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A significant proportion of the world’s population does not have access to grid-based electricity and so relies on off-grid
lighting solutions. Rechargeable lamp technology is becoming prominent as an alternative off-grid lighting model in
developing countries. In this paper, we explore the consumer behavior and the operational inefficiencies that result
under this model. Specifically, we are interested in (i) measuring the impact of inconvenience (of travel to recharge the
lamp) – which is a peculiar feature of this model – along with the impact of liquidity constraints (due to poverty of
consumers) on lamp usage, and (ii) evaluating the efficacy of strategies that address these factors. We build a structural
model of consumers’ recharge decisions that incorporates several operational features of the impoverished regions. We
conduct large-scale field experiments in Rwanda in collaboration with a company that operates a rechargeable lamp
business and use the resultant data to estimate and test our model.

Using the structural model, we find that completely removing inconvenience and liquidity constraints from the
current business model results in a 79% and 123% increase in both recharges and revenue, thereby suggesting that
they are major sources of inefficiency. By implementing simple operations-based strategies – such as starting more
recharge centers per village, visiting consumers periodically to collect their lamps for recharge, and allowing consumers
to partially recharge their lamps and pay flexibly for the recharge – that change only the recharge and payment
processes but not the recharge price and lamp capacity (i.e., the amount paid per recharge and the amount of light
obtained in return), firm can reap up to half the benefits from completely removing the inefficiencies. In contrast, the
price/capacity-based strategies that vary the economic variables (price and capacity) without affecting the operational
model perform much worse than the aforementioned strategies. Overall, our analysis emphasizes the importance of
managing operations effectively even in markets with cash-constrained consumers, wherein firms may have a natural
tendency to focus more on reducing price. Moreover, the template – combining a structural model and field experiments
– used for policy evaluation in our paper can be applied more broadly to generate hypotheses for experimentation
and to arrive at appropriate business models that deliver life-improving goods and services to poor consumers.

1. Introduction

One fifth of humankind still does not have access to electricity (IEA 2015). More than 95% of this popu-

lation inhabits countries in Sub-Saharan Africa and developing Asia. Not surprisingly, countries with low

electrification rates are those in which most citizens live on less than $2 (US) per day (often referred to as

the bottom of the pyramid, or BoP for short). Grid-based models of electricity supply have been unsuccessful

in these countries because they require substantial capital investment, and in many cases it may neither be

technically feasible nor economical to extend grid electricity to these regions. Hence, there is a huge market

for off-grid energy in these countries. For example, Rwanda’s current national electrification rate is 11%

off-grid and 30% on-grid, and its 2024 objective is to electrify 48% off-grid and 52% on-grid (USAID 2018).
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Currently, the predominant sources of lighting for poor households are either flame-based solutions (e.g.,

kerosene, candles) or battery-based solutions (e.g., flashlights), mainly because they are easily accessible

in local retail stores. However, these solutions are expensive to consumers in the long run, and pose a

threat to health and the environment due to either harmful smoke generation or the improper disposal of

replaced batteries. Solar-based off-grid solutions (such as basic solar home systems) are cleaner and cheaper

in the long run, but they require a high upfront investment that places them well beyond the reach of these

liquidity-constrained consumers in countries like Rwanda.

An alternative off-grid lighting model that is becoming prominent in impoverished countries is rechargeable

lamp technology. Instead of selling lamps to consumers at full price, under this model, firms either rent them

or sell them at a subsidized price. Continued use of such lamps requires that they be recharged at a (usually

village-level) recharge center for a small recharging fee. The revenue stream from repeated recharges makes

it possible for the firm to subsidize the upfront price by financing it through ongoing payments. Sunlabob

in Laos, Shidhulai in Bangladesh, and Nuru Energy in Rwanda are some companies that operate based on

this model. In this paper, we explore, in close collaboration with Nuru Energy, the consumer behavior and

the operational inefficiencies that result under the rechargeable lamp-based off-grid lighting models.

Because the consumers in our study are poor, their liquidity constraints naturally play a role in determining

the usage of lamps. Moreover, the rechargeable lamp-based model requires that the consumers travel to a

dedicated recharge center to get their lamps recharged. The villages in East African countries, for example,

are spread over hills and typically have neither efficient public transportation nor even well-laid roads for

walking. From our surveys in Rwanda, we know that most consumers walk to the recharge center, and for some

consumers, a round trip can take up to an hour. Therefore, the time required to recharge lamps is a significant

inconvenience, which impacts lamp usage.1 We are specifically interested in examining, both theoretically

and empirically, the impact of the above two factors – liquidity constraints and recharge inconvenience – on

the usage of lamps.

Furthermore, our broader objective is to evaluate the efficacy – in terms of improving the number of

recharges – of different strategies that address those two factors and thereby identify better business models to

serve the poor. (We use the terms strategy, business model, and policy interchangeably.) Such an undertaking

has implications for both firm-level operational decisions and government-level policy decisions. Firms such as

Nuru aim to serve the poor population while making profits. Therefore, better business models enable higher

usage rates of cleaner lighting sources and less use of harmful sources (such as kerosene and candles), which

in turn would benefit firms, consumers, and the environment. Countries such as Rwanda, whose objective is

to provide off-grid lighting to a large proportion of their population, are currently collaborating with multiple

off-grid companies operating under different business models (World Bank 2017). Understanding the benefits

1 This feature is peculiar to rechargeable lamp-based lighting model. The grid-based and solar-based lighting solutions
do not require any travel. The consumers purchase lighting sources such as candles and flashlight batteries at local
retail stores, where they also purchase several other retail goods (e.g., food-related items, cigarettes, toothpaste);
thus, the overall inconvenience in making the purchase is split across several goods that are purchased. In contrast,
when a consumer visits a recharge center, all that she gets in return is lamp’s light.
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and limitations for rechargeable lamp technologies enables policymakers to weigh them against the benefits

and limitations of other technologies (such as solar home systems).

