples of legal restrictions
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to increase the demand for government issued currency include (a) restrictions

on the rights of banks and other intermediaries to issue bank notes or other

close substitutes for government issued currency,9 (b) arbitrary limitations on

trading other assets that are close substitutes with currency, and (c) reserve

requirements.

Governments intent on raising revenues through the inflation tax have fre-

quently resorted to legal restrictions and threats designed to promote the de-

mand for its currency. In chapter 25, we shall study a version of Bryant and

Wallace’s (1984) theory of some of those restrictions. Sargent and Velde (1995)

recount such restrictions in the Terror during the French Revolution, and the

sharp tools used to enforce them.

To assess the welfare effects of policies forcing households to hold higher real

balances, we must go beyond the incompletely articulated transaction process

underlying equation (24.2.4). We need an explicit model of how money facili-

tates transactions and how the government interferes with markets to increase

the demand for real balances. In such a model, there would be opposing effects

on social welfare. On the one hand, our discussion of the optimum quantity of

money says that a higher real return on money Rm tends to improve welfare.

On the other hand, the imposition of legal restrictions aimed at forcing house-

holds to hold higher real balances might elicit socially wasteful activities from

the private economy trying to evade precisely those restrictions.

24.3.8. One big open market operation

Lucas (1986) and Wallace (1989) describe a large open market purchase of pri-

vate indebtedness at time 0. The purpose of the operation is to provide the

government with a portfolio of interest-earning claims on the private sector, one

that is sufficient to permit it to run a gross-of-interest surplus. The government

uses the surplus to reduce the money supply each period, thereby engineering

a deflation that raises the rate of return on money above 1. That is, the gov-

ernment uses its own lending to reduce the gap in rates of return between its

money and higher-yield bonds. As we know from our discussion of the optimum

9 In the U.S. Civil War, the U.S. Congress taxed out of existence the notes that state-

chartered banks had issued, which before the war had been the country’s paper currency.
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quantity of money, the increase in the real return on money Rm will lead to

higher welfare.10

To highlight the effects of the described open market policy, we impose a

nonnegative net-of-interest deficit, g−τ ≥ 0, which prevents financing deflation

by direct taxation. The proposed operation is then to increase M1 and decrease

B , with B < 0 indicating private indebtedness to the government. We generate

a candidate policy as follows: Given values of (g, τ ), use equation (24.2.22)

to pick a value of B that solves equation (24.2.22) for a desired level of Rm ,

with 1 < Rm ≤ β−1 . Notice that a negative level of B will be required,

since g − τ ≥ 0. Substituting equation (24.2.23) into equation (24.2.22) [by

eliminating f(Rm)] and rearranging gives

M0/p0 =

(
R −Rm
1 −Rm

)
B

R
+

(
1

1 −Rm

)
(g − τ) − (g +B0 − τ0). (24.3.2)

The first term on the right side is positive, while the remainder may be positive

or negative. The candidate policy is consistent with an equilibrium only if

g, τ, τ0, and B0 assume values for which the entire right side is positive. In this

case, there exists a positive price level p0 that solves equation (24.3.2).

As an example, assume that g − τ = 0 and that g + B0 − τ0 = 0, so that

the government budget net of interest is balanced from time t = 1 onward.

Then we know that the right-hand side of equation (24.3.2) is positive. In

this case it is feasible to operate a scheme like this to support any return on

currency 1 < Rm < 1/β . In the limit, when conducting an arbitrarily large open

market operation, the stationary return on money Rm would approach 1/β = R

and, hence, M0/p0 in equation (24.3.2) would approach zero. This means

that the government is engineering a hyperinflation in period 0 that makes the

initial nominal money stock M0 practically worthless. But how is it that the

government after such a hyperinflation in period 0, can support a stationary

return on money of R for the indefinite future? The explanation is as follows.

Since the hyperinflation in period 0 has made the initial money holdings almost

10 Beatrix Paal (2000) describes how the stabilization of the second Hungarian hyperinflation

had some features of “one big open market operation.” After the stabilization the government

lent the one-time seigniorage revenues gathered from remonetizing the economy. The severe

hyperinflation (about 4×1024 in the previous year) had reduced real balances of fiat currency

virtually to zero. Paal argues that the fiscal aspects of the stabilization, dependent as they

were on those one-time seigniorage revenues, were foreseen and shaped the dynamics of the

preceding hyperinflation.



872 Fiscal-Monetary Theories of Inflation

worthless, the private sector’s real balances at the end of period 0, M1/p0 , come

almost entirely from that period’s open-market operation. The government is

injecting that money stock into the economy in exchange for interest-earnings

claims on the private sector, B/R ≈ −M1/p0 . In future periods, the government

keeps those bond holdings constant while using the net interest earnings to

reduce the money supply in each future period. The government is essentially

passing on the interest earnings to money holders by engineering a deflation that

yields a return on money equal to Rm ≈ R .

24.3.9. A fiscal theory of the price level

The preceding sections have illustrated what might be called a fiscal theory of

inflation. This theory assumes a particular specification of exogenous variables

that are chosen and committed to by the government. In particular, it is as-

sumed that the government sets g, τ0, τ , and B , that B0 and M0 are inherited

from the past, and that the model then determines Rm and p0 via equations

(24.2.22) and (24.2.23). In particular, the system is recursive: given g, τ , and

B , equation (24.2.22) determines the rate of return on currency Rm ; then, given

g, τ, B , and Rm , equation (24.2.23) determines p0 . After p0 is determined, M1

is determined from M1/p0 = f(Rm). In this setting, the government commits

to a long-run gross-of-interest government deficit g− τ +B(R− 1)/R , and then

the market determines p0, Rm .

Woodford (1995) and Sims (1994) have converted a version of the same model

into a fiscal theory of the price level by altering the assumptions about the vari-

ables that the government sets. Rather than assuming that the government sets

B , and thereby the gross-of-interest government deficit, Woodford assumes that

B is endogenous and that instead the government sets in advance a present

value of seigniorage f(Rm)(1 −Rm)/(R− 1). This assumption is equivalent to

saying that the government is able to commit to fix either the nominal inter-

est rate or the gross rate of inflation R−1
m . Woodford emphasizes that in the

present setting, such a nominal interest rate peg leaves the equilibrium price

level process determinate.11 To illustrate Woodford’s argument in our setting,

11 Woodford (1995) interprets this finding against the background of a literature that oc-

casionally asserted a different result, namely, that interest rate pegging led to price level
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rearrange equation (24.2.22) to obtain

B/R =
1

R− 1

[
(τ − g) + f(Rm)(1 −Rm)

]

=

∞∑

t=1

R−t(τ − g) + f(Rm)
1 −Rm
R− 1

,
(24.3.3)

which when substituted into equation (24.2.23) yields

M0

p0
+ B0 =

∞∑

t=0

R−t(τt − gt) + f(Rm)
(
1 +

1 −Rm
R− 1

)

=

∞∑

t=0

R−t(τt − gt) +

∞∑

t=1

R−tf(Rm)(R−Rm). (24.3.4)

In a stationary equilibrium, the real interest rate is equal to 1/β , so by multi-

plying the nominal interest rate by β we obtain the inverse of the corresponding

value for Rm . Thus, pegging a nominal rate is equivalent to pegging the infla-

tion rate and the steady-state flow of seigniorage f(Rm)(1 − Rm). Woodford

uses such equations as follows: The government chooses g, τ, τ0 , and Rm (or

equivalently, f(Rm)(1 − Rm)). Then equation (24.3.3) determines B as the

present value of the government surplus from time 1 on, including seigniorage

revenues. Equation (24.3.4) then determines p0 . Equation (24.3.4) says that

the price level is set to equate the real value of total initial government indebt-

edness to the present value of the net-of-interest government surplus, including

seigniorage revenues. Finally, the endogenous quantity of money is determined

by the demand function for money (24.2.17),

M1/p0 = f(Rm). (24.3.5)

Woodford uses this experiment to emphasize that without saying much more,

the mere presence of a “quantity theory” equation of the form (24.3.5) does not

imply the “monetarist” conclusion that it is necessary to make the money supply

exogenous in order to determine the path of the price level.

indeterminacy because of the associated money supply endogeneity. That other literature fo-

cused on the homogeneity properties of conditions (24.2.14) and (24.2.16): the only ways in

which the price level enters are as ratios to the money supply or to the price level and another

date. This property suggested that a policy regime that leaves the money supply, as well as

the price level, endogenous will not be able to determine the level of either.
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Several commentators have remarked that the Sims-Woodford use of these

equations puts the government on a different setting than the private agents.12

Private agents’ demand curves are constructed by requiring their budget con-

straints to hold for all hypothetical price processes, not just the equilibrium

one. However, under Woodford’s assumptions about what the government has

already chosen regardless of the (p0, Rm) it faces, the only way an equilibrium

can exist is if p0 adjusts to make equation (24.3.4) satisfied. The government

budget constraint would not be satisfied unless p0 adjusts to satisfy (24.3.4).

By way of contrast, in the fiscal theory of inflation described by Sargent and

Wallace (1981) and Sargent (1992), embodied in our description of unpleasant

monetarist arithmetic, the focus is on how the one tax rate that is assumed to be

free to adjust, the inflation tax, responds to fiscal conditions that the government

inherits. Sims and Woodford forbid the inflation tax from adjusting, having set

it once and all for by pegging the nominal interest rate. They thereby force

other aspects of fiscal policy and the price system to adjust.

24.3.10. Exchange rate indeterminacy

Kareken and Wallace’s (1981) exchange rate indeterminacy result provides a

good laboratory for putting the fiscal theory of the price level to work. First,

we will describe a version of Kareken and Wallace’s result. Then, we will show

how it can be overturned by changing the assumptions about policy to ones like

Woodford’s.

To describe the theory of exchange rate indeterminacy, we change the pre-

ceding model so that there are two countries with identical technologies and

preferences. Let yi and gi be the endowment of the good and government pur-

chases for country i = 1, 2; where y1 + y2 = y and g1 + g2 = g . Under the

assumption of complete markets, equilibrium consumption ci in country i is

constant over time and c1 + c2 = c .

Each country issues currency. The government of country i has Mit+1 units

of its currency outstanding at the end of period t . The price level in terms of

currency i is pit , and the exchange rate et satisfies the purchasing power parity

condition p1t = etp2t . The household is indifferent about which currency to use

so long as both currencies bear the same rate of return, and will not hold one

12 See Buiter (2002) and McCallum (2001).
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with an inferior rate of return. This fact implies that p1t/p1t+1 = p2t/p2t+1 ,

which in turn implies that et+1 = et = e . Thus, the exchange rate is constant in

a nonstochastic equilibrium with two currencies being valued. We let Mt+1 =

M1t+1 + eM2t+1 . For simplicity, we assume that the money demand function

is linear in the transaction volume, F (c, Rm/R) = cF̂ (Rm/R). It then follows

that the equilibrium condition in the world money market is

Mt+1

p1t
= f(Rm). (24.3.6)

In order to study stationary equilibria where all real variables remain con-

stant over time, we restrict attention to identical monetary growth rates in the

two countries, Mit+1/Mit = 1+ε for i = 1, 2. We let τi and Bi denote constant

steady-state values for lump-sum taxes, and real government indebtedness for

government i . The budget constraint of government i is

τi = gi −Bi
(1 −R)

R
− Mit+1 −Mit

pit
. (24.3.7)

Here is a version of Kareken and Wallace’s exchange rate indeterminacy

result: Assume that the governments of each country set gi , Bi , and Mit+1 =

(1 + ε)Mit , planning to adjust the lump-sum tax τi to raise whatever revenues

are needed to finance their budgets. Then the constant monetary growth rate

implies Rm = (1+ε)−1 and equation (24.3.6) determines the worldwide demand

for real balances. But the exchange rate is not determined under these policies.

Specifically, the market clearing condition for the money market at time 0 holds

for any positive e with a price level p10 given by

M11 + eM21

p10
= f(Rm). (24.3.8)

For any such pair (e, p10) that satisfies equation (24.3.8) with an associated

value for p20 = p10/e , governments’ budgets are financed by setting lump-sum

taxes according to (24.3.7). Kareken and Wallace conclude that under such

settings for government policy variables, something more is needed to deter-

mine the exchange rate. With policy as specified here, the exchange rate is

indeterminate.13

13 See Sargent and Velde (1990) for an application of this theory to events surrounding

German monetary unification.
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24.3.11. Determinacy of the exchange rate retrieved

A version of Woodford’s assumptions about the variables that governments

choose can render the exchange rate determinate. Thus, suppose that each

government sets a real level of seigniorage xi = (Mit+1 −Mit)/pit for all t ≥ 1.

The budget constraint of government i is then

τi = gi −Bi
(1 −R)

R
− xi. (24.3.9)

In order to study stationary equilibria where all real variables remain constant

over time, we allow for three cases with respect to x1 and x2 : they are both

strictly positive, strictly negative, or equal to zero.

To retrieve exchange rate determinacy, we assume that the governments of

each country set gi , Bi , xi , and τi so that budgets are financed according to

(24.3.9). Hence, the endogenous inflation rate is pegged to deliver the targeted

levels of seigniorage,

x1 + x2 = f(Rm)(1 −Rm). (24.3.10)

The implied return on money Rm determines the endogenous monetary growth

rates in a stationary equilibrium,

R−1
m =

Mit+1

Mit
≡ 1 + ε, for i = 1, 2. (24.3.11)

That is, nominal supplies of both monies grow at the rate of inflation so that

real money supplies remain constant over time. The levels of those real money

supplies satisfy the equilibrium condition that the real value of net monetary

growth is equal to the real seigniorage chosen by the government,

εMit

pit
= xi, for i = 1, 2. (24.3.12)

Equations (24.3.12) determine the price levels in the two countries so long as

the chosen amounts of seigniorage are not equal to zero, which in turn determine

a unique exchange rate,

e =
p1t

p2t
=
M1t

M2t

x2

x1
=

(1 + ε)tM10

(1 + ε)tM20

x2

x1
=
M10

M20

x2

x1
.

Thus, with this Sims-Woodford structure of government commitments (i.e., set-

ting of exogenous variables), the exchange rate is determinate. It is only the
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third case of stationary equilibria with x1 and x2 equal to zero where the

exchange rate is indeterminate, because then there is no relative measure of

seigniorage levels that is needed to pin down the denomination of the world real

money supply for the purpose of financing governments’ budgets.

24.4. An example of exchange rate (in)determinacy

As an illustration of the Kareken-Wallace exchange rate indeterminacy and the

Sims-Woodford fiscal theory of the price level, consider the following version of

the two-country environment in section 24.3.10:

y1 = y2 = y/2, (24.4.1a)

g1 = g2 = 0, (24.4.1b)

B1 = B2 = 0, (24.4.1c)

M10 = M20, (24.4.1d)

M1t+1

M1t
=
M2t+1

M2t
= 1 + ε > 1, ∀t ≥ 0. (24.4.1e)

The governments in the two countries have no purchases to finance and no bond

holdings. The seigniorage raised by printing money is handed over as lump-sum

transfers to the households in each country, respectively. The budget constraint

of government i is

−τi =
Mit+1 −Mit

pit
= xi, (24.4.2)

where the negative lump-sum tax, −τi , is equal to the real value of the country’s

seigniorage, xi .

To operationalize the concept of exchange rate indeterminacy, we assume

that there is a ‘sunspot’ variable that can take on three values at the start of

the economy.14 Each realization of the sunspot variable is associated with a

particular belief about the equilibrium value of the exchange rate e ∈ {0, 1,∞}
that will prevail in period 0 and forever thereafter. That is, depending on the

sunspot realization, all households will coordinate on one of the following three

beliefs about the equilibrium outcome in the world money market:

14 Sunspots were introduced by Cass and Shell (1983) to explain “excess market volatility.”

Sunspots represent extrinsic uncertainty not related to the fundamentals of the economy.
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i) the currency of country 2 is worthless (e = 0 and p2t = ∞, ∀t ≥ 0);

ii) the two currencies are traded one for one (e = 1 and p1t = p2t, ∀t ≥ 0);

iii) the currency of country 1 is worthless (e = ∞ and p1t = ∞, ∀t ≥ 0).

We assume that all households share the same belief about the sunspot process,

and that each sunspot realization is perceived to occur with the same probability

equal to 1/3.

We also postulate that all households are risk-averse with identical prefer-

ences and as stated in (24.4.1a) that they have the same constant endowment

stream. As initial conditions, the representative household in country i owns

the beginning-of-period money stock Mi0 of its country.

24.4.1. Trading before sunspot realization

The equilibrium allocation in this economy will depend on whether or not house-

holds can trade before observing the sunspot realization. In chapter 8, we as-

sumed that all trade took place after any uncertainty had been resolved in the

first period. In our current setting, this would translate into households trading

after the sunspot realization, i.e., after the agents have seen the sunspot and

therefore after the coordination of beliefs about the equilibrium value of the ex-

change rate. In cases i) and iii), this implies that the households in the country

with a valued currency will be better off because their initial money holdings are

valuable and they will receive lump-sum transfers equal to their government’s

revenue from seigniorage in each period. In case ii), all households are equally

well off in the world economy because of identical budget constraints.

Alternatively, we can assume that households can trade in markets before the

sunspot realization. In a complete market world, agents would be able to trade

in contingent claims with payoffs conditional on the sunspot realization. Given

the symmetries in the environment with respect to preferences, endowment and

expected asset/transfer outcomes associated with the sunspot process, the equi-

librium allocation will be one of perfect pooling with each household consuming

y/2 in every period.15 Hence, the households will use security markets to pool

the risks associated with the sunspot process. Given the ex ante symmetry in

15 See Lucas (1982) for a perfect pooling equilibrium in a two-country world with two curren-

cies. However, Lucas considers only intrinsic uncertainty arising from stochastic endowment

streams.



An example of exchange rate (in)determinacy 879

possible sunspot realizations, it follows that equilibrium contingent-claim prices

will be such that a household in country i can afford to trade half of its ini-

tial money holdings, Mi0/2, and half of the entitlement to its future stream of

lump-sum transfers, xi/2, in exchange for the corresponding quantities from a

household in the other country. As a result, these diversified portfolios enable

each household to finance a smooth consumption stream equal to y/2 in every

period regardless of the sunspot realization.

We have constructed a rational expectations equilibrium where the equilib-

rium exchange rate is influenced by a sunspot process. But even though the

exchange rate can take on three different values in this example, the households

are insulated from any real effects because of their trades in complete markets

prior to the sunspot realization. In this world, each government is assumed to

print more of its currency each period at the net rate ε > 0 and hand over the

newly printed money to its households as lump-sum transfers. The households

in turn have entered into contingent-claim contracts that oblige them to hand

over half of this newly printed currency to a household in the other country,

while receiving half of that other household’s government transfer. Given a

sunspot realization that is associated with either case i) or case iii) above, it

follows that these deliveries of newly printed currencies between households are

valuable in one direction but not in the other direction.

24.4.2. Fiscal theory of the price level

So how can a fiscal theory of the price level overcome this indeterminacy of the

exchange rate? In the spirit of section 24.3.11, suppose that each government

sets a real level of seigniorage given by

x1 = x2 = 0.5 · f
(

1

1 + ε

)[
1 − 1

1 + ε

]
,

that is, from equations (24.3.10) and (24.3.11), we see that the governments

are splitting the total world seigniorage associated with a gross money growth

rate equal to 1 + ε . Given such policies, the governments can both satisfy

their budget constraints only if the equilibrium exchange rate is indeed e = 1.

Hence, the fiscal theory of the price level would here claim that case ii) is the

only viable rational expectations equilibrium. In the words of Kocherlakota and
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Phelan (1999), “the fiscal theory of the price level is, at its core, a device for

selecting equilibria from the continuum which can exist in monetary models.”

Buiter (2002), Kocherlakota and Phelan (1999), and McCallum (2001) are

skeptical about this recommendation for selecting an equilibrium. The fiscal

theory proposes to rule out other equilibria by specifying government policies

in such a way that government budget constraints hold only for one particular

exchange rate. But what would happen if the sunspot realization signals case i)

or case iii) to the households so that they actually abandon one currency, making

it worthless? The fiscal theory formulated by Sims and Woodford contains no

answer to this question.16 The critics of the fiscal theory of the price level prefer

instead to specify government policies so that a government’s budget constraint

is satisfied for all hypothetical outcomes, including e ∈ {0,∞} . For example,

a government that finds itself issuing a worthless currency could surrender its

aspiration to make lump-sum transfers with strictly positive value to its citizens,

while the other government would accept that the value of the transfer of newly

printed money to its citizens has doubled in real terms. But of course, this

remedy to the puzzle would refute the fiscal theory of the price level and once

again render the exchange rate indeterminate.

24.5. Optimal inflation tax: the Friedman rule

Given lump-sum taxation, the sixth monetary doctrine (about the “optimum

quantity” of money) establishes the optimality of the Friedman rule. The opti-

mal policy is to satiate the economy with real balances by generating a deflation

that drives the net nominal interest rate to zero. In a stationary economy, there

can be deflation only if the government retires currency with a government sur-

plus. We now ask if such a costly scheme remains optimal when all government

revenues must be raised through distortionary taxation. Or would the Ramsey

plan then include an inflation tax on money holdings whose rate depends on the

interest elasticity of money demand?

16 See Bassetto (2002) for a reformulation of the fiscal theory that is careful to keep track

of the way past actions of private agents influence the actions available to the government at

each time t .
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Following Correia and Teles (1996), we show that even with distortionary

taxation the Friedman rule is the optimal policy under a transaction technology

(24.2.4) that satisfies a homogeneity condition.

Earlier analyses of the optimal tax on money in models with transaction

technologies include Kimbrough (1986), Faig (1988), and Guidotti and Vegh

(1993). Chari, Christiano, and Kehoe (1996) also develop conditions for the

optimality of the Friedman rule in models with cash and credit goods and money

in the utility function.

24.5.1. Economic environment

We convert our shopping time monetary economy into a production economy

with labor nt as the only input in a linear technology:

ct + gt = nt. (24.5.1)

The household’s time constraint becomes

1 = `t + st + nt. (24.5.2)

The shopping technology is now assumed to be homogeneous of degree ν ≥ 0

in consumption ct and real money balances m̂t+1 ≡ mt+1/pt ;

st = H(ct, m̂t+1) = cνtH

(
1,
m̂t+1

ct

)
, for ct > 0. (24.5.3)

By Euler’s theorem we have

Hc(c, m̂)c+Hm̂(c, m̂)m̂ = νH(c, m̂). (24.5.4)

For any consumption level c , we also assume a point of satiation in real money

balances ψc such that

Hm̂(c, m̂) = H(c, m̂) = 0, for m̂ ≥ ψc. (24.5.5)
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24.5.2. Household’s optimization problem

After replacing net income (y− τt) in equation (24.2.7) by (1− τt)(1− `t− st),

consolidation of budget constraints yields the household’s present-value budget

constraint

∞∑

t=0

q0t

(
ct +

it
1 + it

m̂t+1

)
=

∞∑

t=0

q0t (1 − τt)(1 − `t − st) + b0 +
m0

p0
, (24.5.6)

where we have used equation (24.2.8), and q0t is the Arrow-Debreu price

q0t =

t−1∏

i=0

R−1
i

with the numeraire q00 = 1. We have also imposed the transversality conditions,

lim
T→∞

q0T
bT+1

RT
= 0, (24.5.7a)

lim
T→∞

q0T m̂T+1 = 0. (24.5.7b)

Given the satiation point in equation (24.5.5), real money balances held for

transaction purposes are bounded from above by ψ . Real balances may also be

held purely for savings purposes if money is not dominated in rate of return by

bonds, but an agent would never find it optimal to accumulate balances that

violate the transversality condition. Thus, for whatever reason money is being

held, condition (24.5.7b) must hold in an equilibrium.

Substitute st = H(ct, m̂t+1) into equation (24.5.6), and let λ be the La-

grange multiplier on this present-value budget constraint. At an interior solu-

tion, the first-order conditions of the household’s optimization problem become

ct: βtuc(t) − λq0t
[
(1 − τt)Hc(t) + 1

]
= 0, (24.5.8a)

`t: βtu`(t) − λq0t (1 − τt) = 0, (24.5.8b)

m̂t+1: − λq0t

[
(1 − τt)Hm̂(t) +

it
1 + it

]
= 0. (24.5.8c)

From conditions (24.5.8a) and (24.5.8b), we obtain

u`(t)

1 − τt
= uc(t) − u`(t)Hc(t). (24.5.9)
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The left side of equation (24.5.9) is the utility of extra leisure obtained from giv-

ing up one unit of disposable labor income, which at the optimum should equal

the marginal utility of consumption reduced by the disutility of shopping for

the marginal unit of consumption, given by the right side of equation (24.5.9).

Using condition (24.5.8b) and the corresponding expression for t = 0 with the

numeraire q00 = 1, the Arrow-Debreu price q0t can be expressed as

q0t = βt
u`(t)

u`(0)

1 − τ0
1 − τt

; (24.5.10)

and by condition (24.5.8c),

it
1 + it

= −(1 − τt)Hm̂(t). (24.5.11)

This last condition equalizes the cost of holding one unit of real balances (the

left side) with the opportunity value of the shopping time that is released by

an additional unit of real balances, measured on the right side by the extra

after-tax labor income that can be generated.

24.5.3. Ramsey plan

Following the method for solving a Ramsey problem in chapter 15, we use the

household’s first-order conditions to eliminate prices and taxes from its present-

value budget constraint. Specifically, we substitute equations (24.5.10) and

(24.5.11) into equation (24.5.6), and then multiply by u`(0)/(1 − τ0). After

also using equation (24.5.9), the implementability condition becomes

∞∑

t=0

βt
{[
uc(t) − u`(t)Hc(t)

]
ct − u`(t)Hm̂(t)m̂t+1 − u`(t)(1 − `t − st)

}
= 0,

where we have assumed zero initial assets, b0 = m0 = 0. Finally, we substitute

st = H(ct, m̂t+1) into this expression and invoke Euler’s theorem (24.5.4), to

arrive at

∞∑

t=0

βt {uc(t)ct − u`(t) [1 − `t − (1 − ν)H(ct, m̂t+1)]} = 0. (24.5.12)
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The Ramsey problem is to maximize expression (24.2.2) subject to equation

(24.5.12) and a feasibility constraint that combines equations (24.5.1) through

(24.5.3):

1 − `t −H(ct, m̂t+1) − ct − gt = 0. (24.5.13)

Let Φ and {θt}∞t=0 be a Lagrange multiplier on equation (24.5.12) and a se-

quence of Lagrange multipliers on equation (24.5.13), respectively. First-order

conditions for this problem are

ct: uc(t) + Φ {ucc(t)ct + uc(t)

− u`c(t) [1 − `t − (1 − ν)H(ct, m̂t+1)]

+ (1 − ν)u`(t)Hc(t)} − θt [Hc(t) + 1] = 0, (24.5.14a)

`t: u`(t) + Φ {uc`(t)ct + u`(t)

− u``(t) [1 − `t − (1 − ν)H(ct, m̂t+1)]} = −θt, (24.5.14b)

m̂t+1: Hm̂(t) [Φ(1 − ν)u`(t) − θt] = 0. (24.5.14c)

The first-order condition for real money balances (24.5.14c) is satisfied when

either Hm̂(t) = 0 or

θt = Φ(1 − ν)u`(t). (24.5.15)

We now show that equation (24.5.15) cannot be a solution of the problem.

Notice that when ν > 1, equation (24.5.15) implies that the multipliers Φ and

θt will either be zero or have opposite signs. Such a solution is excluded because

Φ is nonnegative, while the insatiable utility function implies that θt is strictly

positive. When ν = 1, a strictly positive θt also excludes equation (24.5.15) as

a solution. To reject equation (24.5.15) for ν ∈ [0, 1), we substitute equation

(24.5.15) into equation (24.5.14b),

u`(t) + Φ {uc`(t)ct + νu`(t) − u``(t) [1 − `t − (1 − ν)H(ct, m̂t+1)]} = 0,

which is a contradiction because the left side is strictly positive, given our as-

sumption that uc`(t) ≥ 0. We conclude that equation (24.5.15) cannot charac-

terize the solution of the Ramsey problem when the transaction technology is

homogeneous of degree ν ≥ 0, so the solution has to be Hm̂(t) = 0. In other

words, the social planner follows the Friedman rule and satiates the economy

with real balances. According to condition (24.5.8c), this aim can be accom-

plished with a monetary policy that sustains a zero net nominal interest rate.
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As an illustration of how the Ramsey plan is implemented, suppose that

gt = g in all periods. Example 1 of chapter 15 presents the Ramsey plan for

this case if there were no transaction technology and no money in the model. The

optimal outcome is characterized by a constant allocation (ĉ, n̂) and a constant

tax rate τ̂ that supports a balanced government budget. We conjecture that the

Ramsey solution to the present monetary economy shares that real allocation.

But how can it do so in the present economy with its additional constraint in

the form of a transaction technology? First, notice that the preceding Ramsey

solution calls for satiating the economy with real balances, so there will be no

time allocated to shopping in the Ramsey outcome. Second, the real balances

needed to satiate the economy are constant over time and equal to

Mt+1

pt
= ψĉ, ∀t ≥ 0, (24.5.16)

and the real return on money is equal to the constant real interest rate,
pt
pt+1

= R, ∀t ≥ 0. (24.5.17)

Third, the real balances in equation (24.5.16) also equal the real value of assets

acquired by the government in period 0 from selling the money supply M1 to

the households. These government assets earn a net real return in each future

period equal to

(R− 1)ψĉ = R
Mt

pt−1
− Mt+1

pt
=
pt−1

pt

Mt

pt−1
− Mt+1

pt
=
Mt −Mt+1

pt
,

where we have invoked equations (24.5.16) and (24.5.17) to show that the in-

terest earnings just equal the funds for retiring currency from circulation in all

future periods needed to sustain an equilibrium in the money market with a

zero net nominal interest rate. It is straightforward to verify that households

would be happy to incur the indebtedness of the initial period. They use the

borrowed funds to acquire money balances and meet future interest payments

by surrendering some of these money balances. Yet their real money balances

are unchanged over time because of the falling price level. In this way, money

holdings are costless to the households, and their optimal decisions with respect

to consumption and labor are the same as in the nonmonetary version of this

economy.
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24.6. Time consistency of monetary policy

The optimality of the Friedman rule was derived in the previous section under

the assumption that the government can commit to a plan for its future actions.

The Ramsey plan is not time consistent and requires that the government have a

technology to bind itself to it. In each period along the Ramsey plan, the govern-

ment is tempted to levy an unannounced inflation tax in order to reduce future

distortionary labor taxes. Rather than examine this time consistency problem

due to distortionary taxation, we now turn to another time consistency problem

arising from a situation where surprise inflation can reduce unemployment.

Kydland and Prescott (1977) and Barro and Gordon (1983a, 1983b) study

the time consistency problem and credible monetary policies in reduced-form

models with a trade-off between surprise inflation and unemployment. In their

spirit, Ireland (1997) proposes a model with microeconomic foundations that

gives rise to such a trade-off because monopolistically competitive firms set

nominal goods prices before the government sets monetary policy.17 The gov-

ernment is here tempted to create surprise inflation that erodes firms’ markups

and stimulates employment above a suboptimally low level. But any anticipated

inflation has negative welfare effects that arise as a result of a postulated cash-

in-advance constraint. More specifically, anticipated inflation reduces the real

value of nominal labor income that can be spent or invested first in the next

period, thereby distorting incentives to work.

The following setup modifies Ireland’s model and assumes that each house-

hold has some market power with respect to its labor supply while a single good

is produced by perfectly competitive firms.

17 Ireland’s model takes most of its structure from those developed by Svensson (1986) and

Rotemberg (1987). See Rotemberg and Woodford (1997) and King and Wolman (1999) for

empirical implementations of related models.
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24.6.1. Model with monopolistically competitive wage setting

There is a continuum of households indexed on the unit interval, i ∈ [0, 1]. At

time t , household i consumes cit of a single consumption good and supplies

labor nit ≥ 0.18 The preferences of the household are

∞∑

t=0

βt
(
cγit
γ

− nit

)
, (24.6.1)

where β ∈ (0, 1) and γ ∈ (0, 1). The parameter restriction on γ ensures that

the household’s utility is well defined at zero consumption.

The technology for producing the single consumption good is

yt =

(∫ 1

0

n
1−α
1+α

it di

) 1+α
1−α

, (24.6.2)

where yt is per capita output and α ∈ (0, 1). The technology has constant

returns to scale in labor inputs, and if all types of labor are supplied in the

same quantity nt , we have yt = nt . The marginal product of labor of type i is

∂ yt
∂ nit

=

(∫ 1

0

n
1−α
1+α

it di

) 2α
1−α

n
−2α
1+α

it =

(
yt
nit

) 2α
1+α

≡ ŵ(yt, nit). (24.6.3)

The single good is produced by a large number of competitive firms that are

willing to pay a real wage to labor of type i equal to the marginal product in

equation (24.6.3).

The definition of the function ŵ(yt, nit) with its two arguments yt and nit

is motivated by the first of the following two assumptions on households’ labor-

supply behavior.19

1. When maximizing the rent of its labor supply, household i perceives that

it can affect the marginal product ŵ(yt, nit) through the second argument,

while yt is taken as given.

18 For analytical simplicity, we assume that the households can supply any nonnegative

amount of labor. When we imposed a finite time endowment in the first edition of this book,

we had to confront the issue of labor rationing across firms along some equilibrium paths.
19 Analogous assumptions are made implicitly by Ireland (1997), who takes the aggregate

price index as given in the monopolistically competitive firms’ profit maximization problem,

and disregards firms’ profitability when computing the output effect of a monetary policy

deviation.
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2. The nominal wage for labor of type i at time t is chosen by household i at

the very beginning of period t . Given the nominal wage wit , household i is

obliged to deliver any amount of labor nit that is demanded in the economy.

The government’s only task is to increase or decrease the money supply by

making lump-sum transfers (xt − 1)Mt to the households, where Mt is the per

capita money supply at the beginning of period t and xt is the gross growth

rate of money in period t :

Mt+1 = xtMt. (24.6.4)

Following Ireland (1997), we assume that xt ∈ [β, x̄] . These bounds on money

growth ensure the existence of a monetary equilibrium. The lower bound will

be shown to yield a zero net nominal interest rate in a stationary equilibrium,

whereas the upper bound x̄ < ∞ guarantees that households never abandon

the use of money altogether.

During each period t , events unfold as follows for household i : The house-

hold starts period t with money mit and real private bonds bit , and the house-

hold sets the nominal wage wit for its type of labor. After the wage is deter-

mined, the government chooses a nominal transfer (xt−1)Mt to be handed over

to the household. Thereafter, the household enters the asset market to settle

maturing bonds bit and to pick a new portfolio composition with money and

real bonds bi,t+1 . After the asset market has closed, the household splits into

a shopper and a worker.20 During period t , the shopper purchases cit units of

the single good subject to the cash-in-advance constraint,

mit

pt
+

(xt − 1)Mt

pt
+ bit −

bi,t+1

Rt
≥ cit, (24.6.5)

where pt and Rt are the price level and the real interest rate, respectively.

Given the household’s predetermined nominal wage wit , the worker supplies

all the labor nit demanded by firms. At the end of period t when the goods

market has closed, the shopper and the worker reunite, and the household’s

money holdings mi,t+1 now equal the worker’s labor income witnit plus any

20 The interpretation that the household splits into a shopper and a worker follows Lucas’s

(1980b) cash-in-advance framework. It embodies the constraint on transactions recommended

by Clower (1967).
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unspent cash from the shopping round. Thus, the budget constraint of the

household becomes21

mit

pt
+

(xt − 1)Mt

pt
+ bit +

wit
pt
nit = cit +

bi,t+1

Rt
+
mi,t+1

pt
. (24.6.6)

24.6.2. Perfect foresight equilibrium

We first study household i ’s optimization problem under perfect foresight. Given

initial assets (mi0, bi0) and sequences of prices {pt}∞t=0 , real interest rates

{Rt}∞t=0 , output levels {yt}∞t=0 , and nominal transfers {(xt − 1)Mt}∞t=0 , the

household maximizes expression (24.6.1) by choosing sequences of consumption

{cit}∞t=0 , labor supply {nit}∞t=0 , money holdings {mi,t+1}∞t=0 , real bond hold-

ings {bi,t+1}∞t=0 , and nominal wages {wit}∞t=0 that satisfy cash-in-advance con-

straints (24.6.5) and budget constraints (24.6.6), with the real wage equaling the

marginal product of labor of type i at each point in time, wit/pt = ŵ(yt, nit).

The last constraint ensures that the household’s choices of nit and wit are con-

sistent with competitive firms’ demand for labor of type i . Let us incorporate

this constraint into budget constraint (24.6.6) by replacing the real wage wit/pt

by the marginal product ŵ(yt, nit). With βtµit and βtλit as the Lagrange

multipliers on the time t cash-in-advance constraint and budget constraint, re-

spectively, the first-order conditions at an interior solution are

cit: cγ−1
it − µit − λit = 0, (24.6.7a)

nit: − 1 + λit

[
∂ ŵ(yt, nit)

∂ nit
nit + ŵ(yt, nit)

]
= 0, (24.6.7b)

mi,t+1: − λit
1

pt
+ β (λi,t+1 + µi,t+1)

1

pt+1
= 0, (24.6.7c)

bi,t+1: − (λit + µit)
1

Rt
+ β (λi,t+1 + µi,t+1) = 0. (24.6.7d)

The first-order condition (24.6.7b) for the rent-maximizing labor supply nit

can be rearranged to read

ŵ(yt, nit) =
λ−1
it

1 + ε−1
it

=
1 + α

1 − α
λ−1
it , (24.6.8)

21 The assumptions of constant returns to scale and perfect competition in the goods market

imply that profits of firms are zero.
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where εit =
[∂ ŵ(yt, nit)

∂ nit

nit
ŵ(yt, nit)

]−1

= −1 + α

2α
< 0.

