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Abstract

A warming climate threatens food security and social stability in many parts of Africa.
However, these locations often lack the data necessary for adequately assessing such climate
risks. In this project, we develop methods to overcome this scarcity of data and obtain
Africa-wide estimates of temperature sensitivities at high spatial resolution. Our approach
utilizes outcomes data (on agricultural yields, conflict incidence, and crime rates) from around
the world to flexibly estimate temperature sensitivities as a function of a location’s adaptive
capacities, which are proxied by measures of physical and socioeconomic characteristics. We
generate high-resolution datasets of these measures and thereby extrapolate locally-relevant
temperature sensitivities throughout Africa. We demonstrate how these estimates can be used
to develop climate early warning systems by pairing our results with high-resolution seasonal
climate forecasts to generate predictions of future climate-induced crime and conflict risk.

1 Introduction
Climate change poses an increasing threat to social stability and food security in many parts of
Africa. Yet, in many of the places that are most threatened, neither existing research nor data
sources exist to estimate the effect of climate on these important facets of human welfare. This
represents a serious gap in both the research and policy realms. Existing empirical work that
estimates climate impacts has been confined to a relatively limited subset of countries throughout
the world where the requisite data are available.1 While such work has provided critical insights,
the extent to which these insights can be generalised to other parts of the world has never been
tested. This problem is of particular concern in Africa. Because lack of data often accompanies
conflict-prone and poverty-stricken locations, our knowledge of climate impacts likely ignores some
of the most vulnerable locations in the world.

In this project, we develop methods to understand how climate damages shift as functions
of physical and socioeconomic characteristics. Applying these methods allows us to characterize
climate impact relationships in countries, sub-national regions, and even individual locations where
no such research exists. In particular, our approach provides previously unknown estimates which
detail climate risks and vulnerabilities across Africa, while also yielding important information on
the levels of climate adaptation across locations.

These insights are the product of two major research steps. First, we assemble a large global
collection of historical daily climate data and outcomes data on crime rates, conflict incidence,
and agricultural yields where available. The comprehensiveness of these data allows us to flexibly
estimate plausibly causal temperature responses for each outcome. Second, we account for varying
levels of adaptation across locations by directly modeling spatial heterogeneity in the temperature
response functions. Specifically, we allow the response functions to vary as a function of long-run

1A comprehensive summary of the existing work can be found in Carleton and Hsiang (2016).
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climate (Barreca et al., 2015), income per capita (Hsiang and Narita, 2012), prevalence of irrigation
(Schlenker and Roberts, 2009), and urban-ness (Burgess et al., 2014). These covariates were
carefully chosen based on the literature, and new datasets were created to provide high-resolution
global coverage. While the heterogeneity analysis is interesting in its own right, its key role in
this study is to enable extrapolation of locally-relevant response functions to any given location,
including those where outcomes data are unavailable. By inserting local values of the covariates,
we map out temperature-related vulnerabilities for agricultural yields, crime, and conflict at a local
level across Africa.

The rest of this report is organized as follows: Section 2 describes the data collected on out-
comes, climate, and covariates; Section 3 explains the methodological innovations whereby adap-
tation is modeled through spatial heterogeneity in temperature responses; Section 4 applies our
methods to extrapolate locally-relevant temperature responses throughout Africa; Section 5 con-
cludes.

2 Data Collection
Our approach makes use of three distinct types of data: a) outcomes data on agricultural yields,
crime rates, and conflict incidence; b) historical daily, as well as forecasted monthly, temperature
and precipitation data; and c) data on state-level incomes, historical long-run average temperature,
area equipped for irrigation, and population density. Each type of data is described in turn.

2.1 Outcomes Data
Agriculture Subnational maize production and area cropped data was collected for 43 countries
with an unbalanced panel of production data spanning 1908 – 2015.2 Yields were calculated as
production divided by area planted where available, or divided by area harvested otherwise. Maize
is calorically the most important crop in sub-Saharan Africa, accounting for approximately one-fifth
of total caloric production (Cassidy et al., 2013).