However, the task of identifying better business models to serve the poor is nontrivial. The lean startup

philosophy (Ries 2011) taught in entrepreneurship classes advocates constant experimentation for rapid

improvements in the business models. Yet, there are two issues with such an approach in a context like ours.

First, the direct implementation of the candidate policies in the field to assess their performance may not

be practical because of the remote location of the villages and the budget constraints of firms. Second, even

if one has sufficient resources for constant experimentation, as there are multiple ways one could address

inconvenience and liquidity constraints, it is often not clear which strategies deserve most attention (and

hence should be tested first). Therefore, we need a method to predict the performance of policies before they

are implemented. Since a policy change could vary from a simple change in a parameter to a sophisticated

change in a process within the firm, the prediction framework must be flexible enough to generate a wide

variety of counterfactual policies to facilitate their evaluation. We also need data to build such a framework,

but because there is a dearth of reliable datasets in the BoP markets, the required data may not even be

readily available. Our methodological approach in this paper responds to these concerns.

Methodological approach. We build a structural model of consumers’ recharge decisions and estimate

that model using the field data. A primary benefit of estimating a structural model of behavior is the

ability to calculate outcomes under economic environments not observed in the data, and hence it acts as a

framework to predict counterfactual policies. The consumer in our model is forward looking, and her decision

process is represented by a stochastic dynamic program over a finite horizon. In a time period in which the

consumer’s lamp is discharged and she has sufficient money for recharge, if she chooses not to recharge her

lamp, then she incurs a blackout cost for not having the lamp’s light in that period; however, if she chooses

to recharge, then she experiences no blackout cost in the upcoming periods as long as the lamp lasts but

incurs an inconvenience cost of traveling to the recharge center and pays the recharge price in that period.2

In contrast, in a period when the lamp is discharged but the consumer does not have money for the recharge,

she simply incurs blackout cost. The liquidity constraints, which determine whether or not the consumer has

money for recharge in a period, are captured in our setting through a model for disposable income for the

lamp’s light that follows a Markov process. The assumed structure can generate a variety of counterfactuals.

The policy evaluation using the structural model requires us to estimate consumers’ sensitivities to incon-

venience and blackouts, as well as the parameters of the consumption and disposable income processes. We

argue that, under some mild structural assumptions, the intertemporal variation in consumers’ recharge deci-

sions, along with exogenous variations in recharge price, lamp capacity (hours of light obtained per recharge),

and consumer inconveniences (proxied by distances from the recharge center), are sufficient to separately

identify the model components. Consequently, we need the actual data on lamp usage at different prices,

2 In our paper, we use the word “lamp” to refer to the whole package consisting of a light-emitting diode (LED) as
the light source, a plastic housing for the LED, a strap, a battery, and a switch to turn the light on and off. The terms
“lamp recharge” and “lamp capacity” actually refer to recharge of the battery inside the lamp and the capacity of
that battery, respectively.
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capacities, and inconvenience levels. Due to the lack of any such data source, we conduct field experiments in

collaboration with Nuru in 29 villages of Rwanda, wherein we randomly assign the recharge price and lamp

capacity to consumers. We implement an automated system that records recharge timestamps along with

the identifiers of lamps getting recharged. We also record the global positioning system (GPS) coordinates

of households and recharge centers to calculate the distances between them.

To rely on the predictions made by a structural model in a counterfactual setting, we must establish

that the model is empirically consistent. For this purpose, we first conduct a simple reduced-form regression

analysis and find that the theoretical predictions made by the model are directionally consistent with the

experimental data. Thereafter, we test the ability of the model and its variants (e.g., including village- and

individual-level heterogeneities, discounting) to predict the number of recharges both in-sample and out-of-

sample. We observe that the best-fitting model predicts the number of recharges both in- and out-of-sample

reasonably well. We also find that this model performs significantly better than some atheoretical approaches

(namely, a regression model and a model that assumes random consumer behavior).

Results. We examine the performance of business model changes that target inconvenience, liquidity

constraints, recharge price, and lamp capacity. We find that completely removing inconvenience and liquidity

constraints from the current business model results in up to a 79% and 123% increase in recharges respectively,

suggesting that they are major sources of inefficiency. Although these benchmark cases may not be achievable

in practice, significant improvements – and sometimes half the benefits from completely eliminating those

inefficiencies – can be achieved by implementing some simple strategies that (i) alleviate inconvenience, e.g.,

starting 2–3 more recharge centers per village (29% increase), visiting households door-to-door once a week

to collect the lamps for recharge (37% increase), and visiting just five locations per village twice a week

to collect the lamps in those localities (39% increase); and (ii) alleviate liquidity constraints, e.g., allowing

consumers to partially recharge their lamps (19% increase), prepay for the recharge (43% increase), and

recharge on credit 1–2 times (76% increase).