The Lagrange multiplier λit is the shadow value of relaxing the budget con-

straint in period t by one unit, measured in “utils” at time t . Since preferences

(24.6.1) are linear in the disutility of labor, λ−1
it is the value of leisure in period

t in terms of the units of the budget constraint at time t . Equation (24.6.8) is

then the familiar expression that the monopoly price ŵ(yt, nit) should be set as

a markup above marginal cost λ−1
it , and the markup is inversely related to the

absolute value of the demand elasticity of labor type i , |εit| .
First-order conditions (24.6.7c) and (24.6.7d) for asset decisions can be used

to solve for rates of return,

pt
pt+1

=
λit

β (λi,t+1 + µi,t+1)
, (24.6.9a)

Rt =
λit + µit

β (λi,t+1 + µi,t+1)
. (24.6.9b)

Whenever the Lagrange multiplier µit on the cash-in-advance constraint is

strictly positive, money has a lower rate of return than bonds, or, equivalently,

the net nominal interest rate is strictly positive, as shown in equation (24.2.8).

Given initial conditions mi0 = M0 and bi0 = 0, we now turn to character-

izing an equilibrium under the additional assumption that the cash-in-advance

constraint (24.6.5) holds with equality, even when it does not bind. Since all

households are perfectly symmetric, they will make identical consumption and

labor decisions, cit = ct and nit = nt , so by goods market clearing and the

constant-returns-to-scale technology (24.6.2), we have

ct = yt = nt, (24.6.10a)

and from the expression for the marginal product of labor in equation (24.6.3),

ŵ(yt, nt) = 1. (24.6.10b)

Equilibrium asset holdings satisfy mi,t+1 = Mt+1 and bi,t+1 = 0. The substi-

tution of equilibrium quantities into the cash-in-advance constraint (24.6.5) at

equality yields
Mt+1

pt
= ct, (24.6.10c)
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where a version of the “quantity theory of money” determines the price level,

pt = Mt+1/ct . We now substitute this expression and conditions (24.6.7a) and

(24.6.8) into equation (24.6.9a):

Mt+1/ct
Mt+2/ct+1

=

[1 − α

1 + α
ŵ(yt, nt)

]−1

β cγ−1
t+1

,

which can be rearranged to read

ct =
1 − α

1 + α

β

xt+1
cγt+1,

where we have used equations (24.6.4) and (24.6.10b). After taking the loga-

rithm of this expression, we get

log(ct) = log

(
1 − α

1 + α
β

)
+ γ log(ct+1) − log(xt+1).

Since 0 < γ < 1 and xt+1 is bounded, this linear difference equation in log(ct)

can be solved forward to obtain

log(ct) =
log
(

1 − α
1 + α β

)

1 − γ
−

∞∑

j=0

γj log(xt+1+j), (24.6.11)

where equilibrium considerations have prompted us to choose the particular

solution that yields a bounded sequence.22

22 See the appendix to chapter 2 for the solution of scalar linear difference equations.
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24.6.3. Ramsey plan

The Ramsey problem is to choose a sequence of monetary growth rates {xt}∞t=0

that supports the perfect foresight equilibrium with the highest possible welfare;

that is, the optimal choice of {xt}∞t=0 maximizes the representative household’s

utility in expression (24.6.1) subject to expression (24.6.11) and nt = ct . From

the expression (24.6.11) it is apparent that the constraints on money growth,

xt ∈ [β, x̄] , translate into lower and upper bounds on consumption, ct ∈ [c, c̄] ,

where

c =

(
β

x̄

1 − α

1 + α

) 1
1−γ

, and c̄ =

(
1 − α

1 + α

) 1
1−γ

< 1. (24.6.12)

The Ramsey plan then follows directly from inspecting the one-period return of

the Ramsey optimization problem,

cγt
γ

− ct, (24.6.13)

which is strictly concave and reaches a maximum at c = 1. Thus, the Ramsey

solution calls for xt+1 = β for t ≥ 0 in order to support ct = c̄ for t ≥ 0.

Notice that the Ramsey outcome can be supported by any initial money growth

x0 . It is only future money growth rates that must be equal to β in order to

eliminate labor supply distortions that would otherwise arise from the cash-in-

advance constraint if the return on money were to fall short of the return on

bonds. The Ramsey outcome equalizes the returns on money and bonds; that

is, it implements the Friedman rule with a zero net nominal interest rate.

It is instructive to highlight the inability of the Ramsey monetary policy to

remove the distortions coming from monopolistic wage setting. Using the fact

that the equilibrium real wage is unity, we solve for λit from equation (24.6.8)

and substitute into equation (24.6.7a),

cγ−1
it = µit +

1 + α

1 − α
> 1. (24.6.14)

The left side of equation (24.6.14) is the marginal utility of consumption. Since

technology (24.6.2) is linear in labor, the marginal utility of consumption should

equal the marginal utility of leisure in a first-best allocation. But the right side

of equation (24.6.14) exceeds unity, which is the marginal utility of leisure given

preferences (24.6.1). While the Ramsey monetary policy succeeds in removing
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distortions from the cash-in-advance constraint by setting the Lagrange multi-

plier µit equal to zero, the policy cannot undo the distortion of monopolistic

wage setting manifested in the “markup” (1 + α)/(1 − α).23 Notice that the

Ramsey solution converges to the first-best allocation when the parameter α

goes to zero, that is, when households’ market power goes to zero.

To illustrate the time consistency problem, we now solve for the Ramsey plan

when the initial nominal wages are taken as given, wi0 = w0 ∈ [βM0, x̄M0] .

First, setting the initial period 0 aside, it is straightforward to show that the

solution for t ≥ 1 is the same as before. That is, the optimal policy calls for

xt+1 = β for t ≥ 1 in order to support ct = c̄ for t ≥ 1. Second, given w0 ,

the first-best outcome c0 = 1 can be attained in the initial period by choosing

x0 = w0/M0 . The resulting money supply M1 = w0 will then serve to transact

c0 = 1 at the equilibrium price p0 = w0 . Specifically, firms are happy to hire any

number of workers at the wage w0 when the price of the good is p0 = w0 . At the

price p0 = w0 , the goods market clears at full employment, since shoppers seek

to spend their real balances M1/p0 = 1. The labor market also clears because

workers are obliged to deliver the demanded n0 = 1. Finally, money growth

x1 can be chosen freely and does not affect the real allocation of the Ramsey

solution. The reason is that, because of the preset wage w0 , there cannot be any

labor supply distortions at time 0 arising from a low return on money holdings

between periods 0 and 1.

24.6.4. Credibility of the Friedman rule

Our comparison of the Ramsey equilibria with or without a preset initial wage

w0 hints at the government’s temptation to create positive monetary surprises

that will increase employment. We now ask if the Friedman rule is credible

when the government lacks the commitment technology implicit in the Ramsey

optimization problem. Can the Friedman rule be supported with a trigger strat-

egy where a government deviation causes the economy to revert to the worst

possible subgame perfect equilibrium?

Using the concepts and notation of chapter 22, we specify the objects of a

strategy profile and state the definition of a subgame perfect equilibrium (SPE).

23 The government would need to use fiscal instruments, that is, subsidies and taxation, to

correct the distortion from monopolistically competitive wage setting.
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Even though households possess market power with respect to their labor type,

they remain atomistic vis-à-vis the government. We therefore stay within the

framework of chapter 22 where the government behaves strategically, and the

households’ behavior can now be summarized as a “monopolistically competitive

equilibrium” that responds nonstrategically to the government’s choices. At

every date t for all possible histories, a strategy of the households σh and a

strategy of the government σg specify actions w̃t ∈ W̃ and xt ∈ X ≡ [β, x̄] ,

respectively, where

w̃t =
wt
Mt

, and xt =
Mt+1

Mt
.

That is, the actions multiplied by the beginning-of-period money supply Mt

produce a nominal wage and a nominal money supply. (This scaling of nominal

variables is used by Ireland, 1997, throughout his analysis, since the size of the

nominal money supply at the beginning of a period has no significance per se.)

Definition: A strategy profile σ = (σh, σg) is a subgame perfect equilibrium

if, for each t ≥ 0 and each history (w̃t−1, xt−1) ∈ W̃ t ×Xt ,

(1) Given the trajectory of money growth rates {xt−1+j = x(σ|(w̃t−1,xt−1))j}∞j=1 ,

the wage-setting outcome w̃t = σht (w̃t−1, xt−1) constitutes a monopolistically

competitive equilibrium.

(2) The government cannot strictly improve the households’ welfare by deviating

from xt = σgt (w̃t−1, xt−1), that is, by choosing some other money growth rate

η ∈ X with the implied continuation strategy profile σ|(w̃t;xt−1,η) .

Besides changing to a “monopolistically competitive equilibrium,” the main dif-

ference from Definition 6 of chapter 22 lies in requirement (1). The equilibrium

in period t can no longer be stated in terms of an isolated government action at

time t but requires the trajectory of the current and all future money growth

rates, generated by the strategy profile σ|(w̃t−1,xt−1) . The monopolistically com-

petitive equilibrium in requirement (1) is understood to be the perfect foresight

equilibrium described previously. When the government is contemplating a de-

viation in requirement (2), the equilibrium is constructed as follows: In period

t when the deviation takes place, equilibrium consumption ct is a function of η

and w̃t as implied by the cash-in-advance constraint at equality,

ct =
ηMt

pt
=
ηMt

wt
=

η

w̃t
, (24.6.15)
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where we use the equilibrium condition pt = wt . Starting in period t+ 1, the

deviation has triggered a switch to a new perfect foresight equilibrium with a

trajectory of money growth rates given by {xt+j = x(σ|(w̃t;xt−1,η))j}∞j=1 .

We conjecture that the worst SPE has ct = c for all periods, and the candi-

date strategy profile σ̂ is

σ̂ht =
x̄

c
∀ t , ∀ (w̃t−1, xt−1);

σ̂gt = x̄ ∀ t , ∀ (w̃t−1, xt−1).

The strategy profile instructs the government to choose the highest permissible

money growth rate x̄ for all periods and for all histories. Similarly, the house-

holds are instructed to set the nominal wages that would constitute a perfect

foresight equilibrium when money growth will always be at its maximum. Thus,

requirement (1) of an SPE is clearly satisfied. It remains to show that the gov-

ernment has no incentive to deviate. Since the continuation strategy profile is

σ̂ regardless of the history, the government needs only to find the best response

in terms of the one-period return (24.6.13). After substituting the household’s

action w̃t = x̄/c into equation (24.6.15), we get ct = cη/x̄ , so the best response

of the government is to follow the proposed strategy x̄ . We conclude that the

strategy profile σ̂ is indeed an SPE, and it is the worst, since c is the lower

bound on consumption in any perfect foresight equilibrium.

We are now ready to address the credibility of the Friedman rule. The best

chance for the Friedman rule to be credible is if a deviation triggers a reversion

to the worst possible subgame perfect equilibrium given by σ̂ . The condition

for credibility becomes

c̄γ
γ − c̄

1 − β
≥
(

1

γ
− 1

)
+ β

cγ

γ − c

1 − β
. (24.6.16)

By following the Friedman rule, the government removes the labor supply dis-

tortion coming from a binding cash-in-advance constraint and keeps output at

c̄ . By deviating from the Friedman rule, the government creates a positive

monetary surprise that increases output to its efficient level of unity, thereby

eliminating the distortion caused by monopolistically competitive wage setting

as well. However, this deviation destroys the government’s reputation, and the

economy reverts to an equilibrium that induces the government to inflate at the
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highest possible rate thereafter, and output falls to c . Hence, the Friedman rule

is credible if and only if equation (24.6.16) holds.

The Friedman rule is the more likely to be credible, the higher is the exoge-

nous upper bound on money growth x̄ , since c depends negatively on x̄ . In

other words, a higher x̄ translates into a larger penalty for deviating, so the

government becomes more willing to adhere to the Friedman rule to avoid this

penalty. In the limit when x̄ becomes arbitrarily large, c approaches zero and

condition (24.6.16) reduces to

(
1 − α

1 + α

) γ
1−γ

(
1

γ
− 1 − α

1 + α

)
≥ (1 − β)

(
1

γ
− 1

)
,

where we have used the expression for c̄ in equations (24.6.12). The Friedman

rule can be sustained for a sufficiently large value of β . The government has

less incentive to deviate when households are patient and put a high weight

on future outcomes. Moreover, the Friedman rule is credible for a sufficiently

small value of α , which is equivalent to households having little market power.

The associated small distortion from monopolistically competitive wage setting

means that the potential welfare gain of a monetary surprise is also small, so

the government is less tempted to deviate from the Friedman rule.

24.7. Concluding discussion

Besides shedding light on a number of monetary doctrines, this chapter has

brought out the special importance of the initial date t = 0 in the analysis.

This point is especially pronounced in Woodford’s (1995) model where the initial

interest-bearing government debt B0 is not indexed but rather denominated in

nominal terms. So, although the construction of a perfect foresight equilibrium

ensures that all future issues of nominal bonds will ex post yield the real rates of

return that are needed to entice the households to hold these bonds, the realized

real return on the initial nominal bonds can be anything, depending on the price

level p0 . Activities at the initial date were also important when we considered

dynamic optimal taxation in chapter 15.

Monetary issues are also discussed in other chapters of the book. Chapters

9 and 17 study money in overlapping generations models and Bewley mod-

els, respectively. Chapters 25 and 26 present other explicit environments that
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give rise to a positive value of fiat money: Townsend’s turnpike model and the

Kiyotaki-Wright search model.

Exercises

Exercise 24.1 Why deficits in Italy and Brazil were once extraordinary

proportions of GDP

The government’s budget constraint can be written as

gt − τt +
bt

Rt−1
(Rt−1 − 1) =

bt+1

Rt
− bt
Rt−1

+
Mt+1

pt
− Mt

pt
. (1)

The left side is the real gross-of-interest government deficit; the right side is

change in the real value of government liabilities between t− 1 and t .

Government budgets often report the nominal gross-of-interest government

deficit, defined as

pt(gt − τt) + ptbt

(
1 − 1

Rt−1pt/pt−1

)
,

and their ratio to nominal GNP, ptyt , namely,

[
(gt − τt) + bt

(
1 − 1

Rt−1pt/pt−1

)]
/yt.

For countries with a large bt (e.g., Italy), this number can be very big even with

a moderate rate of inflation. For countries with a rapid inflation rate, like Brazil

in 1993, this number sometimes comes in at 30 percent of GDP. Fortunately,

this number overstates the magnitude of the government’s “deficit problem,”

and there is a simple adjustment to the interest component of the deficit that

renders a more accurate picture of the problem. In particular, notice that the

real values of the interest component of the real and nominal deficits are related

by

bt

(
1 − 1

Rt−1

)
= αtbt

(
1 − 1

Rt−1pt/pt−1

)
,

where

αt =
Rt−1 − 1

Rt−1 − pt−1/pt
.
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Thus, we should multiply the real value of nominal interest payments bt[1 −
pt−1/(Rt−1pt)] by αt to get the real interest component of the debt that appears

on the left side of equation (1).

a. Compute αt for a country that has a bt/y ratio of .5, a gross real interest

rate of 1.02, and a zero net inflation rate.

b. Compute α for a country that has a bt/y ratio of .5, a gross real interest

rate of 1.02, and a 100 percent per year net inflation rate.

Exercise 24.2 A strange example of Brock (1974)

Consider an economy consisting of a government and a representative household.

There is one consumption good, which is not produced and not storable. The

exogenous supply of the good at time t ≥ 0 is yt = y > 0. The household owns

the good. At time t the representative household’s preferences are ordered by

∞∑

t=0

βt{ln ct + γ ln(mt+1/pt)}, (1)

where ct is the household’s consumption at t , pt is the price level at t , and

mt+1/pt is the real balances that the household carries over from time t to t+1.

Assume that β ∈ (0, 1) and γ > 0. The household maximizes equation (1) over

choices of {ct,mt+1} subject to the sequence of budget constraints

ct +mt+1/pt = yt − τt +mt/pt, t ≥ 0, (2)

where τt is a lump-sum tax due at t . The household faces the price sequence

{pt} as a price taker and has given initial value of nominal balances m0 .

At time t the government faces the budget constraint

gt = τt + (Mt+1 −Mt)/pt, t ≥ 0, (3)

where Mt is the amount of currency that the government has outstanding at the

beginning of time t and gt is government expenditures at time t . In equilibrium,

we require that Mt = mt for all t ≥ 0. The government chooses sequences of

{gt, τt,Mt+1}∞t=0 subject to the budget constraints (3) being satisfied for all

t ≥ 0 and subject to the given initial value M0 = m0 .

a. Define a competitive equilibrium.
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For the remainder of this problem assume that gt = g < y for all t ≥ 0, and

that τt = τ for all t ≥ 0. Define a stationary equilibrium as an equilibrium in

which the rate of return on currency is constant for all t ≥ 0.

b. Find conditions under which there exists a stationary equilibrium for which

pt > 0 for all t ≥ 0. Derive formulas for real balances and the rate of return on

currency in that equilibrium, given that it exists. Is the stationary equilibrium

unique?

c. Find a first-order difference equation in the equilibrium level of real balances

ht = Mt+1/pt whose satisfaction ensures equilibrium (possibly nonstationary).

d. Show that there is a fixed point of this difference equation with positive

real balances, provided that the condition that you derived in part b is satis-

fied. Show that this fixed point agrees with the level of real balances that you

computed in part b.

Exercise 24.3 Optimal inflation tax in a cash-in-advance model

Consider the version of Ireland’s (1997) model described in the text, but assume

perfect competition (i.e., α = 0) with flexible market-clearing wages. Suppose

now that the government must finance a constant amount of purchases g in

each period by levying flat-rate labor taxes and raising seigniorage. Solve the

optimal taxation problem under commitment.

Exercise 24.4 Deficits, inflation, and anticipated monetary shocks,

donated by Rodolfo Manuelli

Consider an economy populated by a large number of identical individuals. Pref-

erences over consumption and leisure are given by

∞∑

t=0

βtcαt `
1−α
t ,

where 0 < α < 1. Assume that leisure is positively related – this is just a

reduced form of a shopping-time model – to the stock of real money balances,

and negatively related to a measure of transactions:

`t = A(mt+1/pt)/c
η
t , A > 0,

and α − η(1 − α) > 0. Each individual owns a tree that drops y units of

consumption per period (dividends). There is a government that issues one-

period real bonds, money, and collects taxes (lump-sum) to finance spending.
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Per capita spending is equal to g . Thus, consumption equals c = y − g . The

government’s budget constraint is:

gt +Bt = τt +Bt+1/Rt + (Mt+1 −Mt)/pt.

Let the rate of return on money be Rmt = pt/pt+1 . Let the nominal interest

rate at time t be 1 + it = Rtpt+1/pt = Rtπt .

a. Derive the demand for money, and show that it decreases with the nominal

interest rate.

b. Suppose that the government policy is such that gt = g , Bt = B and τt = τ .

Prove that the real interest rate, R , is constant and equal to the inverse of the

discount factor.

c. Define the deficit as d , where d = g+(B/R)(R−1)−τ . What is the highest

possible deficit that can be financed in this economy? An economist claims that

increases in d , which leave g unchanged, will result in increases in the inflation

rate. Discuss this view.

d. Suppose that the economy is open to international capital flows and that the

world interest rate is R∗ = β−1 . Assume that d = 0, and that Mt = M . At

t = T , the government increases the money supply to M ′ = (1 + µ)M . This

increase in the money supply is used to purchase (government) bonds. This,

of course, results in a smaller deficit at t > T . (In this case, it will result in

a surplus.) However, the government also announces its intention to cut taxes

(starting at T+1) to bring the deficit back to zero. Argue that this open market

operation will have the effect of increasing prices at t = T by µ ; p′ = (1 + µ)p ,

where p is the price level from t = 0 to t = T − 1.

e. Consider the same setting as in d. Suppose now that the open market

operation is announced at t = 0 (it still takes place at t = T ). Argue that

prices will increase at t = 0 and, in particular, that the rate of inflation between

T − 1 and T will be less than 1 + µ .
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Exercise 24.5 Interest elasticity of the demand for money, donated by

Rodolfo Manuelli

Consider an economy in which the demand for money satisfies

mt+1/pt = F (ct, Rmt/Rt),

where Rmt = pt/pt+1 and Rt is the one-period interest rate. Consider the

following open market operation: At t = 0, the government sells bonds and

“destroys” the money it receives in exchange for those bonds. No other real

variables, e.g., government spending or taxes, are changed. Find conditions on

the income elasticity of the demand for money such that the decrease in money

balances at t = 0 results in an increase in the price level at t = 0.

Exercise 24.6 Dollarization, donated by Rodolfo Manuelli

In recent years, several countries, e.g., Argentina and countries hit by the Asian

crisis, have considered the possibility of giving up their currencies in favor of

the U.S. dollar. Consider a country, say A , with deficit d and inflation rate

π = 1/Rm . Output and consumption are constant, and hence the real interest

rate is fixed, with R = β−1 . The (gross-of-interest-payments) deficit is d , with

d = g − τ + (B/R)(R− 1).

Let the demand for money be mt+1/pt = F (ct, Rmt/Rt), and assume that

ct = y − g . Thus, the steady-state government budget constraint is

d = F (y − g, βRm)(1 −Rm) > 0.

Assume that the country is considering, at t = 0, the retirement of its money

in exchange for dollars. The government promises to give to each person who

brings a “peso” to the Central Bank 1/e dollars, where e is the exchange rate (in

pesos per dollar) between the country’s currency and the U.S. dollar. Assume

that the U.S. inflation rate (before and after the switch) is given and equal to

π∗ = 1/R∗
m < π , and that the country is on the “good” part of the Laffer curve.

a. If you are advising the government of A , how much would you say that it

should demand from the U.S. government to make the switch? Why?

b. After the dollarization takes place, the government understands that it needs

to raise taxes. Economist 1 argues that the increase in taxes (on a per period
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basis) will equal the loss of revenue from inflation – F (y − g, βRm)(1 − Rm) –

while Economist 2 claims that this is an overestimate. More precisely, he or she

claims that if the government is a good negotiator vis-à-vis the U.S. government,

taxes need only increase by F (y − g, βRm)(1 − Rm) − F (y − g, βR∗
m)(1 − R∗

m)

per period. Discuss these two views.

Exercise 24.7 Currency boards, donated by Rodolfo Manuelli

In the last few years, several countries, e.g., Argentina (1991), Estonia (1992),

Lithuania (1994), Bosnia (1997) and Bulgaria (1997), have adopted the currency

board model of monetary policy. In a nutshell, a currency board is a commitment

on the part of the country to fully back its domestic currency with foreign-

denominated assets. For simplicity, assume that the foreign asset is the U.S.

dollar.

The government’s budget constraint is given by

gt +Bt +B∗
t+1e/(Rpt) = τt +Bt+1/R+B∗

t e/pt + (Mt+1 −Mt)/pt,

where B∗
t is the stock of one-period bonds, denominated in dollars, held by

this country, e is the exchange rate (pesos per dollar), and 1/R is the price

of one-period bonds (both domestic and dollar denominated). Note that the

budget constraint equates the real value of income and liabilities in units of

consumption goods.

The currency board “contract” requires that the money supply be fully

backed. One interpretation of this rule is that the domestic money supply is

Mt = eB∗
t .

Thus, the right side is the local currency value of foreign reserves (in bonds)

held by the government, while the left side is the stock of money. Finally, let

the law of one price hold: pt = ep∗t , where p∗t is the foreign (U.S.) price level.

a. Assume that Bt = B , and that foreign inflation is zero, p∗t = p∗ . Show that

even in this case, the properties of the demand for money – which you may take

to be given by F (y− g, βRm) – are important in determining total revenue. In

particular, explain how a permanent increase in y , income per capita, allows

the government to lower taxes (permanently).
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b. Assume that Bt = B . Let foreign inflation be positive, that is, π∗ > 1.

In this case, the price in dollars of a one-period dollar-denominated bond is

1/(Rπ∗). Go as far as you can describing the impact of foreign inflation on

domestic inflation, and on per capita taxes, τ .

c. Assume that Bt = B . Go as far as you can describing the effects of a once-

and-for-all surprise devaluation, i.e., an unexpected and permanent increase in

e , on the level of per capita taxes.

Exercise 24.8 Growth and inflation, donated by Rodolfo Manuelli

Consider an economy populated by identical individuals with instantaneous util-

ity function given by

u(c, `) = [cϕ`1−ϕ](1−σ)/(1 − σ).

Assume that shopping time is given by st = ψct/(mt+1/pt). Assume that in

this economy, income grows exogenously at the rate γ > 1. Thus, at time

t , yt = γty . Assume that government spending also grows at the same rate,

gt = γtg . Finally, ct = yt − gt .

a. Show that for this specification, if the demand for money at t is x = mt+1/pt ,

then the demand at t + 1 is γx . Thus, the demand for money grows at the

same rate as the economy.

b. Show that the real rate of interest depends on the growth rate. (You may

assume that ` is constant for this calculation.)

c. Argue that even for monetary policies that keep the price level constant,

that is, pt = p for all t , the government raises positive amounts of revenue from

printing money. Explain.

d. Use your finding in c to discuss why, following monetary reforms that generate

big growth spurts, many countries manage to “monetize” their economies (this

is just jargon for increases in the money supply) without generating inflation.



Chapter 25
Credit and Currency

25.1. Credit and currency with long-lived agents

This chapter describes Townsend’s (1980) turnpike model of money and puts it

to work. The model uses a particular pattern of heterogeneity of endowments

and locations to create a demand for currency. The model is more primitive than

the shopping time model of chapter 24. As with the overlapping generations

model, the turnpike model starts from a setting in which diverse intertemporal

endowment patterns across agents prompt borrowing and lending. If something

prevents loan markets from operating, it is possible that an unbacked currency

can play a role in helping agents smooth their consumption over time. Following

Townsend, we shall eventually appeal to locational heterogeneity as the force

that causes loan markets to fail in this way.

The turnpike model can be viewed as a simplified version of the stochastic

model proposed by Truman Bewley (1980). We use the model to study a number

of interrelated issues and theories, including (1) a permanent income theory of

consumption, (2) a Ricardian doctrine that government borrowing and taxes

have equivalent economic effects, (3) some restrictions on the operation of private

loan markets needed in order that unbacked currency be valued, (4) a theory of

inflationary finance, (5) a theory of the optimal inflation rate and the optimal

behavior of the currency stock over time, (6) a “legal restrictions” theory of

inflationary finance, and (7) a theory of exchange rate indeterminacy.1

1 Some of the analysis in this chapter follows Manuelli and Sargent (1992). Also see

Chatterjee and Corbae (1996) and Ireland (1994) for analyses of policies within a turnpike

environment.

– 904 –
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25.2. Preferences and endowments

There is one consumption good. It cannot be produced or stored. The total

amount of goods available each period is constant at N . There are 2N house-

holds, divided into equal numbers N of two types, according to their endowment

sequences. The two types of households, dubbed odd and even, have endowment

sequences
{yot }∞t=0 = {1, 0, 1, 0, . . .},
{yet }∞t=0 = {0, 1, 0, 1, . . .}.

Households of both types order consumption sequences {cht } according to the

common utility function

U =

∞∑

t=0

βtu(cht ),

where β ∈ (0, 1), and u(·) is twice continuously differentiable, increasing, and

strictly concave, and satisfies

lim
c↓0

u′(c) = +∞. (25.2.1)

25.3. Complete markets

As a benchmark, we study a version of the economy with complete markets.

Later, we shall more or less arbitrarily shut down many of the markets to make

room for money.
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25.3.1. A Pareto problem

Consider the following Pareto problem: Let θ ∈ [0, 1] be a weight indexing how

much a social planner likes odd agents. The problem is to choose consumption

sequences {cot , cet}∞t=0 to maximize

θ

∞∑

t=0

βtu(cot ) + (1 − θ)

∞∑

t=0

βtu(cet ), (25.3.1)

subject to

cet + cot = 1, t ≥ 0. (25.3.2)

The first-order conditions are

θu′(cot ) − (1 − θ)u′(cet ) = 0.

Substituting the constraint (25.3.2) into this first-order condition and rearrang-

ing gives the condition
u′(cot )

u′(1 − cot )
=

1 − θ

θ
. (25.3.3)

Since the right side is independent of time, the left must be also, so that condition

(25.3.3) determines the one-parameter family of optimal allocations

cot = co(θ), cet = 1 − co(θ).

25.3.2. A complete markets equilibrium

A household takes the price sequence {q0t } as given and chooses a consumption

sequence to maximize
∑∞

t=0 β
tu(ct) subject to the budget constraint

∞∑

t=0

q0t ct ≤
∞∑

t=0

q0t yt.

The household’s Lagrangian is

L =

∞∑

t=0

βtu(ct) + µ

∞∑

t=0

q0t (yt − ct),
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where µ is a nonnegative Lagrange multiplier. The first-order conditions for the

household’s problem are

βtu′(ct) ≤ µq0t , = if ct > 0.

Definition 1: A competitive equilibrium is a price sequence {qot }∞t=0 and an

allocation {cot , cet}∞t=0 that have the property that (a) given the price sequence,

the allocation solves the optimum problem of households of both types; and (b)

cot + cet = 1 for all t ≥ 0.

To find an equilibrium, we have to produce an allocation and a price system

for which we can verify that the first-order conditions of both households are

satisfied. We start with a guess inspired by the constant-consumption property

of the Pareto optimal allocation. We guess that cot = co, cet = ce ∀t, where

ce + co = 1. This guess and the first-order condition for the odd agents imply

q0t =
βtu′(co)

µo
,

or

q0t = q00β
t, (25.3.4)

where we are free to normalize by setting q00 = 1. For odd agents, the right side

of the budget constraint evaluated at the prices given in equation (25.3.4) is

then
1

1 − β2
,

and for even households it is
β

1 − β2
.

The left side of the budget constraint evaluated at these prices is

ci

1 − β
, i = o, e.

For both of the budget constraints to be satisfied with equality, we evidently

require that

co =
1

β + 1

ce =
β

β + 1
.

(25.3.5)
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The price system given by equation (25.3.4) and the constant-over-time alloca-

tions given by equations (25.3.5) are a competitive equilibrium.

Notice that the competitive equilibrium allocation corresponds to a particu-

lar Pareto optimal allocation.

25.3.3. Ricardian proposition

We temporarily add a government to the model. The government levies lump-

sum taxes on agents of type i = o, e at time t of τ it . The government uses the

proceeds to finance a constant level of government purchases of G ∈ (0, 1) each

period t . Consumer i ’s budget constraint is

∞∑

t=0

q0t c
i
t ≤

∞∑

t=0

q0t (y
i
t − τ it ).

The government’s budget constraint is

∞∑

t=0

q0tG =
∑

i=o,e

∞∑

t=0

q0t τ
i
t .

We modify Definition 1 as follows:

Definition 2: A competitive equilibrium is a price sequence {q0t }∞t=0 , a tax

system {τot , τet }∞t=0 , and an allocation {cot , cet , Gt}∞t=0 such that given the price

system and the tax system the following conditions hold: (a) the allocation

solves each consumer’s optimum problem; (b) the government budget constraint

is satisfied for all t ≥ 0; and (c) N(cot + cet ) +Gt = N for all t ≥ 0.

Let the present value of the taxes imposed on consumer i be τ i ≡∑∞
t=0 q

0
t τ
i
t .

Then it is straightforward to verify that the equilibrium price system is still

equation (25.3.4) and that equilibrium allocations are

co =
1

β + 1
− τo(1 − β)

ce =
β

β + 1
− τe(1 − β).

This equilibrium features a “Ricardian proposition”:
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Ricardian Proposition: The equilibrium is invariant to changes in the

timing of tax collections that leave unaltered the present value of lump-sum

taxes assigned to each agent.

25.3.4. Loan market interpretation

Define total time t tax collections as τt =
∑

i=o,e τ
i
t , and write the government’s

budget constraint as

(G0 − τ0) =

∞∑

t=1

q0t
q00

(τt −Gt) ≡ B1,

where B1 can be interpreted as government debt issued at time 0 and due at

time 1. Notice that B1 equals the present value of the future (i.e., from time 1

onward) government surpluses (τt −Gt). The government’s budget constraint

can also be represented as

q00
q01

(G0 − τ0) + (G1 − τ1) =
∞∑

t=2

q0t
q01

(τt −Gt) ≡ B2,

or

R1B1 + (G1 − τ1) = B2,

where R1 =
q00
q01

is the gross rate of return between time 0 and time 1, measured

in time 1 consumption goods per unit of time 0 consumption good. More

generally, we can represent the government’s budget constraint by the sequence

of budget constraints

RtBt + (Gt − τt) = Bt+1, t ≥ 0,

subject to the boundary condition B0 = 0. In the equilibrium computed here,

Rt = β−1 for all t ≥ 1.

Similar manipulations of consumers’ budget constraints can be used to ex-

press them in terms of sequences of one-period budget constraints. That no

opportunities are lost to the government or the consumers by representing the

budget sets in this way lies behind the following fact: The Arrow-Debreu allo-

cation in this economy can be implemented with a sequence of one-period loan

markets.
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In the following section, we shut down all loan markets, and also set govern-

ment expenditures G = 0.

25.4. A monetary economy

We keep preferences and endowment patterns as they were in the preceding

economy, but we rule out all intertemporal trades achieved through borrowing

and lending or trading of future-dated consumptions. We replace complete

markets with a fiat money mechanism. At time 0, the government endows each

of the N even agents with M/N units of an unbacked or inconvertible currency.

Odd agents are initially endowed with zero units of the currency. Let pt be the

time t price level, denominated in dollars per time t consumption good. We

seek an equilibrium in which currency is valued (pt < +∞ ∀t ≥ 0) and in which

each period agents not endowed with goods pass currency to agents who are

endowed with goods. Contemporaneous exchanges of currency for goods are the

only exchanges that we, the model builders, permit. (Later, Townsend will give

us a defense or reinterpretation of this high-handed shutting down of markets.)

Given the sequence of prices {pt}∞t=0 , the household’s problem is to choose

nonnegative sequences {ct,mt}∞t=0 to maximize
∑∞

t=0 β
tu(ct) subject to

mt + ptct ≤ ptyt +mt−1, t ≥ 0, (25.4.1)

where mt is currency held from t to t+ 1. Form the household’s Lagrangian

L =

∞∑

t=0

βt{u(ct) + λt(ptyt +mt−1 −mt − ptct)},

where {λt} is a sequence of nonnegative Lagrange multipliers. The household’s

first-order conditions for ct and mt , respectively, are

u′(ct) ≤ λtpt, = if ct > 0,

−λt + βλt+1 ≤ 0, = if mt > 0.

Substituting the first condition at equality into the second gives

βu′(ct+1)

pt+1
≤ u′(ct)

pt
, = if mt > 0. (25.4.2)
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Definition 3: A competitive equilibrium is an allocation {cot , cet}∞t=0 , non-

negative money holdings {mo
t ,m

e
t}∞t=−1 , and a nonnegative price level sequence

{pt}∞t=0 such that (a) given the price level sequence and (mo
−1,m

e
−1); the al-

location solves the optimum problems of both types of households; and (b)

cot + cet = 1, mo
t−1 +me

t−1 = M/N , for all t ≥ 0.

The periodic nature of the endowment sequences prompts us to guess the

following two-parameter form of stationary equilibrium:

{cot}∞t=0 = {c0, 1 − c0, c0, 1 − c0, . . .},

{cet}∞t=0 = {1 − c0, c0, 1 − c0, c0, . . .},
(25.4.3)

and pt = p for all t ≥ 0. To determine the two undetermined parameters

(c0, p), we use the first-order conditions and budget constraint of the odd agent

at time 0. His endowment sequence for periods 0 and 1, (yo0 , y
o
1) = (1, 0), and

the Inada condition (25.2.1) ensure that both of his first-order conditions at

time 0 will hold with equality. That is, his desire to set co0 > 0 can be met

by consuming some of the endowment yo0 , and the only way for him to secure

consumption in the following period 1 is to hold strictly positive money holdings

mo
0 > 0. From his first-order conditions at equality, we obtain

βu′(1 − c0)

p
=
u′(c0)

p
,

which implies that c0 is to be determined as the root of

β − u′(c0)

u′(1 − c0)
= 0. (25.4.4)

Because β < 1, it follows that c0 ∈ (1/2, 1). To determine the price level, we

use the odd agent’s budget constraint at t = 0, evaluated at mo
−1 = 0 and

mo
0 = M/N , to get

pc0 +M/N = p · 1,
or

p =
M

N(1 − c0)
. (25.4.5)

See Figure 25.4.1 for a graphical determination of c0 .

From equation (25.4.4), it follows that for β < 1, c0 > .5 and 1 − c0 <

.5. Thus, both types of agents experience fluctuations in their consumption

sequences in this monetary equilibrium. Because Pareto optimal allocations

have constant consumption sequences for each type of agent, this equilibrium

allocation is not Pareto optimal.
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Figure 25.4.1: The trade-off between time t and time (t + 1)

consumption faced by agent o(e) in equilibrium for t even (odd).

For t even, cot = c0 , cot+1 = 1− c0 , mo
t = p(1− c0), and mo

t+1 = 0.

The slope of the indifference curve at X is −u′(cht )/βu′(cht+1) =

−u′(c0)/βu′(1 − c0) = −1, and the slope of the indifference curve

at Y is −u′(1 − c0)/βu
′(c0) = −1/β2 .

25.5. Townsend’s “turnpike” interpretation

The preceding analysis of currency is artificial in the sense that it depends

entirely on our having arbitrarily ruled out the existence of markets for private

loans. The physical setup of the model itself provided no reason for those loan

markets not to exist, and indeed good reasons for them to exist. In addition,

for many questions that we want to analyze, we want a model in which private

loans and currency coexist, with currency being valued.2

Robert Townsend has proposed a model whose mathematical structure is

identical with the preceding model, but in which a global market in private

loans cannot emerge because agents are spatially separated. Townsend’s setup

2 In the United States today, for example, M1 consists of the sum of demand deposits (a

part of which is backed by commercial loans and another, smaller part of which is backed by

reserves or currency) and currency held by the public. Thus, M1 is not interpretable as the

m in our model.
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can accommodate local markets for private loans, so that it meets the objections

to the model that we have expressed. But first we will focus on a version

of Townsend’s model where local credit markets cannot emerge, which will be

mathematically equivalent to our model above.

����� �� � �� �� �	

1 0 1 0

110 0

E

W

Figure 25.5.1: Endowment pattern along a Townsend turnpike.