Crime and Conflict We have collected data on the number and characteristics of both large-
scale civil conflicts and interpersonal violent crimes at various spatial and temporal scales through-
out the world. Guided by an extensive literature review, we have obtained the original data behind
21 distinct articles examining the link between climate and crime or conflict.3

The studies from which we have obtained data focus on a wide range of outcome variables,
from civil war and ethnic riots to homicide and assault. We therefore categorize these outcomes
into two groups: we call larger scale conflicts involving groups of individuals “intergroup conflict”,
and smaller scale person-to-person crimes “interpersonal crime”. For intergroup conflict, we have
coverage for nearly all countries in the world, although with much richer data in locations where
conflict is common and heavily studied (e.g. sub-Saharan Africa). For interpersonal crime, we have
subnational data for a smaller subset of countries. The geographic coverage of our data, along with
spatial resolution, is shown in Figure 1.

Because our data cover diverse outcome variables at various temporal and spatial scales, we
standardize both climate (X) and outcome variables (Y ) to account for heterogeneous average
levels of conflict outcomes and heterogeneous temperature variances across these different scales.
Our standardized variables are defined as:

Ÿit = Yit

Y i

(1)

Ẍit = Xit −Xi

σi(Xit)
(2)

2The countries are Argentina, Brazil, Bolivia, Canada, Chile, China, Colombia, Dominican Republic, Ecuador,
India, Indonesia, Mexico, Nicaragua, Nigeria, Philippines, Syria, Tanzania, Vietnam, USA, and the countries of the
European Union.

3Data were sourced from the following 21 articles: Baysan et al. (2015), Bergholt and Lujala (2012), Bohlken
and Sergenti (2010), Brückner and Ciccone (2011), Burke et al. (2015), Burke et al. (2009), Burke (2012), Burke
and Leigh (2010), Caruso et al. (2016), Couttenier and Soubeyran (2014), Fetzer (2014), Fjelde and von Uexkull
(2012), Hendrix and Salehyan (2012), Hidalgo et al. (2010), Kim (2016), Mares and Moffett (2016), Miguel (2005),
Miguel et al. (2004), O’Loughlin et al. (2012), Ranson (2014), and Wetherley (2014).
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(a) Intergroup conflicts (b) Interpersonal violent crime

Figure 1: Data coverage and spatial resolution for conflict and crime

where Yit and Xit respectively denote conflict outcome variables and climate variables observed at
location i and time period t. The objects Y i and Xi respectively denote the averages of Y and
X at location i over all periods t, while σi(Xit) is the standard deviation of climate variable X at
location i over all periods t.

2.2 Climate Data
Historical For all sectors, we use gridded daily maximum, minimum, and/or average tempera-
tures from two sources: The Berkeley Earth Surface Temperature (BEST) dataset, as well as the
Global Meteorological Forcing Dataset for land surface modeling (GMFD) dataset. We aggregate
grid cells into observations at administrative scales that match our outcome variables by taking a
weighted average of the grid cells that fall within a given region. The weights used will vary by
sector. In agriculture the weights are cropped area, using the Center for Sustainability and the
Global Environment (SAGE) 0.1 degree gridded product, such that regional weather variables are
crop-area-weighted exposure measures. For crime and conflict, we use simple area weights.

Across our outcome measures, we use distinct weather variables to capture appropriate climate
exposure. These variables are summarized in Table 1. For agriculture, growing degree days (GDD)
were calculated using a sinusoidal fit to daily Tmin and Tmax temperatures. This approach estimates
a smooth fit to temperatures over time, allowing for sub-hourly measures of crop exposure to
extreme temperatures and avoiding underestimating exposure to the extremes of the temperature
distribution which would be associated with time-averaged measures. The GDD lower and upper
breakpoints were searched for best fit to the data and set at 0◦C and 29◦C, respectively. "Killing
degree days" (KDD) were calculated as growing degree days with a lower bound of 29◦C and no
upper bound, under the same sinusoidal fit to daily Tmin and Tmax temperatures. In conflict, we
rest heavily on the expansive existing literature and use the temperature data included in each
individual study from which we obtained original data, implying that our temperature variables
can include both averages as well as maximum temperatures.4

In all sectors, we use gridded daily precipitation data from GMFD, or gridded monthly data
from the University of Delaware, calculating appropriately-weighted regional cumulative measures
of total rainfall.