The above-mentioned strategies only vary the operational model of the firm by addressing the sources of

inefficiencies and by changing the recharge and payment processes within the firm. They do not affect the

recharge price or lamp capacity, and hence they increase both recharges and revenue simultaneously. We

also examine strategies that vary price and capacity without affecting the current operational model. We

find that the recharges are relatively inelastic with respect to price; thus, reducing price, although increases

recharges, simply decreases revenue. Consequently, scaling up by offering subsidies to consumers may not be

a sustainable strategy for the firm in the long run. If the firm also varies lamp capacity along with price,

then we find that both recharges and revenue improve and that it is optimal for the firm to reduce both

price and capacity; however, (i) the resultant improvements are quite limited in magnitude (15% increase

in recharges and 3% increase in revenue), and (ii) the resultant ratio of capacity to price (i.e., bang for the

buck) is lower than that at the status quo; in other words, the consumers pay a poverty premium when the

light is provided in a smaller, affordable package. Overall, we find that operations-based strategies perform

better than price/capacity-based strategies.
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The firms and policymakers in poor countries generally lean toward price-based strategies because poverty,

by definition, relates to lack of money. However, our analysis reveals that even when operating under poverty,

wherein monetary constraints are overpowering and may limit technology adoption, the operational ineffi-

ciencies embedded in the business model (e.g., constraints such as making the consumer travel to a single

village-level recharge center and making her pay only when she recharges her lamp) may also be major

hindrances to adoption, and addressing them results in significantly more benefits.

In addition to shedding light on rechargeable lamp-based business models, our paper presents a template

for policy evaluation combining structural modeling and field experiments; this template can be applied

to settings that go beyond our context to generate hypotheses – grounded in both theory and data – for

experimentation, and thereby to arrive at appropriate business models that deliver life-improving goods and

services to poor consumers.

Organization of the paper. Section 2 provides an overview of our undertaking: it describes the rela-

tionship between our research objectives, our structural model, and the design of our field experiments.

Thereafter, Section 3 gives the details of the field experiments, Section 4 describes the model and the esti-

mation procedure, Section 5 presents the performance of the counterfactuals that we examine, and Section 6

makes some concluding remarks. After reading Section 2, Sections 3–5 can be read in any order depending

on the interests and the priorities of the reader. For example, an entrepreneur or a policy official interested

mainly in our findings and an outline of the methodology used to arrive at those findings can read only

Sections 2 and 5 without becoming burdened by the technicalities, whereas an academic or a practitioner

interested in the implementation details can additionally read Sections 3 and 4. We briefly review the related

literature in the remainder of this section.

Related literature. Our paper is positioned at the intersection of two streams of literature: sustainable

operations and the economics of poverty.

We broadly relate to two growing streams of literature studying sustainability issues in operations man-

agement (OM). First is the field of energy operations, wherein researchers have studied various operational

aspects of the electricity markets: the effect of energy policies on supply and demand in electricity markets

(Daniels and Lobel 2014, Sunar and Birge 2019), pricing of renewable energy technologies (Alizamir et al.

2016, Kok et al. 2018), strategic investment in renewable energy sources (Aflaki and Netessine 2017, Kok

et al. 2020), and impact of operational flexibility on power supply intermittency and market competition (Wu

and Kapuscinski 2013, Al-Gwaiz et al. 2017). Much of this work focuses on grid-based models in developed

economies. Our work differs from those just cited by focusing on the operational aspects of an off-grid model

at the bottom of the pyramid.

The second related stream of literature in OM studies the operational issues that arise in the business

models that serve the BoP markets. Balasubramanian et al. (2017) study the inventory issues arising in the

context of mobile money agents; Jonasson et al. (2017) develop models to improve the capacity allocation

of laboratories for the early diagnosis of the human immunodeficiency virus (HIV) among infants; Gui et al.

(2019) examine the efficacy of purchasing cooperatives and non-profit wholesalers in terms of replenishing
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goods for microretailers; de Zegher et al. (2018) propose payment strategies to curb illegal deforestration

by smallholder farmers; Guajardo (2019) explores the relationship between consumer usage and payment

behaviors in a rent-to-own business model for the distribution of solar lamps; and Kundu and Ramdas (2019)

investigate the impact of timely after-sales service on the adoption of solar home systems by first-time users

in developing countries.

Our paper is closely related to Uppari et al. (2019), who study, using an analytical model, why some

consumers may prefer using kerosene to rechargeable lamps even when the latter costs less money than the

former. They find that the consumers who face either high inconvenience costs or high blackout costs tend

to prefer kerosene to lamps because the former’s flexibility, with regard to quantity, helps reduce whichever

cost is dominating. That paper also discusses some strategies (e.g., allowing partial recharges) to improve

the adoption of lamps. The empirical work in this paper complements the theoretical work of Uppari et al.

(2019). Our structural model includes inconvenience and blackout costs along with liquidity constraints much

in the spirit of Uppari et al. (2019), and our field data allows us to estimate those costs and the magnitude

of liquidity constraints. Furthermore, our paper quantifies the impact of the strategies discussed in Uppari

et al. (2019), while also examining several additional strategies.

The method of deploying field experiments to analyze consumer behavior in the context of poverty has

been used in the development economics literature. This literature mainly investigates various behavioral

impacts of prices on the adoption of a technology. For example, Cohen and Dupas (2010) examine whether or

not consumers waste goods that are distributed freely to them; Ashraf et al. (2010) analyze the role of higher

prices in increasing product use through screening and sunk-cost effects; Dupas (2014b) studies the extent to

which the consumers’ anchoring on subsidized prices impacts the long-run adoption after those subsidies are

removed; and Duflo et al. (2011) study the impact of seasonal income on the purchase of fertilizers. In most of

these papers, consumers make no more than two purchase decisions at different price levels (e.g., subsidized

and non-subsidized). In contrast, consumers in our setting make multiple recharge decisions over time at a

given price level, but those price levels differ across consumers. In such a setting with repeated purchases,

inconvenience cost – which is incurred with every purchase – plays an important role in the long-run usage

of the technology. Therefore, our interest in this paper lies in examining the impact of price as well as the

impact of inconvenience on the usage of lamps.