The turnpike is of infinite extent in each direction, and has equidis-

tant trading posts. Each trading post has equal numbers of east-

heading and west-heading agents. At each trading post (the black

dots) each period, for each east-heading agent there is a west-

heading agent with whom he would like to borrow or lend. But

itineraries rule out the possibility of repayment.

The economy starts at time t = 0, with N east-heading migrants and

N west-heading migrants physically located at each of the integers along a

“turnpike” of infinite length extending in both directions. Each of the integers

n = 0,±1,±2, . . . is a trading post number. Agents can trade the one good

only with agents at the trading post at which they find themselves at a given

date. An east-heading agent at an even-numbered trading post is endowed with

one unit of the consumption good, and an odd-numbered trading post has an

endowment of zero units (see Figure 25.5.1). A west-heading agent is endowed

with zero units at an even-numbered trading post and with one unit of the con-

sumption good at an odd-numbered trading post. Finally, at the end of each

period, each east-heading agent moves one trading post to the east, whereas

each west-heading agent moves one trading post to the west. The turnpike

along which the trading posts are located is of infinite length in each direction,

implying that the east-heading and west-heading agents who are paired at time

t will never meet again. This feature means that there can be no private debt

between agents moving in opposite directions. An IOU between agents moving

in opposite directions can never be collected because a potential lender never
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meets the potential borrower again, nor does the lender meet anyone who ever

meets the potential borrower, and so on, ad infinitum.

Let an agent who is endowed with one unit of the good t = 0 be called an

agent of type o and an agent who is endowed with zero units of the good at t = 0

be called an agent of type e . Agents of type h have preferences summarized

by
∑∞
t=0 β

tu(cht ). Finally, start the economy at time 0 by having each agent of

type e endowed with me
−1 = m units of unbacked currency and each agent of

type o endowed with mo
−1 = 0 units of unbacked currency.

With the symbols thus reinterpreted, this model involves precisely the same

mathematics as that which was analyzed earlier. Agents’ spatial separation and

their movements along the turnpike have been set up to produce a physical rea-

son that a global market in private loans cannot exist. The various propositions

about the equilibria of the model and their optimality that were already proved

apply equally to the turnpike version.3 , 4 Thus, in Townsend’s version of the

model, spatial separation is the “friction” that provides a potential social role

for a valued unbacked currency. The spatial separation of agents and their en-

dowment patterns give a setting in which private loan markets are limited by

the need for people who trade IOUs to be linked together, if only indirectly,

recurrently over time and space.

3 A version of the model could be constructed in which local private markets for loans coexist

with valued unbacked currency. To build such a model, one would assume some heterogeneity

in the time patterns of the endowment of agents who are located at the same trading post and

are headed in the same direction. If half of the east-headed agents located at trading post i at

time t have present and future endowment pattern yht = (α, γ, α, γ . . .) , for example, whereas

the other half of the east-headed agents have (γ, α, γ, α, . . .) with γ 6= α , then there is room

for local private loans among this cohort of east-headed agents. Whether or not there exists

an equilibrium with valued currency depends on how nearly Pareto optimal the equilibrium

with local loan markets is.
4 Narayana Kocherlakota (1998) has analyzed the frictions in the Townsend turnpike and

overlapping generations model. By permitting agents to use history-dependent decision rules,

he has been able to support optimal allocations with the equilibrium of a gift-giving game.

Those equilibria leave no room for valued fiat currency. Thus, Kocherlakota’s view is that the

frictions that give valued currency in the Townsend turnpike must include the restrictions on

the strategy space that Townsend implicitly imposed.
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25.6. The Friedman rule

Friedman’s proposal to pay interest on currency by engineering a deflation can

be used to solve for a Pareto optimal allocation in this economy. Friedman’s

proposal is to decrease the currency stock by means of lump-sum taxes at a

properly chosen rate. Let the government’s budget constraint be

Mt = (1 + τ)Mt−1.

There are N households of each type. At time t , the government transfers or

taxes nominal balances in amount τMt−1/(2N) to each household of each type.

The total transfer at time t is thus τMt−1 , because there are 2N households

receiving transfers.

The household’s time t budget constraint becomes

ptct +mt ≤ ptyt +
τ

2

Mt−1

N
+mt−1.

We guess an equilibrium allocation of the same periodic pattern (25.4.3).

For the price level, we make the “quantity theory” guess Mt/pt = k , where k

is a constant. Substituting this guess into the government’s budget constraint

gives
Mt

pt
= (1 + τ)

Mt−1

pt−1

pt−1

pt
or

k = (1 + τ)k
pt−1

pt
,

or

pt = (1 + τ)pt−1, (25.6.1)

which is our guess for the price level.

Substituting the price level guess and the allocation guess into the odd agent’s

first-order condition (25.4.2) at t = 0 and rearranging shows that c0 is now the

root of
1

(1 + τ)
− u′(c0)

βu′(1 − c0)
= 0. (25.6.2)

The price level at time t = 0 can be determined by evaluating the odd agent’s

time 0 budget constraint at mo
−1 = 0 and mo

0 = M0/N = (1 + τ)M−1/N , with

the result that

(1 − c0)p0 =
M−1

N

(
1 +

τ

2

)
.
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Finally, the allocation guess must also satisfy the even agent’s first-order

condition (25.4.2) at t = 0 but not necessarily with equality, since the stationary

equilibrium has me
0 = 0. After substituting (ce0, c

e
1) = (1 − c0, c0) and (25.6.1)

into (25.4.2), we have
1

1 + τ
≤ u′(1 − c0)

βu′(c0)
. (25.6.3)

The substitution of (25.6.2) into (25.6.3) yields a restriction on the set of peri-

odic allocations of type (25.4.3) that can be supported as one of our stationary

monetary equilibria,

[
u′(c0)

u′(1 − c0)

]2
≤ 1 =⇒ c0 ≥ 0.5.

This restriction on c0 , together with (25.6.2), implies a corresponding restriction

on the set of permissible monetary/fiscal policies, 1 + τ ≥ β .

25.6.1. Welfare

For allocations of the class (25.4.3), the utility functionals of odd and even

agents, respectively, take values that are functions of the single parameter c0 ,

namely,

Uo(c0) =
u(c0) + βu(1 − c0)

1 − β2
,

Ue(c0) =
u(1 − c0) + βu(c0)

1 − β2
.

Both expressions are strictly concave in c0 , with derivatives

Uo′(c0) =
u′(c0) − βu′(1 − c0)

1 − β2
,

Ue′(c0) =
−u′(1 − c0) + βu′(c0)

1 − β2
.

The Inada condition (25.2.1) ensures strictly interior maxima with respect to

c0 . For the odd agents, the preferred c0 satisfies Uo′(c0) = 0, or

u′(c0)

βu′(1 − c0)
= 1, (25.6.4)
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which by (25.6.2) is the zero-inflation equilibrium, τ = 0. For the even agents,

the preferred allocation given by Ue′(c0) = 0 implies c0 < 0.5, and can there-

fore not be implemented as a monetary equilibrium above. Hence, the even

agents’ preferred stationary monetary equilibrium is the one with the smallest

permissible c0 , i.e., c0 = 0.5. According to (25.6.2), this allocation can be

supported by choosing money growth rate 1 + τ = β , which is then also the

equilibrium gross rate of deflation. Notice that all agents, both odd and even,

are in agreement that they prefer no inflation to positive inflation, that is, they

prefer c0 determined by (25.6.4) to any higher value of c0 .

To abstract from the described conflict of interest between odd and even

agents, suppose that the agents must pick their preferred monetary policy under

a “veil of ignorance,” before knowing their true identity. Since there are equal

numbers of each type of agent, an individual faces a fifty-fifty chance of her

identity being an odd or an even agent. Hence, prior to knowing one’s identity,

the expected lifetime utility of an agent is

Ū(c0) ≡
1

2
Uo(c0) +

1

2
Ue(c0) =

u(c0) + u(1 − c0)

2(1 − β)
.

The ex ante preferred allocation c0 is determined by the first-order condition

Ū ′(c0) = 0, which has the solution c0 = 0.5. Collecting equations (25.6.1),

(25.6.2), and (25.6.3), this preferred policy is characterized by

pt
pt+1

=
1

1 + τ
=

u′(cot )

βu′(cot+1)
=

u′(cet )

βu′(cet+1)
=

1

β
, ∀t ≥ 0,

where cij = 0.5 for all j ≥ 0 and i ∈ {o, e} . Thus, the real return on money,

pt/pt+1 , equals a common marginal rate of intertemporal substitution, β−1 ,

and this return would therefore also constitute the real interest rate if there

were a credit market. Moreover, since the gross real return on money is the

inverse of the gross inflation rate, it follows that the gross real interest rate β−1

multiplied by the gross rate of inflation is unity, or the net nominal interest rate

is zero. In other words, all agents are ex ante in favor of Friedman’s rule.

Figure 25.6.1 shows the “utility possibility frontier” associated with this econ-

omy. Except for the allocation associated with Friedman’s rule, the allocations

associated with stationary monetary equilibria lie inside the utility possibility

frontier.
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Figure 25.6.1: Utility possibility frontier on the Townsend turn-

pike. The locus of points ABC denotes allocations attainable in

stationary monetary equilibria. Point B is the allocation asso-

ciated with the zero-inflation monetary equilibrium. Point A is

associated with Friedman’s rule, while points between B and C

correspond to stationary monetary equilibria with inflation.

25.7. Inflationary finance

The government prints new currency in total amount Mt−Mt−1 in period t and

uses it to purchase a constant amount G of goods in period t . The government’s

time t budget constraint is

Mt −Mt−1 = ptG, t ≥ 0. (25.7.1)
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Preferences and endowment patterns of odd and even agents are as specified

previously. We now use the following definition:

Definition 4: A competitive equilibrium is a price level sequence {pt}∞t=0 ,

a money supply process {Mt}∞t=−1 , an allocation {cot , cet , Gt}∞t=0 and nonnega-

tive money holdings {mo
t ,m

e
t}∞t=−1 such that (a) given the price sequence and

(mo
−1,m

e
−1), the allocation solves the optimum problems of households of both

types; (b) the government’s budget constraint is satisfied for all t ≥ 0; and (c)

N(cot + cet ) +Gt = N , for all t ≥ 0; and mo
t +me

t = Mt/N , for all t ≥ −1.

For t ≥ 1, write the government’s budget constraint as

Mt

Npt
=
pt−1

pt

Mt−1

Npt−1
+
G

N
,

or

m̃t = Rt−1m̃t−1 + g, (25.7.2)

where g = G/N ,m̃t = Mt/(Npt) is per-odd-person real balances, and Rt−1 =

pt−1/pt is the rate of return on currency from t− 1 to t .

To compute an equilibrium, we guess an allocation of the periodic form

{cot}∞t=0 = {c0, 1 − c0 − g, c0, 1 − c0 − g, . . .},

{cet}∞t=0 = {1 − c0 − g, c0, 1 − c0 − g, c0, . . .}.
(25.7.3)

We guess that Rt = R for all t ≥ 0, and again guess a “quantity theory”

outcome

m̃t = m̃ ∀t ≥ 0.

Evaluating the odd household’s time 0 first-order condition for currency at

equality gives

βR =
u′(c0)

u′(1 − c0 − g)
. (25.7.4)

With our guess, real balances held by each odd agent at the end of period 0,

mo
0/p0 , equal 1−c0 , and time 1 consumption, which also is R times the value of

these real balances held from 0 to 1, is 1−c0−g . Thus, (1−c0)R = (1−c0−g),
or

R =
1 − c0 − g

1 − c0
. (25.7.5)

Equations (25.7.4) and (25.7.5) are two simultaneous equations that we want

to solve for (c0, R).
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Figure 25.7.1: Revenue from inflation tax m(R)(1 − R) and

deficit for β = .95, δ = 2, g = .2. The gross rate of return on

currency is on the x-axis; g and the revenue from inflation are on

the y -axis.

Use equation (25.7.5) to eliminate (1− c0−g) from equation (25.7.4) to get

βR =
u′(c0)

u′[R(1 − c0)]
.

Recalling that (1 − c0) = m0 , this can be written

βR =
u′(1 −m0)

u′(Rm0)
. (25.7.6)

For the power utility function u(c) = c1−δ

1−δ , this equation can be solved for m0

to get the demand function for currency

m0 = m̃(R) ≡ (βR1−δ)1/δ

1 + (βR1−δ)1/δ
. (25.7.7)

Substituting this into the government budget constraint (25.7.2) gives

m̃(R)(1 −R) = g. (25.7.8)

This equation equates the revenue from the inflation tax, namely, m̃(R)(1−R)

to the government deficit, g . The revenue from the inflation tax is the product

of real balances and the inflation tax rate 1 − R . The equilibrium value of R

solves equation (25.7.8).
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Figure 25.7.2: Revenue from inflation tax m(R)(1 − R) and

deficit for β = .95, δ = .7, g = .2. The rate of return on currency is

on the x-axis; g and the revenue from inflation are on the y -axis.

Here there is a Laffer curve.

Figures 25.7.1 and 25.7.2 depict the determination of the stationary equilib-

rium value of R for two sets of parameter values. For the case δ = 2, shown in

Figure 25.7.1, there is a unique equilibrium R ; there is a unique equilibrium for

every δ ≥ 1. For δ ≥ 1, the demand function for currency slopes upward as a

function of R , as for the example in Figure 25.7.3. For δ < 1, there can occur

multiple stationary equilibria, as for the example in Figure 25.7.2. In such cases,

there is a Laffer curve in the revenue from the inflation tax. Notice that the

demand for real balances is downward sloping as a function of R when δ < 1.

The initial price level is determined by the time 0 budget constraint of the

government, evaluated at equilibrium time 0 real balances. In particular, the

time 0 government budget constraint can be written

M0

Np0
− M−1

Np0
= g,

or

m̃− g =
M−1

Np0
.

Equating m̃ to its equilibrium value 1− c0 and solving for p0 gives

p0 =
M−1

N(1 − c0 − g)
.
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Figure 25.7.3: Demand for real balances on the y -axis as a func-

tion of the gross rate of return on currency on the x-axis when

β = .95, δ = 2.

25.8. Legal restrictions

This section adapts ideas of Bryant and Wallace (1984) to the turnpike environ-

ment. Bryant and Wallace and Villamil (1988) analyzed situations in which the

government could make all savers better off by introducing a price discrimination

scheme for marketing its debt. The analysis formalizes some ideas mentioned

by John Maynard Keynes (1940).

Figure 25.8.1 depicts the terms on which an odd agent at t = 0 can transfer

consumption between 0 and 1 in an equilibrium with inflationary finance. The

agent is endowed at the point (1, 0). The monetary mechanism allows him to

transfer consumption between periods on the terms c1 = R(1− c0), depicted by

the budget line connecting 1 on the ct -axis with the point B on the ct+1 -axis.

The government insists on raising revenues in the amount g for each pair of an

odd and an even agent, which means that R must be set so that the tangency

between the agent’s indifference curve and the budget line c1 = R(1−c0) occurs
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at the intersection of the budget line and the straight line connecting 1 − g on

the ct -axis with the point 1 − g on the ct+1 -axis. At this point, the marginal

rate of substitution for odd agents is

u′(c0)

βu′(1 − c0 − g)
= R,

(because currency holdings are positive). For even agents, the marginal rate of

substitution is
u′(1 − c0 − g)

βu′(c0)
=

1

β2R
> 1,

where the inequality follows from the fact that R < 1 under inflationary finance.

The fact that the odd agent’s indifference curve intersects the solid line con-

necting (1 − g) on the two axes indicates that the government could improve

the welfare of the odd agent by offering him a higher rate of return subject to

a minimal real balance constraint. The higher rate of return is used to send

the line c1 = (1−R)c0 into the lens-shaped area in Figure 25.8.1 onto a higher

indifference curve. The minimal real balance constraint is designed to force the

agent onto the “postgovernment share” feasibility line connecting the points

1 − g on the two axes.

Thus, notice that in Figure 25.8.1, the government can raise the same rev-

enue by offering odd agents the higher rate of return associated with the line

connecting 1 on the ct axis with the point H on the ct+1 axis, provided that

the agent is required to save at least F , if he saves at all. This minimum saving

requirement would make the household’s budget set the point (1, 0) together

with the heavy segment DH . With the setting of F,R associated with the line

DH in Figure 25.8.1, odd households have the same two-period utility as with-

out this scheme. (Points D and A lie on the same indifference curve.) However,

it is apparent that there is room to lower F and lower R a bit, and thereby

move the odd household into the lens-shaped area. See Figure 25.8.2.

The marginal rates of substitution that we computed earlier indicate that

this scheme makes both odd and even agents better off relative to the original

equilibrium. The odd agents are better off because they move into the lens-

shaped area in Figure 25.8.1. The even agents are better off because relative

to the original equilibrium, they are being permitted to “borrow” at a gross

rate of interest of 1. Since their marginal rate of substitution at the original

equilibrium is 1/(β2R) > 1, this ability to borrow makes them better off.
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Figure 25.8.1: The budget line starting at (1, 0) and ending

at the point B describes an odd agent’s time 0 opportunities in

an equilibrium with inflationary finance. Because this equilibrium

has the “private consumption feasibility menu” intersecting the

odd agent’s indifference curve, a “forced saving” legal restriction

can be used to put the odd agent onto a higher indifference curve

than I , while leaving even agents better off and the government

with revenue g . If the individual is confronted with a minimum

denomination F at the rate of return associated with the budget

line ending at H , he would choose to consume 1 − F .

25.9. A two-money model

There are two types of currency being issued, in amounts Mit, i = 1, 2, by each

of two countries. The currencies are issued according to the rules

Mit −Mit−1 = pitGit, i = 1, 2, (25.9.1)
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Figure 25.8.2: The minimum denomination F and the return on

money can be lowered vis- à -vis their setting associated with line

DH in Figure 25.8.1 to make the odd household better off, raise

the same revenues for the government, and leave even households

better off (as compared to no government intervention). The lower

value of F puts the odd household at E , which leaves him at the

higher indifference curve I ′ . The minimum denomination F and

the return on money can be lowered vis- à -vis their setting asso-

ciated with line DH in Figure 25.8.1 to make the odd household

better off, raise the same revenues for the government, and leave

even households better off (as compared to no government inter-

vention). The lower value of F puts the odd household at E ,

which leaves him at the higher indifference curve I ′ .

where Git is total purchases of time t goods by the government issuing currency

i , and pit is the time t price level denominated in units of currency i . We
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assume that currencies of both types are initially equally distributed among the

even agents at time 0. Odd agents start out with no currency.

Household h ’s optimum problem becomes to maximize
∑∞

t=0 β
tu(cht ) subject

to the sequence of budget constraints

cht +
mh

1t

p1t
+
mh

2t

p2t
≤ yht +

mh
1t−1

p1t
+
mh

2t−1

p2t
,

where mh
jt−1 are nominal holdings of country j ’s currency by household h .

Currency holdings of each type must be nonnegative. The first-order conditions

for the household’s problem with respect to mh
jt for j = 1, 2 are

βu′(cht+1)

p1t+1
≤ u′(cht )

p1t
, = if mh

1t > 0,

βu′(cht+1)

p2t+1
≤ u′(cht )

p2t
, = if mh

2t > 0.

If agent h chooses to hold both currencies from t to t + 1, these first-order

conditions imply that

p2t

p1t
=
p2t+1

p1t+1
,

or

p1t = ep2t, ∀t ≥ 0, (25.9.2)

for some constant e > 0.5 This equation states that if in each period there is

some household that chooses to hold positive amounts of both types of currency,

the rate of return from t to t+ 1 must be equal for the two types of currencies,

meaning that the exchange rate must be constant over time.6

We use the following definition:

Definition 5: A competitive equilibrium with two valued fiat currencies is an

allocation {cot , cet , G1t, G2t}∞t=0 , nonnegative money holdings {mo
1t,m

e
1t,m

o
2t,m

e
2t}∞t=−1 ,

a pair of finite price level sequences {p1t, p2t}∞t=0 and currency supply sequences

{M1t,M2t}∞t=−1 such that (a) given the price level sequences and (mo
1,−1,m

e
1,−1,

mo
2,−1,m

e
2,−1), the allocation solves the households’ problems; (b) the budget

5 Evaluate both of the first-order conditions at equality, then divide one by the other to

obtain this result.
6 As long as we restrict ourselves to nonstochastic equilibria.
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constraints of the governments are satisfied for all t ≥ 0; and (c) N(cot + cet ) +

G1t + G2t = N , for all t ≥ 0; and mo
jt + me

jt = Mjt/N , for j = 1, 2 and all

t ≥ −1.

In the case of constant government expenditures (G1t, G2t) = (Ng1, Ng2)

for all t ≥ 0, we guess an equilibrium allocation of the form (25.7.3), where we

reinterpret g to be g = g1 + g2 . We also guess an equilibrium with a constant

real value of the “world money supply,” that is,

m̃ =
M1t

Np1t
+

M2t

Np2t
,

and a constant exchange rate, so that we impose condition (25.9.2). We let

R = p1t/p1t+1 = p2t/p2t+1 be the constant common value of the rate of return

on the two currencies.

With these guesses, the sum of the two countries’ budget constraints for

t ≥ 1 and the conjectured form of the equilibrium allocation imply an equation

of the form (25.7.8), where now

m̃(R) =
M1t

p1tN
+

M2t

p2tN
.

Equation (25.7.8) can be solved for R in the fashion described earlier. Once

R has been determined, so has the constant real value of the world currency

supply, m̃ . To determine the time t price levels, we add the time 0 budget

constraints of the two governments to get

M10

Np10
+

M20

Np20
=
M1,−1 + eM2,−1

Np10
+ (g1 + g2),

or

m̃− g =
M1,−1 + eM2,−1

Np10
.

In the conjectured allocation, m̃ = (1 − c0), so this equation becomes

M1,−1 + eM2,−1

Np10
= 1 − c0 − g, (25.9.3)

which, given any e > 0, has a positive solution for the initial country 1 price

level. Given the solution p10 and any e ∈ (0,∞), the price level sequences for

the two countries are determined by the constant rate of return on currency R .
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To determine the values of the nominal currency stocks of the two countries, we

use the government budget constraints (25.9.1).

Our findings are a special case of the following remarkable proposition:

Proposition (Exchange Rate Indeterminacy): Given the ini-

tial stocks of currencies (M1,−1,M2,−1) that are equally distributed among the

even agents at time 0, if there is an equilibrium for one constant exchange rate

e ∈ (0,∞), then there exists an equilibrium for any ê ∈ (0,∞) with the same

consumption allocation but different currency supply sequences.

Proof: Let p10 be the country 1 price level at time zero in the equilibrium

that is assumed to exist with exchange rate e . For the conjectured equilibrium

with exchange rate ê , we guess that the corresponding price level is

p̂10 = p10
M1,−1 + êM2,−1

M1,−1 + eM2,−1
.

After substituting this expression into (25.9.3), we can verify that the real

value at time 0 of the initial “world money supply” is the same across equi-

libria. Next, we guess that the conjectured equilibrium shares the same rate

of return on currency, R , and constant end-of-period real value of the “world

money supply”, m̃ , as the the original equilibrium. By construction from the

original equilibrium, we know that this setting of the world money supply pro-

cess guarantees that the consolidated budget constraint of the two governments

is satisfied in each period. To determine the values of each country’s prices and

nominal money supplies, we proceed as above. That is, given p̂10 and ê , the

price level sequences for the two countries are determined by the constant rate

of return on currency R . The evolution of the nominal money stocks of the two

countries is governed by government budget constraints (25.9.1).

Versions of this proposition were stated by Kareken and Wallace (1980).

See chapter 24 for a discussion of a possible way to alter assumptions to make

the exchange rate determinate.
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25.10. A model of commodity money

Consider the following “small-country” model.7 There are now two goods, the

consumption good and a durable good, silver. Silver has a gross physical rate of

return of 1: storing one unit of silver this period yields one unit of silver next

period. Silver is not valued domestically, but it can be exchanged abroad at a

fixed price of v units of the consumption good per unit of silver; v is constant

over time and is independent of the amount of silver imported or exported from

this country. There are equal numbers N of odd and even households, endowed

with consumption good sequences

{yot }∞t=0 = {1, 0, 1, 0, . . .},

{yet }∞t=0 = {0, 1, 0, 1, . . .}.

Preferences continue to be ordered by
∑∞

t=0 β
tu(cit) for each type of person,

where ct is consumption of the consumption good.

Each even person is initially endowed with S units of silver at time 0. Odd

agents own no silver at t = 0.

Households are prohibited from borrowing or lending with each other, or

with foreigners. However, they can exchange silver with each other and with

foreigners. At time t , a household of type i faces the budget constraint

cit +mi
tv ≤ yit +mi

t−1v,

subject to mi
t ≥ 0, where mi

t is the amount of silver stored from time t to time

t+ 1 by agent i .

7 See Sargent and Wallace (1983), Sargent and Smith (1997), and Sargent and Velde (1999)

for alternative models of commodity money.
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Figure 25.10.1: Determination of equilibrium when u′(vS) <

βu′(c0). For as long as it is feasible, the even agent sets u′(cet+1)/u
′(cet ) =

β by running down his silver holdings. This implies that cet+1 < cet
during the run-down period. Eventually, the even agent runs out of

silver, so that the tail of his allocation is {c0, 1− c0, c0, 1− c0, . . .} ,

determined as before. The figure depicts how the spending of silver

pushes the agent onto lower and lower two-period budget sets.

25.10.1. Equilibrium

Definition 6: A competitive equilibrium is an allocation {cot , cet}∞t=0 and

nonnegative asset holdings {mo
t ,m

e
t}∞t=−1 such that, given (mo

−1,

me
−1), the allocation solves each agent’s optimum problem.

Adding the budget constraints of the two types of agents with equality at

time t gives

cot + cet = 1 + v(St−1 − St), (25.10.1)

where St = mo
t +me

t is the total (per odd person) stock of silver in the country

at time t . Equation (25.10.1) asserts that total domestic consumption at time

t is the sum of the country’s endowment plus its imports of goods, where the

latter equals its exports of silver, v(St−1 − St).

Given the opportunity to choose nonnegative asset holdings with a gross rate

of return equal to 1, the equilibrium allocation to the odd agent is {cot}∞t=0 =
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{c0, 1− c0, c0, 1− c0, . . . , } , where c0 is the solution to equation (25.4.4). Thus,

the odd agent holds (1− c0) units of silver from time 0 to time 1. He gets this

silver either from even agents or from abroad.

Concerning the allocation to even agents, two types of equilibria are possible,

depending on the value of vS relative to the value c0 that solves equation

(25.4.4). If u′(vS) ≥ βu′(c0), the equilibrium allocation to the even agent is

{cet}∞t=0 = {ce0, c0, 1− c0, c0, 1− c0, . . .} , where ce0 = vS . In this equilibrium, the

even agent at time 0 sells all of his silver to support time 0 consumption. Net

exports of silver for the country at time 0 are S−(1−c0)/v , i.e., summing up the

transactions of an even and an odd agent. For t ≥ 1, the country’s allocation

and trade pattern is exactly as in the original model (with a stationary fiat

money equilibrium).

If the solution c0 to equation (25.4.4) and vS are such that u′(vS) <

βu′(c0), the equilibrium allocation to the odd agents remains the same, but

the allocation to the even agents is different. The situation is depicted in Figure

25.10.1. Even agents have so much silver at time 0 that they want to carry over

positive amounts of silver into time 1 and maybe beyond. As long as they are

carrying over positive amounts of silver from t− 1 to t , the allocation to even

agents has to satisfy
u′(cet−1)

βu′(cet )
= 1, (25.10.2)

which implies that cet < cet−1 . Also, as long as they are carrying over positive

amounts of silver, their first T budget constraints can be used to deduce an

intertemporal budget constraint

T∑

t=0

cet ≤
{
vS + (T + 1)/2, if T odd;

vS + T/2, if T even.
(25.10.3)

The even agent finds the largest horizon T over which he satisfies both (25.10.2)

and (25.10.3) at equality with nonnegative carryover of silver for each period.

This largest horizon T will occur on an even date.8 The equilibrium allocation

8 Suppose to the contrary that the largest horizon T is an odd date. That is, up until date

T , both (25.10.2) and (25.10.3) are satisfied with nonnegative savings for each period. Now,

let us examine what happens if we add one additional period and the horizon becomes T + 1.

Since that additional period is an even date, the right side of budget constraint (25.10.3) is

unchanged. Therefore, condition (25.10.2) implies that the extra period induces the agent to

reduce consumption in all periods t ≤ T , in order to save for consumption in period T + 1.
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to the even agents is determined by “gluing” this initial piece with declining

consumption onto a “tail” of the allocation assigned to even agents in the original

model, starting on an odd date, {ct}∞t=T+1 = {c0, 1 − c0, c0, 1 − c0, . . .} .9

25.10.2. Virtue of fiat money

This is a model with an exogenous price level and an endogenous stock of cur-

rency. The model can be used to express a version of Friedman’s and Keynes’s

condemnation of commodity money systems: the equilibrium allocation can be

Pareto dominated by the allocation in a fiat money equilibrium in which, in

addition to the stock of silver at time 0, the even agents are endowed with

M units of an unbacked fiat currency. We can then show that there exists a

monetary equilibrium with a constant price level p satisfying (25.4.5),

p =
M

N(1 − c0)
.

In effect, the time 0 endowment of the even agents is increased by 1−c0 units of

consumption good. Fiat money creates wealth by removing commodity money

from circulation, which instead can be transformed into consumption.

Since the initial horizon T satisfied (25.10.2) and (25.10.3) with nonnegative savings, it

follows that so must also horizon T + 1. Therefore, the largest horizon T must occur on an

even date.
9 Is the equilibrium with u′(vS) < βu′(c0) , a stylized model of Spain in the sixteenth

century? At the beginning of the sixteenth century, Spain suddenly received a large claim on

silver and gold from the New World. During the century, Spain exported gold and silver to

the rest of Europe to finance government and private purchases.
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25.11. Concluding remarks

The model of this chapter is basically a “nonstochastic incomplete markets

model,” a special case of the stochastic incomplete markets models of chapter

17. The virtue of the model is that we can work out many things by hand. The

limitation on markets in private loans leaves room for a consumption-smoothing

role to be performed by a valued fiat currency. The reader might note how some

of the monetary doctrines worked out precisely in this chapter have counterparts

in the stochastic incomplete markets models of chapter 17.

Exercises

Exercise 25.1 Arrow-Debreu

Consider an environment with equal numbers N of two types of agents, odd

and even, who have endowment sequences

{yot }∞t=0 = {1, 1, 0, 1, 1, 0, . . .}

{yet }∞t=0 = {0, 0, 1, 0, 0, 1, . . .}.

Households of type h order consumption sequences by
∑∞
t=0 β

tu(cht ). Compute

the Arrow-Debreu equilibrium for this economy.

Exercise 25.2 One-period consumption loans

Consider an environment with equal numbers N of two types of agents, odd

and even, who have endowment sequences

{yot }∞t=0 = {1, 0, 1, 0, . . .}

{yet }∞t=0 = {0, 1, 0, 1, . . .}.

Households of type h order consumption sequences by
∑∞

t=0 β
tu(cht ). The only

market that exists is for one-period loans. The budget constraints of household

h are

cht + bht ≤ yht +Rt−1b
h
t−1, t ≥ 0,

where bh−1 = 0, h = o, e . Here bht is agent h ’s lending (if positive) or borrowing

(if negative) from t to t + 1, and Rt−1 is the gross real rate of interest on

consumption loans from t− 1 to t .
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a. Define a competitive equilibrium with one-period consumption loans.

b. Compute a competitive equilibrium with one-period consumption loans.

c. Is the equilibrium allocation Pareto optimal? Compare the equilibrium

allocation with that for the corresponding Arrow-Debreu equilibrium for an

economy with identical endowment and preference structure.

Exercise 25.3 Stock market

Consider a “stock market” version of an economy with endowment and prefer-

ence structure identical to the one in the previous economy. Now odd and even

agents begin life owning one of two types of “trees.” Odd agents own the “odd”

tree, which is a perpetual claim to a dividend sequence

{yot }∞t=0 = {1, 0, 1, 0, . . .},

while even agents initially own the “even” tree, which entitles them to a per-

petual claim on dividend sequence

{yet}∞t=0 = {0, 1, 0, 1, . . .}.

Each period, there is a stock market in which people can trade the two types

of trees. These are the only two markets open each period. The time t price of

type j trees is ajt , j = o, e . The time t budget constraint of agent h is

cht + aot s
ho
t + aets

he
t ≤ (aot + yot )s

ho
t−1 + (aet + yet )s

he
t−1,

where shjt is the number of shares of stock in tree j held by agent h from t to

t+ 1. We assume that soo−1 = 1, see−1 = 1, sjk−1 = 0 for j 6= k .

a. Define an equilibrium of the stock market economy.

b. Compute an equilibrium of the stock market economy.

c. Compare the allocation of the stock market economy with that of the corre-

sponding Arrow-Debreu economy.

Exercise 25.4 Inflation

Consider a Townsend turnpike model in which there are N odd agents and N

even agents who have endowment sequences, respectively, of

{yot }∞t=0 = {1, 0, 1, 0, . . .}

{yet }∞t=0 = {0, 1, 0, 1, . . .}.
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Households of each type order consumption sequences by
∑∞

t=0 β
tu(ct). The

government makes the stock of currency move according to

Mt = zMt−1, t ≥ 0.

At the beginning of period t , the government hands out (z − 1)mh
t−1 to each

type h agent who held mh
t−1 units of currency from t− 1 to t . Households of

type h = o, e have time t budget constraint of

ptc
h
t +mh

t ≤ pty
h
t +mh

t−1 + (z − 1)mh
t−1.

a. Guess that an equilibrium endowment sequence of the periodic form (25.4.3)

exists. Make a guess at an equilibrium price sequence {pt} and compute the

equilibrium values of (c0, {pt}). (Hint: Make a “quantity theory” guess for the

price level.)

b. How does the allocation vary with the rate of inflation? Is inflation “good”

or “bad”? Describe odd and even agents’ attitudes toward living in economies

with different values of z .

Exercise 25.5 A Friedman-like scheme

Consider Friedman’s scheme to improve welfare by generating a deflation. Sup-

pose that the government tries to boost the rate of return on currency above β−1

by setting β > (1+τ). Show that there exists no equilibrium with an allocation

of the class (25.4.3) and a price-level path satisfying pt = (1+ τ)pt−1 , with odd

agents holding mo
0 > 0. [(That is, the piece of the “restricted Pareto optimality

frontier” does not extend above the allocation (.5,.5) in Figure 25.6.1.)

Exercise 25.6 Distribution of currency

Consider an economy consisting of large and equal numbers of two types of

infinitely lived agents. There is one kind of consumption good, which is non-

storable. “Odd” agents have period 2 endowment pattern {yot }∞t=0 , while “even”

agents have period 2 endowment pattern {yet }∞t=0 . Agents of both types have

preferences that are ordered by the utility functional

∞∑

t=0

βt ln(cit), i = o, e, 0 < β < 1,
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where cit is the time t consumption of the single good by an agent of type i .

Assume the following endowment pattern:

yot = {1, 0, 1, 0, 1, 0, . . .}

yet = {0, 1, 0, 1, 0, 1, . . .}.

Now assume that all borrowing and lending is prohibited, either ex cathedra

through legal restrictions or by virtue of traveling and locational restrictions of

the kind introduced by Robert Townsend. At time t = 0, all odd agents are

endowed with αH units of an unbacked, inconvertible currency, and all even

units are endowed with (1 − α)H units of currency, where α ∈ [0, 1]. The

currency is denominated in dollars and is perfectly durable. Currency is the

only object that agents are permitted to carry over from one period to the next.

Let pt be the price level at time t , denominated in units of dollars per time t

consumption good.

a. Define an equilibrium with valued fiat currency.

b. Let an “eventually stationary” equilibrium with valued fiat currency be one

in which there exists a t̄ such that for t ≥ t̄ , the equilibrium allocation to

each type of agent is of period 2 (i.e., for each type of agent, the allocation is a

periodic sequence that oscillates between two values). Show that for each value

of α ∈ [0, 1], there exists such an equilibrium. Compute this equilibrium.

Exercise 25.7 Capital overaccumulation

Consider an environment with equal numbers N of two types of agents, odd

and even, who have endowment sequences

{yot }∞t=0 = {1 − ε, ε, 1 − ε, ε, . . .}

{yet }∞t=0 = {ε, 1 − ε, ε, 1 − ε, . . .}.

Here, ε is a small positive number that is very close to zero. Households of

each type h order consumption sequences by
∑∞

t=0 β
t ln(cht ) where β ∈ (0, 1).

The one good in the model is storable. If a nonnegative amount kt of the good

is stored at time t , the outcome is that δkt of the good is carried into period

t+1, where δ ∈ (0, 1). Households are free to store nonnegative amounts of the

good.
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a. Assume that there are no markets. Households are on their own. Find the

autarkic consumption allocations and storage sequences for the two types of

agents. What is the total per-period storage in this economy?

b. Now assume that there exists a fiat currency, available in fixed supply of M ,

all of which is initially equally distributed among the even agents. Define an

equilibrium with valued fiat currency. Compute a stationary equilibrium with

valued fiat currency. Show that the associated allocation Pareto dominates the

one you computed in part a.

c. Suppose that in the storage technology δ = 1 (no depreciation) and that

there is a fixed supply of fiat currency, initially distributed as in part b. Define

an “eventually stationary” equilibrium. Show that there is a continuum of

eventually stationary equilibrium price levels and allocations.

Exercise 25.8 Altered endowments

Consider a Bewley model identical to the one in the text, except that now the

odd and even agents are endowed with the sequences

y0
t = {1 − F, F, 1 − F, F, . . .}
yet = {F, 1 − F, F, 1 − F, . . .},

where 0 < F < (1 − co), where co is the solution of equation (25.4.4).

Compute the equilibrium allocation and price level. How do these objects

vary across economies with different levels of F ? For what values of F does a

stationary equilibrium with valued fiat currency exist?