Forecasts In this report, we demonstrate that our agricultural and conflict climate damage
estimates can be effectively mobilized into a data-driven early warning system by applying our
dose-response functions to short-run climate forecasts. While we show this functionality for the
crime and conflict sectors here, this method is generalizable to any category of climate impacts.

A key ingredient in generating a policy-relevant forecasting tool for climate impacts is a set
of climate forecasts. We use the probabilistic seasonal climate forecast product produced by the
International Research Institute for Climate and Society (IRI) at Columbia University to capture

4We do not use our own temperature data because of the diversity of contexts and hence appropriate climate
measures studied in these different conflict contexts. Because we standardize all analysis in conflict (see Equations
1 and 2), these differences are accounted for.

3



predicted temperature and rainfall distributions. These data are a re-calibration of output from
NOAA’s North American Multi-Model Ensemble Project (NMME), and the output is provided
on a 1 degree grid at the global scale. We convert these probabilistic forecasts into z-scores of
temperature (for temperature exposure measures) and levels of precipitation (as a control), and
spatially aggregate these forecasts into regional metrics that can be used as inputs into hyper-local
climate impact estimation.

2.3 Covariate Data
Data on the following covariates are used to explain spatial heterogeneity in the temperature
responses of the outcomes. Exact details on how the covariates are constructed for each outcome
can be found in Table 2.

Temperature Historical long-run average temperature is calculated from the temperature datasets
used in the analysis and described above. The average is taken over the years that correspond to
the outcome data. This is calculated at the 1st-level administrative division (i.e. ADM1) in order
to match the level at which the administrative income data is available. For country-level outcome
data, we use country-level long-run average temperatures.

Sub-national Incomes Sub-national incomes measured in constant 2005 dollars adjusted for
purchasing power parity (PPP) are obtained from Gennaioli et al. (2012), which reports sub-
national incomes gathered from administrative data around the world. These data are typically
not annual, and are drawn from census data. We match incomes in the cross-section to ADM1
units in our sample based on the sample period for each country. For country-level outcome data,
we use World Bank income data, also in constant 2005 dollars and PPP-adjusted.

Area Equipped for Irrigation To measure the cropland area equipped for irrigation (AEI),
we used the Global Map of Irrigated Areas from Siebert et al. (2013), which shows the percentage
of grid cell area equipped for irrigation around the year 2005. The Global Map of Irrigated Areas
is provided at 5 minute grid cells.

Population density Population density is derived from Landscan. We use this high-resolution
gridded dataset to create a measure of urban-ness, distinct from population density in an admin-
istrative region. As average population density across any of our regions is highly dependent on
the value of area in the denominator, this measure will not capture how urban an area is. This
is particularly true in cases where large administrative regions comprise unpopulated desert and
highly concentrated urban centers. We transform this into a measure of urban-ness by calculat-
ing the population-weighted population density, or the population density that an average person

perceives in an administrative region.

3 Methodological Innovations
Our method involves 3 steps. We first estimate a dose-response relationship between temperature
and each outcome using all available global data for that outcome. Second, we explore how this
relationship varies across locations. Spatial (i.e. cross-sectional) heterogeneity in the dose-response
relationship is empirically modeled as a function of location-specific factors, which, depending on
the outcome, may include per-capita GDP, long-run temperature, and percent of cropped area that
is irrigated. These covariates are meant to capture dimensions along which adaptation to extreme
temperatures might occur. The third step consists of extrapolation based on the heterogeneity
estimates. By inserting the appropriate values of the covariates, a dose-response relationship,
reflective of adaptive capabilities, can be characterized for any location, including those lacking
data on the underlying outcome.

3.1 Step 1: Dose-response Function Estimation
The global dose-response function flexibly models the relationship between temperature in degrees
Celsius (T ) and outcome (Y ). Each outcome variable is measured for some unit i at time t, with
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the set of outcomes and their spatial and temporal resolutions detailed in Table 1. The explanatory
variable of interest (i.e. temperature) is modeled through a (possibly) non-linear function f(T ).