Another emerging field in development economics experimentally examines the demand for rural electrifi-

cation. Using randomized prices for connection to the grid, Bernard and Torero (2015) assess the importance

of social interactions in determining a consumer’s choice to connect to an electrical grid in rural Ethiopia;

Barron and Torero (2017) study the welfare improvements resulting from electrification via reductions in

indoor air pollution in El Salvador; and Lee et al. (2020) conduct a detailed analysis of economic and non-

economic (health, education, etc.) impacts of electrcity rollout in rural Kenya. Our study differs in that it

focuses on the other end of the spectrum from full-scale government grid electrification: for-profit business

models for low-cost off-grid lighting solutions in regions such as rural Rwanda, wherein the hilly terrain

makes a country-wide grid extension uneconomical (at least in the medium-term).

Banerjee et al. (2017) advocate the addition of a structural model to experimental research as it facilitates

“structured speculation”; that is, it can lead to a fully specified set of falsifiable predictions in external
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environments. We use a dynamic programming (DP)-based structural model in our paper. The introduction

of the framework to estimate discrete-choice DP models is associated with independent contributions by

Miller (1984), Pakes (1986), Rust (1987), and Wolpin (1984, 1987). For the methodology of this framework,

we refer the reader to Rust (1994) and Aguirregabiria and Mira (2010). The framework has been applied in

several contexts to evaluate economic policies that are particularly relevant to developing countries; see Todd

and Wolpin (2010b) for a review of such applications. However, to the best of our knowledge, we are the first

to use that framework in conjunction with field experiments for an extensive business model analysis in the

context of poverty. Moreover, since the DP model in our paper incorporates several operational features of

the impoverished regions that are not part of the existing DP models in the structural estimation literature,

it presents a unique set of identification challenges that are resolved through field experiments. Finally, to

rely on the predictions made by a structural model in a counterfactual scenario, Keane (2010) and Todd

and Wolpin (2010b) emphasize the necessity of validating its predictive ability. In this study, we examine

the predictive ability of our DP model – estimated using the data from treatment conditions – on the data

from the control condition as well as a test treatment condition; such validation methods are also applied in

Todd and Wolpin (2006) and Duflo et al. (2012).

2. Overview of Our Approach to the Problem

Our research objectives, our structural model of consumer behavior, and the design of our field experiments

are intimately related to each other. Therefore, instead of delving into a deeper discussion on these three

topics sequentially, we first provide an overview in this section to shed light on their relationship with one

another. The technical details of our model and the implementation details of our field experiments are

provided in the later sections.

2.1. Experimental Context and Research Objectives

The research in this paper has been conducted in collaboration with Nuru Energy in Rwanda. Nuru is a

for-profit social enterprise, with operations in Rwanda, Burundi, and Kenya, that aims to address the issue

of energy poverty through the provision of rechargeable lamps and lamp-recharging centers to off-grid poor

rural communities. The lamps are sold below cost to make them affordable. (Each lamp costs Nuru 6 USD

to manufacture but is sold at 1–1.5 USD to consumers. The lamps are made to last for 250 recharges.)

Continued use of lamps requires that they be recharged at a centralized pedal-and-solar-powered recharge

center operated by village-level entrepreneurs (VLEs) who charge lamps. The recharge centers are usually

same as the houses of those VLEs. Under the current business model, the lamps are recharged at a price

of 100 Rwandan Francs (RWF), and the lamp capacity is 18 hours. The VLEs earn 50 RWF per recharge.

The revenue stream from recharges makes it possible for Nuru to subsidize the upfront price by financing it

through ongoing payments; thus, it is important for Nuru to have a steady stream of recharges to make profits.

The quantity of interest to Nuru and other firms operating the rechargeable lamp business is the expected

number of recharges if they adopt a particular policy P. We use the term policy quite broadly here, and

it may encompass several business-related decisions such as the price and the capacity of the lamps, the

payment schemes, and the location and the number of recharge centers in a village. For instance, under the
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status quo policy, Nuru charges 100 RWF per recharge for the 18-hour capacity lamps, and the consumer

travels to a village-level recharge center to recharge her lamp and to pay the recharge fee to the VLE.

We are interested in assessing how the number of recharges varies across different policies.3 Given our

broad definition of policy, it is important to note that we are not interested in the optimal policy of any

particular type, but we focus on evaluating the efficacy of some implementable policies that address the

inconvenience and liquidity constraints of the consumers. Such policy changes may vary from the simple

ones such as changing a parameter (e.g., price and capacity) to more sophisticated ones such as decoupling

payments from recharges through mobile payment schemes.

One way to evaluate candidate policies is by directly implementing them in the field to see how they per-

form. However, this approach may not always be feasible, especially in a context like ours, wherein the firms

operate under tight budget constraints and the policies must be implemented in remote villages requiring

nontrivial investments in both time and money. Therefore, we need to be able to assess the effectiveness of

a policy before it is implemented in the field, i.e., we need to perform ex-ante policy evaluation (Todd and

Wolpin 2010a). Such evaluation necessitates a formal framework for the consumers’ recharge decisions.

Formally, assuming a discrete time domain, we denote the recharge decision of consumer j in period t as

rjt, where rjt = 1 if that consumer recharges her lamp in period t, and it is 0 otherwise. In an arbitrarily given

duration {1, . . . , T}, we denote the sequence of consumer’s recharge decisions as rj = (rj1, . . . , rjT ), which

we assume is a realization of the random variable r̃j = (r̃j1, . . . , r̃jT ). Correspondingly, the total number of

recharges are denoted by Rj =
∑T

t=1 rjt and R̃j =
∑T

t=1 r̃jt. Then, under a policy P, the expected number of

recharges by consumer j is

ER̃j(P) =
∑
rj∈R

Rj ×Pr
(
r̃j = rj | P

)
, (1)

where Pr
(
r̃j = rj | P

)
is the probability of observing the recharge sequence rj under policy P, and R is the

set of all 2T possible recharges sequences.