Exercise 25.9 Inside money

Consider an environment with equal numbers N of two types of households,

odd and even, who have endowment sequences

{yot }∞t=0 = {1, 0, 1, 0, . . .}

{yet }∞t=0 = {0, 1, 0, 1, . . .}.

Households of type h order consumption sequences by
∑∞

t=0 β
tu(cht ). At the

beginning of time 0, each even agent is endowed with M units of an unbacked

fiat currency and owes F units of consumption goods; each odd agent is owed

F units of consumption goods and owns 0 units of currency. At time t ≥ 0, a
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household of type h chooses to carry over mh
t ≥ 0 of currency from time t to

t+ 1. (We start households out with these debts or assets at time 0 to support

a stationary equilibrium.) Each period t ≥ 0, households can issue indexed

one-period debt in amount bt , promising to pay off btRt at t+1, subject to the

constraint that bt ≥ −F/Rt , where F > 0 is a parameter characterizing the

borrowing constraint and Rt is the rate of return on these loans between time t

and t+ 1. (When F = 0, we get the Bewley-Townsend model.) A household’s

period t budget constraint is

ct +mt/pt + bt = yt +mt−1/pt + bt−1Rt−1,

where Rt−1 is the gross real rate of return on indexed debt between time t− 1

and t . If bt < 0, the household is borrowing at t , and if bt > 0, the household

is lending at t .

a. Define a competitive equilibrium in which valued fiat currency and private

loans coexist.

b. Argue that, in the equilibrium defined in part a, the real rates of return on

currency and indexed debt must be equal.

c. Assume that 0 < F < (1−co)/2, where co is the solution of equation (25.4.4).

Show that there exists a stationary equilibrium with a constant price level and

that the allocation equals that associated with the stationary equilibrium of the

F = 0 version of the model. How does F affect the price level? Explain.

d. Suppose that F = (1 − co)/2. Show that there is a stationary equilibrium

with private loans but that fiat currency is valueless in that equilibrium.

e. Suppose that F = β
1+β . For a stationary equilibrium, find an equilibrium

allocation and interest rate.

f. Suppose that F ∈ [(1 − co)/2, β
1+β ] . Argue that there is a stationary equi-

librium (without valued currency) in which the real rate of return on debt is

R ∈ (1, β−1).

Exercise 25.10 Initial conditions and inside money

Consider a version of the preceding model in which each odd person is initially

endowed with no currency and no IOUs, and each even person is initially en-

dowed with M/N units of currency but no IOUs. At every time t ≥ 0, each
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agent can issue one-period IOUs promising to pay off F/Rt units of consump-

tion in period t + 1, where Rt is the gross real rate of return on currency or

IOUs between periods t and t+1. The parameter F obeys the same restrictions

imposed in exercise 25.9 .

a. Find an equilibrium with valued fiat currency in which the tail of the alloca-

tion for t ≥ 1 and the tail of the price level sequence, respectively, are identical

with that found in exercise 25.9 .

b. Find the price level, the allocation, and the rate of return on currency and

consumption loans at period 0.

Exercise 25.11 Real bills experiment

Consider a version of exercise 25.9 . The initial conditions and restrictions on

borrowing are as described in exercise 25.9 . However, now the government

augments the currency stock by an “open market operation” as follows: In

period 0, the government issues M̄ − M units per each odd agent for the

purpose of purchasing ∆ units of IOUs issued at time 0 by the even agents.

Assume that 0 < ∆ < F . At each time t ≥ 1, the government uses any net

real interest payments from its stock IOUs from the private sector to decrease

the outstanding stock of currency. Thus, the government’s budget constraint

sequence is
M̄ −M

p0
= ∆, t = 0,

M̄t − M̄t−1

pt
= −(Rt−1 − 1)∆ t ≥ 1.

Here,Rt−1 is the gross rate of return on consumption loans from t−1 to t , and

M̄t is the total stock of currency outstanding at the end of time t .

a. Verify that there exists a stationary equilibrium with valued fiat currency in

which the allocation has the form (25.4.3) where c0 solves equation (25.4.4).

b. Find a formula for the price level in this stationary equilibrium. Describe

how the price level varies with the value of ∆.

c. Does the “quantity theory of money” hold in this example?



Chapter 26
Equilibrium Search and Matching

26.1. Introduction

This chapter presents various equilibrium models of search and matching. We

describe (1) Lucas and Prescott’s version of an island model; (2) some matching

models in the style of Mortensen, Pissarides, and Diamond; and (3) a search

model of money along the lines of Kiyotaki and Wright.

Chapter 5 studied the optimization problem of a single unemployed agent

who searched for a job by drawing from an exogenous wage offer distribution.

We now turn to a model with a continuum of agents who interact across a

large number of spatially separated labor markets. Phelps (1970, introductory

chapter) describes such an “island economy,” and a formal framework is analyzed

by Lucas and Prescott (1974). The agents on an island can choose to work at the

market-clearing wage in their own labor market or seek their fortune by moving

to another island and its labor market. In an equilibrium, agents tend to move

to islands that experience good productivity shocks, while an island with bad

productivity may see some of its labor force depart. Frictional unemployment

arises because moves between labor markets take time.

Another approach to model unemployment is the matching framework de-

scribed by Diamond (1982), Mortensen (1982), and Pissarides (1990). These

models postulate the existence of a matching function that maps measures of

unemployment and vacancies into a measure of matches. A match pairs a worker

and a firm, who then have to bargain about how to share the “match surplus,”

that is, the value that will be lost if the two parties cannot agree and break the

match. In contrast to the island model with price-taking behavior and no exter-

nalities, the decentralized outcome in the matching framework is in general not

efficient. Unless parameter values satisfy a knife-edge restriction, there will be

either too many or too few vacancies posted in an equilibrium. The efficiency

problem is further exacerbated if it is assumed that heterogeneous jobs must

be created via a single matching function. This assumption creates a tension

between getting an efficient mix of jobs and an efficient total supply of jobs.

– 940 –
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As a reference point to models with search and matching frictions, we also

study a frictionless aggregate labor market but assume that labor is indivisible.

For example, agents are constrained to work either full time or not at all. This

kind of assumption has been used in the real business cycle literature to gener-

ate unemployment. If markets for contingent claims exist, Hansen (1985) and

Rogerson (1988) show that employment lotteries can be welfare enhancing and

that they imply that only a fraction of agents will be employed in an equilib-

rium. Using this model and the other two frameworks that we have mentioned,

we analyze how layoff taxes affect an economy’s employment level. The different

models yield very different conclusions, shedding further light on the economic

forces at work in the various frameworks.

To illustrate another application of search and matching, we study Kiyotaki

and Wright’s (1993) search model of money. Agents who differ with respect to

their taste for different goods meet pairwise and at random. In this model, fiat

money can potentially ameliorate the problem of “double coincidence of wants.”

26.2. An island model

The model here is a simplified version of Lucas and Prescott’s (1974) “island

economy.” There is a continuum of agents populating a large number of spatially

separated labor markets. Each island is endowed with an aggregate production

function θf(n), where n is the island’s employment level and θ > 0 is an

idiosyncratic productivity shock. The production function satisfies

f ′ > 0, f ′′ < 0, and lim
n→0

f ′(n) = ∞ . (26.2.1)

The productivity shock takes on m possible values, θ1 < θ2 < · · · < θm , and

the shock is governed by strictly positive transition probabilities, π(θ, θ′) > 0.

That is, an island with a current productivity shock of θ faces a probability

π(θ, θ′) that its next period’s shock is θ′ . The productivity shock is persis-

tent in the sense that the cumulative distribution function, Prob (θ′ ≤ θk|θ) =∑k
i=1 π(θ, θi), is a decreasing function of θ .

At the beginning of a period, agents are distributed in some way over the

islands. After observing the productivity shock, the agents decide whether or

not to move to another island. A mover forgoes his labor earnings in the period
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of the move, whereas he can choose the destination with complete information

about current conditions on all islands. An agent’s decision to work or to move is

taken so as to maximize the expected present value of his earnings stream. Wages

are determined competitively, so that each island’s labor market clears with a

wage rate equal to the marginal product of labor. We will study stationary

equilibria.

26.2.1. A single market (island)

The state of a single market is given by its productivity level θ and its beginning-

of-period labor force x . In an equilibrium, there will be functions mapping

this state into an employment level, n(θ, x), and a wage rate, w(θ, x). These

functions must satisfy the market-clearing condition

w(θ, x) = θf ′
[
n(θ, x)

]

and the labor supply constraint

n(θ, x) ≤ x .

Let v(θ, x) be the value of the optimization problem for an agent finding

himself in market (θ, x) at the beginning of a period. Let vu be the expected

value obtained next period by an agent leaving the market, a value to be deter-

mined by conditions in the aggregate economy. The value now associated with

leaving the market is then βvu . The Bellman equation can then be written as

v(θ, x) = max
{
βvu , w(θ, x) + βE [v(θ′, x′)|θ, x]

}
, (26.2.2)

where the conditional expectation refers to the evolution of θ′ and x′ if the

agent remains in the same market.

The value function v(θ, x) is equal to βvu whenever there are any agents

leaving the market. It is instructive to examine the opposite situation when

no one leaves the market. This means that the current employment level is

n(θ, x) = x and the wage rate becomes w(θ, x) = θf ′(x). Concerning the

continuation value for next period, βE [v(θ′, x′)|θ, x] , there are two possibilities:

Case i: All agents remain, and some additional agents arrive next period. The

arrival of new agents corresponds to a continuation value of βvu in the market.
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Any value less than βvu would not attract any new agents, and a value higher

than βvu would be driven down by a larger inflow of new agents. It follows that

the current value function in equation (26.2.2) can under these circumstances

be written as

v(θ, x) = θ f ′(x) + βvu .

Case ii: All agents remain, and no additional agents arrive next period. In this

case x′ = x , and the lack of new arrivals implies that the market’s continuation

value is less than or equal to βvu . The current value function becomes

v(θ, x) = θ f ′(x) + βE [v(θ′, x)|θ] ≤ θ f ′(x) + βvu .

After putting both of these cases together, we can rewrite the value function

in equation (26.2.2) as follows:

v(θ, x) = max
{
βvu , θ f

′(x) + min
{
βvu , βE [v(θ′, x)|θ]

}}
. (26.2.3)

Given a value for vu , this is a well-behaved functional equation with a unique

solution v(θ, x). The value function is nondecreasing in θ and nonincreasing in

x .

On the basis of agents’ optimization behavior, we can study the evolution of

the island’s labor force. There are three possible cases:

Case 1: Some agents leave the market. An implication is that no additional

workers will arrive next period, when the beginning-of-period labor force will be

equal to the current employment level, x′ = n . The current employment level,

equal to x′ , can then be computed from the condition that agents remaining in

the market receive the same utility as the movers, given by βvu ,

θ f ′(x′) + βE [v(θ′, x′)|θ] = βvu . (26.2.4)

This equation implicitly defines x+(θ) such that x′ = x+(θ) if x ≥ x+(θ).

Case 2: All agents remain in the market, and some additional workers arrive next

period. The arriving workers must expect to attain the value vu , as discussed

in case i. That is, next period’s labor force x′ must be such that

E [v(θ′, x′)|θ] = vu . (26.2.5)
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This equation implicitly defines x−(θ) such that x′ = x−(θ) if x ≤ x−(θ). It

can be seen that x−(θ) < x+(θ).

Case 3: All agents remain in the market, and no additional workers arrive next

period. This situation was discussed in case ii. It follows here that x′ = x if

x−(θ) < x < x+(θ).

26.2.2. The aggregate economy

The previous section assumed an exogenous value to search, vu . This assump-

tion will be maintained in the first part of this section on the aggregate economy.

The approach amounts to assuming a perfectly elastic outside labor supply with

reservation utility vu . We end the section by showing how to endogenize the

value to search in the face of a given inelastic aggregate labor supply.

Define a set X of possible labor forces in a market as follows:

X ≡






{
x ∈

{
x−(θi) , x

+(θi)
}m
i=1

: x+(θ1) ≤ x ≤ x−(θm)
}
,

if x+(θ1) ≤ x−(θm);
{
x ∈ [x−(θm) , x+(θ1)]

}
, otherwise.

The set X is the ergodic set of labor forces in a stationary equilibrium. This can

be seen by considering a single market with an initial labor force x . Suppose

that x > x+(θ1); the market will then eventually experience the least advanta-

geous productivity shock with a next period’s labor force of x+(θ1). Thereafter,

the island can at most attract a labor force x−(θm) associated with the most

advantageous productivity shock. Analogously, if the market’s initial labor force

is x < x−(θm), it will eventually have a labor force of x−(θm) after experiencing

the most advantageous productivity shock. Its labor force will thereafter never

fall below x+(θ1), which is the next period’s labor force of a market experi-

encing the least advantageous shock (given a current labor force greater than

or equal to x+(θ1)). Finally, in the case that x+(θ1) > x−(θm), any initial

distribution of workers such that each island’s labor force belongs to the closed

interval [x−(θm) , x+(θ1)] can constitute a stationary equilibrium. This would

be a parameterization of the model where agents do not find it worthwhile to

relocate in response to productivity shocks.
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In a stationary equilibrium, a market’s transition probabilities among states

(θ, x) are given by

Γ(θ′, x′|θ, x) = π(θ, θ′) · I
( [

x′ = x+(θ) and x ≥ x+(θ)
]

or
[
x′ = x−(θ) and x ≤ x−(θ)

]
or

[
x′ = x and x−(θ) < x < x+(θ)

] )
,

for x, x′ ∈ X and all θ, θ′ ;

where I(·) is the indicator function that takes on the value 1 if any of its

arguments are true and 0 otherwise. These transition probabilities define an

operator P on distribution functions Ψt(θ, x; vu) as follows: Suppose that at

a point in time, the distribution of productivity shocks and labor forces across

markets is given by Ψt(θ, x; vu), then the next period’s distribution is

Ψt+1(θ
′, x′; vu) = PΨt(θ

′, x′; vu)

=
∑

x∈X

∑

θ

Γ(θ′, x′|θ, x)Ψt(θ, x; vu) .

Except for the case when the stationary equilibrium involves no reallocation of

labor, the described process has a unique stationary distribution, Ψ(θ, x; vu).

Using the stationary distribution Ψ(θ, x; vu), we can compute the economy’s

average labor force per market,

x̄(vu) =
∑

x∈X

∑

θ

xΨ(θ, x; vu) ,

where the argument vu makes explicit that the construction of a stationary

equilibrium rests on the maintained assumption that the value to search is ex-

ogenously given by vu . The economy’s equilibrium labor force x̄ varies neg-

atively with vu . In a stationary equilibrium with labor movements, a higher

value to search is only consistent with higher wage rates, which in turn require

higher marginal products of labor, that is, a smaller labor force on the islands.

From an economy-wide viewpoint, it is the size of the labor force that is

fixed, let’s say x̂ , and the value to search that adjusts to clear the markets. To

find a stationary equilibrium for a particular x̂ , we trace out the schedule x̄(vu)

for different values of vu . The equilibrium pair (x̂, vu) can then be read off at

the intersection x̄(vu) = x̂ , as illustrated in Figure 26.2.1.
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Figure 26.2.1: The curve maps an economy’s average labor force

per market, x̄ , into the stationary equilibrium value to search, vu .

26.3. A matching model

Another model of unemployment is the matching framework, as described by

Diamond (1982), Mortensen (1982), and Pissarides (1990). The basic model is as

follows: Let there be a continuum of identical workers with measure normalized

to 1. The workers are infinitely lived and risk neutral. The objective of each

worker is to maximize the expected discounted value of leisure and labor income.

The leisure enjoyed by an unemployed worker is denoted z , while the current

utility of an employed worker is given by the wage rate w . The workers’ discount

factor is β = (1 + r)−1 .

The production technology is constant returns to scale, with labor as the

only input. Each employed worker produces y units of output. Without loss of

generality, suppose each firm employs at most one worker. A firm entering the

economy incurs a vacancy cost c in each period when looking for a worker, and

in a subsequent match the firm’s per-period earnings are y−w . All matches are

exogenously destroyed with per-period probability s . Free entry implies that

the expected discounted stream of a new firm’s vacancy costs and earnings is

equal to zero. The firms have the same discount factor as the workers (who

would be the owners in a closed economy).
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The measure of successful matches in a period is given by a matching function

M(u, v), where u and v are the aggregate measures of unemployed workers and

vacancies. The matching function is increasing in both its arguments, concave,

and homogeneous of degree 1. By the homogeneity assumption, we can write

the probability of filling a vacancy as q(v/u) ≡ M(u, v)/v . The ratio between

vacancies and unemployed workers, θ ≡ v/u , is commonly labelled the tightness

of the labor market. The probability that an unemployed worker will be matched

in a period is θq(θ). We will assume that the matching function has the Cobb-

Douglas form, which implies constant elasticities,

M(u, v) = Auαv1−α ,

∂M(u, v)

∂u

u

M(u, v)
= −q′(θ) θ

q(θ)
= α ,

where A > 0, α ∈ (0, 1), and the last equality will be used repeatedly in our

derivations that follow.

Finally, the wage rate is assumed to be determined in a Nash bargain between

a matched firm and worker. Let φ ∈ [0, 1) denote the worker’s bargaining

strength, or his weight in the Nash product, as described in the next subsection.

26.3.1. A steady state

In a steady state, the measure of laid-off workers in a period, s(1− u), must be

equal to the measure of unemployed workers gaining employment, θq(θ)u . The

steady-state unemployment rate can therefore be written as

u =
s

s + θq(θ)
. (26.3.1)

To determine the equilibrium value of θ , we now turn to the situations faced by

firms and workers, and we impose the no-profit condition for vacancies and the

Nash bargaining outcome on firms’ and workers’ payoffs.

A firm’s value of a filled job J and a vacancy V are given by

J = y − w + β [sV + (1 − s)J ] , (26.3.2)

V = −c + β
{
q(θ)J + [1 − q(θ)]V

}
. (26.3.3)

That is, a filled job turns into a vacancy with probability s , and a vacancy

turns into a filled job with probability q(θ). After invoking the condition that



948 Equilibrium Search and Matching

vacancies earn zero profits, V = 0, equation (26.3.3) becomes

J =
c

βq(θ)
, (26.3.4)

which we substitute into equation (26.3.2) to arrive at

w = y − r + s

q(θ)
c . (26.3.5)

The wage rate in equation (26.3.5) ensures that firms with vacancies break even

in an expected present-value sense. In other words, a firm’s match surplus must

be equal to J in equation (26.3.4) in order for the firm to recoup its average

discounted costs of filling a vacancy.

The worker’s share of the match surplus is the difference between the value

of an employed worker E and the value of an unemployed worker U ,

E = w + β
[
sU + (1 − s)E

]
, (26.3.6)

U = z + β
{
θq(θ)E + [1 − θq(θ)]U

}
, (26.3.7)

where an employed worker becomes unemployed with probability s and an un-

employed worker finds a job with probability θq(θ). The worker’s share of the

match surplus, E − U , has to be related to the firm’s share of the match sur-

plus, J , in a particular way to be consistent with Nash bargaining. Let the

total match surplus be denoted S = (E − U) + J , which is shared according to

the Nash product

max
(E−U),J

(E − U)φJ1−φ (26.3.8)

subject to S = E − U + J ,

with solution

E − U = φS and J = (1 − φ)S . (26.3.9)

After solving equations (26.3.2) and (26.3.6) for J and E , respectively, and

substituting them into equations (26.3.9), we get

w =
r

1 + r
U + φ

(
y − r

1 + r
U

)
. (26.3.10)
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The expression is quite intuitive when seeing r(1 + r)−1U as the annuity value

of being unemployed. The wage rate is just equal to this outside option plus

the worker’s share φ of the one-period match surplus. The annuity value of

being unemployed can be obtained by solving equation (26.3.7) for E −U and

substituting this expression and equation (26.3.4) into equations (26.3.9),

r

1 + r
U = z +

φ θ c

1 − φ
. (26.3.11)

Substituting equation (26.3.11) into equation (26.3.10), we obtain still another

expression for the wage rate,

w = z + φ(y − z + θc) . (26.3.12)

That is, the Nash bargaining results in the worker receiving compensation for

lost leisure z and a fraction φ of both the firm’s output in excess of z and the

economy’s average vacancy cost per unemployed worker.

The two expressions for the wage rate in equations (26.3.5) and (26.3.12)

determine jointly the equilibrium value for θ ,

y − z =
r + s + φ θ q(θ)

(1 − φ)q(θ)
c . (26.3.13)

This implicit function for θ ensures that vacancies are associated with zero

profits, and that firms’ and workers’ shares of the match surplus are the outcome

of Nash bargaining.

26.3.2. Welfare analysis

A planner would choose an allocation that maximizes the discounted value of

output and leisure net of vacancy costs. The social optimization problem does

not involve any uncertainty because the aggregate fractions of successful matches

and destroyed matches are just equal to the probabilities of these events. The

social planner’s problem of choosing the measure of vacancies, vt , and next

period’s employment level, nt+1 , can then be written as

max
{vt,nt+1}t

∞∑

t=0

βt [ynt + z(1 − nt) − cvt] , (26.3.14)

subject to nt+1 = (1 − s)nt + q

(
vt

1 − nt

)
vt , (26.3.15)

given n0 .
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The first-order conditions with respect to vt and nt+1 , respectively, are

−βtc + λt [q
′ (θt) θt + q (θt)] = 0 , (26.3.16)

−λt + βt+1(y − z) + λt+1

[
(1 − s) + q′ (θt+1) θ

2
t+1

]
= 0 , (26.3.17)

where λt is the Lagrangian multiplier on equation (26.3.15). Let us solve for

λt from equation (26.3.16), and substitute into equation (26.3.17) evaluated at

a stationary solution,

y − z =
r + s + α θ q(θ)

(1 − α)q(θ)
c . (26.3.18)

A comparison of this social optimum to the private outcome in equation (26.3.13)

shows that the decentralized equilibrium is only efficient if φ = α . If the work-

ers’ bargaining strength φ exceeds (falls below) α , the equilibrium job supply

is too low (high). Recall that α is both the elasticity of the matching function

with respect to the measure of unemployment, and the negative of the elasticity

of the probability of filling a vacancy with respect to θt . In its latter meaning,

a high α means that an additional vacancy has a large negative impact on all

firms’ probability of filling a vacancy; the social planner would therefore like to

curtail the number of vacancies by granting workers a relatively high bargaining

power. Hosios (1990) shows how the efficiency condition φ = α is a general one

for the matching framework.

It is instructive to note that the social optimum is equivalent to choosing

the worker’s bargaining power φ such that the value of being unemployed is

maximized in a decentralized equilibrium. To see this point, differentiate the

value of being unemployed (26.3.11) to find the slope of the indifference in the

space of φ and θ ,
∂θ

∂φ
= − θ

φ(1 − φ)
,

and use the implicit function rule to find the corresponding slope of the equilib-

rium relationship (26.3.13),

∂θ

∂φ
= − y − z + θc

[φ − (r + s) q′(θ) q(θ)−2] c
.

We set the two slopes equal to each other because a maximum would be at-

tained at a tangency point between the highest attainable indifference curve
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and equation (26.3.13) (both curves are negatively sloped and convex to the

origin):

y − z =
(r + s)α

φ
+ φ θ q(θ)

(1 − φ)q(θ)
c . (26.3.19)

When we also require that the point of tangency satisfy the equilibrium condition

(26.3.13), it can be seen that φ = α maximizes the value of being unemployed in

a decentralized equilibrium. The solution is the same as the social optimum be-

cause the social planner and an unemployed worker both prefer an optimal rate

of investment in vacancies, one that takes matching externalities into account.

26.3.3. Size of the match surplus

The size of the match surplus depends naturally on the output y produced by

the worker, which is lost if the match breaks up and the firm is left to look for

another worker. In principle, this loss includes any returns to production factors

used by the worker that cannot be adjusted immediately. It might then seem

puzzling that a common assumption in the matching literature is to exclude

payments to physical capital when determining the size of the match surplus

(see, e.g., Pissarides, 1990). Unless capital can be moved without friction in

the economy, this exclusion of payments to physical capital must rest on some

implicit assumption of outside financing from a third party that is removed

from the wage bargain between the firm and the worker. For example, suppose

the firm’s capital is financed by a financial intermediary that demands specific

rental payments in order not to ask for the firm’s bankruptcy. As long as the

financial intermediary can credibly distance itself from the firm’s and worker’s

bargaining, it would be rational for the two latter parties to subtract the rental

payments from the firm’s gross earnings and bargain over the remainder.

In our basic matching model, there is no physical capital, but there is invest-

ment in vacancies. Let us consider the possibility that a financial intermediary

provides a single firm funding for this investment. The simplest contract would

be that the intermediary hand over funds c to a firm with a vacancy in ex-

change for a promise that the firm pay ε in every future period of operation. If

the firm cannot find a worker in the next period, it fails and the intermediary

writes off the loan, and otherwise the intermediary receives the stipulated inter-

est payment ε so long as a successful match stays in business. This agreement
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with a single firm will have a negligible effect on the economy-wide values of

market tightness θ and the value of being unemployed U . Let us examine the

consequences for the particular firm involved and the worker it meets.

Under the conjecture that a match will be acceptable to both the firm and

the worker, we can compute the interest payment ε needed for the financial

intermediary to break even in an expected present-value sense,

c = q(θ)β

∞∑

t=0

βt(1 − s)tε =⇒ ε =
r + s

q(θ)
c . (26.3.20)

A successful match will then generate earnings net of the interest payment equal

to ỹ = y− ε . To determine how the match surplus is split between the firm and

the worker, we replace y , w , J , and E in equations (26.3.2) and (26.3.6), and

(26.3.8) by ỹ , w̃ , J̃ , and Ẽ . That is, J̃ and Ẽ are the values to the firm and

the worker, respectively, for this particular filled job. We treat θ , V , and U

as constants, since they are determined in the rest of the economy. The Nash

bargaining can then be seen to yield

w̃ =
r

1 + r
U + φ

(
ỹ − r

1 + r
U

)
=

r

1 + r
U + φ

φ (r + s)

(1 − φ) q(θ)
c ,

where the first equality corresponds to the previous equation (26.3.10). The

second equality is obtained after invoking ỹ = y − ε and equations (26.3.11),

(26.3.13), and (26.3.20), and the resulting expression confirms the conjecture

that the match is acceptable to the worker who receives a wage in excess of the

annuity value of being unemployed. The firm will, of course, be satisfied with

any positive ỹ− w̃ because it has not incurred any costs whatsoever in order to

form the match,

ỹ − w̃ =
φ (r + s)

q(θ)
c > 0 ,

where we once again have used ỹ = y − ε , equations (26.3.11), (26.3.13), and

(26.3.20), and the preceding expression for w̃ . Note that ỹ − w̃ = φε with the

following interpretation: If the interest payment on the firm’s investment, ε , was

not subtracted from the firm’s earnings prior to the Nash bargain, the worker

would receive an increase in the wage equal to his share φ of the additional

“match surplus.” The present financial arrangement saves the firm this extra

wage payment, and the saving becomes the firm’s profit. Thus, a single firm

with the proposed contract would have a strictly positive present value when
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entering the economy of the previous subsection. If there were unlimited entry

of new firms having access to intermediaries offering such a contract, those

profits would be competed away. We ask the reader to characterize equilibrium

outcomes under free entry.

26.4. Matching model with heterogeneous jobs

Acemoglu (1997), Bertola and Caballero (1994), and Davis (1995) explore match-

ing models where heterogeneity on the job supply side must be negotiated

through a single matching function, which gives rise to additional externali-

ties. Here, we will study an infinite horizon version of Davis’s model, which

assumes that heterogeneous jobs are created in the same labor market with

only one matching function. We extend our basic matching framework as fol-

lows: Let there be I types of jobs. A filled job of type i produces yi . The

cost in each period of creating a measure vi of vacancies of type i is given

by a strictly convex upward-sloping cost schedule, Ci(vi). In a decentralized

equilibrium, we will assume that vacancies are competitively supplied at a price

equal to the marginal cost of creating an additional vacancy, Ci
′
(vi), and we

retain the assumption that firms employ at most one worker. Another implicit

assumption is that {yi, Ci(·)} are such that all types of jobs are created in both

the decentralized steady state and the socially optimal steady state.

26.4.1. A steady state

In a steady state, there will be a time-invariant distribution of employment and

vacancies across types of jobs. Let ηi be the fraction of type i jobs among all

vacancies. With respect to a job of type i , the value of an employed worker,

Ei , and a firm’s values of a filled job, J i , and a vacancy, V i , are given by

J i = yi − wi + β
[
sV i + (1 − s)J i

]
, (26.4.1)

V i = −Ci′(vi) + β
{
q(θ)J i +

[
1 − q(θ)

]
V i
}
, (26.4.2)

Ei = wi + β
[
sU + (1 − s)Ei

]
, (26.4.3)

U = z + β
{
θq(θ)

∑

j

ηjEj +
[
1 − θq(θ)

]
U
}
, (26.4.4)
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where the value of being unemployed, U , reflects that the probabilities of being

matched with different types of jobs are equal to the fractions of these jobs

among all vacancies.

After imposing a zero-profit condition on all types of vacancies, we arrive at

the analogue to equation (26.3.5),

wi = yi − r + s

q(θ)
Ci

′
(vi) . (26.4.5)

As before, Nash bargaining can be shown to give rise to still another character-

ization of the wage,

wi = z + φ
[
yi − z + θ

∑

j

ηjCj
′
(vj)

]
, (26.4.6)

which should be compared to equation (26.3.12). After setting the two wage

expressions (26.4.5) and (26.4.6) equal to each other, we arrive at a set of

equilibrium conditions for the steady-state distribution of vacancies and the

labor market tightness,

yi − z =

r + s + φ θ q(θ)

∑
j η

jCj
′
(vj)

Ci
′
(vi)

(1 − φ)q(θ)
Ci

′
(vi) . (26.4.7)

When we next turn to the efficient allocation in the current setting, it will

be useful to manipulate equation (26.4.7) in two ways. First, subtract from this

equilibrium expression for job i the corresponding expression for job j ,

yi − yj =
r + s

(1 − φ)q(θ)

[
Ci

′
(vi) − Cj

′
(vj)

]
. (26.4.8)

Second, multiply equation (26.4.7) by vi and sum over all types of jobs,

∑

i

vi(yi − z) =
r + s + φ θ q(θ)

(1 − φ)q(θ)

∑

i

viCi
′
(vi) . (26.4.9)

(This expression is reached after invoking ηj ≡ vj/
∑
h v

h , and an interchange

of summation signs.)
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26.4.2. Welfare analysis

The social planner’s optimization problem becomes

max
{vi

t,n
i
t+1

}t,i

∞∑

t=0

βt
[∑

j

yjnjt + z
(
1 −

∑

j

njt

)
−
∑

j

Cj(vjt )
]
, (26.4.10a)

subject to nit+1 = (1 − s)nit + q

( ∑
j v

j
t

1 −∑j n
j
t

)
vit , ∀i, t ≥ 0, (26.4.10b)

given
{
ni0
}
i
. (26.4.10c)

The first-order conditions with respect to vit and nit+1 , respectively, are

− βtCi
′
(vit) + λitq(θt) +

q′ (θt)

1 −∑j n
j
t

∑

j

λjt v
j
t = 0 , (26.4.11)

− λit + βt+1(yi − z) + λit+1(1 − s)

+
q′ (θt+1) θt+1

1 −∑j n
j
t+1

∑

j

λjt+1 v
j
t+1 = 0 . (26.4.12)

To explore the efficient relative allocation of different types of jobs, we subtract

from equation (26.4.11) the corresponding expression for job j ,

λit − λjt =
βt
[
Ci

′
(vit) − Cj

′
(vjt )

]

q(θt)
. (26.4.13)

Next, we do the same computation for equation (26.4.12) and substitute equa-

tion (26.4.13) into the resulting expression evaluated at a stationary solution,

yi − yj =
r + s

q(θ)

[
Ci

′
(vi) − Cj

′
(vj)

]
. (26.4.14)

A comparison of equation (26.4.14) to equation (26.4.8) suggests that there

will be an efficient relative supply of different types of jobs in a decentralized

equilibrium only if φ = 0. For any strictly positive φ , the difference in marginal

costs of creating vacancies for two different jobs is smaller in the decentralized

equilibrium as compared to the social optimum; that is, the decentralized equi-

librium displays smaller differences in the distribution of vacancies across types

of jobs. In other words, the decentralized equilibrium creates relatively too
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many “bad jobs” with low y ’s or, equivalently, relatively too few “good jobs”

with high y ’s. The inefficiency in the mix of jobs disappears if the workers have

no bargaining power so that the firms reap all the benefits of upgrading jobs.1

But from before we know that workers’ bargaining power is essential to correct

an excess supply of the total number of vacancies.

To investigate the efficiency with respect to the total number of vacancies,

multiply equation (26.4.11) by vi and sum over all types of jobs,

∑

i

λit v
i
t =

βt
∑

i v
i
tC

i′(vit)

q(θt) + q′(θt)θt
. (26.4.15)

Next, we do the same computation for equation (26.4.12) and substitute equa-

tion (26.4.15) into the resulting expression evaluated at a stationary solution,

∑

i

vi(yi − z) =
r + s + α θ q(θ)

(1 − α)q(θ)

∑

i

viCi
′
(vi) . (26.4.16)

A comparison of equations (26.4.16) and (26.4.9) suggests the earlier result

from the basic matching model; that is, an efficient total supply of jobs in a

decentralized equilibrium calls for φ = α .2 Hence, Davis (1995) concludes that

there is a fundamental tension between the condition for an efficient mix of jobs

1 The interpretation that φ = 0, which is needed to attain an efficient relative supply of

different types of jobs in a decentralized equilibrium, can be made precise in the following

way: Let v and n denote any sustainable stationary values of the economy’s measure of

total vacancies and employment rate, that is, sn = q
(

v
1−n

)
v . Solve the social planner’s

optimization problem in equation (26.4.10) subject to the additional constraints

∑

i

vit = v ,
∑

i

nit+1 = n , ∀t ≥ 0,

given {ni0 :
∑
i n
i
0 = n} . After applying the steps in the main text to the first-order conditions

of this problem, we arrive at the very same expression (26.4.14). Thus, if {v, n} is taken to be

the steady-state outcome of the decentralized economy, it follows that equilibrium condition

(26.4.8) satisfies efficiency condition (26.4.14) when φ = 0.
2 The suggestion that φ = α , which is needed to attain an efficient total supply of jobs in a

decentralized equilibrium, can be made precise in the following way. Suppose that the social

planner is forever constrained to some arbitrary relative distribution, {γi} , of types of jobs

and vacancies, where γi ≥ 0 and
∑

i γ
i = 1. The constrained social planner’s problem is

then given by equations (26.4.10) subject to the additional restrictions

vit = γivt , nit = γint , ∀t ≥ 0.
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(φ = 0) and the standard condition for an efficient total supply of jobs (φ = α).

26.4.3. The allocating role of wages I: separate markets

The last section clearly demonstrates Hosios’s (1990) characterization of the

matching framework: “Though wages in matching-bargaining models are com-

pletely flexible, these wages have nonetheless been denuded of any allocating

or signaling function: this is because matching takes place before bargaining

and so search effectively precedes wage-setting.” In Davis’s matching model,

the problem of wages having no allocating role is compounded through the exis-

tence of heterogeneous jobs. But as discussed by Davis, this latter complication

would be overcome if different types of jobs were ex ante sorted into separate

markets. Equilibrium movements of workers across markets would then remove

the tension between the optimal mix and the total supply of jobs. Different

wages in different markets would serve an allocating role for the labor supply

across markets, even though the equilibrium wage in each market would still be

determined through bargaining after matching.

Let us study the outcome when there are such separate markets for different

types of jobs and each worker can participate in only one market at a time.

The modified model is described by equations (26.4.1), (26.4.2), and (26.4.3)

where the market tightness variable is now also indexed by i and θi , and the

new expression for the value of being unemployed is

U = z + β
{
θiq(θi)Ei +

[
1 − θiq(θi)

]
U
}
. (26.4.17)

That is, the only choice variables are now total vacancies and employment, {vt, nt+1} . After

consolidating the two first-order conditions with respect to vt and nt+1 , and evaluating at a

stationary solution, we obtain

∑

j

yjγj − z =
r + s + αθ q(θ)

(1 − α)q(θ)

∑

j

γjCj
′
(γjv) .

By multiplying both sides by v , we arrive at the very same expression (26.4.16). Thus, if

the arbitrary distribution {γi} is taken to be the steady-state outcome of the decentralized

economy, it follows that equilibrium condition (26.4.9) satisfies efficiency condition (26.4.16)

when φ = α .
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In an equilibrium, an unemployed worker attains the value U regardless of which

labor market he participates in. The characterization of a steady state proceeds

along the same lines as before. Let us here reproduce only three equations that

will be helpful in our reasoning. The wage in market i and the annuity value of

an unemployed worker can be written as

wi = φyi + (1 − φ)
r

1 + r
U , (26.4.18)

r

1 + r
U = z +

φθiCi
′
(vi)

1 − φ
, (26.4.19)

and the equilibrium condition for market i becomes

yi − z =
r + s + φ θi q(θi)

(1 − φ)q(θi)
Ci

′
(vi) . (26.4.20)

The social planner’s objective function is the same as expression (26.4.10a),

but the earlier constraint (26.4.10b) is now replaced by

nit+1 = (1 − s)nit + q

(
vit
uit

)
vit ,

1 =
∑

j

(
ujt + njt

)
,

where uit is the measure of unemployed workers in market i . At a stationary

solution, the first-order conditions with respect to vit , u
i
t , and nit+1 can be

combined to read

yi − z =
r + s + α θi q(θi)

(1 − α)q(θi)
Ci

′
(vi) . (26.4.21)

Equations (26.4.20) and (26.4.21) confirm Davis’s finding that the social opti-

mum can be attained with φ = α as long as different types of jobs are sorted

into separate markets.

It is interesting to note that the socially optimal wages, that is, equation

(26.4.18) with φ = α , imply wage differences for ex ante identical workers.