The regression specifications take the following general form:

Yi,t = f(Ti,t) + Controlsi,t + FixedEffects+ εit. (3)

The exact form for the function f varies by outcome, as do the control variables and fixed effects.
The particulars for each outcome are listed in Table 1. The variable εit denotes the remaining
idiosyncratic error.

For the agricultural yield outcome, the response at any given temperature is expressed as the
difference between the predicted yield at that temperature and the predicted yield at a reference
temperature (Tref ) of 29◦C.5 For example, the response of yield on a day where the temperature
is x degrees Celsius is:

Response(x) = f(x)− f(29) (4)

For the crime and conflict outcomes, the estimation employs a temperature exposure measured
in z-scores. Therefore, the function f itself captures a response that is relative to the sample
average temperature. Thus, the estimated predicted response of these outcomes at a temperature
z-score x is simply Response(x) = f(x).

In the next step, we exploit data on location-specific covariates to model how differential adap-
tation affects the shape of the response function.

3.2 Step 2: Interpolation Surface Estimation
The outcomes data necessary to directly estimate equation (3) are available only for a limited
number of countries, posing a challenge for conducting globally valid climate impact analyses. In
order to address this issue, we develop a model of interactions to characterize heterogeneity in
the response. Specifically, we augment equation (3) to include interactions between temperature
and other factors (i.e. location-specific covariates) at the first administrative level (i.e. state or
province) for subnational data, and at the national level for country data. The factors are as
follows, with the exact interactions described in Table 2:

1. Income measured as the natural log of per-capita GDP over some representative year(s). See
Table 2 for the years used for each outcome.

2. Long − run temperature measured for each outcome as described in Table 2.
3. Percent cropped area irrigated (for agricultural yield outcome only).

4. Population density (for crime and conflict only), measured as the natural log of population
density in the year 2000.

We chose these factors because they plausibly capture differential adaptive responses across
locations. Prior literature has emphasized the adaptive significance of average climate (Barreca
et al., 2015), income per-capita (Hsiang and Narita, 2012), urban-ness (Burgess et al., 2014), and,
for agricultural yields, irrigation (Schlenker and Roberts, 2009). For example, higher per-capita
GDP entails greater capability to invest in adaptive goods and services. Furthermore, the dose-
response relationship may also depend on long-run exposure to extreme temperatures as places
with greater previous exposure may differ in their adaptive behaviors. Additionally, irrigation may
mitigate the harmful effects of extreme temperatures on agriculture yields.

For each outcome, we parameterize the heterogeneity in the function f(T ) due to the factors
(see Table 2 for specific parameterizations by outcome), and thereby estimate f(T ) as conditional
on the factors. Letting z denote the vector of factors, the conditional function is thus f(T |z).
Estimating the object f(T |z) paves the way for the third step of the analysis− predicting dose-
response values at a local level.

5In other words, the response to a temperature of 29◦C is normalized to zero.
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Table 2: Factor Interactions by Sector

Outcome Income Long-run
Temperature

Other Covariate

Yield log(GDPpc) in year
of observationa

Growing season
average Tmax in
sample period

Cropland share
irrigated

Violent Crime
Incidence

log(GDPpc) in
sample perioda

Average annual
temperature in sample

period

log(popdens) in
sample period

Conflict Incidence log(GDPpc) in
sample perioda

Average annual
temperature in sample

period

log(popdens) in
sample period

a Subnational income data are linearly interpolated between the years provided in Gennaioli et al. (2012).

3.3 Step 3: Interpolating Dose-response Relations
Estimating f(T |z) makes it possible to interpolate a response function to any location of the world
where the values of the covariates are known. We predict dose-response values at the impact region

level throughout Africa, where we have created data to identify the values of each factor. Impact

regions are a set of boundaries created by us for the purpose of extrapolating temperature sensi-
tivities derived from our estimation. Impact regions are constructed such that they are identical to
existing administrative regions or are a union of a small number of administrative regions.6 There
are 3400 impact regions in Africa, the boundaries of which are depicted in Figure 2.