To evaluate different policies, we need to know what the aforementioned probability would be under those

policies. We take the following approach to estimate that probability in counterfactual settings. First, we

build a model of consumer behavior wherein its structural components interact to generate the distribution of

recharge decisions. Second, we estimate the parameters of the model components; this requires data with the

necessary set of variations that are obtained through our field experiments. Finally, under a counterfactual

policy, the model components would interact in a different manner, and because we know the parameter

estimates of the components, we can also estimate the distribution of recharges under that policy. In the

next two subsections, we give an overview of our structural model and discuss the relationship between its

components and the variations required in the data to be able to identify those components.

3 Because rechargeable lamps are sold at a low (subsidized) price, upfront purchase cost is unlikely to be a barrier
to adoption; therefore, we do not consider its impact in this paper. Accordingly, we set the purchase price to zero in
our field experiments. Since 2019, Nuru also set the purchase price to zero. (For a closer examination of the impact
of upfront price in our context, we refer the reader to the parallel work by Clarke et al. 2020).
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2.2. Structure of the Decision Process

Let P be the recharge price of the lamp, Q be the lamp’s capacity, and I be the inconvenience experienced

by the consumer in recharging the lamp. Figure 1 pictorially represents the decision process that we assume

for our focal consumer. (For notational simplicity, we suppress the subscript j representing consumers.)

The consumer recharges her lamp in period t if and only if the following three conditions are satisfied:

(i) consumer’s lamp is discharged in period t, (ii) she has sufficient money for the recharge in period t, and

(iii) it is better to recharge sooner (i.e., in period t) than later (i.e., in a period t′ > t). Conditions (i), (ii),

and (iii) are, respectively, represented by the indicator variables Dt, Mt, and St in Figure 1.

�� �� �� �� = 1

1 1

0 0

�� = 0

1

0

Figure 1 Decision process of the consumer.

Condition (i) is motivated by both empirical and anecdotal evidence: from the data recorded at the

recharge centers of Nuru, we find that there is no charge remaining in the lamp when it is plugged in to

be recharged. This finding is further supported by the survey data wherein consumers mentioned that they

do not recharge their lamps before they are completely discharged.4 Condition (ii) represents the liquidity

constraints of the consumers; even if a consumer wants to recharge her lamp, she may not have enough

money to do so, and hence she does not have the option to recharge.

Condition (iii) captures the trade-off between consumer’s inconvenience cost and blackout cost. Assuming

conditions (i) and (ii) are satisfied in period t, if the consumer chooses not to recharge her lamp in that

period, then she incurs a disutility called blackout cost for not having the lamp’s light; the magnitude of

this disutility could vary over time depending on consumer’s valuation of lamp’s light (e.g., consumer might

value it less when she has a stock of alternative lighting sources and more when her children have exams).

Alternatively, if the consumer chooses to recharge her lamp in period t, then she incurs an inconvenience cost

of traveling to the recharge center in that period and experiences no blackout cost in the upcoming periods

as long as the lamp lasts. Consequently, the consumer may choose to (strategically) delay her recharge in

period t if the blackout costs avoided in the current and the next few periods by recharging the lamp are

relatively lower than the inconvenience cost of recharging.

The indicator variables Dt, Mt, and St may be random, and their collections over time are modeled as

(nonstationary) stochastic processes in our paper. (The model specifications are presented in Section 4.) The

three processes together determine the probability Pr
(
r̃= r | P0

)
; here, P0 is the status quo policy of Nuru.

4 This could be because from the current design of the lamps, consumers cannot directly know the charge remaining
in their lamp, and so they consider recharging it only when it is completely discharged.
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The structure in Figure 1 is simple, yet it allows the evaluation of the counterfactual policies that are of

interest to us. For instance, any consumption-related policy interventions affect the decision process through

Dt, the policies that alleviate liquidity constraints affect the decision process through Mt, and the strategies

that target inconvenience affect through St. Such policy evaluation first requires us to separately identify

and estimate each of the component processes Dt, Mt, and St. We next discuss what is further required to

identify them.

2.3. Motivation for the Field Experiments

Assuming the decision process in Figure 1, the events between recharges are illustrated in Figure 2. The time

between two successive recharges, hereafter called the interarrival time (IAT), consists of two components:

(i) the consumption time (CT) – when the lamp’s light is consumed, and (ii) the blackout time (BT) – when

the consumer waits to get her lamp recharged. After the consumer recharges her lamp, she consumes the

lamp’s light in the next few periods, and Dt = 0 in those periods. After the lamp is discharged (Dt = 1), the

consumer may not recharge her lamp immediately because she may not have sufficient money for the recharge.

Even if she has sufficient money for the recharge, she may choose not to recharge and instead experience a

few days of blackouts in order to minimize frequent visits, and thereby balance the recharge inconvenience

against the experienced blackouts. Thus, the blackout time may arise either due to the consumer’s liquidity

constraints (Mt = 0) or due to her strategic behavior to balance the inconvenience and blackout costs (St = 0).

Figure 2 Consumption cycles, showing interarrival times (IATs), consumption times (CTs) and

blackout times (BTs). The event {rt = 1}= {Dt = 1∧Mt = 1∧St = 1}, and CT and BT, respectively, consist

of the events {Dt = 0} and {Dt = 1∧ (Mt = 0∨St = 0)}.