Wage differences here are not a sign of any inefficiency but rather necessary to

ensure an optimal supply and composition of jobs. Workers with higher pay are

compensated for an unemployment spell in their job market, which is on average

longer.
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26.4.4. The allocating role of wages II: wage announcements

According to Moen (1997), we can reinterpret the socially optimal steady state

in the last section as an economy with competitive wage announcements instead

of wage bargaining with φ = α . Firms are assumed to freely choose a wage

to announce, and then they join the market offering this wage without any

bargaining. The socially optimal equilibrium is attained when workers as wage

takers choose between labor markets, so that the value of an unemployed worker

is equalized in the economy.

To demonstrate that wage announcements are consistent with the socially

optimal steady state, consider a firm with a vacancy of type i which is free to

choose any wage w̃ and then join a market with this wage. A labor market

with wage w̃ has a market tightness θ̃ such that the value of unemployment is

equal to the economy-wide value U . After replacing w , E , and θ in equations

(26.4.3) and (26.4.17) by w̃ , Ẽ , and θ̃ , we can combine these two expressions

to arrive at a relationship between w̃ and θ̃ ,

w̃ =
r

1 + r
U +

r + s

θ̃q(θ̃)

( r

1 + r
U − z

)
. (26.4.22)

The expected present value of posting a vacancy of type i for one period in

market (w̃, θ̃) is

−Ci′(vi) + q(θ̃)β

∞∑

t=0

βt(1 − s)t(yi − w̃) = −Ci′(vi) + q(θ̃)
yi − w̃

r + s
.

After substituting equation (26.4.22) into this expression, we can compute the

first-order condition with respect to θ̃ as

q′(θ̃)
yi

r + s
− z

θ̃2
+

[
1

θ̃2
− q′(θ̃)

r + s

]
r

1 + r
U = 0 .

Since the socially optimal steady state is our conjectured equilibrium, we get

the economy-wide value U from equation (26.4.19) with φ replaced by α . The

substitution of this value for U into the first-order condition yields

yi − z =
r + s + α θ̃ q(θ̃)

(1 − α)q(θ̃)

θi

θ̃
Ci

′
(vi) . (26.4.23)

The right side is strictly decreasing in θ̃ , so by equation (26.4.21) the equality

can only hold with θ̃ = θi . We have therefore confirmed that the wages in an
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optimal steady state are such that firms would like freely to announce them and

to participate in the corresponding markets without any wage bargaining. The

equal value of an unemployed worker across markets ensures the participation

of workers, who now also act as wage takers.

26.5. Model of employment lotteries

Consider a labor market without search and matching frictions but where labor

is indivisible. An individual can supply either one unit of labor or no labor at

all, as assumed by Hansen (1985) and Rogerson (1988). In such a setting, em-

ployment lotteries can be welfare enhancing. The argument is best understood

in Rogerson’s static model, but with physical capital (and its implication of

diminishing marginal product of labor) removed from the analysis. We assume

that a single good can be produced with labor, n , as the sole input in a constant

returns to scale technology,

f(n) = γn , where γ > 0 . (26.5.1)

In a competitive equilibrium, the equilibrium wage is then equal to γ . Follow-

ing Hansen and Rogerson, the preferences of an individual are assumed to be

additively separable in consumption, c , and labor,

u(c) − v(n) .

The standard assumptions are that both u and v are twice continuously differ-

entiable and increasing, but while u is strictly concave, v is convex. However,

as pointed out by Rogerson, the precise properties of the function v are not

essential because of the indivisibility of labor. The only values of v(n) that

matter are v(0) and v(1). Let v(0) = 0 and v(1) = A > 0. An individual who

can supply one unit of labor in exchange for γ units of goods would then choose

to do so if

u(γ) − A ≥ u(0) ,

and otherwise the individual would choose not to work.

The proposed allocation might be improved upon by introducing employment

lotteries. That is, each individual chooses a probability of working, ψ ∈ [0, 1],
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and he trades his stochastic labor earnings in contingency markets. We assume a

continuum of agents so that the idiosyncratic risks associated with employment

lotteries do not pose any aggregate risk, and the contingency prices are then

determined by the probabilities of events occurring. (See chapters 8 and 13.)

Let c1 and c2 be the individual’s choice of consumption when working and not

working, respectively. The optimization problem becomes

max
c1,c2,ψ

ψ [u(c1) − A] + (1 − ψ)u(c2) ,

subject to ψc1 + (1 − ψ)c2 ≤ ψγ ,

c1, c2 ≥ 0 , ψ ∈ [0, 1] .

At an interior solution for ψ , the first-order conditions for consumption imply

that c1 = c2 ,
ψ u′(c1) = ψ λ ,

(1 − ψ)u′(c2) = (1 − ψ)λ ,

where λ is the multiplier on the budget constraint. Since there is no harm

in also setting c1 = c2 when ψ = 0 or ψ = 1, the individual’s maximization

problem can be simplified to read

max
c,ψ

u(c) − ψA ,

subject to c ≤ ψγ , c ≥ 0 , ψ ∈ [0, 1] .
(26.5.2)

The welfare-enhancing potential of employment lotteries is implicit in the re-

laxation of the earlier constraint that ψ could only take on two values, 0 or 1.

With employment lotteries, the marginal rate of transformation between leisure

and consumption is equal to γ .

The solution to expression (26.5.2) can be characterized by considering three

possible cases:

Case 1. A/u′(0) ≥ γ .

Case 2. A/u′(0) < γ < A/u′(γ).

Case 3. A/u′(γ) ≤ γ .

The introduction of employment lotteries will only affect individuals’ behavior

in the second case. In the first case, if A/u′(0) ≥ γ , it will under all circum-

stances be optimal not to work (ψ = 0), since the marginal value of leisure in

terms of consumption exceeds the marginal rate of transformation even at a zero
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consumption level. In the third case, if A/u′(γ) ≤ γ , it will always be optimal

to work (ψ = 1), since the marginal value of leisure falls short of the marginal

rate of transformation when evaluated at the highest feasible consumption per

worker. The second case implies that expression (26.5.2) has an interior solution

with respect to ψ and that employment lotteries are welfare enhancing. The

optimal value, ψ∗ , is then given by the first-order condition

A

u′(γψ∗)
= γ .

An example of the second case is shown in Figure 26.5.1. The situation here

is such that the individual would choose to work in the absence of employment

lotteries, because the curve u(γn)−u(0) is above the curve v(n) when evaluated

at n = 1. After the introduction of employment lotteries, the individual chooses

the probability ψ∗ of working, and his welfare increases by 4ψ −4 .

γu (   n) - u (0)

∆ψ

n1

A

Utils

v (n)

ψ

∆

∗

Figure 26.5.1: The optimal employment lottery is given by prob-

ability ψ∗ of working, which increases expected welfare by 4ψ−4
as compared to working full-time, n = 1.
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26.6. Lotteries for households versus lotteries for firms

Prescott (2004) focuses on the role of nonconvexities at the level of individual

households and production units in the study of business cycles. On the house-

hold side, he envisions indivisibilities in labor supply like those in the previous

section, while on the firm side, he uses capacity constraints as an example. In

spite of these nonconvexities at the micro level, where all units are assumed to

be infinitesimal, Prescott points out that the aggregate economy is convex when

there are lotteries for households and lotteries for firms that serve to smooth

the nonconvexities and that thereby deliver both a stand-in household and a

stand-in firm.

Prescott thus recommends an aggregation theory to rationalize a stand-in

household that is analogous to better-known aggregation results that underlie

the stand-in firm and the aggregate production function. He emphasizes the

formal similarities associated with smoothing out nonconvexities by aggregating

over firms, on the one hand, and aggregating over households, on the other.

Here we shall argue that the economic interpretations that attach to these two

types of aggregation make the two aggregation theories very different.3 Perhaps

this explains why this aggregation method has been applied more to firms than

to households.4

Before turning to a critical comparison of the two aggregation theories, we

first describe a simple technology that will capture the essence of Prescott’s

example of nonconvexities on the firm side, while leaving intact most of our

analysis in section 26.5.

3 Our argument is based on Ljungqvist and Sargent’s (2004) comment on Prescott (2004).

4 Sherwin Rosen often used a lottery model for the household. Instead of analyzing why

a particular individual chose higher education, Rosen modeled a family with a continuum of

members that allocates fractions of its members to distinct educational choices that involve

different numbers of years of schooling. See Ryoo and Rosen (2003).
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26.6.1. An aggregate production function

We replace our earlier linear technology (26.5.1) with a production technology

based on a strictly concave function g(·),

g(0) = 0, g(1) = γ, g′ > 0, g′′ < 0 =⇒ g′(1) < γ.

The point of normalization, g(1) = γ , will be a focal point in our analysis, and

the strict concavity of g ensures that g′(1) < γ .

We assume that there is a continuum of firms and each firm has a production

technology given by

f(n) =

{
g(n) if n ≥ 1,

0 otherwise,
(26.6.1)

where n is the amount of labor employed in the firm. Note that production can

take place only if the firm employs at least n ≥ 1.5 We normalize the measure of

households in section 26.5 to unity and assume that there is a measure of firms

equal to Z < 1, i.e., there are more households than firms. Each household

owns an equal share of all firms.

In a competitive equilibrium where N households are working, there will

be min{N,Z} firms in operation. Because of the technological constraint in

(26.6.1), firms will choose to operate only if they can employ at least one worker.

Moreover, competitive forces will guarantee that the maximum number of firms

is operating subject to the constraint that each firm employs at least one worker.

This is an implication of our assumption of decreasing returns to scale in each

firm. The assumption guarantees that it is profitable to operate many small

firms rather than one large firm and that all operating firms will employ the

same amount of labor. Thus, in a competitive equilibrium, aggregate output as

a function of aggregate employment N is given by

F (N) =

{
N γ if N < Z,

Z g
(
N
Z

)
if N ≥ Z.

(26.6.2)

The aggregate production function in (26.6.2) can be understood as follows.

In the first case, only N firms are active and each employs one worker. Hence,

5 As a clarification, note that we do not impose an integer constraint on employment in a

firm. It is true that each household in section 26.5 faces the integer constraint of supplying

either one unit of labor or no labor at all. However, a household that chooses to work can

very well divide its one unit of labor across several firms.
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aggregate output is equal to N g(1) = N γ , and the economy is operating at

less than full capacity because there are idle firms (N < Z ). In the second

case, all Z firms are active and each one employs the same amount of labor,

n = N/Z . Hence, aggregate output is equal to Z g(N/Z), and the economy is

operating at full capacity in the sense that there are no idle firms. Note that

the aggregate production function in (26.6.2) is convex even though individual

firms are subject to a nonconvexity in (26.6.1).

We now turn to an example of time-varying capacity utilization to compare

and criticize the aggregation theory underlying the stand-in household in section

26.5 and the aggregation theory underlying the aggregate production function

in (26.6.2).6

26.6.2. Time-varying capacity utilization

We assume that the stand-in household in section 26.5 is subject to an aggregate

preference shock where the disutility of working can take on two different values,

A ∈ {0, Ā} . The parameters satisfy the following restrictions:

Ā

u′(0)
< γ, g′

(
1

Z

)
<

Ā

u′
[
Z g
(

1
Z

)] . (26.6.3)

These parameter restrictions are the analogue to the parameter restriction in

case 2 of section 26.5. In particular, restrictions (26.6.3) guarantee an interior

solution with respect to the employment lottery when A = Ā , i.e., employment,

will then satisfy N ∈ (0, 1) where N is both the measure of households working

and the probability of an individual household working since the population of

all households is normalized to one.

To see that parameter restrictions (26.6.3) guarantee an interior solution

with respect to N when A = Ā , we will examine why neither N = 0 nor

N = 1 can constitute an equilibrium. First, we can reject N = 0 with the

following argument. Whenever N < Z , competition among firms drives up

6 There are three differences between Prescott’s (2004) example and ours, but none materi-

ally effects our illustration of time-varying capacity utilization. First, Prescott postulates an

additional production factor, capital, that can also be freely allocated across firms. Second,

Prescott assumes a technology for creating new firms. Third, Prescott studies technology

shocks while we explore preference shocks.
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the equilibrium wage to w = g(1) = γ . That is, firms are then not a scarce

input in production and, therefore, earn no rents. Given the equilibrium wage

w = γ , the first inequality in (26.6.3) states that the stand-in household’s

first-order conditions would be violated if N = 0. Second, we can reject an

equilibrium outcome with N = 1 as follows. At full employment, all firms are

operating and aggregate output is given by Z g(1/Z), which is also equal to per

capita output since the measure of households is normalized to one. Moreover,

according to section 26.5, households will trade in contingent claims prior to

the outcome of the employment lottery so that each household’s consumption is

also given by c = Z g(1/Z). The equilibrium wage at full employment is given

by w = g′(1/Z), i.e, the marginal product of labor in an individual firm that

employs the same amount of labor as all other firms. Given the consumption

outcome and wage rate when N = 1, we can ask if the stand-in household would

indeed choose the probability of working equal to one that would be required in

order for this allocation to constitute an equilibrium. According to the second

inequality in (26.6.3), the answer is no because the stand-in household would

then value a marginal increase in leisure more than the loss of wage income.

Thus, we can conclude that parameter restrictions (26.6.3) guarantee an interior

solution with respect to the probability of working when A = Ā .

In contrast, when the preference shock is A = 0, the stand-in household will

inelastically supply one unit of labor since there is no disutility of working. The

economy will then be operating at full employment with no idle firms. Hence,

different realizations of the preference shock A ∈ {0, Ā} will trigger changes

in unemployment and potentially changes in capacity utilization, where the

latter depends on the size of the given measure of firms. Everything else being

equal, a higher Z makes it more likely that the preference shock Ā entails

idle firms in an equilibrium. The households and firms that are designated

to be unemployed and idle, respectively, are determined by the outcome of

lotteries among households and lotteries among firms. Prescott’s assertion that

the aggregation theory for households is the analogue of the aggregation theory

for firms seems to be accurate. So what is the difference between these two

aggregation theories?

An important distinction between firms and households is that firms have

no independent preferences. They serve only as vehicles for generating rental

payments for employed factors and profits for their owners. When a firm be-

comes inactive, the “firm” itself does not care whether it continues or ceases
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to exist. Our example of a nonconvex production technology that generates

time-varying capacity utilization illustrates this point very well. The firms that

do not find any workers stay idle; that is just as well for those idle firms be-

cause the firms in operation earn zero rents. In short, whether individual firms

operate or remain idle is the end of the story in the aggregation theory behind

the aggregate production function in (26.6.2). But in the aggregation theory

behind the stand-in household’s utility function in (26.5.2), it is really just the

beginning. Individual households do have preferences and care about alternative

states of the world. So the aggregation theory behind the stand-in household

has an additional aspect that is not present in the theory that aggregates over

firms, namely, it says how consumption and leisure are smoothed across house-

holds with the help of an extensive set of contingent claim markets. This market

arrangement and randomization device stands at the center of the employment

lottery model. To us, it seems that they make the aggregation theory behind

the stand-in household fundamentally different than the well-known aggregation

theory for the firm side.

Next, we explore how models with employment lotteries that are used to gen-

erate unemployed individuals in a frictionless framework can have very different

implications than models embodying frictional unemployment. In particular,

models with employment lotteries predict effects from layoff taxes that are op-

posite to those in search models.

26.7. Employment effects of layoff taxes

The models of employment determination in this chapter can be used to address

the question, how do layoff taxes affect an economy’s employment? Hopen-

hayn and Rogerson (1993) apply the model of employment lotteries to this very

question and conclude that a layoff tax would reduce the level of employment.

Mortensen and Pissarides (1999b) reach the opposite conclusion in a matching

model. We will here examine these results by scrutinizing the economic forces

at work in different frameworks. The purpose is both to gain further insights
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into the workings of our theoretical models and to learn about possible effects

of layoff taxes.7

Common features of many analyses of layoff taxes are as follows: The pro-

ductivity of a job evolves according to a Markov process, and a sufficiently poor

realization triggers a layoff. The government imposes a layoff tax τ on each

layoff. The tax revenues are handed back as equal lump-sum transfers to all

agents, denoted by T per capita.

Here, we assume the simplest possible Markov process for productivities. A

new job has productivity p0 . In all future periods, with probability ξ , the

worker keeps the productivity from last period, and with probability 1− ξ , the

worker draws a new productivity from a distribution G(p).

In our numerical examples, the model period is 2 weeks, and the assumption

that β = 0.9985 then implies an annual real interest rate of 4 percent. The

initial productivity of a new job is p0 = 0.5, and G(p) is taken to be a uniform

distribution on the unit interval. An employed worker draws a new productivity

on average once every two years when we set ξ = 0.98.

26.7.1. A model of employment lotteries with layoff taxes

In a model of employment lotteries, a market-clearing wage w equates the de-

mand and supply of labor. The constant-returns-to-scale technology implies

that this wage is determined from the supply side, as follows. At the beginning

of a period, let V (p) be the firm’s value of an employee with productivity p ,

V (p) = max
{
p − w + β

[
ξV (p) + (1 − ξ)

∫
V (p′) dG(p′)

]
,

− τ
}
.

(26.7.1)

Given a value of w , the solution to this Bellman equation is a reservation pro-

ductivity p̄ . If there exists an equilibrium with strictly positive employment,

the equilibrium wage must be such that new hires exactly break even, so that

V (p0) = p0 − w + β
[
ξV (p0) + (1 − ξ)

∫
V (p′) dG(p′)

]
= 0

7 The analysis is based on Ljungqvist’s (2002) study of layoff taxes in different models of

employment determination.
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⇒ w = p0 + β(1 − ξ)Ṽ , (26.7.2)

where

Ṽ ≡
∫
V (p′) dG(p′) .

To compute Ṽ , we first look at the value of V (p) when p ≥ p̄ ,

V (p)
∣∣∣
p≥p̄

= p − w + β
[
ξV (p) + (1 − ξ)Ṽ

]

= p − w + βξ
{
p − w + β

[
ξV (p) + (1 − ξ)Ṽ

]}
+ β(1 − ξ)Ṽ

= (1 + βξ)
[
p − w + β(1 − ξ)Ṽ

]
+ β2ξ2V (p)

=
p − w + β(1 − ξ)Ṽ

1 − βξ
=

p − p0

1 − βξ
, (26.7.3)

where the first equalities are obtained through successive substitutions of V (p),

and the last equality incorporates equation (26.7.2). We can then use equation

(26.7.3) to find an expression for Ṽ ,

Ṽ =

∫ p̄

−∞

−τ dG(p) +

∫ ∞

p̄

V (p) dG(p)

= −τ G(p̄) +

∫ ∞

p̄

p − p0

1 − βξ
dG(p) . (26.7.4)

From Bellman equation (26.7.1), the reservation productivity satisfies

p̄ − w + β
[
ξV (p̄) + (1 − ξ)Ṽ

]
= −τ .

After imposing equation (26.7.2) and V (p̄) = −τ , we find

p̄ = p0 − (1 − βξ)τ ≡ p̄(τ) . (26.7.5)

Equations (26.7.5), (26.7.4), and (26.7.2) can be used to solve for the equilib-

rium wage w = w(τ).

In a stationary equilibrium, let µ be the mass of new jobs created in every

period. The mass of jobs with productivity p0 that have not yet experienced a

new productivity draw can then be expressed as

µ

∞∑

i=0

ξi =
µ

1 − ξ
, (26.7.6)
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and the mass of jobs that have experienced a new productivity draw and are

still operating is given by

∞∑

i=0

ξiµ(1 − ξ) [1 −G(p̄)]

∞∑

j=0

{
ξ + (1 − ξ) [1 −G(p̄)]

}j

=
µ

1 − ξ

1 −G(p̄)

G(p̄)
. (26.7.7)

After equating the sum of these two kinds of jobs to N (which we use to denote

the total mass of all jobs), we get the following steady-state relationship:

µ = NG(p̄)(1 − ξ). (26.7.8)

The firms generate aggregate profits Π. These profits are here computed gross

of aggregate layoff taxes, i.e., Π + T . (Recall that the government hands back

layoff tax revenues to the representative agent as a lump-sum transfer T .) Using

the masses of jobs in expressions (26.7.6) and (26.7.7), we have

Π + T =
µ

1 − ξ
(p0 − w) +

µ

1 − ξ

1 −G(p̄)

G(p̄)

∫ ∞

p̄

p− w

1 −G(p̄)
dG(p)

= N

[
G(p̄) (p0 − w) +

∫ ∞

p̄

(p− w) dG(p)

]
, (26.7.9)

where the last inequality invokes relationship (26.7.8).

In a stationary equilibrium with wage w and a gross interest rate 1/β , the

representative agent’s optimization problem reduces to the static problem:

max
c,ψ

u(c) − ψA ,

subject to c ≤ ψw + Π + T , c ≥ 0 , ψ ∈ [0, 1] ,
(26.7.10)

where the profits Π and the lump-sum transfer T are taken as given by the

agents.8 We let ψ∗ denote the optimally chosen probability of working. It is

equal to N in an equilibrium and the corresponding optimal consumption level

is

c∗ = Nw + Π + T = N

[
G(p̄)p0 +

∫ ∞

p̄

p dG(p)

]
, (26.7.11)

8 As above, we are normalizing the measure of agents to unity so that aggregate variables

also represent per capita outcomes.
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where we have invoked expression (26.7.9). Hence, the steady-state expected

lifetime utility of an agent before seeing the outcome of any employment lottery

is equal to
∞∑

t=0

βt
[
u (c∗) − ψ∗A

]
.

Following Hopenhayn and Rogerson (1993), the preference specification is

u(c) = log(c) and the disutility of work is calibrated to match an employment

to population ratio equal to 0.6, which leads us to choose A = 1.6. Figures

26.7.1–26.7.5 show how equilibrium outcomes vary with the layoff tax. The

curves labelled L pertain to the model of employment lotteries. As derived

in equation (26.7.5), the reservation productivity in Figure 26.7.1 falls when it

becomes more costly to lay off workers. Figure 26.7.2 shows how the decrease in

number of layoffs is outweighed by the higher tax per layoff, so total layoff taxes

as a fraction of GNP increase over almost the whole range. Figure 26.7.3 reveals

changing job prospects, where the probability of working falls with a higher

layoff tax (which is equivalent to falling employment in a model of employment

lotteries). The welfare loss associated with a layoff tax is depicted in Figure

26.7.4 as the amount of consumption that an agent would be willing to give up

in exchange for a steady state with no layoff tax, and the “willingness to pay”

is expressed as a fraction of per capita consumption at a zero layoff tax.

Figure 26.7.5 reproduces Hopenhayn and Rogerson’s (1993) result that em-

ployment falls with a higher layoff tax (except at the highest layoff taxes). In-

tuitively, from a private perspective, a higher layoff tax is like a deterioration

in the production technology; the optimal change in the agents’ employment

lotteries will therefore depend on the strength of the substitution effect versus

the income effect. The income effect is largely mitigated by the government’s

lump-sum transfer of the tax revenues back to the private economy. Thus, lay-

off taxes in models of employment lotteries have strong negative employment

implications that are caused by substituting leisure for work. Formally, the loga-

rithmic preference specification gives rise to an optimal choice of the probability

of working, which is equal to the employment outcome, as given by

ψ∗ =
1

A
− T + Π

w
. (26.7.12)

The precise employment effect here is driven by profit flows from firms gross

of layoff taxes expressed in terms of the wage rate. Since these profits are to
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a large extent generated in order to pay for firms’ future layoff taxes, a higher

layoff tax tends to increase the accumulation of such funds with a corresponding

negative effect on the optimal choice of employment.

Negative employment effect of layoff taxes, when evaluated at τ = 0

Under the assumption that p0 = 1, i.e., the initial productivity of a new job

is equal to the upper support of the uniform distribution G(p) on the unit

interval [0, 1], we will show that the derivative of equilibrium employment is

strictly negative with respect to the layoff tax when evaluated at τ = 0.

Expressions (26.7.4) and (26.7.9) can then be evaluated as follows:

Ṽ = −τ p̄+

[
1 + p̄

2
− 1

]
1 − p̄

1 − βξ
, (26.7.13)

and

Π + T = N

[
p̄+ (1 − p̄)

1 + p̄

2
− w

]
. (26.7.14)

From equations (26.7.2) and (26.7.13),

w = 1 + β(1 − ξ)

[
−τ p̄− (1 − p̄)2

2(1 − βξ)

]
,

and after substituting for p̄ from (26.7.5)

w = 1 − β(1 − ξ)τ

[
1 − (1 − βξ)τ

2

]
≡ w(τ) . (26.7.15)

By substituting (26.7.14) into (26.7.12) and using expressions (26.7.5) and

(26.7.15), we arrive at an equilibrium expression for N ,

N(τ) =
2w(τ)

γ [2p̄(τ) + 1 − p̄(τ)2]

with its derivative

dN(τ)

d τ
=

−2β(1 − ξ)p̄(τ)
[
2p̄(τ) + 1 − p̄(τ)2

]
+ 4(1 − βξ) [1 − p̄(τ)]w(τ)

γ [2p̄(τ) + 1 − p̄(τ)2]
2 .

Evaluating the derivative at τ = 0, where p̄(0) = p0 = 1, we have

dN(τ)

d τ

∣∣∣∣∣
τ=0

=
−β(1 − ξ)

γ
< 0.

This states that in general equilibrium, employment falls in response to the

introduction of a layoff tax in our employment lottery model.
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Figure 26.7.1: Reservation productivity for different values of

the layoff tax.
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Figure 26.7.2: Total layoff taxes as a fraction of GNP for different

values of the layoff tax.
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Figure 26.7.3: Probability of working in the model with employ-

ment lotteries and probability of finding a job within 10 weeks in

the other models, for different values of the layoff tax.
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Figure 26.7.4: A job finder’s welfare loss due to the presence of

a layoff tax, computed as a fraction of per capita consumption at

a zero layoff tax.
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Figure 26.7.5: Employment index for different values of the layoff

tax. The index is equal to 1 at a zero layoff tax.

26.7.2. An island model with layoff taxes

To stay with the described technology in an island framework, let each job

represent a separate island, and an agent moving to a new island experiences

productivity p0 . We retain the feature that every agent bears the direct conse-

quences of his decisions. He receives his marginal product p when working and

incurs the layoff tax τ if leaving his island. The Bellman equation can then be

written as

V (p) = max

{
p − z + β

[
ξV (p) + (1 − ξ)

∫
V (p′) dG(p′)

]
,

− τ + βT V (p0)

}
, (26.7.16)

where z is the forgone utility of leisure when working and T is the number of

periods it takes to move to another island.9 The solution to this equation is a

reservation productivity p̄ .

9 Note that we have left out the lump-sum transfer from the government because it does

not affect the optimization problem.
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If there exists an equilibrium with agents working, we must have

V (p0) = p0 − z + β

[
ξV (p0) + (1 − ξ)

∫
V (p′) dG(p′)

]

=⇒ β(1 − ξ)Ṽ = (1 − βξ)V (p0) + z − p0 , (26.7.17)

where

Ṽ ≡
∫
V (p′) dG(p′) .

If the equilibrium entails agents moving between islands, the reservation pro-

ductivity, by equation (26.7.16), satisfies

p̄ − z + β
[
ξV (p̄) + (1 − ξ)Ṽ

]
= −τ + βT V (p0) ,

and, after imposing equation (26.7.17) and V (p̄) = −τ + βT V (p0),

p̄ = p0 − (1 − βξ)
[
τ + (1 − βT )V (p0)

]
. (26.7.18)

Note that if agents could move instantaneously between islands, T = 0, the

reservation productivity would be the same as in the model of employment

lotteries, given by equation (26.7.5).

A higher layoff tax also reduces the reservation productivity in the island

model; that is, an increase in τ outweighs the drop in the second term in square

brackets in equation (26.7.18). For a formal proof, let us make explicit that the

value function and the reservation productivity are functions of the layoff tax,

V (p; τ) and p̄(τ). Consider two layoff taxes, τ and τ ′ , such that τ ′ > τ ≥ 0,

and denote the difference 4τ = τ ′ − τ . We can then construct a lower bound

for V (p; τ ′) in terms of V (p; τ). In response to the higher layoff tax τ ′ , the

agent can always keep his decision rule associated with V (p; τ) and an upper

bound for his extra layoff tax payments would be that he paid 4τ in the current

period and every T th period from there on,

V (p; τ ′) > V (p, τ) −
∞∑

i=0

βiT4τ , (26.7.19)

where the strict inequality follows from the fact that it cannot be optimal to

constantly move. In addition, the agent might be able to select a better decision

rule than the one associated with τ . In fact, the reservation productivity must
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fall in response to a higher layoff tax whenever there is an interior solution with

respect to p̄ , as given by equation (26.7.18). By using equations (26.7.18) and

(26.7.19), we have

p̄(τ ′) − p̄(τ) = −(1 − βξ)
{
4τ + (1 − βT )

[
V (p0; τ

′) − V (p0; τ)
]}

< −(1 − βξ)
[
4τ − (1 − βT )

∞∑

i=0

βiT4τ
]

= 0 .

The numerical illustration in Figures 26.7.1 through 26.7.5 is based on a

value of leisure z = 0.25 and a length of transition between jobs T = 7; that is,

unemployment spells last 14 weeks. The curves that pertain to the island model

are labeled S . The effects of layoff taxes on the reservation productivity, the

economy’s total layoff taxes, and the welfare of a recent job finder are all similar

to the outcomes in the model of employment lotteries. The sharp difference

appears in Figure 26.7.5 depicting the effect on the economy’s employment. In

the island model where agents are left to fend for themselves, a lower reservation

productivity is synonymous with both less labor reallocation and lower unem-

ployment. Lower unemployment is thus attained at the cost of a less efficient

labor allocation.

Mobility costs also cause employment to rise in the general version of the

island model, as mentioned by Lucas and Prescott (1974, p. 205). For a given

expected value of arriving on a new island vu , the value function in equation

(26.2.3) is replaced by

v(θ, x) = max
{
βvu − τ ,

θ f ′(x) + min
{
βvu , βE[v(θ′, x)|θ]

}}
, (26.7.20)

which lies below equation (26.2.3), but with a drop of at most τ . Similarly,

equation (26.2.4) changes to

θ f ′(n) + βE [v(θ′, n)|θ] = βvu − τ . (26.7.21)

An implication here is that x+(θ) rises in response to a higher layoff tax. The

unchanged expression (26.2.5) means that x−(θ) falls as a result of the pre-

ceding drop in the value function. In other words, the range of an island’s

employment levels characterized by no labor movements is enlarged. This ef-

fect will shift the curve in Figure 26.2.1 downward and decrease the equilibrium
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value of vu . Less labor reallocation maps directly into a lower unemployment

rate.

26.7.3. A matching model with layoff taxes

We now modify the matching model to incorporate a layoff tax, and the exoge-

nous destruction of jobs is replaced by the described Markov process for a job’s

productivity. A job is now endogenously destroyed when the outside option,

taking the layoff tax into account, is higher than the value of maintaining the

match. The match surplus, Si(p), is a function of the job’s current productivity

p and can be expressed as

Si(p) + Ui = max

{
p+ β

[
ξSi(p) + (1 − ξ)

∫
Si(p

′) dG(p′) + Ui

]
,

Ui − τ

}
, (26.7.22)

where Ui is once again the agent’s outside option, that is, the value of being

unemployed. Both Si(p) and Ui are indexed by i , since we will explore the

implications of two alternative specifications of the Nash product, i ∈ {a, b} ,

[
Ea(p) − Ua

]φ
Ja(p)

1−φ , (26.7.23)
[
Eb(p) − Ub

]φ[
Jb(p) + τ

]1−φ
. (26.7.24)

Specification (26.7.23) leads to the usual result that the worker receives a frac-

tion φ of the match surplus, while the firm gets the remaining fraction (1−φ),

Ea(p) − Ua = φSa(p) and Ja(p) = (1 − φ)Sa(p) . (26.7.25)

The alternative specification (26.7.24) adopts the assumption of Saint-Paul

(1995) that the layoff cost changes the firm’s threat point from 0 to −τ , and

thereby increases the worker’s relative share of the match surplus. Solving for

the corresponding surplus-sharing rules, we get

Eb(p) − Ub = φ
(
Sb(p) + τ

)
,

Jb(p) = (1 − φ)Sb(p) − φτ .
(26.7.26)
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The worker’s continuation value outside of the match associated with Nash

product (26.7.23) or (26.7.24), respectively, is

Ua = z + β
[
θq(θ)φSa(p0) + Ua

]
, (26.7.27)

Ub = z + β
{
θq(θ)φ

[
Sb(p0) + τ

]
+ Ub

}
. (26.7.28)

The equilibrium conditions that firms post vacancies until the expected profits

are driven down to zero become

(1 − φ)Sa(p0) =
c

βq(θ)
, (26.7.29)

(1 − φ)Sb(p0) − φτ =
c

βq(θ)
, (26.7.30)

for Nash product (26.7.23) or (26.7.24), respectively.

In the calibration, we choose a matching function M(u, v) = 0.01u0.5v0.5 , a

worker’s bargaining strength φ = 0.5, and the same value of leisure as in the

island model, z = 0.25. Qualitatively, the results in Figures 26.7.1 through

26.7.4 are the same across all the models considered here. The curve labeled

Ma pertains to the matching model in which the workers’ relative share of the

match surplus is constant, while the curve Mb refers to the model in which the

share is positively related to the layoff tax. However, matching model Mb does

stand out. Its reservation productivity plummets in response to the layoff tax

in Figure 26.7.1, and is close to zero at τ = 11. A zero reservation productivity

means that labor reallocation comes to a halt, and the economy’s tax revenues

fall to zero in Figure 26.7.2. The more dramatic outcomes under Mb have to

do with layoff taxes increasing workers’ relative share of the match surplus. The

equilibrium condition (26.7.30) requiring that firms finance incurred vacancy

costs with retained earnings from the matches becomes exceedingly difficult to

satisfy when a higher layoff tax erodes the fraction of match surpluses going to

firms. Firms can break even only if the expected time to fill a vacancy is cut

dramatically; that is, there has to be a large number of unemployed workers

for each posted vacancy. This equilibrium outcome is reflected in the sharply

falling probability of a worker finding a job within 10 weeks in Figure 26.7.3. As

a result, there are larger welfare costs in model Mb , as shown by the welfare loss

of a job finder in Figure 26.7.4. The welfare loss of an unemployed agent is even

larger in model Mb , whereas the differences between employed and unemployed
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agents in the three other model specifications are negligible (not shown in any

figure).

In Figure 26.7.5, matching model Ma looks very much like the island model

with increasing employment, and matching model Mb displays initially falling

employment, similar to the model of employment lotteries. The later sharp

reversal of the employment effect in the Mb model is driven by our choice of a

Markov process with rather little persistence. (For a comparison, see Ljungqvist,

2002, who explores Markov formulations with more persistence.)

Mortensen and Pissarides (1999a) propose still another bargaining specifica-

tion where expression (26.7.23) is the Nash product when a worker and a firm

meet for the first time, while the Nash product in expression (26.7.24) char-

acterizes all their consecutive negotiations. The idea is that the firm will not

incur any layoff tax if the firm and worker do not agree on a wage in the first

encounter; that is, there is never an employment relationship. In contrast, the

firm’s threat point is weakened in future negotiations with an already employed

worker because the firm would then have to pay a layoff tax if the match were

broken up. We will here show that, except for the wage profile, this alternative

specification is equivalent to just assuming Nash product (26.7.23) for all peri-

ods. The intuition is that the modified wage profile under the Mortensen and

Pissarides assumption is equivalent to a new hire posting a bond equal to his

share of the future layoff tax.

First, we compute the wage associated with expression (26.7.23), wa(p),

from the expression for a firm’s match surplus,

Ja(p) = p − wa(p) + β
[
ξJa(p) + (1 − ξ)

∫
Ja(p

′) dG(p′)
]
, (26.7.31)

which together with equation (26.7.25) implies

wa(p) = p − (1 − φ)Sa(p) + β
[
ξ(1 − φ)Sa(p)

+ (1 − ξ)

∫
(1 − φ)Sa(p

′) dG(p′)
]
. (26.7.32)

Second, we verify that the present value of these wages is exactly equal to that of

Mortensen and Pissarides’ bargaining scheme for any completed job, under the

maintained hypothesis that the two formulations have the same match surplus

Sa(p). Let J1(p) and J+(p) denote the firm’s match surplus with Mortensen and
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Pissarides’ specification in the first period and all future periods, respectively.

The solutions to the maximization of their Nash products are

J1(p) = (1 − φ)Sa(p) ,

J+(p) = (1 − φ)Sa(p) − φτ .
(26.7.33)

The associated wage functions can be written as

w1(p) = p − J1(p) + β
[
ξJ+(p) + (1 − ξ)

∫
J+(p′) dG(p′)

]

= wa(p) − β φτ ,

w+(p) = p − J+(p) + β
[
ξJ+(p) + (1 − ξ)

∫
J+(p′) dG(p′)

]

= wa(p) + r β φτ ,

where the second equalities follow from equations (26.7.32) and (26.7.33), and

r ≡ β−1 − 1. It can be seen that the wage under the Mortensen and Pissarides’

specification is reduced in the first period by the worker’s share of any future

layoff tax, and future wages are increased by an amount equal to the net interest

on this posted “bond.” In other words, the present value of a worker’s total com-

pensation for any completed job is identical for the two specifications. It follows

that the present value of a firm’s match surplus is also identical across spec-

ifications. We have thereby confirmed that the same equilibrium allocation is

supported by Nash product (26.7.23) and Mortensen and Pissarides’ alternative

bargaining formulation.

26.8. Kiyotaki-Wright search model of money

We now explore a discrete-time version of Kiyotaki and Wright’s (1993) search

model of money.10 Let us first study their environment without money. The

economy is populated by a continuum of infinitely lived agents, with total popu-

lation normalized to unity. There is also a number of differentiated commodities,

which are indivisible and come in units of size one. Agents have idiosyncratic

tastes over these consumption goods as captured by a parameter x ∈ (0, 1). In

10 Our main simplification is that the time to produce is deterministic rather than stochastic.

We also alter the way money is introduced into the model.
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particular, x equals the proportion of commodities that can be consumed by

any given agent, and x also equals the proportion of agents that can consume

any given commodity. If a commodity can be consumed by an agent, then we

say that it is one of his consumption goods. An agent derives utility U > 0

from consuming one of his consumption goods, while the goods that he cannot

consume yield zero utility.