Figure 2: Impact Regions in Africa
6We use the Global Administrative Region dataset (Global Administrative Areas, 2012) to delineate boundaries

for impact regions, but require fewer than the approximately 295,000 spatial units present in that dataset. We
therefore agglomerate the spatial units to create a set of 24,378 impact regions globally that allow for greater
comparability and computational feasibility than unagglomerated regions. We establish a set of criteria to create
these regions that makes them approximately comparable across regions with respect to population, and internally
consistent with respect mean temperature, diurnal temperature range, and mean precipitation.
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To obtain per-capita income at the impact region level, we allocate national GDP based on the
impact region’s mean frequency of nightlights between 1992 and 2013 (Henderson et al., 2012).7
All other factors are obtained at the impact region level by aggregating gridded data from the
sources described in Section 2.3.

Formally, the estimated, predicted response for agricultural yield at a temperature x (relative
to 29◦C) in an impact region with covariate vector zi is:

Response(x|zi) = f(x|zi)− f(29|zi). (5)

For the crime and conflict outcomes, which are estimated using a z-score measure of temperature
exposure, the estimated predicted response at a temperature z-score x in an impact region with
covariate vector zi is simply Response(x|zi) = f(x|zi).

In the next section, we map these estimates of predicted responses for each outcome at extreme
temperature values.

4 Applications
To demonstrate the application of our methodological innovations, we explore the local impacts of
high temperature days on each outcome throughout Africa. The subsequent maps illustrate impacts
that reflect adaptive capabilities (i.e. income, long-run temperature, irrigation, and urban-ness)
as of 2010.

4.1 Agriculture
In estimating the maize response surface, we find two forms of climate adaptation. Farms that
are more frequently exposed to extreme heat, measured via exposure to long-run Tmax, exhibit a
muted negative response of yields to extreme heat shocks. Likewise, high levels of irrigation also
mute the adverse effects of extreme heat shocks, presumably through directly cooling crops and
reducing the water-stress effects of extreme heat.

The maize response surface was interpolated for all of SSA using impact area covariate data,
as described previously.8 The results of this interpolation are displayed in Figure 3. The first
chart depicts the yield loss (in log points) associated with 24 hours of constant exposure to a
temperature of 35◦C, relative to the yield at the estimated optimal maize growing temperature of
29◦C. These are the projected responses, allowing for the adaptive effects of climate adaptation
and irrigation described above. So, a value of -0.03 would indicate a 3% yield loss relative to the
ideal maize temperature, conditional on the long-run climate and current level of irrigation in any
given impact region. Regions with a lesser estimated yield loss will have higher levels of irrigation
and/or higher levels of long-run Tmax. The second chart in Figure 3 is identical to the first, except
the exposure depicted is for 24 hours of constant temperature at 40◦C, instead of 35◦C.

It should be noted that these effects, as modeled, are additive. Take, for example, a region which
is estimated to exhibit a 10% loss of yields under exposure to 24 hours of 40◦C temperatures. If
that region is exposed to 72 hours of 40◦C temperatures over the course of a growing season, yield
losses will be projected to be 30% on average, relative to the counterfactual of optimal growing
temperature during those 72 hours.

7Specifically, we first estimate a linear relationship between the z-score of GDP per capita and z-score of nightlight
frequency for the sample of US counties in 2011, where both these variables are available. We then apply these
coefficient estimates to nightlights density measurements to predict GDP per capita at the impact region level in
other countries.

