Using Data to Make Better Decisions

Prof. Nick Tsivanidis

University of California, Berkeley
International Growth Centre

April 2019
Amman, Jordan
Rapid Urbanization: Challenges and Opportunities

- **Amman population today**: 4mn - doubled since 2004
- **Urbanization presents opportunity**: Firms and workers are more productive in cities
- **But also challenges**: Congestion (traffic, housing, public services) & uncoordinated growth (sprawl)
- **Governments can use data** to help minimize the costs & maximize the benefits of urbanization
What Kinds of Data Can Be Collected?

Active/Traditional

- Household/Firm Surveys
- Tax records
- Administrative records (electricity/water/health)

Passive/New

- Satellites
- Bus GPS & Monitoring
- Cellphones
- Sensors & Video Cameras
- Google Maps/Streetview
Using Data to Make Better Decisions

1. **Measuring Gaps** to enhance service delivery

2. **Policy Evaluation**: feedback to understand impacts

3. **Forecasting** the future and predicting the impact of potential policies
Using Data to Make Better Decisions

1. **Measuring Gaps** to enhance service delivery

2. **Policy Evaluation**: feedback to understand impacts

3. **Forecasting** the future and predicting the impact of potential policies
We can measure buildings/slums from satellites

Source: Gechter and Tsivanidis (2018)
...and where cities have grown

- Together, these identify areas to target new service provision

Combining Twitter with Admin Data to Map Floods in Jakarta

- App collects real-time flooding reports

- **Key Feature**: Combines twitter+government data

- Provides key information to identify weaknesses
Using GPS to Improve Public Transport Management

- Intelligent Transport Systems: Bogotá, Santiago, Lagos

- Bus locations tracked via GPS every 5 seconds

- Allows for reoptimization of buses as conditions change

- Data Sharing: Apps can integrate to provide services (e.g. journey planning)
Using Data to Make Better Decisions

1. Measuring Gaps to enhance service delivery

2. Policy Evaluation: feedback to understand impacts

3. Forecasting the future and predicting the impact of potential policies
Data for Policy Impact Evaluation

2 Examples from our team’s research

1. Examining the impact of Bus Rapid Transit in Bogotá
2. Understanding the effect of migrant influx in Amman
TransMilenio: World’s Most Used Bus Rapid Transit System
Overview

1. **Detailed data** across 3000 census tracts available before and after BRT construction
 - Collaborated with *different government departments* (statistics, GIS, cadastral) to collect data for comprehensive analysis
Overview

1. **Detailed data** across 3000 census tracts **available before and after BRT construction**
 - Collaborated with **different government departments** (statistics, GIS, cadastral) to collect data for comprehensive analysis

2. **Measure impact of BRT on**

 - Save Time On Commute
 - Where to live
 - Where to work
 - House Prices, Wages
Overview

1. **Detailed data** across 3000 census tracts **available before and after BRT construction**
 - Collaborated with **different government departments** (statistics, GIS, cadastral) to collect data for comprehensive analysis

2. **Measure impact of BRT on**

 - **Save Time On Commute**
 - **Where to live**
 - **Where to work**
 - **House Prices, Wages**

3. **Use economic model to measure impact on GDP+welfare** and understand **what would the effect have been of other policies government policies**
Where did the BRT improve workers’ access to jobs?
Where did the BRT improve workers’ access to jobs?
Where did the BRT improve firms’ access to workers?
Where did the BRT improve firms’ access to workers?
Quantifying the Gains from TransMilenio

1. **TransMilenio increased GDP of Bogotá** by at least 2.73% (net of construction+operation costs)

2. About 70% comes from **saved travel time**, 30% from **improved allocation of labor**

3. Low- and high-skill workers **benefit about the same** ⇒ equitable impacts
Understanding the Impact of Rapid Refugee Influx in Amman

Overview:

1. **Document patterns** of migration into and commuting within Amman

2. **Examine impact** of migrant influx on city structure
 - Evaluate the effect on traffic and public service congestion
 - Understand the influx’s impact on housing and labor markets

3. **Quantify effect** on GDP/welfare and **evaluate which policies best solve the challenges** of this rapid urban growth
The Challenges of Rapid Refugee Influx in Amman

Data:

1. **Traditional Sources**
 - Establishment Census (firms), 2006 and 2011
 - Population and Housing Census, 2004 and 2015
 - Business Licenses
 - *In progress*: Cadstral maps of land plots and use, municipal services (water, garbage)

2. **New Sources**
 - Cellphone Metadata: mobile phone calls data and tower locations
 - Satellite Imagery: Identify change in building footprints and urban area
Employment Density 2011

Employment 2011
Post-Secondary Education Share 2015

High Skill Share 2015

[Color legend with intervals from 0.00 to 1.00]
Refugees 2015
Measuring Commuting from Cellphone Data

Each series is an average within a decile of the number of handsets in a neighborhood between 10am and 3pm. Series normalized by mean number of handsets observed per hour overall and daily average within percentile.
Measuring Commuting from Cellphone Data: Handsets 4am
Measuring Commuting from Cellphone Data: Handsets 5am
Measuring Commuting from Cellphone Data: Handsets 6am
Measuring Commuting from Cellphone Data: Handsets 7am
Measuring Commuting from Cellphone Data: Handsets 8am
Measuring Commuting from Cellphone Data: Handsets 9am
Measuring Commuting from Cellphone Data: Handsets 10am
Measuring Commuting from Cellphone Data: Handsets 11am
Measuring Commuting from Cellphone Data: Handsets 12pm
Measuring Commuting from Cellphone Data: Handsets 4pm
Measuring Commuting from Cellphone Data: Handsets 5pm
Measuring Commuting from Cellphone Data: Handsets 6pm
Measuring Commuting from Cellphone Data: Handsets 8pm
Measuring Commuting from Cellphone Data: Handsets 9pm
Using Data to Make Better Decisions

1. Measuring Gaps to enhance service delivery

2. Policy Evaluation: feedback to understand impacts

3. Forecasting the future and predicting the impact of potential policies
Simulating Effects from Hypothetical Policies

Example from Bogotá

- Zoning regulations unchanged before + after BRT ⇒ no change in housing supply

- Simulate the effect of a Land Value Capture scheme:
 - Government ↑ permitted zoning densities by 30% within 500m of stations
 - Sells these permits to developers
Simulating Effects from Hypothetical Policies

1. **Revenues cover between 18-50% of construction costs**

2. **Welfare Gains 23% Higher Under LVC**
 - More people can live where accessibility improves
 - House price appreciation dampened

Results suggest large gains to cities pursuing integrated transit+land use policy
Conclusion

• Cities can leverage increasingly available data to understand...
 • How to best allocate scarce resources
 • Which policies work best to achieve goals

• Collaborating with and making data available to researchers can help with these goals