Initially, let each agent be endowed with one good, and let these goods be

randomly drawn from the set of all commodities. Goods are costlessly storable,

but each agent can store at most one good at a time. The only input in the

production of goods is the agents’ own prior consumption. After consuming one

of his consumption goods, an agent produces next period a new good drawn

randomly from the set of all commodities. We assume that agents can consume

neither their own output nor their initial endowment, so for consumption and

production to take place there must be exchange among agents.

Agents meet pairwise and at random. In each period, an agent meets another

agent with probability θ ∈ (0, 1] and he has no encounter with probability 1−θ .

Two agents who meet will trade if there is a mutually agreeable transaction. Any

transaction must be quid pro quo because private credit arrangements are ruled

out by the assumptions of a random matching technology and a continuum of

agents. We also assume that there is a transaction cost ε ∈ (0, U) in terms of

disutility, which is incurred whenever accepting a commodity in trade. Thus, a

trader who is indifferent between holding two goods will never trade one for the

other.

Agents choose trading strategies in order to maximize their expected dis-

counted utility from consumption net of transaction costs, taking as given the

strategies of other traders. Following Kiyotaki and Wright (1993), we restrict our

attention to symmetric Nash equilibria, where all agents follow the same strate-

gies and all goods are treated the same, and to steady states, where strategies

and aggregate variables are constant over time.

In a symmetric equilibrium, an agent will trade only if he is offered a com-

modity that belongs to his set of consumption goods, and then consumes it im-

mediately. Accepting a commodity that is not one’s consumption good would

only give rise to a transaction cost ε without affecting expected future trading

opportunities. This statement is true because no commodities are treated as

special in a symmetric equilibrium, and therefore the probability of a commod-

ity being accepted by the next agent one meets is independent of the type of
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commodity one has.11 It follows that x is the probability that a trader lo-

cated at random is willing to accept any given commodity, and x2 becomes

the probability that two traders consummate a barter in a situation of “double

coincidence of wants.”

At the beginning of a period before the realization of the matching process,

the value of an agent’s optimization problem becomes

V nc = θ x2 (U − ε) + βV nc ,

where β ∈ (0, 1) is the discount factor. The superscript and subscript of V nc
denote a nonmonetary equilibrium and a commodity trader, respectively, to set

the stage for our next exploration of the role for money in this economy. How

will fiat money affect welfare? Keep the benchmark of a barter economy in

mind,

V nc =
θ x2 (U − ε)

1 − β
. (26.8.1)

26.8.1. Monetary equilibria

At the beginning of time, suppose a fraction M̄ ∈ [0, 1) of all agents are each

offered one unit of fiat money. The money is indivisible, and an agent can store

at most one unit of money or one commodity at a time. That is, fiat money

will enter into circulation only if some agents accept money and discard their

endowment of goods. These decisions must be based solely on agents’ beliefs

about other traders’ willingness to accept money in future transactions, because

fiat money is by definition unbacked and intrinsically worthless. To determine

whether or not fiat money will initially be accepted, we will therefore first have

to characterize monetary equilibria.12

Fiat money adds two state variables in a symmetric steady state: the prob-

ability that a commodity trader accepts money, Π ∈ [0, 1], and the amount of

11 Kiyotaki and Wright (1989) analyze commodity money in a related model with nonsym-

metric equilibria, where some goods become media of exchange.
12 If money is valued in an equilibrium, the relative price of goods and money is trivially

equal to 1, since both objects are indivisible and each agent can carry at most one unit of the

objects. Shi (1995) and Trejos and Wright (1995) endogenize the price level by relaxing the

assumption that goods are indivisible.
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money circulating, M ∈ [0, M̄ ] , which is also the fraction of all agents carrying

money. An equilibrium pair (Π,M) must be such that an individual’s choice

of probability of accepting money when being a commodity trader, π , coincides

with the economy-wide Π, and the amount of money M is consistent with

the decisions of those agents who are initially free to replace their commodity

endowment with fiat money.

In a monetary equilibrium, agents can be divided into two types of traders.

An agent brings either a commodity or a unit of fiat money to the trading

process; that is, he is either a commodity trader or a money trader. At the

beginning of a period, the values associated with being a commodity trader and

a money trader are denoted Vc and Vm , respectively. The Bellman equations

can be written

Vc = θ(1 −M)x2
(
U − ε+ βVc

)
+ θMxmax

π

[
πβVm + (1 − π)βVc

]

+
[
1 − θ(1 −M)x2 − θMx

]
βVc , (26.8.2)

Vm = θ(1 −M)xΠ
(
U − ε+ βVc

)
+
[
1 − θ(1 −M)xΠ

]
βVm. (26.8.3)

The value of being a commodity trader in equation (26.8.2) equals the sum

of three terms. The first term is the probability of the agent meeting other

commodity traders, θ(1 −M), times the probability that both want to trade,

x2 , times the value of trading, consuming, and returning as a commodity trader

next period, U−ε+βVc . The second term is the probability of the agent meeting

money traders, θM , times the probability that a money trader wants to trade,

x , times the value of accepting money with probability π , πβVm + (1− π)βVc ,

where π is chosen optimally. The third term captures the complement to the

two previous events when the agent stores his commodity to the next period with

a continuation value of βVc . According to equation (26.8.3), the value of being

a money trader equals the sum of two terms. The first term is the probability of

the agent meeting a commodity trader, θ(1−M), times the probability of both

wanting to trade, xΠ, times the value of trading, consuming, and becoming a

commodity trader next period, U − ε+βVc . The second term is the probability

of the described event not occurring times the value of keeping the unit of fiat

money to the next period, βVm .

The optimal choice of π depends solely on Π. First, note that if Π < x then

equations (26.8.2) and (26.8.3) imply that Vm < Vc , so the individual’s best
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response is π = 0. That is, if money is being accepted with a lower probability

than a barter offer, then it is harder to trade using money than barter, so agents

would never like to exchange a commodity for money. Second, if Π > x , then

equations (26.8.2) and (26.8.3) imply that Vm > Vc , so the individual’s best

response is π = 1. If money is being accepted with a greater probability than a

barter offer, then it is easier to trade using money than barter, and agents would

always like to exchange a commodity for money whenever possible. Finally, if

Π = x , then equations (26.8.2) and (26.8.3) imply that Vm = Vc , so π can

be anything in [0, 1]. If monetary exchange and barter are equally easy, then

traders are indifferent between carrying commodities and fiat money, and they

could accept money with any probability. Based on these results, the individual’s

best-response correspondence is as shown in Figure 26.8.1, and there are exactly

three values consistent with Π = π : Π = 0, Π = 1, and Π = x .

45
o

1x

π

Π

Figure 26.8.1: The best-response correspondence.

We can now answer our first question, namely, how many of the agents who

are initially free to exchange their commodity endowment for fiat money will

choose to do so? The answer is implicit in our discussion of the best-response

correspondence. Thus, we have the following three types of symmetric equilibria:
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1. A nonmonetary equilibrium with Π = 0 and M = 0, which is identical

to the barter outcome in the previous section: Agents expect that money will

be valueless, so they never accept it, and this expectation is self-fulfilling. All

agents become commodity traders associated with a value of V nc , as given by

equation (26.8.1).

2. A pure monetary equilibrium with Π = 1 and M = M̄ : Agents expect

that money will be universally acceptable. From our previous discussion we

know that agents will then prefer to bring money rather than commodities

to the trading process. It is therefore a dominant strategy to accept money

whenever possible; that is, expectation is self-fulfilling. Another implication is

that the fraction M̄ of agents who are initially free to exchange their commodity

endowment for fiat money will also do so. Let V pc and V pm denote the values

associated with being a commodity trader and a money trader, respectively, in

a pure monetary equilibrium.

3. A mixed monetary equilibrium with Π = x and M ∈ [0, M̄ ] : Traders

are indifferent between accepting and rejecting money as long as future trading

partners take it with probability Π = x , so partial acceptability with agents

setting π = x can also be self-fulfilling. However, a mixed monetary equilibrium

has no longer a unique mapping to the amount of circulating money M . Suppose

the initial choices between commodity endowment and fiat money are separate

from agents’ decisions on trading strategies. It follows that any amount of

money between [0, M̄ ] can constitute a mixed monetary equilibrium because

of the indifference between a commodity endowment and a unit of fiat money.

Of course, the allocation in a mixed monetary equilibrium with M = 0 is

identical to the one in a nonmonetary equilibrium. Let V ic (M) and V im(M)

denote the values associated with being a commodity trader and a money trader,

respectively, in a mixed monetary equilibrium with an amount of money equal

to M ∈ [0, M̄ ] .
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26.8.2. Welfare

To compare welfare across different equilibria, we set π = Π in equations

(26.8.2) and (26.8.3) and solve for the reduced-form expressions

Vc =
ψ

1 − β

{
(1 − β)x + βθxΠ

[
MΠ + (1 −M)x

]}
, (26.8.4)

Vm =
ψ

1 − β

{
(1 − β)Π + βθxΠ

[
MΠ + (1 −M)x

]}
, (26.8.5)

where ψ = [θ(1 −M)x(U − ε)]/[1 − β(1 − θxΠ)] > 0. The value Vm is greater

than or equal to Vc in a monetary equilibrium, since a necessary condition is

that monetary exchange is at least as easy as barter (Π ≥ x),

Vm = Vc + ψ (Π − x) .

After setting Π = x in equations (26.8.4) and (26.8.5), we see that a mixed

monetary equilibrium with M > 0 gives rise to a strictly lower welfare as

compared to the barter outcome in equation (26.8.1),

V ic (M) = V im(M) = (1 −M)V nc .

Even though some agents are initially willing to switch their commodity en-

dowment for fiat money, it is detrimental for the economy as a whole. Since

money is accepted with the same probability as commodities, money does not

ameliorate the problem of “double coincidence of wants” but only diverts real

resources from the economy.13 In fact, as noted by Kiyotaki and Wright (1990),

the mixed monetary equilibrium is isomorphic to the nonmonetary equilibrium

of another economy where the probability of meeting an agent is reduced from

θ to θ(1 −M).

13 This welfare result differs from that of Kiyotaki and Wright (1993), who assume that a

fraction M̄ of all agents are initially endowed with fiat money without any choice. It follows

that those agents endowed with money are certainly better off in a mixed monetary equilibrium

as compared to the barter outcome, while the other agents are indifferent. The latter agents

are indifferent because the existence of the former agents has the same crowding-out effect

on their consumption arrival rate in both types of equilibria. Our welfare results reported

here are instead in line with Kiyotaki and Wright’s (1990) original working paper based on a

slightly different environment where agents can at any time dispose of their fiat money and

engage in production.
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In a pure monetary equilibrium (Π = 1), the value of being a money trader

is strictly greater than the value of being a commodity trader. A natural welfare

criterion is the ex ante expected utility before the quantity M̄ of fiat money is

randomly distributed,

W = M̄V pm + (1 − M̄)V pc

=
θ(1 − M̄)x(U − ε)

1 − β

[
M̄ + (1 − M̄)x

]
. (26.8.6)

The first and second derivatives of equation (26.8.6) are

∂W

∂M̄
=

θx(U − ε)

1 − β

{
1 − 2

[
M̄ + (1 − M̄)x

]}
, (26.8.7)

∂2W

∂M̄2
= − 2

θx(U − ε)

1 − β
(1 − x) < 0 . (26.8.8)

Since the second derivative is negative, fiat money can only have a welfare-

enhancing role if the first derivative is positive when evaluated at M̄ = 0.

Thus, according to equation (26.8.7), money can (cannot) increase welfare if

x < .5 (x ≥ .5). Intuitively speaking, when x ≥ .5, each agent is willing to

consume (and therefore accept) at least half of all commodities, so barter is not

very difficult. The introduction of money would here only reduce welfare by

diverting real resources from the economy. When x < .5, barter is sufficiently

difficult so that the introduction of some fiat money improves welfare. The

optimum quantity of money is then found by setting equation (26.8.7) equal

to zero, M̄? = (1 − 2x)/(2 − 2x). That is, M̄? varies negatively with x , and

the optimum quantity of money increases when x shrinks and the problem

of “double coincidence of wants” becomes more difficult. In particular, M̄?

converges to .5 when x goes to zero.
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26.9. Concluding comments

The frameworks of search and matching present various ways of departing from

the frictionless Arrow-Debreu economy where all agents meet in a complete

set of markets. This chapter has mainly focused on labor markets as a central

application of these theories. The presented models have the concept of frictions

in common, but there are also differences. The island economy has frictional

unemployment without any externalities. An unemployed worker does not inflict

any injury on other job seekers other than what a seller of a good imposes on

his competitors. The equilibrium value to search, vu , serves the function of any

other equilibrium price of signaling to suppliers the correct social return from

an additional unit supplied. In contrast, the matching model with its matching

function is associated with externalities. Workers and firms impose congestion

effects when they enter as unemployed in the matching function or add another

vacancy in the matching function. To arrive at an efficient allocation in the

economy, it is necessary that the bilaterally bargained wage be exactly right.

In a labor market with homogeneous firms and workers, efficiency prevails only

if the workers’ bargaining strength, φ , is exactly equal to the elasticity of the

matching function with respect to the measure of unemployment, α . In the case

of heterogeneous jobs in the same labor market with a single matching function,

we established the impossibility of efficiency without government intervention.

The matching model unarguably offers a richer analysis through its extra in-

teraction effects, but it comes at the cost of the model’s microeconomic structure.

In an explicit economic environment, feasible actions can be clearly envisioned

for any population size, even if there is only one Robinson Crusoe. The island

economy is an example of such a model with its microeconomic assumptions,

such as the time it takes to move from one island to another. In contrast, the

matching model with its matching function imposes relationships between ag-

gregate outcomes. It is therefore not obvious how the matching function arises

when gradually increasing the population from one Robinson Crusoe to an econ-

omy with more agents. Similarly, it is an open question what determines when

heterogeneous firms and labor have to be matched through a common matching

function and when they have access to separate matching functions.

Peters (1991) and Montgomery (1991) suggest some microeconomic under-

pinnings to labor market frictions, which are further pursued by Burdett, Shi,
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and Wright (2001). Firms post vacancies with announced wages, and unem-

ployed workers can apply to only one firm at a time. If the values of filled

jobs differ across firms, firms with more valued jobs will have an incentive to

post higher wages to attract job applicants. In an equilibrium, workers will

be indifferent between applying to different jobs, and they are assumed to use

identical mixed strategies in making their applications. In this way, vacancies

may remain unfilled because some firms do not receive any applicants, and some

workers may find themselves “second in line” for a job and therefore remain un-

employed. When assuming a large number of firms that take market tightness

as given for each posted wage, Montgomery finds that the decentralized equi-

librium does maximize welfare for reasons similar to Moen’s (1997) identical

finding that was discussed earlier in this chapter.

Lagos (2000) derives a matching function from a model without any exoge-

nous frictions at all. He studies a dynamic market for taxicab rides in which

taxicabs seek potential passengers on a spatial grid and the fares are regu-

lated exogenously. In each location, the shorter side determines the number

of matches. It is shown that a matching function exists for this model, but

this matching function is an equilibrium object that changes with policy experi-

ments. Lagos sounds a warning that assuming an exogenous matching function

when doing policy analysis might be misleading.

Throughout our discussion of search and matching models, we have assumed

risk-neutral agents. Acemoglu and Shimer (1999), and Gomes, Greenwood,

and Rebelo (2001) analyze a matching model and a search model, respectively,

where agents are risk averse and hold precautionary savings because of imperfect

insurance against unemployment.
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Exercises

Exercise 26.1 An island economy (Lucas and Prescott, 1974)

Let the island economy in this chapter have a productivity shock that takes

on two possible values, {θL, θH} with 0 < θL < θH . An island’s productivity

remains constant from one period to another with probability π ∈ (.5, 1), and its

productivity changes to the other possible value with probability 1 − π . These

symmetric transition probabilities imply a stationary distribution where half of

the islands experience a given θ at any point in time. Let x̂ be the economy’s

labor supply (as an average per market).

a. If there exists a stationary equilibrium with labor movements, argue that an

island’s labor force has two possible values, {x1, x2} with 0 < x1 < x2 .

b. In a stationary equilibrium with labor movements, construct a matrix Γ

with the transition probabilities between states (θ, x), and explain what the

employment level is in different states.

c. In a stationary equilibrium with labor movements, we observe only four values

of the value function v(θ, x) where θ ∈ {θL, θH} and x ∈ {x1, x2} . Argue that

the value function takes on the same value for two of these four states.

d. Show that the condition for the existence of a stationary equilibrium with

labor movements is

β(2π − 1)θH > θL , (1)

and, if this condition is satisfied, an implicit expression for the equilibrium value

of x2 is

[θL + β(1 − π)θH ] f ′(2x̂− x2) = βπθHf
′(x2) . (2)

e. Verify that the allocation of labor in part d coincides with a social plan-

ner’s solution when maximizing the present value of the economy’s aggregate

production. Starting from an initial equal distribution of workers across islands,

condition (1) indicates when it is optimal for the social planner to increase the

number of workers on high-productivity islands. The first-order condition for

the social planner’s choice of x2 is then given by equation (2).
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Exercise 26.2 Business cycles and search (Gomes, Greenwood, and Re-

belo, 2001)

Part I The worker’s problem

Think about an economy in which workers all confront the following common

environment: Time is discrete. Let t = 0, 1, 2, . . . index time. At the beginning

of each period, a previously employed worker can choose to work at her last

period’s wage or draw a new wage. If she draws a new wage, the old wage is

lost and she will be unemployed in the current period. She can start work at

the new wage in the next period. New wages are independent and identically

distributed from the cumulative distribution function F , where F (0) = 0, and

F (M) = 1 for M < ∞ . Unemployed workers face a similar problem. At the

beginning of each period, a previously unemployed worker can choose to work

at last period’s wage offer or to draw a new wage from F . If she draws a new

wage, the old wage offer is lost and she can start working at the new wage in

the following period. Someone offered a wage is free to work at that wage for as

long as she chooses (she cannot be fired). The income of an unemployed worker

is b , which includes unemployment insurance and the value of home production.

Each worker seeks to maximize E0

∑∞
t=0(1−µ)tβtIt, where µ is the probability

that a worker dies at the end of a period, β is the subjective discount factor, and

It is the worker’s income in period t ; that is, It is equal to the wage wt when

employed and the income b when unemployed. Here, E0 is the mathematical

expectation operator, conditioned on information known at time 0. Assume

that β ∈ (0, 1) and µ ∈ (0, 1).

a. Describe the worker’s optimal decision rule. In particular, what should an

employed worker do? What should an unemployed worker do?

b. How would an unemployed worker’s behavior be affected by an increase in

µ?

Part II Equilibrium unemployment rate

The economy is populated with a continuum of the workers just described.

There is an exogenous rate of new workers entering the labor market equal to

µ , which equals the death rate. New entrants are unemployed and must draw a

new wage.
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c. Find an expression for the economy’s unemployment rate in terms of exoge-

nous parameters and the endogenous reservation wage. Discuss the determinants

of the unemployment rate.

We now change the technology so that the economy fluctuates between booms

(B ) and recessions (R). In a boom, all employed workers are paid an extra

z > 0. That is, the income of a worker with wage w is It = w + z in a boom

and It = w in a recession. Let whether the economy is in a boom or a recession

define the state of the economy. Assume that the state of the economy is i.i.d.

and that booms and recessions have the same probabilities of .5. The state of

the economy is publicly known at the beginning of a period before any decisions

are made.

d. Describe the optimal behavior of employed and unemployed workers. When,

if ever, might workers choose to quit?

e. Let wB and wR be the reservation wages in booms and recessions, respec-

tively. Assume that wB < wR . Let Gt be the fraction of workers employed

at wages w ∈ [wB , wR] in period t . Let Ut be the fraction of workers unem-

ployed in period t . Derive difference equations for Gt and Ut in terms of the

parameters of the model and the reservation wages, {F, µ,wB, wR} .

f. Figure 26.1 contains a simulated time series from the solution of the model

with booms and recessions. Interpret the time series in terms of the model.

Exercise 26.3 Business cycles and search again

The economy is either in a boom (B ) or recession (R) with probability .5.

The state of the economy (R or B ) is i.i.d. through time. At the beginning

of each period, workers know the state of the economy for that period. At the

beginning of each period, a previously employed worker can choose to work at

her last period’s wage or draw a new wage. If she draws a new wage, the old

wage is lost, b is received this period, and she can start working at the new

wage in the following period. During recessions, new wages (for jobs to start

next period) are i.i.d. draws from the c.d.f. F , where F (0) = 0 and F (M) = 1

for M < ∞ . During booms, the worker can choose to quit and take two i.i.d.

draws of a possible new wage (with the option of working at the higher wage,

again for a job to start the next period) from the same c.d.f. F that prevails

during recessions. (This ability to choose is what “jobs are more plentiful during

booms” means to workers.) Workers who are unemployed at the beginning of
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Figure 26.1: Unemployment during business cycles.

a period receive b this period and draw either one (in recessions) or two (in

booms) wage offers from the c.d.f. F to start work next period.

A worker seeks to maximize E0

∑∞
t=0(1 − µ)tβtIt , where µ is the probability

that a worker dies at the end of a period, β is the subjective discount factor,

and It is the worker’s income in period t ; that is, It is equal to the wage wt

when employed and the income b when unemployed.

a. Write the Bellman equation(s) for a previously employed worker.

b. Characterize the worker’s quitting policy. If possible, compare reservation

wages in booms and recessions. Will employed workers ever quit? If so, who

will quit and when?

Exercises 26.4–26.6 European unemployment

The following three exercises are based on work by Ljungqvist and Sargent

(1998), Marimon and Zilibotti (1999), and Mortensen and Pissarides (1999b),

who calibrate versions of search and matching models to explain high European

unemployment. Even though the specific mechanisms differ, they all attribute

the rise in unemployment to generous benefits in times of more dispersed labor

market outcomes for job seekers.
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Exercise 26.4 Skill-biased technological change (Mortensen and Pis-

sarides, 1999b)

Consider a matching model in discrete time with infinitely lived and risk-neutral

workers who are endowed with different skill levels. A worker of skill type

i produces hi goods in each period that she is matched to a firm, where

i ∈ {1, 2, . . . , N} and hi+1 > hi . Each skill type has its own but identical

matching function M(ui, vi) = Auαi v
1−α
i , where ui and vi are the measures

of unemployed workers and vacancies in skill market i . Firms incur a vacancy

cost c hi in every period that a vacancy is posted in skill market i ; that is,

the vacancy cost is proportional to the worker’s productivity. All matches are

exogenously destroyed with probability s ∈ (0, 1) at the beginning of a period.

An unemployed worker receives unemployment compensation b . Wages are de-

termined in Nash bargaining between matched firms and workers. Let φ ∈ [0, 1)

denote the worker’s bargaining weight in the Nash product, and we adopt the

standard assumption that φ = α .

a. Show analytically how the unemployment rate in a skill market varies with

the skill level hi .

b. Assume an even distribution of workers across skill levels. For different ben-

efit levels b , study numerically how the aggregate steady-state unemployment

rate is affected by mean-preserving spreads in the distribution of skill levels.

c. Explain how the results would change if unemployment benefits are propor-

tional to a worker’s productivity.

Exercise 26.5 Dispersion of match values (Marimon and Zilibotti, 1999)

We retain the matching framework of exercise 26.4 but assume that all workers

have the same innate ability h = h̄ and any earnings differentials are purely

match specific. In particular, we assume that the meeting of a firm and a worker

is associated with a random draw of a match-specific productivity p from an

exogenous distribution G(p). If the worker and firm agree to stay together, the

output of the match is then p · h in every period as long as the match is not

exogenously destroyed as in exercise 26.4 . We also keep the assumptions of a

constant unemployment compensation b and Nash bargaining over wages.

a. Characterize the equilibrium of the model.
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b. For different benefit levels b , study numerically how the steady-state unem-

ployment rate is affected by mean-preserving spreads in the exogenous distribu-

tion G(p).

Exercise 26.6 Idiosyncratic shocks to human capital (Ljungqvist and

Sargent, 1998)

We retain the assumption of exercise 26.5 that a worker’s output is the product

of his human capital h and a job-specific component which we now denote w ,

but we replace the matching framework with a search model. In each period of

unemployment, a worker draws a value w from an exogenous wage offer distri-

bution G(w) and, if the worker accepts the wage w , he starts working in the

following period. The wage w remains constant throughout the employment

spell that ends either because the worker quits or the job is exogenously de-

stroyed with probability s at the beginning of each period. Thus, in a given

job with wage w , a worker’s earnings wh can only vary over time because of

changes in human capital h . For simplicity, we assume that there are only two

levels of human capital, h1 and h2 where 0 < h1 < h2 <∞ . At the beginning

of each period of employment, a worker’s human capital is unchanged from last

period with probability πe and is equal to h2 with probability 1 − πe . Losses

of human capital are only triggered by exogenous job destruction. In the period

of an exogenous job loss, the laid off worker’s human capital is unchanged from

last period with probability πu and is equal to h1 with probability 1− πu . All

unemployed workers receive unemployment compensation, and the benefits are

equal to a replacement ratio γ ∈ [0, 1) times a worker’s last job earnings.

a. Characterize the equilibrium of the model.

b. For different replacement ratios γ , study numerically how the steady-state

unemployment rate is affected by changes in h1 .

Comparison of models

c. Explain how the different models in exercises 26.4 through 26.6 address the

observations that European welfare states have experienced less of an increase

in earnings differentials as compared to the United States, but suffer more from

long-term unemployment where the probability of gaining employment drops off

sharply with the length of the unemployment spell.
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d. Explain why the assumption of infinitely lived agents is innocuous for the

models in exercises 26.4 and 26.5 , but the alternative assumption of finitely

lived agents can make a large difference for the model in exercise 26.6 .

Exercise 26.7 Temporary jobs and layoff costs

Consider a search model with temporary jobs. At the beginning of each period,

a previously employed worker loses her job with probability µ , and she can

keep her job and wage rate from last period with probability 1−µ . If she loses

her job (or chooses to quit), she draws a new wage and can start working at

the new wage in the following period with probability 1. After a first period

on the new job, she will again in each period face probability µ of losing her

job. New wages are independent and identically distributed from the cumulative

distribution function F , where F (0) = 0, and F (M) = 1 for M < ∞ . The

situation during unemployment is as follows. At the beginning of each period, a

previously unemployed worker can choose to start working at last period’s wage

offer or to draw a new wage from F . If she draws a new wage, the old wage offer

is lost and she can start working at the new wage in the following period. The

income of an unemployed worker is b , which includes unemployment insurance

and the value of home production. Each worker seeks to maximize E0

∑∞
t=0 β

tIt ,

where β is the subjective discount factor, and It is the worker’s income in period

t ; that is, It is equal to the wage wt when employed and the income b when

unemployed. Here E0 is the mathematical expectation operator, conditioned

on information known at time 0. Assume that β ∈ (0, 1) and µ ∈ (0, 1].

a. Describe the worker’s optimal decision rule.

Suppose that there are two types of temporary jobs: short-lasting jobs with

µs and long-lasting jobs with µl , where µs > µl . When the worker draws a

new wage from the distribution F , the job is now randomly designated as either

short-lasting with probability πs or long-lasting with probability πl , where πs+

πl = 1. The worker observes the characteristics of a job offer, (w, µ).

b. Does the worker’s reservation wage depend on whether a job is short-lasting

or long-lasting? Provide intuition for your answer.

We now consider the effects of layoff costs. It is assumed that the government

imposes a cost τ > 0 on each worker that loses a job (or quits).

c. Conceptually, consider the following two reservation wages, for a given value

of µ : (i) a previously unemployed worker sets a reservation wage for accepting
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last period’s wage offer; (ii) a previously employed worker sets a reservation wage

for continuing working at last period’s wage. For a given value of µ , compare

these two reservation wages.

d. Show that an unemployed worker’s reservation wage for a short-lasting job

exceeds her reservation wage for a long-lasting job.

e. Let w̄s and w̄l be an unemployed worker’s reservation wages for short-

lasting jobs and long-lasting jobs, respectively. In period t , let Nst and Nlt

be the fractions of workers employed in short-lasting jobs and long-lasting jobs,

respectively. Let Ut be the fraction of workers unemployed in period t . Derive

difference equations for Nst , Nlt and Ut in terms of the parameters of the model

and the reservation wages, {F, µs, µl, πs, πl, w̄s, w̄l} .

Exercise 26.8 Productivity shocks, job creation, and job destruction,

donated by Rodolfo Manuelli

Consider an economy populated by a large number of identical individuals. The

utility function of each individual is

∞∑

t=0

βtxt,

where 0 < β < 1, β = 1/(1+r), and xt is income at time t . All individuals are

endowed with one unit of labor that is supplied inelastically: If the individual is

working in the market, its productivity is yt , while if he or she works at home,

productivity is z . Assume that z < yt . Individuals who are producing at home

can also, at no cost, search for a market job. Individuals who are searching

and jobs that are vacant get randomly matched. Assume that the number of

matches per period is given by

M(ut, xt),

where M is concave, increasing in each argument, and homogeneous of degree

1. In this setting, ut is interpreted as the total number of unemployed workers,

and vt is the total number of vacancies. Let θ ≡ v/u , and let q(θ) = M(u, v)/v

be the probability that a vacant job (or firm) will meet a worker. Similarly, let

θq(θ) = M(u, v)/u be the probability that an unemployed worker is matched

with a vacant job. Jobs are exogenously destroyed with probability s . In order

to create a vacancy, a firm must pay a cost c > 0 per period in which the



Exercises 999

vacancy is “posted” (i.e., unfilled). There is a large number of potential firms

(or jobs), and this guarantees that the expected value of a vacant job, V , is

zero. Finally, assume that when a worker and a vacant job meet, they bargain

according to the Nash bargaining solution, with the worker’s share equal to ϕ .

Assume that yt = y for all t .

a. Show that the zero-profit condition implies that

w = y − (r + s)c/q(θ).

b. Show that if workers and firms negotiate wages according to the Nash bar-

gaining solution (with worker’s share equal to ϕ), wages must also satisfy

w = z + ϕ(y − z + θc).

c. Describe the determination of the equilibrium level of market tightness, θ .

d. Suppose that at t = 0, the economy is at its steady state. At this point,

there is a once-and-for-all increase in productivity. The new value of y is y′ > y .

Show how the new steady-state value of θ , θ′ , compares with the previous value.

Argue that the economy “jumps” to the new value right away. Explain why there

are no “transitional dynamics” for the level of market tightness, θ .

e. Let ut be the unemployment rate at time t . Assume that at time 0 the

economy is at the steady-state unemployment rate corresponding to θ , the “old”

market tightness, and display this rate. Denote this rate as u0 . Let θ0 = θ′ .

Note that change in unemployment rate is equal to the difference between job

destruction at t, JDt and job creation at t, JCt . It follows that

JDt = (1 − ut)s,

JCt = θtq(θt)ut,

ut+1 − ut = JDt − JCt.

Go as far as you can characterizing job creation and job destruction at t = 0

(after the shock). In addition, go as far as you can describing the behavior

of both JCt and JDt during the transition to the new steady state (the one

corresponding to θ′ ).
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Exercise 26.9 Workweek restrictions, unemployment, and welfare, do-

nated by Rodolfo Manuelli

Recently, France has moved to a shorter workweek of about 35 hours per week.

In this exercise you are asked to evaluate the consequences of such a move. To

this end, consider an economy populated by risk-neutral, income-maximizing

workers with preferences given by

U = Et

∞∑

j=0

βjyt+j , 0 < β < 1, 1 + r = β−1.

Assume that workers produce z at home if they are unemployed, and that they

are endowed with one unit of labor. If a worker is employed, he or she can spend

x units of time at the job, and (1 − x) at home, with 0 ≤ x ≤ 1. Productivity

on the job is yx , and x is perfectly observed by both workers and firms.

Assume that if a worker works x hours, his or her wage is wx .

Assume that all jobs have productivity y > z , and that to create a vacancy

firms have to pay a cost of c > 0 units of output per period. Jobs are destroyed

with probability s . Let the number of matches per period be given by

M(u, v),

where M is concave, increasing in each argument, and homogeneous of degree

one. In this setting, u is interpreted as the total number of unemployed workers,

and v is the total number of vacancies. Let θ ≡ v/u , and let q(θ) = M(u, v)/v .

Assume that workers and firms bargain over wages, and that the outcome is

described by a Nash bargaining outcome with the workers’ bargaining power

equal to ϕ .

a. Go as far as you can describing the unconstrained (no restrictions on x other

than it be a number between 0 and 1) market equilibrium.

b. Assume that q(θ) = Aθ−α , for some 0 < α < 1. Does the solution of the

planner’s problem coincide with the market equilibrium?

c. Assume now that the workweek is restricted to be less than or equal to

x∗ < 1. Describe the equilibrium.
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d. For the economy in part c, go as far as you can (if necessary, make addi-

tional assumptions) describing the impact of this workweek restriction on wages,

unemployment rates, and the total number of jobs. Is the equilibrium optimal?

Exercise 26.10 Costs of creating a vacancy and optimality, donated by

Rodolfo Manuelli

Consider an economy populated by risk-neutral, income-maximizing workers

with preferences given by

U = Et

∞∑

j=0

βjyt+j , 0 < β < 1, 1 + r = β−1.

Assume that workers produce z at home if they are unemployed. Assume that

all jobs have productivity y > z , and that to create a vacancy firms have to

pay pA , with pA = C′(v), per period when they have an open vacancy, with v

being the total number of vacancies. Assume that the function C(v) is strictly

convex, twice differentiable and increasing. Jobs are destroyed with probability

s .

Let the number of matches per period be given by

M(u, v),

where M is concave, increasing in each argument, and homogeneous of degree

1. In this setting, u is interpreted as the total number of unemployed workers,

and v is the total number of vacancies. Let θ ≡ v/u , and let q(θ) = M(u, v)/v .

Assume that workers and firms bargain over wages and that the outcome is

described by a Nash bargaining outcome with the worker’s bargaining power

equal to ϕ .

a. Go as far as you can describing the market equilibrium. In particular, discuss

how changes in the exogenous variables, z , y , and the function C(v), affect the

equilibrium outcomes.

b. Assume that q(θ) = Aθ−α for some 0 < α < 1. Does the solution of the

planner’s problem coincide with the market equilibrium? Describe instances, if

any, in which this is the case.
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Exercise 26.11 Financial wealth, heterogeneity, and unemployment,

donated by Rodolfo Manuelli

Consider the behavior of a risk-neutral worker who seeks to maximize the ex-

pected present discounted value of wage income. Assume that the discount

factor is fixed and equal to β , with 0 < β < 1. The interest rate is also con-

stant and satisfies 1 + r = β−1 . In this economy, jobs last forever. Once the

worker has accepted a job, he or she never quits and the job is never destroyed.

Even though preferences are linear, a worker needs to consume a minimum of a

units of consumption per period. Wages are drawn from a distribution with sup-

port on [a, b] . Thus, any employed individual can have a feasible consumption

level. There is no unemployment compensation.

Individuals of type i are born with wealth ai , i = 0, 1, 2, where a0 = 0, a1 = a ,

a2 = a(1 + β). Moreover, in the period that they are born, all individuals

are unemployed. Population, Nt , grows at the constant rate 1 + n . Thus,

Nt+1 = (1 + n)Nt . It follows that, at the beginning of period t , at least nNt−1

individuals — those born in that period — will be unemployed. Of the nNt−1

individuals born at time t , ϕ0 are of type 0, ϕ1 of type 1, and the rest,

1−ϕ0 −ϕ1 , are of type 2. Assume that the mean of the offer distribution (the

mean offered, not necessarily accepted, wage) is greater than a/β .

a. Consider the situation of an unemployed worker who has a0 = 0. Argue that

this worker will have a reservation wage w∗(0) = a . Explain.

b. Let w∗(i) be the reservation wage of an individual with wealth i . Argue

that w∗(2) > w∗(1) > w∗(0). What does this say about the cross-sectional

relationship between financial wealth and employment probability? Discuss the

economic reasons underlying this result.

c. Let the unemployment rate be the number of unemployed individuals at

t, Ut , relative to the population at t,Nt . Thus, ut = Ut/Nt . Argue that in this

economy, the unemployment rate is constant.

d. Consider a policy that redistributes wealth in the form of changes in the

fraction of the population that is born with wealth ai . Describe as completely

as you can the effect upon the unemployment rate of changes in ϕi . Explain

your results.

Extra credit: Go as far as you can describing the distribution of the random

variable “number of periods unemployed” for an individual of type 2.
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Appendix A.
Functional Analysis

This appendix provides an introduction to the analysis of functional equations

(functional analysis). It describes the contraction mapping theorem, a workhorse

for studying dynamic programs.

A.1. Metric spaces and operators

We begin with the definition of a metric space, which is a pair of objects, a set

X , and a function d .1

Definition A.1.1. A metric space is a set X and a function d called a metric,

d : X ×X → R . The metric d(x, y) satisfies the following four properties:

M1. Positivity: d(x, y) ≥ 0 for all x, y ∈ X .

M2. Strict positivity: d(x, y) = 0 if and only if x = y .

M3. Symmetry: d(x, y) = d(y, x) for all x, y ∈ X .

M4. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) for all x, y , and z ∈ X .

We give some examples of the metric spaces with which we will be working:

Example A.1. lp[0,∞). We say that X = lp[0,∞) is the set of all sequences

of complex numbers {xt}∞t=0 for which
∑∞

t=0 |xt|p converges, where 1 ≤ p <∞ .

The function dp(x, y) = (
∑∞

t=0 |xt−yt|p)1/p is a metric. Often, we will say that

p = 2 and will work in l2[0,∞).

Example A.2. l∞[0,∞). The set X = l∞[0,∞) is the set of bounded

sequences {xt}∞t=0 of real or complex numbers. The metric is d∞(x, y) =

supt|xt − yt| .
Example A.3. lp(−∞,∞) is the set of “two-sided” sequences {xt}∞t=−∞

such that
∑∞
t=−∞ |xt|p < +∞ , where 1 ≤ p < ∞ . The associated metric

is dp(x, y) = (
∑∞

t=−∞ |xt − yt|p)1/p .