8The maize response surface to KDD was clipped at zero. In the unclipped surface, some areas of southern
Egypt, northern Sudan, southern Libya, and northern Mali were predicted to have a slightly positive response to
extreme heat shocks in the interpolated surface. These arid regions have extremely high values of long-run Tmax

and have limited (if any) maize production, so we believe clipping is justified in this case.
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Figure 3: Maize response interpolation for impact regions in SSA. The first chart depicts the
yield loss (in log points) associated with 24 hours of constant exposure to a temperature of 35◦C,
relative to the yield at the estimated optimal maize growing temperature of 29◦C. The second
chart depicts the same, except for 24 hours of constant exposure to a temperature of 40◦C. The
maize response surface to KDD was clipped at zero.
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4.2 Crime and Conflict
For interpersonal crime and intergroup conflict independently, we use the interpolation method
described above to generate predicted temperature sensitivities throughout India. The results of
this interpolation are displayed in Figure 4. In panel (a), the map shows the predicted increase
in civil conflict incidence caused by a one standard deviation increase in temperature exposure.
In panel (b), the map shows the same value, but for interpersonal violent crime. Note that as
above for agricultural yields, these are the projected responses, allowing for the adaptive effects of
climate adaptation and income described above.

(a) Change in civil conflict incidence (b) Change in violent crime incidence

Figure 4: Impact of temperature on crime and conflict. Panel (a) depicts the % change in conflict
per standard deviation (σ) increase in temperature, where temperature exposure is defined using
a range of variables, from monthly maximum temperature to annual average temperature. Panel
(b) shows the same results, but for interpersonal violent crimes.

Across all of Africa, the average baseline number of annual conflicts per country is 580, ac-
cording to the Armed Conflict Location and Event Data Project (ACLED). Our estimates shown
in panel (a) of Figure 4 predict that a one standard deviation increase in temperature will cause
an additional 64 conflicts per country per year; this corresponds to an average effect of an 10.8%
increase in conflict per standard deviation increase in temperature, although this average masks
substantial spatial heterogeneity shown in panel (a).

While both interpersonal crimes and larger scale civil conflicts tend to increase with warming
temperatures, the magnitudes of these effects and their spatial patterns have been shown to differ
substantially (Burke et al., 2015). Consistent with this previous evidence, we find that predicted
temperature sensitivities for interpersonal crime exhibit distinct behavior to those estimated for
intergroup conflict. The interpolation results for crime are shown in panel (b) of Figure 4. As for
intergroup conflict, the map in panel (b) shows the predicted increase in violent crime incidence
caused by a one standard deviation increase in temperature exposure. Across all of Africa, we
predict that the average effect of a one standard deviation increase in temperature exposure is
16.2% for violent crime, a significantly higher average value than that for intergroup conflict.
Applying this estimate to the case of homicides, we estimate that the average number of homicides
per year per country, currently at 11.7 per 100,000 (Mares and Moffett, 2016), will rise by 1.45 per
100,00 in response to a one standard deviation increase in temperature. While similar, the spatial
pattern of these deaths is distinct from that shown in panel (a); for both interpersonal crime and
for intergroup conflict, the highest sensitivity locations are the relatively poor, central regions.

Together, these findings demonstrate how our methodology can harness large amounts of
diversely-collected data to generate hyper-local predictions of climate impacts. In particular, these
crime and conflict climate impact maps have the potential to be exceptionally valuable to pol-
icymakers responsible for preventing and combating outbreaks of violence which may be linked
to fluctuations in the climate. To demonstrate this functionality, in the next section we combine
these hyper-localized temperature sensitivities with seasonal climate forecasts to generate short-run
forecasts of crime and conflict on scales directly relevant to policymakers.
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Forecasted impacts Using the interpolated temperature sensitivities described above, in combi-
nation with analogous precipitation sensitivities estimated for precipitation, we generate short-run
forecasts of crime and conflict incidence by relying on the IRI seasonal climate forecast data. These
results are shown below in Figure 5.

(a) Forecasted change in conflict incidence, July 2017 (b) Forecasted ∆conflict incidence, Aug 2017

(c) Forecasted ∆crime incidence, July 2017 (d) Forecasted ∆crime incidence, July 2017

Figure 5: Forecasted Impact of Heat on Civil Conflict and Violent Crime. Each panel depicts the
change in conflict or crime incidence relative to the average level. (Dashed areas indicate locations
where the IRI climate forecasts are missing data.)

These results provide a user-friendly window into data-driven climate impact estimation, pro-
viding stakeholders with maps at high spatial and temporal resolution indicating the regions of
immediate concern for intergroup, interpersonal, or both types of crime and conflict.