Since consumers visit recharge centers to recharge their lamps, the firm can record the corresponding

timestamps and thereby keep track of IATs. Unfortunately, it should be evident from Figure 2 that the data

on IATs alone is not sufficient to separately identify the underlying stochastic processes Dt, Mt, and St. A

longer IAT could be because of either a longer CT or a longer BT, but if we do not separately observe CT

and BT, then we cannot purely attribute the IAT’s length either to Dt or to Mt and St. Similarly, a longer

BT could be either because of lack of sufficient money to recharge the lamp or because of the willingness

to face a few extra days of blackouts. If we do not observe the consumer’s disposable income for the lamp’s

light, then we cannot attribute the length of BT purely either to Mt or to St.
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Yet, if we perfectly observe (i) the instances when a consumer’s lamp is discharged, (ii) the instances

when she has sufficient disposable income to recharge, and (iii) the blackout costs experienced by her in

every period when the lamp is discharged, then we know the CTs, BTs, and the liquidity constraints of

that consumer, thereby allowing the identification of the components Dt, Mt, and St. However, observing

(iii) is almost infeasible, whereas observing (i) and (ii) requires recording the events at the consumer’s

household between their successive recharges (in contrast to the recharge data, which is recorded at the

recharge center). Given the rural nature of our context and the lack of advanced technologies that closely

monitor consumers’ behavior, automated recording of such detailed instances is extremely difficult. Asking

a consumer to regularly self-report (i) and (ii) may be costly to her, and the resultant data may not be

reliable. Therefore, we need to resort to alternative means to disentangle the components of IATs.

If there exists a variable that affects only one of the component processes without affecting the other ones,

then all else equal, when we vary this variable exogenously, the resultant variation in IATs can be purely

attributed to the corresponding process, which consequently identifies that process.

Accordingly, we make the following structural assumptions: (A1) lamp capacity Q affects only Dt,

(A2) recharge price P affects only Mt, and (A3) inconvenience I affects only St. Then, under A1–A3, exoge-

nous variations in Q, P , and I, respectively, identify Dt, Mt, and St. That is, we need the recharge data at

different exogenously assigned values of Q, P , and I for the estimation of our structural model. Since it would

be difficult to create these variations at the individual level (and hence we may not be able to identify the

processes at the individual level), we resort to field experiments, wherein we create those variations across

individuals and use the recharge data of those individuals to estimate the model. We return to the discussion

on identification in Section 4 in relation to the parameters of Dt, Mt, and St after we describe the models

for these processes.

Remark 1. The model presented in Figure 1 is in the spirit of a partial equilibrium model, i.e., we model

optimal behavior only with respect to recharge decisions. Although consumers could be making several

monetary allocation decisions across their various needs and consumption decisions across different lighting

sources, we do not explicitly incorporate those decisions.

Moreover, the structural assumptions A1–A3 are necessary to separately identify Dt, Mt, and St processes.

Although these assumptions seem reasonable, they may break down if the consumer’s decision process is

more sophisticated. For example, the consumer may start saving for the recharges as the lamp is closer to

the discharge point, or her consumption and blackout times may be intertwined (in contrast to Figure 2,

wherein BT appears only after CT) based on some of her strategic decisions; these possibilities introduce

direct dependencies between Q and Mt or St. A1–A3 rule out such dependencies.

Introducing any of the aforementioned features into the decision process comes at the cost of requiring

richer data (e.g., consumption, income, and expenditure decisions made across several needs, risks faced by

and precautionary behavior exhibited by the consumers) for cleaner identification and model estimation. As

we mentioned earlier, such data is difficult to record in our rural context. Moreover, as we will see in Section 4,

the assumed decision model displays good out-of-sample predictive ability, suggesting that it captures the

most important factors that determine consumers’ recharge decisions.
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3. Field Experiments

In collaboration with Nuru, we developed a purpose-designed data collection technology to record lamp

recharges remotely via Global System for Mobile (GSM) communications technology. The lamps were pro-

gramed to be able to communicate with the recharging device, and the recharging device was engineered to

communicate via GSM to our cloud-based database. When a lamp is attached to the recharging device, it

records the lamp’s serial number and the date-time stamp of the recharge (accurate to a minute) and trans-

mits this information via GSM to our database.5 We use this data-recording mechanism in our experiments,

which are described next.

3.1. Experimentally Varying the Recharge Price and the Lamp Capacity

The field experiments focused on randomly varying the recharge price and lamp capacity faced by consumers.

There were ten treatment conditions in total: (i) seven conditions with seven different price levels (0, 50, 60,

70, 80, 100, and 120 RWF) and lamp capacity of 18 hours, (ii) two conditions with two price levels (80 and

100 RWF) and lamp capacity of 14 hours, and (iii) a test treatment condition where every fourth recharge

was free (with a regular recharge price of 100 RWF and lamp capacity of 18 hours).

We were constrained to using only two lamp capacity conditions because of budget considerations and

technological restrictions from Nuru (varying the capacity requires changes at the hardware level). The

aforementioned price levels were chosen for 14-hour lamps because 14/80 ≈ 18/100. The test treatment

condition was included in our experiments with the main purpose of testing the predictive ability – in a

counterfactual setting – of the models that are estimated using the data from the first nine conditions (see

Section 4.4 for details). The purchase price of the lamps in all treatment conditions was set to zero so that

there were no selection effects with regard to consumers’ purchase decisions. The VLEs remained unaffected

by these treatment conditions as they were always reimbursed 50 RWF after a recharge.