1 General references on the mathematics described in this appendix are Luenberger (1969)

and Naylor and Sell (1982).
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Example A.4. l∞(−∞,∞) is the set of bounded sequences {xt}∞t=−∞ with

metric d∞(x, y) = sup|xt − yt| .

Example A.5. Let X = C[0, T ] be the set of all continuous functions mapping

the interval [0, T ] into R . We consider the metric

dp(x, y) =

[∫ T

0

|x(t) − y(t)|pdt
]1/p

,

where the integration is in the Riemann sense.

Example A.6. Let X = C[0, T ] be the set of all continuous functions mapping

the interval [0, T ] into R . We consider the metric

d∞(x, y) = sup
0≤t≤T

|x(t) − y(t)|.

We now have the following important definition:

Definition A.1.2. A sequence {xn} in a metric space (X, d) is said to be

a Cauchy sequence if for each ε > 0 there exists an N(ε) such that d(xn, xm) < ε

for any n,m ≥ N(ε) . Thus a sequence {xn} is said to be Cauchy if limn,m→∞ d(xn, xm) =

0 .

We also have the following definition of convergence:

Definition A.1.3. A sequence {xn} in a metric space (X, d) is said to

converge to a limit x0 ∈ X if for every ε > 0 there exists an N(ε) such that

d(xn, x0) < ε for n ≥ N(ε) .

The following lemma asserts that every convergent sequence in (X, d) is a

Cauchy sequence:

Lemma A.1.1. Let {xn} be a convergent sequence in a metric space (X, d) .

Then {xn} is a Cauchy sequence.

Proof. Fix any ε > 0. Let x0 ∈ X be the limit of {xn} . Then for all m,n one

has

d(xn, xm) ≤ d(xn, x0) + d(xm, x0)

by virtue of the triangle inequality. Because x0 is the limit of {xn} , there

exists an N such that d(xn, x0) < ε/2 for n ≥ N . Together with the preceding
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inequality, this statement implies that d(xn, xm) < ε for n,m ≥ N . Therefore,

{xn} is a Cauchy sequence.

We now consider two examples of sequences in metric spaces. The examples

are designed to illustrate aspects of the concept of a Cauchy sequence. We first

consider the metric space {C[0, 1], d2(x, y)} . We let {xn} be the sequence of

continuous functions xn(t) = tn . Evidently this sequence converges pointwise

to the function

x0(t) =

{
0, 0 ≤ t < 1

1, t = 1.

Now, in {C[0, 1], d2(x, y)} , the sequence xn(t) is a Cauchy sequence. To verify

this claim, calculate

d2(t
m, tn)2 =

∫ 1

0

(tn − tm)2dt =
1

2n+ 1
+

1

2m+ 1
− 2

m+ n+ 1
.

Clearly, for any ε > 0, it is possible to choose an N(ε) that makes the square

root of the right side less than ε whenever m and n both exceed N . Thus

xn(t) is a Cauchy sequence. Notice, however, that the limit point x0(t) does

not belong to {C[0, T ], d2(x, y)} because it is not a continuous function.

As our second example, we consider the space {C[0, T ], d∞(x, y)} . We con-

sider the sequence xn(t) = tn . In (C[0, 1], d∞), the sequence xn(t) is not a

Cauchy sequence. To verify this claim, it is sufficient to establish that, for any

fixed m > 0, there is a δ > 0 such that

sup
n>0

sup
0≤t≤1

|tn − tm| > δ.

Direct calculations show that, for fixed m ,

sup
n

sup
0≤t≤1

|tn − tm| = 1.

Parenthetically we may note that

sup
n>0

sup
0≤t≤1

|tn − tm| = sup
0≤t≤1

sup
n>0

|tn − tm| = sup
0≤t≤1

lim
n→∞

|tn − tm|

= sup
0≤t≤1

lim
n→∞

tm|tn−m − 1| = sup
0≤t≤1

tm = 1.

Therefore, {tn} is not a Cauchy sequence in (C[0, 1], d∞).
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These examples illustrate the fact that whether a given sequence is Cauchy

depends on the metric space within which it is embedded, in particular on the

metric that is being used. The sequence {tn} is Cauchy in (C[0, 1], d2), and

more generally in (C[0, 1], dp) for 1 ≤ p < ∞ . The sequence {tn} , however, is

not Cauchy in the metric space (C[0, 1], d∞). The first example also illustrates

the fact that a Cauchy sequence in (X, d) need not converge to a limit point x0

belonging to the metric space. The property that Cauchy sequences converge

to points lying in the metric space is desirable in many applications. We give

this property a name.

Definition A.1.4. A metric space (X, d) is said to be complete if each Cauchy

sequence in (X, d) is a convergent sequence in (X, d) . That is, in a complete

metric space, each Cauchy sequence converges to a point belonging to the metric

space.

The following metric spaces are complete:

(lp[0,∞), dp), 1 ≤ p <∞
(l∞[0,∞), d∞)

(C[0, T ], d∞).

The following metric spaces are not complete:

(C[0, T ], dp), 1 ≤ p <∞.

Proofs that (lp[0,∞), dp) for 1 ≤ p ≤ ∞ and (C[0, T ], d∞) are complete

are contained in Naylor and Sell (1982, chap. 3). In effect, we have already

shown by counterexample that the space (C[0, 1], d2) is not complete, because

we displayed a Cauchy sequence that did not converge to a point in the metric

space. A definition may now be stated:

Definition A.1.5. A function f mapping a metric space (X, d) into itself is

called an operator.

We need a notion of continuity of an operator.

Definition A.1.6. Let f : X → X be an operator on a metric space (X, d) .

The operator f is said to be continuous at a point x0 ∈ X if for every ε > 0
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there exists a δ > 0 such that d[f(x), f(x0)] < ε whenever d(x, x0) < δ . The

operator f is said to be continuous if it is continuous at each point x ∈ X .

We shall be studying an operator with a particular property, the application

of which to any two distinct points x, y ∈ X brings them closer together.

Definition A.1.7. Let (X, d) be a metric space and let f : X → X . We

say that f is a contraction or contraction mapping if there is a real number

k, 0 ≤ k < 1 , such that

d[f(x), f(y)] ≤ kd(x, y) for all x, y ∈ X.

It follows directly from the definition that a contraction mapping is a continuous

operator.

We now state the following theorem:

Theorem A.1.1. Contraction Mapping

Let (X, d) be a complete metric space and let f : X → X be a contraction.

Then there is a unique point x0 ∈ X such that f(x0) = x0 . Furthermore, if x

is any point in X and {xn} is defined inductively according to x1 = f(x), x2 =

f(x1), . . . , xn+1 = f(xn) , then {xn} converges to x0 .

Proof. Let x be any point in X . Define x1 = f(x), x2 = f(x1), . . . . Express

this as xn = fn(x). To show that the sequence xn is Cauchy, first assume that

n > m . Then

d(xn, xm) = d[fn(x), fm(x)] = d[fm(xn−m), fm(x)]

≤ kd[fm−1(xn−m), fm−1(x)]

By induction, we get

(∗) d(xn, xm) ≤ kmd(xn−m, x).

When we repeatedly use the triangle inequality, the preceding inequality implies

that

d(xn, xm) ≤ km[d(xn−m, xn−m−1) + . . .+ d(x2, x1) + d(x1, x)].

Applying (∗) gives

d(xn, xm) ≤ km(kn−m−1 + . . .+ k + 1)d(x1, x).
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Because 0 ≤ k < 1, we have

(†) d(xn, xm) ≤ km
∞∑

i=0

kid(xt, x) =
km

1 − k
d(x1, x).

The right side of (†) can be made arbitrarily small by choosing m sufficiently

large. Therefore, d(xn, xm) → 0 as n,m → ∞ . Thus {xn} is a Cauchy

sequence. Because (X, d) is complete, {xn} converges to an element of (X, d).

The limit point x0 of {xn} = {fn(x)} is a fixed point of f . Because f is

continuous, limn→∞ f(xn) = f(limn→∞ xn). Now f(limn→∞ xn) = f(x0) and

limn→∞ f(xn) = limn→∞ xn+1 = x0 . Therefore x0 = f(x0).

To show that the fixed point x0 is unique, assume the contrary. Assume

that x0 and y0 , x0 6= y0 , are two fixed points of f . But then

0 < d(x0, y0) = d[f(x0), f(y0)] ≤ kd(x0, y0) < d(x0, y0),

which is a contradiction. Therefore f has a unique fixed point.

We now restrict ourselves to sets X whose elements are functions. The

spaces C[0, T ] and lp[0,∞) for 1 ≤ p ≤ ∞ are examples of spaces of functions.

Let us define the notion of inequality of two functions.

Definition A.1.8. Let X be a space of functions, and let x, y ∈ X . Then

x ≥ y if and only if x(t) ≥ y(t) for every t in the domain of the functions.

Let X be a space of functions. We use the d∞ metric, defined as d∞(x, y) =

supt |x(t) − y(t)| , where the supremum is over the domain of definition of the

function.

A pair of conditions that are sufficient for an operator T : (X, d∞) → (X, d∞)

to be a contraction appear in the following theorem:2

Theorem A.1.2. Blackwell’s Sufficient Conditions for T to be a Contraction

Let T be an operator on a metric space (X, d∞) , where X is a space of func-

tions. Assume that T has the following two properties:

(a) Monotonicity: For any x, y ∈ X , x ≥ y implies T (x) ≥ T (y) .

(b) Discounting: Let c denote a function that is constant at the real value c for

2 See Blackwell’s (1965) Theorem 5. This theorem is used extensively by Stokey and Lucas

with Prescott (1989).
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all points in the domain of definition of the functions in X . For any positive

real c and every x ∈ X , T (x+c) ≤ T (x)+βc for some β satisfying 0 ≤ β < 1 .

Then T is a contraction mapping with modulus β .

Proof. For all x, y ∈ X , x ≤ y + d(x, y). Applying properties (a) and (b) to

this inequality gives

T (x) ≤ T (y + d(x, y)) ≤ T (y) + βd(x, y).

Exchanging the roles of x and y and using the same logic implies

T (y) ≤ T (x) + βd(x, y).

Combining these two inequalities gives |T (x) − T (y)| ≤ βd(x, y) or

d(T (x), T (y)) ≤ βd(x, y).

A.2. Discounted dynamic programming

We study the functional equation associated with a discounted dynamic pro-

gramming problem:

v(x) = max
u∈Rk

{r(x, u) + βv(x′)}, x′ ≤ g(x, u), 0 < β < 1. (A.2.1)

We assume that r(x, u) is real valued, continuous, concave, and bounded and

that the set [x′, x, u : x′ ≤ g(x, u), u ∈ Rk] is convex and compact.

We define the operator

Tv = max
u∈Rk

{r(x, u) + βv(x′)}, x′ ≤ g(x, u), x ∈ X.

We work with the space of continuous bounded functions mapping X into the

real line. We use the d∞ metric,

d∞(v, w) = sup
x∈X

|v(x) − w(x)|.



1012 Functional Analysis

This metric space is complete.

The operator T maps a continuous bounded function v into a continuous

bounded function Tv . (For a proof, see Stokey and Lucas with Prescott, 1989.)3

We now establish that T is a contraction by verifying Blackwell’s pair of

sufficient conditions. First, suppose that v(x) ≥ w(x) for all x ∈ X . Then

Tv = max
u∈Rk

{r(x, u) + βv(x′)}, x′ ≤ g(x, u)

≥ max
u∈Rk

{r(x, u) + βw(x′)}, x′ ≤ g(x, u)

= Tw.

Thus, T is monotone. Next, notice that for any positive constant c ,

T (v + c) = max
u∈Rk

{r(x, u) + β[v(x′) + c]}, x′ ≤ g(x, u)

= max
u∈Rk

{r(x, u) + βv(x′) + βc}, x′ ≤ g(x, u)

= Tv + βc.

Thus, T discounts. Therefore, T satisfies both of Blackwell’s conditions. It

follows that T is a contraction on a complete metric space. Therefore the

functional equation (A.2.1), which can be expressed as v = Tv , has a unique

fixed point in the space of bounded continuous functions. This fixed point is

approached in the limit in the d∞ metric by iterations vn = T n(v0) starting

from any bounded and continuous v0 . Convergence in the d∞ metric implies

uniform convergence of the functions vn .

Stokey and Lucas with Prescott (1989) show that T maps concave functions

into concave functions. It follows that the solution of v = Tv is a concave

function.

3 The assertions in the preceding two paragraphs are the most difficult pieces of the argument

to prove.
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A.2.1. Policy improvement algorithm

For ease of exposition, in this section we shall assume that the constraint x′ ≤
g(x, u) holds with equality. For the purposes of describing an alternative way

to solve dynamic programming problems, we introduce a new operator. We use

one step of iterating on the Bellman equation to define the new operator Tµ as

follows:

Tµ(v) = T (v)

or

Tµ(v) = r[x, µ(x)] + βv{g[x, µ(x)]} ,
where µ(x) is the policy function that attains T (v)(x). For a fixed µ(x), Tµ is

an operator that maps bounded continuous functions into bounded continuous

functions. Denote by C the space of bounded continuous functions mapping X

into X .

For any admissible policy function µ(x), the operator Tµ is a contraction

mapping. This fact can be established by verifying Blackwell’s pair of sufficient

conditions:

1. Tµ is monotone. Suppose that v(x) ≥ w(x). Then

Tµv = r[x, µ(x)] + βv{g[x, µ(x)]}
≥ r[x, µ(x)] + βw{g[x, µ(x)]} = Tµw .

2. Tµ discounts. For any positive constant c

Tµ(v + c) = r(x, µ) + β (v{g[x, µ(x)] + c})
= Tµv + βc .

Because Tµ is a contraction operator, the functional equation

vµ(x) = Tµ[vµ(x)]

has a unique solution in the space of bounded continuous functions. This solu-

tion can be computed as a limit of iterations on Tµ starting from any bounded

continuous function v0(x) ∈ C ,

vµ(x) = lim
k→∞

T kµ (v0) (x) .

The function vµ(x) is the value of the objective function that would be attained

by using the stationary policy µ(x) each period.

The following proposition describes the policy iteration or Howard improve-

ment algorithm.
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Theorem A.2.1. Let vµ(x) = Tµ[vµ(x)] . Define a new policy µ̄ and an

associated operator Tµ̄ by

Tµ̄[vµ(x)] = T [vµ(x)] ;

that is, µ̄ is the policy that solves a one-period problem with vµ(x) as the

terminal value function. Compute the fixed point

vµ̄(x) = Tµ̄[vµ̄(x)] .

Then vµ̄(x) ≥ vµ(x) . If µ(x) is not optimal, then vµ̄(x) > vµ(x) for at least

one x ∈ X .

Proof. From the definition of µ̄ and Tµ̄ , we have

Tµ̄[vµ(x)] = r[x, µ̄(x)] + βvµ{g[x, µ̄(x)]} =

T (vµ)(x) ≥ r[x, µ(x)] + βvµ{g[x, µ(x)]}
= Tµ[vµ(x)] = vµ(x)

or

Tµ̄[vµ(x)] ≥ vµ(x) .

Apply Tµ̄ repeatedly to this inequality and use the monotonicity of Tµ̄ to con-

clude

vµ̄(x) = lim
n→∞

T nµ̄ [vµ(x)] ≥ vµ(x) .

This establishes the asserted inequality vµ̄(x) ≥ vµ(x). If vµ̄(x) = vµ(x) for all

x ∈ X , then
vµ(x) = Tµ̄[vµ(x)]

= T [vµ(x)] ,

where the first equality follows because Tµ̄[vµ̄(x)] = vµ̄(x), and the second

equality follows from the definitions of Tµ̄ and µ̄ . Because vµ(x) = T [vµ(x)] ,

the Bellman equation is satisfied by vµ(x).

The policy improvement algorithm starts from an arbitrary feasible policy

and iterates to convergence on the two following steps:4

4 A policy µ(x) is said to be unimprovable if it is optimal to follow it for the first period,

given a terminal value function v(x) . In effect, the policy improvement algorithm starts with

an arbitrary value function, then by solving a one-period problem, it generates an improved

policy and an improved value function. The proposition states that optimality is characterized

by the features, first, that there is no incentive to deviate from the policy during the first

period, and second, that the terminal value function is the one associated with continuing the

policy.
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Step 1. For a feasible policy µ(x), compute vµ = Tµ(vµ).

Step 2. Find µ̄ by computing T (vµ). Use µ̄ as the policy in step 1.

In many applications, this algorithm proves to be much faster than iterating on

the Bellman equation.

A.2.2. A search problem

We now study the functional equation associated with a search problem of chap-

ter 6. The functional equation is

v(w) = max

{
w

1 − β
, β

∫
v(w′)dF (w′)

}
, 0 < β < 1. (A.2.2)

Here, the wage offer drawn at t is wt . Successive offers wt are independently

and identically distributed random variables. We assume that wt has cumulative

distribution function prob{wt ≤ w} = F (w), where F (0) = 0 and F (w̄) = 1

for some w̄ < ∞ . In equation (A.2.2), v(w) is the optimal value function for

a currently unemployed worker who has offer w in hand. We seek a solution of

the functional equation (A.2.2).

We work in the space of bounded continuous functions C[0, w̄] and use the

d∞ metric

d∞(x, y) = sup
0≤w≤w̄

|x(w) − y(w)|.

The metric space (C[0, w̄], d∞) is complete.

We consider the operator

T (z) = max
{ w

1 − β
, β

∫
z(w′)dF (w′)

}
. (A.2.3)

Evidently the operator T maps functions z in C[0, w̄] into functions T (z) in

C[0, w̄] . We now assert that the operator T defined by equation (A.2.3) is a

contraction. To prove this assertion, we verify Blackwell’s sufficient conditions.

First, assume that f(w) ≥ g(w) for all w ∈ [0, w̄] . Then note that

Tg = max

{
w

1 − β
, β

∫
g(w′)dF (w′)

}

≤ max

{
w

1 − β
, β

∫
f(w′)dF (w′)

}

= Tf.
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Thus, T is monotone. Next, note that for any positive constant c ,

T (f + c) = max

{
w

1 − β
, β

∫
[f(w′) + c]dF (w′)

}

= max

{
w

1 − β
, β

∫
f(w′)dF (w′) + βc

}

≤ max

{
w

1 − β
, β

∫
f(w′)dF (w′)

}
+ βc

= Tf + βc.

Thus, T satisfies the discounting property and is therefore a contraction.

Application of the contraction mapping theorem, then, establishes that the

functional equation Tv = v has a unique solution in C[0, w̄] , which is ap-

proached in the limit as n → ∞ by T n(v0) = vn , where v0 is any point in

C[0, w̄] . Because the convergence in the space C[0, w̄] is in terms of the metric

d∞ , the convergence is uniform.



Appendix B.
Control and Filtering

B.1. Introduction

By recursive techniques we mean the application of dynamic programming to

control problems, and of Kalman filtering to the filtering problems. We describe

classes of problems in which the dynamic programming and the Kalman filtering

algorithms are formally equivalent, being tied together by duality. By exploiting

their equivalence, we reap double dividends from any results that apply to one

or the other problem.1

The next-to-last section of this appendix contains statements of a few facts

about linear least-squares projections. The final section briefly describes filtering

problems where the state evolves according to a finite-state Markov process.

B.2. The optimal linear regulator control problem

We briefly recapitulate the optimal linear regulator problem. Consider a system

with a (n× 1) state vector xt and a (k × 1) control vector ut . The system is

assumed to evolve according to the law of motion

xt+1 = Atxt +Btut t = t0, t0 + 1, . . . , t1 − 1, (B.2.1)

where At is an (n × n) matrix and Bt is an (n × k) matrix. Both At and

Bt are known sequences of matrices. We define the return function at time

t, rt(xt, ut), as the quadratic form

rt(xt, ut) = − [x′t u
′
t]

[
Rt Wt

W ′
t Qt

] [
xt

ut

]
t = t0, . . . , t1 − 1

where Rt is (n×n), Qt is (k×k), and Wt is (n×k). We shall initially assume

that the matrices
[
Rt

W ′
t

Wt

Qt

]
are positive semidefinite, though subsequently we

1 The concepts of controllability and reconstructibility are used to establish conditions for

the convergence and other important properties of the recursive algorithms.

– 1017 –
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shall see that the problem can still be well posed even if this assumption is

weakened. We are also given an (n× n) positive semidefinite matrix Pt , which

is used to assign a terminal value of the state xt1 .

The optimal linear regulator problem is to maximize

−
t1−1∑

t=t0

[
xt

ut

]′ [
Rt Wt

W ′
t Qt

] [
xt

ut

]
− x′t1Pt1xt1

subject to xt+1 = Atxt +Btut, xt0 given. (B.2.2)

The maximization is carried out over the sequence of controls (ut0 , ut0+1 ,

. . . , ut1−1). This is a recursive or serial problem, which is appropriate to solve

using the method of dynamic programming. In this case, the value functions

are defined as the quadratic forms, s = t0, t0 + 1, . . . , t1 − 1,

−x′sPsxs = max

{
−
t1−1∑

t=s

[
xt

ut

]′ [ Rt Wt

W ′
t Qt

] [
xt

ut

]
− x′t1Pt1xt1

}

subject to xt+1 = Atxt +Btut,

(B.2.3)

xs given, s = t0, t0 +1, . . . , t1−1. The Bellman equation becomes the following

backward recursion in the quadratic forms x′t Pt xt :

x′tPtxt = min
ut

{
x′tRtxt + u′tQtut + 2x′tWtut + (Atxt +Btut)

′

Pt+1(Atxt +Btut)
}
,

t = t1 − 1, t1 − 2, . . . , t0

Pt1 given .

(B.2.4)

Using the rules for differentiating quadratic forms, the first-order necessary con-

dition for the problem on the right side of equation (B.2.4) is found by differ-

entiating with respect to the vector ut :

{Qt +B′
tPt+1Bt}ut = −(B′

tPt+1At +W ′
t )xt.

Solving for ut we obtain

ut = −(Qt +B′
tPt+1Bt)

−1(B′
tPt+1At +W ′

t )xt. (B.2.5)
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The inverse (Qt + B′
tPt+1Bt)

−1 is assumed to exist. Otherwise, it could be

interpreted as a generalized inverse, and most of our results would go through.

Equation (B.2.5) gives the optimal control in terms of a feedback rule upon

the state vector xt , of the form

ut = −Ftxt (B.2.6)

where

Ft = (Qt +B′
tPt+1Bt)

−1(B′
tPt+1At +W ′

t ). (B.2.7)

Substituting equation (B.2.5) for ut into equation (B.2.4) and rearranging

gives the following recursion for Pt :

Pt = Rt +A′
tPt+1At−(AtPt+1Bt +Wt) (Qt +B′

tPt+1Bt)
−1

(B′
tPt+1At +W ′

t ).
(B.2.8)

Equation (B.2.8) is a version of the matrix Riccati difference equation.

Equations (B.2.8) and (B.2.5) provide a recursive algorithm for computing

the optimal controls in feedback form. Starting at time (t1 − 1), and given

Pt1 , equation (B.2.5) is used to compute ut1−1 = −Ft1−1xt1−1 . Then equation

(B.2.8) is used to compute Pt1−1 . Then equation (B.2.5) is used to compute

ut
1−2

= Ft
1−2

xt
1−2

, and so on.

By substituting the optimal control ut = −Ftxt into the state equation

(B.2.1), we obtain the optimal closed loop system equations

xt+1 = (At −BtFt)xt.

Eventually, we shall be concerned extensively with the properties of the optimal

closed loop system, and how they are related to the properties of At, Bt, Qt, Rt ,

and Wt .
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B.3. Converting a problem with cross products in states and
controls to one with no such cross products

For our future work it is useful to introduce a problem that is equivalent with

equations (B.2.2) and (B.2.3), and has a form in which no cross products

between states and controls appear in the objective function. This is useful

because our theorems about the properties of the solutions (B.2.5) and (B.2.8)

will be in terms of the special case in which Wt = 0 ∀t . The equivalence

between the problems (B.2.2) and (B.2.3) and the following problem implies

that no generality is lost by restricting ourselves to the case in which Wt =

0 ∀t .
The equivalent problem

min
{u∗

t }

t1−1∑

t=t0

{
x′t(Rt −WtQ

−1
t W ′

t )xt + u∗′t Qtu
∗
t

}
+ x′t1Pt1xt1 (B.3.1)

subject to

xt+1 = (At −BtQ
−1
t W ′

t )xt +Btu
∗
t , (B.3.2)

and xt0 , Pt0 are given. The new control variable u∗t is related to the original

control ut by

u∗t = Q−1
t W ′

txt + ut. (B.3.3)

We can state the problem (B.3.1)–(B.3.2) in a more compact notation as

being to minimize

t1−1∑

t=t0

{
x′tR̄txt + u∗′t Qtu

∗
t

}
+ xi, Pt, xt, (B.3.4)

subject to

xt+1 = Ātxt +Btu
∗
t (B.3.5)

where

R̄t = Rt −WtQ
−1
t W ′

t (B.3.6)

and

Āt = At −BtQ
−1
t W ′

t . (B.3.7)

With these specifications, the solution of the problem can be computed using

the following versions of equations (B.2.5) and (B.2.8)

u∗t = −F̄txt ≡ −(Qt +B′
tPt+1Bt)

−1BtPt+1Āt (B.3.8)
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Pt = R̄t + Ā′
tPt+1Āt − Ā′

tPt+1Bt(Qt +B′
tPt+1Bt)

−1B′
tPt+1Āt (B.3.9)

We ask the reader to verify the following facts:

a. Problems (B.2.2)–(B.2.3) and (B.3.1)–(B.3.2) are equivalent.

b. The feedback laws F̄t and Ft for u∗t and ut , respectively, are related by

Ft = F̄t +Q−1
t W ′

t .

c. The Riccati equations (B.2.8) and (B.3.9) are equivalent.

d. The “closed loop” transition matrices are related by

At −BtFt = Āt −BtF̄t.

B.4. An example

We now give an example of a problem for which the preceding transformation

is useful. A consumer wants to maximize

∞∑

t=t0

βt
{
u1ct −

u2

2
c2t

}
0 < β < 1 , u1 > 0, u2 > 0 (B.4.1)

subject to the intertemporal budget constraint

kt+1 = (1 + r) (kt + yt − ct), (B.4.2)

the law of motion for labor income

yt+1 = λ0 + λ1yt, (B.4.3)

and a given level of initial assets, kt0 . Here β is a discount factor, u1 and u2

are constants, ct is consumption, kt is “nonhuman” assets at the beginning of

time t, r > −1 is the interest rate on nonhuman assets, and yt is income from

labor at time t .

We define the transformed variables

k̃t = βt/2kt,

ỹt = βt/2yt,

c̃t = βt/2ct.
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In terms of these transformed variables, the problem can be rewritten as follows:

maximize
∞∑

t=t0

{
u1β

t/2 · c̃t −
u2

2
c̃2t

}
(B.4.4)

subject to
k̃t+1 = (1 + r)β1/2 (k̃t + ỹt − c̃t) and

ỹt+1 = λ0β
t+1
2 + λ1β

1/2ỹt

(B.4.5)

and kt0 given. We write this problem in the state-space form:

max
{ũt}

∞∑

t=t0

{
x̃′tRx̃t + 2x̃′tWũt + ũ′tQũt

}

subject to x̃t+1 = Ax̃t +Bũt.

We take

x̃t =



k̃t

ỹt

βt/2


 , ũt = c̃t,

R =




0 0 0

0 0 0

0 0 0


 , W ′ = [ 0 0 u1

2 ] ,

Q = −u2

2
, A =




(1 + r) (1 + r) 0

0 λ1 λ0

0 0 1


 β1/2, B =



−(1 + r)

0

0


 β1/2.

To obtain the equivalent transformed problem in which there are no cross-

product terms between states and controls in the return function, we take

Ā = A−BQ−1W ′ =




(1 + r) (1 + r) −u1(1+r)
u2

0 λ1 λ0

0 0 1


 β1/2

R̄ = R−WQ−1W ′ =




0 0 0

0 0 0

0 0
u2
1

2u2





u∗t = ũt +Q−1W ′x̃t

c∗t = c̃t −
u1

u2
βt/2.

(B.4.6)
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Thus, our original problem can be expressed as

max
{u∗

t }

∞∑

t=t0

{
x̃′tR̄x̃t + u∗′t Qu

∗
t

}

subject to x̃t+1 = Āx̃t +Bu∗t .

(B.4.7)

B.5. The Kalman filter

Consider the linear system

xt+1 = Atxt +Btut +Gtw1t+1 (B.5.1)

yt = Ctxt +Htut + w2t, (B.5.2)

where [w′
1t+1, w

′
2t] is a vector white noise with contemporaneous covariance

matrix

E

[
w1t+1

w2t

] [
w1t+1

w2t

]′
=

[
V1t V3t

V ′
3t V2t

]
≥ 0.

The [w′
1t+1, w

′
2t] vector for t ≥ t0 is assumed orthogonal to the initial condition

xt0 , which represents the initial state. Here, At is (n× n), Bt is (n× k), Gt is

(n×N), Ct is (`×n), Ht is (`×k), w1t+1 is (N×1), w2t+1 is (`×1), xt is an (n×1)

vector of state variables, ut is a (k × 1) vector of controls , and yt is an (`× 1)

vector of output or observed variables. The matrices At, Bt, Gt, Ct, and Ht

are known, though possibly time varying. The noise vector w1t+1 is the state

disturbance, while w2t is the measurement error.

The analyst does not directly observe the xt process. So from his point of

view, xt is a “hidden state vector.” The system is assumed to start up at time

t0 , at which time the state vector xt0 is regarded as a random variable with

mean Ext0 = x̂t0 , and given covariance matrix
∑
t0

=
∑

0 . The pair (x̂t0 ,
∑

0)

can be regarded as the mean and covariance of the analyst’s Bayesian prior

distribution on xt0 .

It is assumed that for s ≥ 0, the vector of random variables
[
w1t0+s+1

w2t0+s

]
is

orthogonal to the random variable xt0 and to the random variables
[
w1t0+r+1

w2t0+r

]

for r 6= s . It is also assumed that E
[
w1t0+s+1

w2t+s

]

= 0 for s ≥ 0. Thus,
[
w1t

w2t

]
is a serially uncorrelated or white noise process.
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Further, from equations (B.5.1) and (B.5.2) and the orthogonality properties

posited for
[
w1t+1

w2t

]
and xt0 , it follows that

[
w1t+1

w2t

]
is orthogonal to {xs, ys−1}

for s ≤ t . This conclusion follows because yt and xt+1 are in the space spanned

by current and lagged ut, w1t+1, w2t, and xt0 .

The analyst is assumed to observe at time t {ys, us : s = t0, t0 + 1, . . . t} ,

for t = t0, t0 + 1, . . . t1 . The object is then to compute the linear least-squares

projection of the state xt+1 on this information, which we denote Êtxt+1 . We

write this projection as

Êtxt+1 ≡ Ê[xt+1 | yt, yt−1, . . . , yt0 , x̂t0 ], (B.5.3)

where x̂t0 is the initial estimate of the state. It is convenient to let Yt denote

the information on yt collected through time t :

Yt = {yt, yt−1, . . . , yt0}.

The linear least-squares projection of yt+1 on Yt , and x̂t0 is, from equations

(B.5.2) and (B.5.3), given by

Êtyt+1 ≡ Ê[yt+1 | Yt, x̂0]

= Ct+1Êtxt+1 +Ht+1 ut+1,
(B.5.4)

since w2t+1 is orthogonal to {w1s+1, w2s}, s ≤ t, and x̂t0 and is therefore

orthogonal to {Yt, x̂t0} .

In the interests of conveniently constructing the projections Êtxt+1 and

Êtyt+1 , we now apply a Gram-Schmidt orthogonalization procedure to the set

of random variables {x̂t0 , yt0 , yt0+1, . . . yt1} . An orthogonal basis for this set of

random variables is formed by the set {x̂t0 , ỹt0 ỹt0+1, . . . , ỹt1} where

ỹt = yt − Ê[yt | ỹt−1, ỹt−2, . . . ỹt0 , x̂t0 ]. (B.5.5)

For convenience, let us write Ỹt = {ỹt0, ỹt0+1, . . . , ỹt} . We note that the linear

spaces spanned by (x̂t0 , Yt) equal the linear spaces spanned by (x̂t0 , Ỹt). This

follows because (a) ỹt is formed as indicated previously as a linear function

of Yt and x̂t0 , and (b) yt can be recovered from Ỹt and x̂t0 by noting that

yt = Ê[yt | x̂t0 , Ỹt−1] + ỹt . It follows that Ê[yt | x̂t0 , Yt−1] = Ê[yt | x̂t0 , Ỹt−1] =

Et−1yt . In equation (B.5.5), we use equation (B.5.2) to write
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Ê[yt0 | x̂t0 ] = Ct0 x̂t0 +Ht0ut0 .

We set x̂t0 = Ex0 . To summarize developments up to this point, we have

defined the innovations process

ỹt = yt − Ê[yt | x̂t0 , Yt−1]

= yt − Ê[yt | x̂t0 , Ỹt−1], t ≥ t0 + 1

ỹt0 = yt0 − Ê[yt0 | x̂t0 ].

The innovations process is serially uncorrelated ( ỹt is orthogonal to ỹs for t 6= s)

and spans the same linear space as the original Y process.

We now use the innovations process to get a recursive procedure for eval-

uating Êtxt+1 . Using Theorem B.8.4 about projections on orthogonal bases

gives

Ê [xt+1 | x̂t0 , ỹt0 , ỹt0+1, . . . , ỹt]

= Ê[xt+1 | ỹt] + Ê[xt+1 | x̂t0 , ỹt0 , ỹt0+1, . . . , ỹt−1] − Ext+1.
(B.5.6)

We have to evaluate the first two terms on the right side of equation (B.5.6).

From Theorem B.8.1, we have the following:2

Ê[xt+1 | ỹt] = Ext+1 + cov (xt+1, ỹt)
[
cov (ỹt, ỹt)

]−1
ỹt. (B.5.7)

To evaluate the covariances that appear in equation (B.5.7), we shall use

the covariance matrix of one-step-ahead errors, x̃t = xt− Êt−1xt , in estimating

xt . We define this covariance matrix as Σt = Ex̃tx̃
′
t . It follows from equations

2 Here, we are using Eỹt = 0.
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(B.5.1) and (B.5.2) that

cov(xt+1, ỹt) = cov(Atxt +Btut −Gtw1t+1, yt − Êt−1yt)

= cov(Atxt +Btut +Gtw1t+1, Ctxt + w2t − CtÊt−1xt)

= cov(Atxt +Btut +Gtw1t+1, Ctx̃t + w2t)

=E{[Atxt +Btut +Gtw1t+1 − E(Atxt +Btut +Gtw1t+1)]

[Ctx̃t + w2t − E(Ctx̃t + w2t]
′)}

=E[(Atxt +Gtw1t+1 −AtExt)(x̃
′
tC

′
t + w′

2t)]

=E(Atxtx̃
′
tC

′
t) +GtE(w1t+1x̃

′
tC

′
t) −AtExtEx̃

′
tC

′
t

+AtE(xtw
′
2t) +GtE(w1t+1w

′
2t) −AtExtEw

′
2t

=E(Atxtx̃
′
tC

′
t) +GtE(w1t+1w

′
2t)

=E[At(x̃t + Êt−1xt)x̃
′
tC

′
t] +GtE(w1t+1w

′
2t)

=AtEx̃tx̃
′
tC

′
t +GtE(w1t+1 w

′
2t) = AtΣtC

′
t +GtV3t.

(B.5.8)

The second equality uses the fact that Êt−1w2t = 0, since w2t is orthogonal

to {xs, ys−1}, s ≤ t . To get the fifth equality, we use the fact that Ex̃t =

E(xt − Êt−1xt) = 0 by the unbiased property of linear projections when one

of the regressors is a constant. We also use the facts that ut is known and

that w1t+1 and w2t have zero means. The seventh equality follows from the

orthogonality of w1t+1 and w2t to variables dated t and earlier and the means

of w′
2t and x̃′t being zero. Finally, the ninth equation relies on the fact that x̃t

is orthogonal to the subspace generated by yt−1, yt−2, . . . , x̂t0 and Êt−1xt is a

function of these vectors.

Next, we evaluate

cov(ỹt, ỹt) = E(Ctx̃t + w2t)(Ctx̃t + w2t)
′

= CtΣtC
′
t + V2t,

since Eỹt = 0 and Ex̃tw
′
2t = 0. Therefore, equation (B.5.7) becomes

Ê(xt+1 | ỹt) = E(xt+1) + (AtΣtC
′
t +GtV3t)(CtΣtC

′
t + V2t)

−1ỹt. (B.5.9)

Using equation (B.5.1), we evaluate the second term on the right side of equa-

tion (B.5.6),

Ê(xt+1 | Ỹt−1, x̂t0) = AtÊ(xt | Ỹt−1, x̂t0) +Btut
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or

Êt−1xt+1 = AtÊt−1xt +Btut. (B.5.10)

Using equations (B.5.9) and (B.5.10) in equation (B.5.6) gives

Êtxt+1 = AtÊt−1xt +Btut +Kt(yt − Êt−1yt) (B.5.11)

where

Kt =
(
AtΣtC

′
t +GtV3t

)(
CtΣtC

′
t + V2t

)−1

. (B.5.12)

Using Êt−1yt = CtÊt−1xt +Htut , equation (B.5.11) can also be written

Êtxt+1 = (At −KtCt)Êt−1xt + (Bt −KtHt)ut +Ktyt. (B.5.13a)

We now aim to derive a recursive formula for the covariance matrix Σt . From

equation (B.5.2) we know that Êt−1yt = CtÊt−1xt + Htut . Subtracting this

expression from yt in equation (B.5.2) gives

yt − Êt−1yt = Ct(xt − Êt−1xt) + w2t. (B.5.13b)

Substituting this expression in equation (B.5.11) and subtracting the result

from equation (B.5.1) gives

(xt+1 − Êtxt+1) =(At −KtCt) (xt − Êt−1xt)

+Gtw1t+1 −Ktw2t

or

x̃t+1 = (At −KtCt)x̃t +Gtw1t+1 −Ktw2t. (B.5.14)

From equation (B.5.14) and our specification of the covariance matrix

E

[
w1t+1

w2t

] [
w1t+1

w2t

]′
=

[
V1t V3t

V ′
3t V2t

]

we have

Ex̃t+1x̃
′
t+1 =

(
At −KtCt

)
Ex̃tx̃

′
t

(
At −KtCt

)′

+GtV1tG
′
t +KtV2tK

′
t

−GtV3tK
′
t −KtV

′
3tG

′
t.