5 Conclusion
Although Africa includes some of the most climate-vulnerable areas in the world, the lack of data
has hampered efforts to assess climate impacts in these locations. The methodological innovations
of this project are designed to overcome this paucity of data and yield unprecedented, hyper-local
insights into climate risks for two important facets of human welfare– food security and social
stability.
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Our approach utilizes outcomes data (i.e. data on agricultural yields, conflict incidence, and
crime rates) from around the world to flexibly estimate temperature sensitivities as a function of a
location’s adaptive capacities, which we model through measures of income, long-run climate, irri-
gation, and urban-ness. We have developed high-resolution, global datasets of these measures, thus
making it possible to extrapolate locally-relevant temperature sensitivities at any given location.

Our findings suggest that extreme heat exposure leads to substantial losses in maize yields
throughout most of sub-Saharan Africa. For instance, twenty-four hours of exposure to a temper-
ature of 40◦C results in yield losses of up to 12 percent (depending on location), relative to the
yield at the estimated optimal maize growing temperature of 29◦C. Some of the worst affected
areas include the relatively poor, central regions. Crime and conflict are also seen to increase with
exposure to warmer temperatures. A one standard deviation increase temperature is expected to
cause a 10.8% average increase in conflict incidence and 16.2% average increase in the violent crime
rate, however both these averages mask considerable spatial heterogeneity. As with maize yields,
some of the worst affected areas include the central regions.

In addition to shedding light on future climate vulnerability, the methods developed in this
project also have the potential to be used as a near-term forecasting tool. We demonstrate an
example of this for the crime and conflict outcomes. Such a tool can equip policymakers with
valuable information for better allocating scarce resources to areas of immediate concern.

12



References
A. Barreca, K. Clay, O. Deschênes, M. Greenstone, and J. S. Shapiro. Convergence in adaptation
to climate change: Evidence from high temperatures and mortality, 1900–2004. The American

Economic Review, 105(5):247–251, 2015.

C. Baysan, M. Burke, F. Gonzalez, S. Hsiang, and E. Miguel. Economic and non-economic factors
in violence: Evidence from organized crime, suicides and climate in mexico. Department of

Agricultural and Resource Economics, University of California, Berkeley, 2015.

D. Bergholt and P. Lujala. Climate-related natural disasters, economic growth, and armed civil
conflict. Journal of Peace Research, 49(1):147–162, 2012.

A. T. Bohlken and E. J. Sergenti. Economic growth and ethnic violence: An empirical investigation
of hindu—muslim riots in india. Journal of Peace research, 47(5):589–600, 2010.

M. Brückner and A. Ciccone. Rain and the democratic window of opportunity. Econometrica, 79
(3):923–947, 2011.

R. Burgess, O. Deschenes, D. Donaldson, and M. Greenstone. The unequal effects of weather and
climate change: Evidence from mortality in india. Cambridge, United States: Massachusetts

Institute of Technology, Department of Economics. Manuscript, 2014.

M. Burke, S. M. Hsiang, and E. Miguel. Climate and conflict. Annu. Rev. Econ., 7(1):577–617,
2015.

M. B. Burke, E. Miguel, S. Satyanath, J. A. Dykema, and D. B. Lobell. Warming increases the risk
of civil war in africa. Proceedings of the national Academy of sciences, 106(49):20670–20674,
2009.

P. J. Burke. Economic growth and political survival. The BE Journal of Macroeconomics, 12(1),
2012.

P. J. Burke and A. Leigh. Do output contractions trigger democratic change? American Economic

Journal: Macroeconomics, 2(4):124–157, 2010.

T. A. Carleton and S. M. Hsiang. Social and economic impacts of climate. Science, 353(6304):
aad9837, 2016.

R. Caruso, I. Petrarca, and R. Ricciuti. Climate change, rice crops, and violence: Evidence from
indonesia. Journal of Peace Research, 53(1):66–83, 2016.

E. S. Cassidy, P. C. West, J. S. Gerber, and J. A. Foley. Redefining agricultural yields: from tonnes
to people nourished per hectare. Environmental Research Letters, 8(3):034015, 2013.