The experiments were conducted in 29 villages of the Ruhango district of Rwanda. These villages are

representative of rural Rwanda (and East Africa in general).6 They had no grid connection, there were no

plans to extend the grid to those villages in the near future, and Nuru had no prior operations in those

villages. Before the experiments began, a list of all households in each village was obtained. Thereafter, a

total of 2500 households, with around 80–90 households per village, were randomly selected and assigned

to one of the above ten conditions. The random assignment of households to the treatment conditions was

stratified at the village level in order to achieve balance (with around 8–9 households in a village per treatment

condition).7

5 The inbuilt hardware mechanisms ensure that Nuru’s lamps can be charged only by Nuru’s proprietary charging
devices. Enabling the lamps to be charged using alternative sources (called unlocking the lamps) requires tampering
with the hardware by cutting through the plastic covering of the lamp, which is usually not possible for typical
consumers. None of the lamps used in our experiments were unlocked. This was verified through a survey conducted
at the end of the experiments wherein the consumers were asked to show their lamps to examine if there was any
tampering.

6 All of our experiments and surveys were conducted by the organization Innovations for Poverty Action, which uses
standard protocols for data sampling and collection.

7 The design with multiple treatment arms per village is common in the development economics literature; see e.g.,
Ashraf et al. (2010), Cohen and Dupas (2010), Meredith et al. (2013), Dupas (2014a,b), Barron and Torero (2017).
Alternatively, the design with only one treatment arm per village requires hundreds of villages to detect treatment
effects with reasonable statistical power, thereby resulting in enormous costs of experimentation.
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The treatments ran for a total of three months from the beginning of December 2016 to the end of February

2017. (The business, thereafter, continued with Nuru’s regular business model.) The experimental conditions

in those three months were operationalized through a coupon system. When the lamps were handed over

to the consumers, they were also given a coupon card containing 15 perforated coupons, with each coupon

having its own identifier (ID).8 The coupon card explicitly mentioned the ID of the lamp assigned to the

household, the recharge price and lamp capacity assigned to that household, and the names and birthdates

of up to two household heads. The consumers were aware that the coupon cards they received were the result

of a lottery and that the coupons would expire after three months.

To recharge during the experiments, households had to bring their lamp, coupon card, and their

government-issued personal ID to the recharge center. The VLE recharged the lamp only if the ID printed

on the lamp matched the lamp ID on the coupon card and the name and date of birth on the personal ID

presented to the VLE matched the ones on the coupon card. If the details matched, then the VLE recharged

the lamp, tore a coupon from the coupon card, collected the price written on the coupon, and sent the

coupon ID through a mobile message to Nuru’s reimbursement system. When the lamp was recharged, the

lamp’s ID and the recharge timestamp were automatically recorded by the recharging device and sent to

Nuru’s database. The VLE was then reimbursed only if the coupon ID sent by the VLE belonged to the

lamp that was actually recharged (whose ID was automatically recorded).

This experimental design ensured that the households and VLEs did not deviate much from the protocol.

As long as the VLE performed the required checks, it would not be possible for a consumer to bring some

other consumer’s lamp or coupon and get the recharge done unless they also brought the personal ID of that

consumer. However, people in Rwanda are usually uncomfortable sharing their personal IDs with others, and

thus this is an unlikely event. The VLE was also incentivized to perform the checks because an inconsistent

pairing of coupon and lamp ID would not result in any reimbursement.

It is important to note that the aforementioned checks can maintain the consistency between the lamp

and its assignee at the time of recharge but not after recharge. For example, a consumer could lend her

lamp to her neighbors for a short period of time between two successive recharges. We can neither detect

nor prevent such cases. However, the qualitative evidence from our field visits and surveys suggests that the

households are usually possessive of their lamps and tend not to share them with others, mainly because

each household had only one lamp, and its light (when available) was used on a daily basis. Accordingly, we

ignore the possibility of lamp sharing and attribute the observed usage of a lamp only to its owner.

3.2. Variation in Inconvenience

To measure recharge inconvenience, we recorded the (three dimensional) GPS coordinates of recharge centers

and of all households in the sample. We quantify the inconvenience faced by a consumer as the distance

between the GPS coordinates of her house and the recharge center. Unlike the variation in recharge price

8 Fifteen coupons are sufficient if the consumers recharge once every week in the three months of experimental
duration. In reality, however, the average number of recharges per household in those three months was only 2.93
(3.02), and only four households in our dataset recharged 15 times.
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and lamp capacity, the variation in inconvenience measured in this manner is not exogenously created. Yet,

as argued below, we can consider this variation to be as good as random.

The recharge centers were established in villages right at the beginning of the experiments. If the location

of the recharge center in a village was randomly selected, then the distances measured from that location

are also random. However, the location of a recharge center may not be completely random because it is the

location of the house of the VLE in that village, who is not randomly selected. Nevertheless, we attribute

the emergence of VLEs more to their entrepreneurial inclination and less to their wealth, occupation, or any

other characteristics that are correlated with their neighborhood. Hence, it is not unreasonable to assume

that the location of VLE is not systematically correlated with the characteristics of consumers, such as

income and family size, that may determine lamp usage.

To further test this claim, we collected information on income, occupation, family composition, and other

characteristics of consumers in twelve randomly selected villages in our sample and found no significant

correlation between consumer characteristics and distance to the recharge center. (In contrast to the survey

that collected GPS coordinates, the consumer survey required asking multiple questions, and thus it was

more expensive. Because of our budgetary constraints, we could not conduct the consumer survey in all

sampled villages.) The detailed analysis is available in Appendix A. We extrapolate this observation to other

villages in our sample. The results presented in Section 5 qualitatively remain unaffected if we use the data

from only these 12 villages instead of the full sample in our structural analysis.