1028 Control and Filtering

We have defined the covariance matrix of x̃t as Σt = Ex̃tx̃
′
t = E(xt − Êt−1xt)

(xt − Êt−1xt)
′ . So we can express the preceding equation as

Σt+1 =
(
At −KtCt

)
Σt

(
At −KtCt

)′

+GtV1tG
′
t +KtV2tK

′
t −GtV3tK

′
t

−KtV
′
3tG

′
t.

(B.5.15)

Equation (B.5.15) can be rearranged to the equivalent form

Σt+1 =AtΣtA
′
t +GtV1tG

′
t

−
(
AtΣtC

′
t +GtV3t

)(
CtΣtC

′
t + V2t

)−1 (
AtΣtCt +GtV3t

)′
.

(B.5.16)

Starting from the given initial condition for Σt0 = E(xt0 −Ext0)(xt0 − Ext0)
′ ,

equations (B.5.15) and (B.5.12) give a recursive procedure for generating the

“Kalman gain” Kt , which is the crucial unknown ingredient of the recursive

algorithm (B.5.11) for generating Êtxt+1 . The Kalman filter is used as fol-

lows: Starting from time t0 with Σt0 = Σ0 and x̂t0 = Ex0 given, equation

(B.5.12) is used to form Kt0 , and equation (B.5.11) is used to obtain Êt0xt0+1

with Êt0−1xt0 = x̂0 . Then equation (B.5.15) is used to form Σt0+1 , equation

(B.5.12) is used to form Kt0+1 , equation (B.5.11) is used to obtain Êt
0+1

xt0+2 ,

and so on.

Define x̂t = Êt−1xt and ŷt = Êt−1yt . Set

at = w2t + Ct(xt − x̂t). (B.5.17)

From equation (B.5.13b), we have

yt − ŷt = Ct(xt − x̂t) + w2t

or

yt − ŷt = at. (B.5.18)

We know that Eata
′
t = CtΣtC

′
t+V2t . The random process at is the “innovation”

in yt , that is, the part of yt that cannot be predicted linearly from past y ’s.

From equations (B.5.1) and (B.5.18) we get yt = Ctx̂t+1Htut+ at . Substi-

tuting this expression into equation (B.5.13a) produces the following system:

x̂t+1 = Atx̂t +Btut +Ktat

yt = Ctx̂t +Htut + at.
(B.5.19)
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System (B.5.19) is called an innovations representation.

Another representation of the system that is useful is obtained from equation

(B.5.13a):

x̂t+1 = (At −KtCt)x̂t + (Bt −KtHt)ut +Ktyt

at = yt − Ctx̂t −Htut.
(B.5.20)

This is called a whitening filter. Starting from a given x̂t0 , this system accepts

as an “input” a history of yt and gives as an output the sequence of innovations

at , which by construction are serially uncorrelated.

We shall often study situations in which the system is time invariant, that

is, At = A, Bt = B, Gt = G, Ht = H, Ct = C , and Vjt = Vj for all t . We shall

later describe regulatory conditions on A,C, V1, V2 , and V3 which imply that (1)

Kt → K as t→ ∞ and Σt → Σ as t→ ∞ ; and (2) | λi(A−KC) |< 1 for all i ,

where λi is the ith eigenvalue of (A−KC). When these conditions are met, the

limiting representation for equation (B.5.20) is time invariant and is an (infinite

dimensional) innovations representation. Using the lag operator L where Lx̂t =

x̂t−1 , imposing time invariance in equation (B.5.19), and rearranging gives the

representation

yt = [I + C(L−1I −A)−1K]at +
[
H + C(L−1I −A)B

]
ut, (B.5.21)

which expresses yt as a function of [at, at−1, . . .] . In order that [yt, yt−1, . . .]

span the same linear space as [at, at−1, . . .] , it is necessary that the following

condition be met:

det [I + C(zI −A)−1K] = 0 ⇒ | z |< 1.

Now by a theorem from linear algebra we know that3

det[I + C(zI −A)−1K] =
det[zI − (A−KC)]

det(zI −A)
.

The formula shows that the zeros of det[I+C(zI−A)−1K] are zeros of det[zI−
(A − KC)] , which are eigenvalues of A − KC . Thus, if the eigenvalues of

(A−KC) are all less than unity in modulus, then the spaces [at, at−1, . . .] and

[yt, yt−1, . . .] in representation (B.5.21) are equal.

3 See Noble and Daniel (1977, exercises 6.49 and 6.50, p. 210).
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B.6. Duality

For purposes of highlighting their relationship, we now repeat the Kalman fil-

tering formulas for Kt and Σt and the optimal linear regulator formulas for Ft

and Pt

Kt =
(
AtΣtC

′
t +GtV3t

)(
CtΣtC

′
t + V2t

)−1

. (B.6.1)

Σt+1 =AtΣtA
′
t +GtV1tG

′
t

−
(
AtΣtC

′
t +GtV3t

)(
CtΣtC

′
t + V2t

)−1

×
(
AtΣtC

′
t +GtV3t

)′
(B.6.2)

Ft = (Qt +B′
tPt+1Bt)

−1(B′
tPt+1At +W ′

t ). (B.6.3)

Pt =Rt +A′
tPt+1At

− (A′
tPt+1Bt +Wt) (Qt +B′

tPt+1Bt)
−1

×
(
B′
tPt+1At +W ′

t

) (B.6.4)

for t = t0, t0+1, . . . , t1 . Equations (B.6.1) and (B.6.2) are solved forward from

t0 with Σt0 given, while equations (B.6.3) and (B.6.4), are solved backward

from t1 − 1 with Pt1 given.

The equations for Kt and Ft are intimately related, as are the equations for

Pt and Σt . In fact, upon properly reinterpreting the various matrices in equa-

tions (B.6.1), (B.6.2), (B.6.3), and (B.6.4), the equations for the Kalman filter

and the optimal linear regulator can be seen to be identical. Thus, where A

appears in the Kalman filter, A′ appears in the corresponding regulator equa-

tion; where C appears in the Kalman filter, B′ appears in the corresponding

regulator equation; and so on. The correspondences are listed in detail in Ta-

ble B.6.1. By taking account of these correspondences, a single set of computer

programs can be used to solve either an optimal linear regulator problem or a

Kalman filtering problem.

The concept of duality helps to clarify the relationship between the optimal

regulator and the Kalman filtering problem.
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Table B.6.1: Duality

Object in Optimal Linear Object in
Regulator Problem Kalman Filter

At0+s, s = 0, . . . , t1 − t0 − 1 A′
t1−1−s, s = 0, . . . , t1 − t0 − 1

Bt0+s C′
t1−1−s

Rt0+s Gt1−1−sV1t1−1−sG
′
t1−1−s

Qt0+s V2t1−1−s

Wt0+s Gt1−1−sV3t1−1−s

Pt0+s Σt1−s
Ft0+s K ′

t1−1−s

Pt1 Σt0
At0+s −Bt0+sFt0+s A′

t1−1−s − C′
t1−1−sK

′
t1−1−s

Definition B.6.1. Consider the time-varying linear system:

xt+1 = Atxt +Btut

yt = Ctxt, t = t0, . . . , t1 − 1.
(B.6.5)

The dual of system (B.6.5) (sometimes called the “dual with respect to t1−1”)

is the system
x∗t+1 = A′

t1−1−tx
∗
t + C′

t1−1−tu
∗
t

y∗t = B′
t1−1−tx

∗
t

with t = t0, t0 + 1, . . . , t1 − 1.

With this definition, the correspondence exhibited in Table B.6.1 can be

summarized succinctly in the following proposition:

Theorem B.6.1. Let the solution of the optimal linear regulator problem

defined by the given matrices {At, Bt, Rt, Qt,Wt; t = t0, . . . , t1−1; Pt1} be given

by {Pt, Ft, t = t0, . . . , t1−1} . Then the solution of the Kalman filtering problem

defined by {A′
t1−1−t, C

′
t1−1−t , Gt1−1−t V1t1−1−tG

′
t1−1−t, V2t1−1−t, Gt1−1−t

V3t1−1−t; t = t0, . . . , t1 − 1; Σt0} is given by {K ′
t1−t−1 = Ft,Σt1−t = Pt; t =

t0, t0 + 1, . . . , t1 − 1} .

This proposition describes the sense in which the Kalman filtering problem

and the optimal linear regulator problems are “dual” to one another. As is also
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true of so-called classical control and filtering methods, the same equations arise

in solving both the filtering problem and the control problem. This fact implies

that almost everything that we learn about the control problem applies to the

filtering problem, and vice versa.

As an example of the use of duality, recall the transformations (B.3.5) and

(B.3.6) that we used to convert the optimal linear regulator problem with cross

products between states and controls into an equivalent problem with no such

cross products. The preceding discussion of duality and Table B.6.1 suggest

that the same transformation will convert the original dual filtering problem,

which has nonzero covariance matrix V3 between state noise and measurement

noise, into an equivalent problem with covariances zero. This hunch is correct.

The transformations, which can be obtained by duality directly from equations

(B.3.5) and (B.3.6), are for t = t0, . . . , t1 − 1

Ā′
t1−1−t = A′

t1−1−t − C′
t1−1−tV

−1
2t1−1−tV

′
3t1−1−tG

′
t1−1−t

V̄1t1−1−t = V1t1−1−t − V3t1−1−tV
−1
2t1−1−tV

′
3t1−1−t.

The Kalman filtering problem defined by {Āt, Ct,−GtV̄1tG
′
t − V2t, 0;

t = t0, . . . , t1 − 1; Σ0} is equivalent to the original problem in the sense that

At −KtCt = Āt − K̄tCt,

where K̄t is the solution of the transformed problem. We also have, by the

results for the regulator problem and duality, the following:

K̄t = Kt −GtV3tV
−1
2t .
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B.7. Examples of Kalman filtering

This section contains several examples that have been widely used by economists

and that fit into the Kalman filtering setting. After the reader has worked

through our examples, no doubt many other examples will occur.

a. Vector autoregression: We consider an (n × 1) stochastic process yt that

obeys the linear stochastic difference equation

yt = A1yt−1 + . . .+Amyt−m + εt,

where εt is an (n × 1) vector white noise, with mean zero and Eεtε
′
t =

V1t, Eεty
′
s = 0, t > s . We define the state vector xt and shock vector wt

as

xt =




yt−1

yt−2

...

yt−m


 ,

[
w1t+1

w2t

]
=

(
εt

εt

)
.

The law of motion of the system then becomes




yt

yt−1

yt−2

...

yt−m+1




=




A1 A2 . . . Am

I 0 . . . 0

0 I . . . 0
...

...
. . .

...

0 . . . I 0







yt−1

yt−2

yt−3

...

yt−m




+




I

0

0
...

0



εt.

The measurement equation is

yt = [A1 A2 . . . Am]xt + εt.

For the filtering equations, we have

At =




A1 A2 . . . Am

I 0 . . . 0

0 I . . . 0
...

...
. . .

...

0 . . . I 0



, Gt = G =




I

0

0
...

0




Ct = [A1, . . . , An]

V1t = V2t = V3t.
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Starting from Σt0 = 0, which means that the system is imagined to start up

with m lagged values of y having been observed, equation (B.5.12) implies

Kt0 = G,

while equation (B.5.15) implies that Σt0+1 = 0. It follows recursively that

Kt = G for all t ≥ t0 and that Σt = 0 for all t ≥ t0 . Computing (A −KC),

we find that

Êtxt+1 =




0 0 . . . 0

I 0 . . . 0

0 I . . . 0
...

0 . . . I 0



Êt−1xt +




I

0
...

0


 yt,

which is equivalent with

Êtxt+1 =




yt

yt−1

...

yt−m


 .

The equation Êtyt+1 = CÊtxt+1 becomes

Êtyt+1 = A1yt +A2yt−1 + . . .+Amyt−m+1.

Evidently, the preceding equation for forecasting a vector autoregressive pro-

cess can be obtained in a much less roundabout manner, with no need to use

the Kalman filter.

b. Univariate moving average: We consider the model

yt = wt + c1wt−1 + . . .+ cnwt−n

where wt is a univariate white noise with mean zero and variance V1t . We write

the model in the state-space form

xt+1 =




wt

wt−1

...

wt−n+1


 =




0 0 . . . 0

1 0 . . . 0
...

...
. . .

...

0 . . . 1 0







wt−1

wt−2

...

wt−n


+




1

0
...

0


wt

yt = [c1 c2 . . . cn]xt + wt.
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We assume that Σt0 = 0, so that the initial state is known. In this setup,

we have A,G , and C as indicated previously, and w1t+1 = wt, w2t = wt ,

and V1 = V2 = V3 . Iterating on the Kalman filtering equations (B.5.15) and

(B.5.12) with Σt0 = 0, we obtain Σt = 0, t ≥ t0, Kt = G, t ≥ t0 , and

(A−KC) =




−c1 −c2 . . . −cn−1 −cn
1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0



.

It follows that

Êtxt+1 = Êt




wt

wt−1

...

wt−n+1


 =




−c1 −c2 . . . −cn−1 −cn
1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




Êt−1




wt−1

wt−2

...

wt−n


+




1

0
...

0


 yt.

With Σt0 = 0, this equation implies

Êtwt = yt − c1wt−1 − . . .− cnwt−n.

Thus, the innovation wt is recoverable from knowledge of yt and n past inno-

vations.

c. Mixed moving average–autoregression: We consider the univariate, mixed

second-order autoregression, first-order moving average process

yt = A1yt−1 +A2yt−2 + vt +B1vt−1,

where vt is a white noise with mean zero, Ev2
t = V1 and Evty(s) = 0 for s < t .

The trick in getting this system into the state-space form is to define the state

variables x1t = yt − vt , and x2t = A2yt−1 . With these definitions the system

and measurement equations become

xt+1 =

(
A1 1

A2 0

)
xt +

(
B1 +A1

A2

)
vt (B.7.1)
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yt = [1 0]xt + vt. (B.7.2)

Notice that using equation (B.7.1) and (B.7.2) repeatedly, we have

yt = x1t + vt = A1x1t−1 + x2t−1 + (B1 +A1)vt−1 + vt

= A1(x1t−1 + vt−1) + vt +B1vt−1 +A2(x1t−2 + vt−2)

= A1yt−1 +A2yt−2 + vt +B1vt−1

as desired. With the state and measurement equations (B.7.1) and (B.7.2), we

have V1 = V2 = V3 ,

A =

(
A1 1

A2 0

)
, G =

(
B1 +A1

A2

)
, C = [1 0].

We start the system off with Σt0 = 0, so that the initial state is imagined to

be known. With Σt0 = 0, recursions on equations (B.5.11) and (B.5.15) imply

that Σt = 0 for t ≥ t0 and Kt = G for t ≥ t0 . Computing A−KC , we find

(A−KC) =

(−B1 1

0 0

)

and we have

Êtxt+1 =

[−B1 1

0 0

]
t̂t−1xt +

[
B1 +A1

A2

]
yt.

Therefore, the recursive prediction equations become

Êtyt+1 = [ 1 0 ] Êt+1xt+1 = Êtx1t+1.

Recalling that x2t = A2yt−1 , the preceding two equations imply that

Êtyt+1 = −B1Êt−1yt +A2yt−1 + (B1 +A1)yt. (B.7.3)

Consider the special case in which A2 = 0, so that the yt obeys a first-order

moving average, first-order autoregressive process. In this case equation (B.7.3)

can be expressed

Êtyt+1 = B1(yt − Êt−1yt) +A1yt,

which is a version of the Cagan-Friedman “error-learning” model. The solu-

tion of the preceding difference equation for Êtyt+1 is given by the geometric

distributed lag

Êtyt+1 = (B1 +A1)

m∑

j=0

(−B1)
jyt−j

+ (−B1)
m+1Êt−m−1yt−m.
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For the more general case depicted in equation (B.7.3) with A2 6= 0, Êtyt+1

can be expressed as a convolution4 of geometric lag distributions in current and

past yt ’s.

d. Linear regressions : Consider the standard linear regression model

yt = ztβ + εt, t = 1, 2, . . . , T

where zt is a 1 × n vector of independent variables, β is an n × 1 vector of

parameters, and εt is a serially uncorrelated random term with mean zero and

variance Eε2t = σ2 , and satisfying Eεtzs = 0 for t ≥ s . The least-squares

estimator of β based on t observations, denoted β̂t+1 , is obtained as follows.

Define the stacked matrices

Zt =




z1

z2
...

zt


 , Yt =




y1

y2
...

yt


 .

Then the least-squares estimator based on data through time t is given by

β̂t+1 = (Z ′
tZt)

−1Z ′
tYt (B.7.4)

with covariance matrix

E(β̂t+1 − Eβ̂t+1)(β̂t+1 − Eβ̂t+1)
′ = σ2(Z ′

tZt)
−1. (B.7.5)

For reference, we note that

β̂t = (Z ′
t−1Zt−1)

−1Z ′
t−1Yt−1

E(β̂t − Eβ̂t)(β̂t − Eβ̂t)
′ = σ2(Z ′

t−1Zt−1)
−1.

(B.7.6)

If β̂t has been computed by equation (B.7.6), it is computationally inefficient

to compute β̂t+1 by equation (B.7.4) when new data (yt, zt) arrive at time

t . In particular, we can avoid inverting the matrix (Z ′
tZt) directly, by employ-

ing a recursive procedure for inverting it. This approach can be viewed as an

application of the Kalman filter. We explore this connection briefly.

4 A sequence {cs} is said to be the convolution of the two sequences {as}, {bs} if cs =∑∞
j=−∞ ajbs−j .
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We begin by noting how least-squares estimators can be computed recursively

by means of the Kalman filter. We let yt in the Kalman filter be yt in the

regression model. We then set xt = β for all t , V1t = 0, V3t = 0, V2t =

σ2, w1t+1 = 0, w2t = εt, A = I , and Ct = zt . Let

β̂t+1 = E
[
β | yt, yt−1, . . . y1, zt, zt−1, . . . , z1, β̂0

]
,

where β̂0 is x̂0 . Also, let Σt = E(β̂t−Eβ̂t)(β̂t−Eβ̂t)′ . We start things off with

a “prior” covariance matrix Σ0 . With these definitions, the recursive formulas

(B.5.12) and (B.5.15) become

Kt = Σtz
′
t(σ

2 + ztΣtz
′
t)

−1

Σt+1 = Σt − Σtz
′
t(σ

2 + ztΣtz
′
t)

−1ztΣt
(B.7.7)

Applying the formula x̂t+1 = (A−KtCt)x̂t +Ktyt to the present problem with

the preceding formula for Kt we have

β̂t+1 = (I −Ktzt)β̂t +Ktyt. (B.7.8)

We now show how equations (B.7.7) and (B.7.8) can be derived directly

from equations (B.7.4) and (B.7.5). From a matrix inversion formula (see

Noble and Daniel, 1977, p. 194), we have

(Z ′
tZt)

−1 = (Z ′
t−1Zt−1)

−1

− (Z ′
t−1Zt−1)

−1z′t[1 + zt(Z
′
t−1Z

1
t−1)

−1z′t]
−1zt(Z

′
t−1Zt−1)

−1.
(B.7.9)

Multiplying both sides of equation (B.7.9) by σ2 immediately gives equation

(B.7.7). Use the right side of equation (B.7.9) to substitute for (Z ′
tZt)

−1 in

equation (B.7.4) and write

Z ′
tYt = Z ′

t−1Yt−1 + z′tyt

to obtain

β̂t+1 =
1

σ2
{Σt − Σtz

′
t(σ

2 + ztΣtz
′
t)

−1ztΣt} · {Z ′
t−1Yt−1 + z′tyt}

=
1

σ2
ΣtZ

′
t−1Yt−1

︸ ︷︷ ︸
β̂t

−Σtz
′
t(σ

2 + ztΣtz
′
t)

−1

︸ ︷︷ ︸
Kt

zt︸︷︷︸
Ct

1

σ2
ΣtZ

′
t−1Yt−1

︸ ︷︷ ︸
βt

+ ΣtZ
′
t(σ

2 + ztΣtZ
′
t)

−1

︸ ︷︷ ︸
Kt

yt

β̂t+1 =(A−KtCt)β̂t +Ktyt.
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These formulas are evidently equivalent with those asserted earlier.

B.8. Linear projections

For reference we state the following theorems about linear least-squares pro-

jections. We let Y be an (n × 1) vector of random variables and X be an

(h × 1) vector of random variables. We assume that the following first and

second moments exist:

EY = µY , EX = µX ,

EXX ′ = SXX , EY Y
′ = SY Y , EY X

′ = SYX .

Letting x = X − EX and y = Y − EY , we define the following covariance

matrices

Exx′ = Σxx, E
′
yy = Σyy, Eyx

′ = Σyx.

We are concerned with estimating Y as a linear function of X . The estimator

of Y that is a linear function of X and that minimizes the mean squared error

between each component Y and its estimate is called the linear projection of Y

on X .

Definition B.8.1. The linear projection of Y on X is the affine function

Ŷ = AX+a0 that minimizes E trace {(Y −Ŷ ) (Y −Ŷ )′} over all affine functions

a0 +AX of X . We denote this linear projection as Ê[Y | X ] , or sometimes as

Ê [Y | x, 1] to emphasize that a constant is included in the “information set.”

The linear projection of Y on X , Ê [Y | X ] is also sometimes called the wide

sense expectation of Y conditional on X . We have the following theorems:

Theorem B.8.1.

Ê [Y | X ] = µy + ΣyxΣ
−1
xx (X − µx). (B.8.1)

Proof. The theorem follows immediately by writing out E trace (Y − Ŷ )(Y − Ŷ )′

and completing the square, or else by writing out E trace(Y − Ŷ )(Y − Ŷ )′

and obtaining first-order necessary conditions (“normal equations”) and solving

them.
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Theorem B.8.2.

Ê

[(
Y − Ê[Y | x]

)
| X ′

]
= 0.

This equation states that the errors from the projection are orthogonal to each

variable included in X .

Proof. Immediate from the normal equations.

Theorem B.8.3. (Orthogonality principle)

E
[
[Y − Ê (Y | x)]x′

]
= 0.

Proof. Follows from Theorem 21.3.

Theorem B.8.4. (Orthogonal regressors)

Suppose that

X ′ = (X1, X2, . . . , Xh)
′, EX ′ = µ′ = (µx1, . . . , µxh)

′ , and E(Xi − µxi) (Xj −
µxj) = 0 for i 6= j . Then

Ê [Y | x1, . . . , xn, 1] = Ê [Y | x1] + Ê [Y | x2] + . . .+ Ê [Y | xn] − (n− 1)µy.

(B.8.2)

Proof. Note that from the hypothesis of orthogonal regressors, the matrix Σxx

is diagonal. Applying equation (B.8.1) then gives equation (B.8.2).
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B.9. Hidden Markov models

This section gives a brief introduction to hidden Markov models, a tool that is

useful to study a variety of nonlinear filtering problems in finance and economics.

We display a solution to a nonlinear filtering problem that a reader might want

to compare to the linear filtering problem described earlier.

Consider an N -state Markov chain. We can represent the state space in

terms of the unit vectors Sx = {e1, . . . , eN} , where ei is the ith N -dimensional

unit vector. Let the N ×N transition matrix be P , with (i, j) element

Pij = Prob(xt+1 = ej | xt = ei).

With these definitions, we have

Ext+1 | xt = P ′xt.

Define the “residual”

vt+1 = xt+1 − P ′xt,

which implies the linear “state-space” representation

xt+1 = P ′xt + vt+1.

Notice how it follows that E vt+1 | xt = 0, which qualifies vt+1 as a “martingale

process adapted to xt .”

We want to append a “measurement equation.” Suppose that xt is not

observed, but that yt , a noisy function of xt , is observed. Assume that yt lives

in the M -dimensional space Sy , which we represent in terms of M unit vectors:

Sy = {f1, . . . , fM} , where fi is the ith M -dimensional unit vector. To specify a

linear measurement equation yt = C(xt, ut), where ut is a measurement noise,

we begin by defining the N ×M matrix Q with

Prob (yt = fj | xt = ei) = Qij .

It follows that

E (yt | xt) = Q′xt.

Define the residual

ut ≡ yt − E yt | xt,
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which suggests the “observer equation”

yt = Q′xt + ut.

It follows from the definition of ut that E ut | xt = 0. Thus, we have the linear

state-space system

xt+1 = P ′xt + vt+1

yt = Q′xt + ut.

Using the definitions, it is straightforward to calculate the conditional second

moments of the error processes vt+1, ut .
5

B.9.1. Optimal filtering

We seek a recursive formula for computing the conditional distribution of the

hidden state:

ρi(t) = Prob{xt = i | y1 = η1, . . . , yt = ηt}.

Denote the history of observed yt ’s up to t as ηt = col (η1, . . . , ηt). Define the

conditional probabilities

p(ξt, η1, . . . , ηt) = Prob (xt = ξt, y1 = η1, . . . , yt = ηt),

5 Notice that

xt+1x
′
t+1 = P ′xt(P

′xt)
′ + P ′xtv

′
t+1

+ vt+1(P ′xt)
′ + vt+1v

′
t+1

Substituting into this equation the facts that xt+1x
′
t+1 = diag xt+1 = diag (P ′xt)+diag vt+1

gives

vt+1v
′
t+1 = diag (P ′xt) + diag (vt+1) − P ′diag xtP

− P ′xtv
′
t+1(P ′xt)

′.

It follows that

E [vt+1v
′
t+1 | xt] = diag (P ′xt) − P ′diag xtP.

Similarly,

E [ut u
′
t | xt] = diag (Q′xt) −Q′diag xtQ.
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and assume p(η1, . . . , ηt) 6= 0. Then apply the calculus of conditional expecta-

tions to compute6

p(ξt | ηt) =
p(ξt, ηt | ηt−1)

p(ηt | ηt−1)

=

∑
ξt−1

p(ηt | ξt) p(ξt | ξt−1)p(ξt−1 | ηt−1)
∑

ξt

∑
ξt−1

p(ηt | ξt)p(ξt | ξt−1)p(ξt−1 | ηt−1)
.

This result can be written

ρi(t+ 1) =

∑
sQijPsiρs(t)∑

s

∑
iQijPsiρs(t)

,

where ηt+1 = j is the value of y at t+ 1 We can represent this recursively as

ρ̃(t+ 1) = diag (Qj)P
′ρ(t)

ρ(t+ 1) =
ρ̃(t+ 1)

< ρ̃(t+ 1), 1 >
.

where Qj is the j th column of Q , and diag(Qj) is a diagonal matrix with Qij

as the ith diagonal element; here < ·, · > denotes the inner product of two

vectors, and 1 is the unit vector.

6 Notice that

p(ξt, ηt | η
t−1) =

∑

ξt−1

p(ξt, ηt, ξt−1 | ηt−1)

=
∑

ξt−1

p(ξt, ηt | ξt−1, η
t−1)p(ξt−1 | ηt−1)

p(ξt, ηt | ξt−1, η
t−1) = p(ξt | ξt−1, η

t−1)p(ηt | ξt, ξt−1, η
t−1)

= p(ξt | ξt−1)p(ηt | ξt).

Combining these results gives the formula in the text.
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Diaz-Giménez, J., V. Quadrini, and J.V. Ŕıos-Rull. 1997. “Dimensions of Inequality: Facts

on the U.S. Distributions of Earnings, Income, and Wealth.” Quarterly Review,

Federal Reserve Bank of Minneapolis, Vol. 21, pp. 3–21.

Dixit, Avinash K., Gene Grossman, and Faruk Gul. 2000. “The Dynamics of Political Com-

promise.” Journal of Political Economy, Vol. 108(3), pp. 531–568.

Dixit, Avinash K., and Joseph E. Stiglitz. 1977. “Monopolistic Competition and Optimum

Product Diversity.” American Economic Review, Vol. 67, pp. 297–308.

Domeij, David, and Jonathan Heathcote. 2000. “Capital versus Labor Income Taxation with

Heterogeneous Agents.” Mimeo. Stockholm School of Economics.

Doob, Joseph L. 1953. Stochastic Processes. New York: Wiley.

Dornbusch, Rudiger. 1976. “Expectations and Exchange Rate Dynamics.” Journal of Politi-

cal Economy, Vol. 84, pp. 1161–1176.

Dow, James R., Jr., and Lars J. Olson. 1992. “Irreversibility and the Behavior of Aggregate

Stochastic Growth Models.” Journal of Economic Dynamics and Control, Vol.

16, pp. 207–233.

Duffie, Darrell. 1996. Dynamic Asset Pricing Theory. Princeton, N.J.: Princeton University

Press, pp. xvii, 395.

Duffie, Darrell, J. Geanakoplos, A. Mas-Colell, and A. McLennan. 1994. “Stationary Markov

Equilibria.” Econometrica, Vol. 62(4), pp. 745–781.

Duffie, Darrell, and Rui Kan. 1996. “A Yield-Factor Model of Interest Rates.” Mathematical

Finance, Vol. 6(4), pp. 379–406.

Eichenbaum, Martin. 1991. “Real Business-Cycle Theory: Wisdom or Whimsy?” Journal of

Economic Dynamics and Control, Vol. 15(4), pp. 607–626.

Eichenbaum, Martin, and Lars P. Hansen. 1990. “Estimating Models with Intertemporal Sub-

stitution Using Aggregate Time Series Data.” Journal of Business and Economic

Statistics, Vol. 8, pp. 53–69.

Eichenbaum, Martin, Lars P. Hansen, and S.F. Richard. 1984. “The Dynamic Equilibrium

Pricing of Durable Consumption Goods.” Mimeo. Pittsburgh: Carnegie-Mellon

University.

Elliott, Robert J., Lakhdar Aggoun, and John B. Moore. 1995. Hidden Markov Models:

Estimation and Control. New York: Springer-Verlag..

Engle, Robert F., and C. W. J. Granger. 1987. “Co-Integration and Error Correction: Rep-

resentation, Estimation, and Testing.” Econometrica, Vol. 55(2), pp. 251–276.

Epstein, Larry G., and Stanley E. Zin. 1989. “Substitution, Risk Aversion, and the Tem-

poral Behavior of Consumption and Asset Returns: A Theoretical Framework.”

Econometrica, Vol. 57(4), pp. 937–969.

Epstein, Larry G., and Stanley E. Zin. 1991. “Substitution, Risk Aversion, and the Temporal

Behavior of Consumption and Asset Returns: An Empirical Analysis.” Journal

of Political Economy, Vol. 99(2), pp. 263–286.

Ethier, Wilfred J. 1982. “National and International Returns to Scale in the Modern Theory

of International Trade.” American Economic Review, Vol. 72, pp. 389–405.

Evans, George W., and Seppo Honkapohja. 2003. “Expectations and the Stability Problem

for Optimal Monetary Policies.” Review of Economic Studies, Vol. 70(4), pp.

807–24.

Faig, Miquel. 1988. “Characterization of the Optimal Tax on Money When It Functions as a

Medium of Exchange.” Journal of Monetary Economics, Vol. 22(1), pp. 137–148.



References 1053

Fama, Eugene F. 1976a. Foundations of Finance: Portfolio Decisions and Securities Prices.

New York: Basic Books.

Fama, Eugene F. 1976b. “Inflation Uncertainty and Expected Returns on Treasury Bills.”

Journal of Political Economy, Vol. 84(3), pp. 427–448.

Farmer, Roger E. A. 1993. The Macroeconomics of Self-fulfilling Prophecies. Cambridge,

Mass.: MIT Press.

Fischer, Stanley. 1983. “A Framework for Monetary and Banking Analysis.” Economic

Journal, Vol. 93, Supplement, pp. 1–16.

Fisher, Irving. 1913. The Purchasing Power of Money: Its Determination and Relation to

Credit, Interest and Crises. New York: Macmillan.

Fisher, Irving. [1907] 1930. The Theory of Interest. London: Macmillan.

Fisher, Jonas. 2003. “Technology Shocks Matter.” Mimeo. Federal Reserve Bank of Chicago,

Working Paper No. 14.

Frankel, Marvin. 1962. “The Production Function in Allocation and Growth: A Synthesis.”

American Economic Review, Vol. 52, pp. 995–1022.

Friedman, Milton. 1956. A Theory of the Consumption Function. Princeton, N.J.: Princeton

University Press.

Friedman, Milton. 1967. “The Role of Monetary Policy.” American Economic Review, Vol.

58, 1968, pp. 1–15. Presidential Address delivered at the 80th Annual Meeting of

the American Economic Association, Washington, DC, December 29.

Friedman, Milton. 1969. “The Optimum Quantity of Money.” In Milton Friedman (ed.), The

Optimum Quantity of Money and Other Essays. Chicago: Aldine, pp. 1–50.

Friedman, Milton, and Anna J. Schwartz. 1963. A Monetary History of the United States,

1867–1960. Princeton, N.J.: Princeton University Press and NBER.

Fudenberg, Drew, Bengt Holmström, and Paul Milgrom. 1990. “Short-Term Contracts and

Long-Term Agency Relationships.” Journal of Economic Theory, Vol. 51(1).

Gabel, R. A., and R. A. Roberts. 1973. Signals and Linear Systems. New York: Wiley.

Gale, David. 1973. “Pure Exchange Equilibrium of Dynamic Economic Models.” Journal of

Economic Theory, Vol. 6, pp. 12-36.

Gali, Jordi. 1991. “Budget Constraints and Time-Series Evidence on Consumption.” Ameri-

can Economic Review, Vol. 81(5), pp. 1238–1253.

Gallant, R., L. P. Hansen, and G. Tauchen. 1990. “Using Conditional Moments of Asset

Payoffs to Infer the Volatility of Intertemporal Marginal Rates of Substitution.”

Journal of Econometrics, Vol. 45, pp. 145–179.

Genicot, Garance and Debraj Ray. 2003. “Group Formation in Risk-Sharing Arrangements.”

Review of Economic-Studies, Vol. 70(1), pp. 87–113.

Gittins, J.C. 1989. Multi-armed Bandit and Allocation Indices. New York: Wiley.

Golosov M., N. Kocherlakota , and A. Tsyvinski. 2003. “Optimal Indirect and Capital

Taxation.” Review of Economic Studies, Vol. 70, no. 3, July, pp. 569–587.

Gomes, Joao, Jeremy Greenwood, and Sergio Rebelo. 2001. “Equilibrium Unemployment.”

Journal of Monetary Economics, Vol. 48(1), pp. 109–152.

Gong, Frank F., and Eli M. Remolona. 1997. “A Three Factor Econometric Model of the U.S.

Term Structure.” Mimeo. Federal Reserve Bank of New York, Staff Report 19.

Gourinchas, Pierre-Olivier, and Jonathan A. Parker. 1999. “Consumption over the Life

Cycle.” Mimeo. NBER Working Paper No.7271.



1054 References

Granger, C. W. J. 1966. “The Typical Spectral Shape of an Economic Variable.” Economet-

rica, Vol. 34(1), pp. 150–161.

Granger, C. W. J. 1969. “Investigating Causal Relations by Econometric Models and Cross-

Spectral Methods.” Econometrica, Vol. 37(3), pp. 424–438.

Green, Edward J. 1987. “Lending and the Smoothing of Uninsurable Income.” In Edward

C. Prescott and Neil Wallace (eds.), Contractual Arrangements for Intertempo-

ral Trade, Minnesota Studies in Macroeconomics series, Vol. 1. Minneapolis:

University of Minnesota Press, pp. 3–25.

Green, Edward J., and Robert H. Porter. 1984. “Non-Cooperative Collusion under Imperfect

Price Information.” Econometrica, Vol. 52, pp. 975–993.

Greenwood, J., Z. Hercowitz, and P. Krusell. 1997. “Long Run Implications of Investment-

Specific Technological Change.” American Economic Review, Vol. 78, pp. 342–

362.

Grossman, Gene M., and Elhanan Helpman. 1991. “Quality Ladders in the Theory of

Growth.” Review of Economic Studies, Vol. 58, pp. 43–61.

Grossman, Sanford J., and Robert J. Shiller. 1981. “The Determinants of the Variability of

Stock Market Prices.” American Economic Review, Vol. 71(2), pp. 222–227.

Gul, Faruk, and Wolfgang Pesendorfer. 2000. “Self-Control and the Theory of Consumption.”

Mimeo. Princeton, New Jersey: Princeton University.

Guidotti, Pablo E., and Carlos A. Vegh. 1993. “The Optimal Inflation Tax When Money Re-

duces Transactions Costs: A Reconsideration.” Journal of Monetary Economics,

Vol. 31(3), pp. 189–205.

Hall, Robert E. 1971. “The Dynamic Effects of Fiscal Policy in an Economy with Foresight.”

Review of Economic Studies, Vol. 38, pp. 229–244.

Hall, Robert E. 1978. “Stochastic Implications of the Life Cycle-Permanent Income Hypoth-

esis: Theory and Evidence.” Journal of Political Economy, Vol. 86(6), pp. 971–

988. (Reprinted in Rational Expectations and Econometric Practice, ed. Robert

E. Lucas, Jr., and Thomas J. Sargent, Minneapolis: University of Minnesota

Press, 1981, pp. 501–520.).

Hall, Robert E. 1997. “Macroeconomic Fluctuations and the Allocation of Time.” Journal of

Labor Economics, Vol. 15(1), pp. 223-250.

Hall, Robert E., and Dale Jorgenson. 1967. “Tax Policy and Investment Behavior.” The

American Economic Review, Vol. 57(3), pp. 391–414.

Hamilton, James D. 1994. Time Series Analysis. Princeton, N.J.: Princeton University Press.

Hamilton, James D., and Marjorie A. Flavin. 1986. “On the Limitations of Government

Borrowing: A Framework for Empirical Testing.” American Economic Review,

Vol. 76(4), pp. 808–819.

Hansen, Gary D. 1985. “Indivisible Labor and the Business Cycle.” Journal of Monetary

Economics, Vol. 16, pp. 309–327.
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