M. Couttenier and R. Soubeyran. Drought and civil war in sub-saharan africa. The Economic

Journal, 124(575):201–244, 2014.

M. Dell, B. F. Jones, and B. A. Olken. Temperature shocks and economic growth: Evidence from
the last half century. American Economic Journal: Macroeconomics, 4(3):66–95, 2012.

T. Fetzer. Can workfare programs moderate violence? evidence from india. 2014.

H. Fjelde and N. von Uexkull. Climate triggers: Rainfall anomalies, vulnerability and communal
conflict in sub-saharan africa. Political Geography, 31(7):444–453, 2012.

N. Gennaioli, R. La Porta, F. Lopez-de Silanes, and A. Shleifer. Human capital and regional
development. The Quarterly journal of economics, 128(1):105–164, 2012.

Global Administrative Areas. Gadm database of global administrative areas, version 2.0. URL:

http://www. gadm. org [accessed 201–03–24], 2012.

J. V. Henderson, A. Storeygard, and D. N. Weil. Measuring economic growth from outer space.
The American Economic Review, 102(2):994–1028, 2012.

13



C. S. Hendrix and I. Salehyan. Climate change, rainfall, and social conflict in africa. Journal of

peace research, 49(1):35–50, 2012.

F. D. Hidalgo, S. Naidu, S. Nichter, and N. Richardson. Economic determinants of land invasions.
The Review of Economics and Statistics, 92(3):505–523, 2010.

S. M. Hsiang and D. Narita. Adaptation to cyclone risk: Evidence from the global cross-section.
Climate Change Economics, 3(02):1250011, 2012.

N. K. Kim. Revisiting economic shocks and coups. Journal of Conflict Resolution, 60(1):3–31,
2016.

D. M. Mares and K. W. Moffett. Climate change and interpersonal violence: a “global” estimate
and regional inequities. Climatic change, 135(2):297–310, 2016.

E. Miguel. Poverty and witch killing. The Review of Economic Studies, 72(4):1153–1172, 2005.

E. Miguel, S. Satyanath, and E. Sergenti. Economic shocks and civil conflict: An instrumental
variables approach. Journal of political Economy, 112(4):725–753, 2004.

J. O’Loughlin, F. D. Witmer, A. M. Linke, A. Laing, A. Gettelman, and J. Dudhia. Climate
variability and conflict risk in east africa, 1990–2009. Proceedings of the National Academy of

Sciences, 109(45):18344–18349, 2012.

M. Ranson. Crime, weather, and climate change. Journal of environmental economics and man-

agement, 67(3):274–302, 2014.

W. Schlenker and M. J. Roberts. Nonlinear temperature effects indicate severe damages to us
crop yields under climate change. Proceedings of the National Academy of sciences, 106(37):
15594–15598, 2009.

S. Siebert, V. Henrich, K. Frenken, and J. Burke. Update of the digital global map of irrigation
areas to version 5. Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany and Food and

Agriculture Organization of the United Nations, Rome, Italy, 2013.

E. Wetherley. Typhoons and temperature impact crime rates: evidence from the philippines. 2014.

14



Designed by soapbox.co.uk

The International Growth Centre 
(IGC) aims to promote sustainable 
growth in developing countries 
by providing demand-led policy 
advice based on frontier research.

Find out more about 
our work on our website  
www.theigc.org

For media or communications 
enquiries, please contact  
mail@theigc.org

Subscribe to our newsletter 
and topic updates 
www.theigc.org/newsletter

Follow us on Twitter  
@the_igc 

Contact us 
International Growth Centre, 
London School of Economic 
and Political Science, 
Houghton Street, 
London WC2A 2AE


	89343_Food Security and Social Stability_Final paper_02 August 2017.pdf
	Introduction
	Data Collection
	Outcomes Data
	Climate Data
	Covariate Data

	Methodological Innovations
	Step 1: Dose-response Function Estimation
	Step 2: Interpolation Surface Estimation
	Step 3: Interpolating Dose-response Relations

	Applications
	Agriculture
	Crime and Conflict

	Conclusion