3.3. Data

Table 1 reports the total number of recharges recorded in the 29 sampled villages. We see from the last

column that the villages with IDs 15, 17, 18, 19, 21, 23, and 29 recorded a much lower number of recharges

when compared to the others in the sample. This is because the GSM component of the recharging device

broke down in these villages during the experiments, thereby causing disruption to the experiment and

partial loss of data. Therefore, we remove these 7 villages from our sample, and we report results using the

data from the remaining 22 villages.

Figure 3(a) shows the distribution of interarrival times of recharges. The modal value of IAT observed is

7 days. The distribution is also long tailed, with some mass beyond 60 days. The average value of IAT is

14.5 days, with a standard deviation of 12.5 days. Overall, IATs in the sample display sizeable variation.

As we discussed in Section 2.3, this variation is crucial in identifying and estimating our model. Moreover,

the minimum IAT observed in the data is 3 days. Henceforth, we combine three days into one unit called a

period. It will be evident in Section 4 that the computational complexity of our estimation procedure scales

with the number of time periods; therefore, making the timeline coarser reduces computational time without

losing any information on recharges.

Figure 3(b) plots the number of observed recharges across periods for three price conditions. We see that

across all price conditions, the recharges are spread over the time horizon and seem to stabilize as time

progresses. This suggests that consumers are not simply trying the lamps in the first few weeks (because

of some enthusiasm to try a new technology) and then not using them at all. Figure 3(c) plots the average

number of recharges recorded per household against the recharge price. Both Figure 3(b) and Figure 3(c)
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Village ID
Total number of

households
Number of households

in the sample
Number of

recharges recorded

1 138 88 (64%) 115
2 151 77 (51%) 372
3 170 78 (46%) 360
4 138 92 (67%) 158
5 158 92 (58%) 392
6 120 92 (77%) 206
7 120 88 (73%) 293
8 158 75 (47%) 146
9 104 75 (72%) 259
10 159 93 (58%) 345
11 200 83 (42%) 139
12 122 90 (74%) 281
13 103 86 (84%) 326
14 149 93 (62%) 283
15 160 91 (57%) 1
16 148 89 (60%) 192
17 252 84 (33%) 1
18 127 87 (68%) 61
19 125 77 (62%) 36
20 151 84 (56%) 392
21 138 79 (57%) 61
22 156 87 (56%) 248
23 150 88 (59%) 59
24 126 89 (71%) 247
25 156 87 (56%) 248
26 136 93 (68%) 276
27 137 90 (66%) 134
28 103 84 (82%) 165
29 146 89 (61%) 60

Table 1 Village-level statistics.

show that the number of recharges decreases as the price increases. It is noteworthy that in Figure 3(c),

when price is zero, the average number of recharges per household is 6 in the three months of experimental

duration, implying (on average) only 2 recharges per month. This shows that there are frictions beyond price

at play in this context that hinder more frequent usage of lamps.

Figure 3(d) plots the average number of recharges per household for the two lamp capacity conditions in

our experiments. One may expect the number of recharges to be lower for the lamps with higher capacity

because they last longer. However, we record 2.35 recharges per household when Q= 14 and 3.11 recharges

per household when Q = 18. We will make sense of this observation in Section 4, wherein we explore the

theoretical relationship between the number of recharges and the lamp capacity in more detail.

Figure 3(e) plots the distribution of the distances of households from the (respective) recharge centers.

(The distances are presented in buckets of length 50 meters.) We see that the modal distance between the

VLE and consumers is 450 meters, and the average distance is 600 meters (with a standard deviation of

330 meters). The distribution is right-skewed, and some consumers live more than 1200 meters away from

the VLE. Because of the hilly nature of Rwandan villages, we see from our surveys that it takes 25–30

minutes (on average) for a consumer to travel a kilometer. An average round trip to the recharge center
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(a) (b) (c)

(d) (e) (f)

Figure 3 Some patterns observed in the recharge data: (a) distribution of interarrival times, (b) recharge

patterns over time for P ∈ {0,50,100} RWF, (c) recharges per household as a function of recharge price,

(d) recharges per household as a function of lamp capacity, (e) distribution of distances from the recharge center,

(f) recharges per household as a function of distance from the recharge center.

could last longer than a half hour, and for some consumers it could be longer than an hour. Figure 3(f)

plots the average number of recharges per household as a function of distance from the VLE. The number

of recharges decreases as the distance increases, suggesting that traveling to the recharge center is indeed an

inconvenience that hinders the usage of lamps.

4. Model Formulation and Structural Estimation

4.1. Model of Recharge Decisions

The decision process in Figure 1 spans from the beginning of our experimental duration (denoted as period

t= 1) to the end of that duration (denoted as period t= T ). We assume that our consumer is forward-looking

and that her recharge decisions emerge from a stochastic dynamic program. As in Section 2.1, the sequence

of the consumer’s recharge decisions is denoted as r= (r1, . . . , rT ). We denote its subsequence from period 1

to period t as r〈t〉, such that r〈T 〉 = r. Next, we construct the models for the monetary process Mt and

the discharge process Dt, and then formulate our consumer’s DP problem. Since St captures the consumer’s

dynamics of cost considerations, the model for St stems from the Bellman equations of that DP.

Model of Mt. In period t, Mt indicates whether or not a consumer has sufficient money for a recharge in

that period. The money under consideration is the consumer’s disposable income for lamp recharge. In other

words, this is the money that consumer could use to recharge her lamp after accounting for all her other

needs. If this disposable income is greater than or equal to recharge price P , then Mt = 1; otherwise Mt = 0.
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We model Mt as a Markov process. The probability that the process jumps from m
′ ∈ {0,1} in period

t− 1 to m∈ {0,1} in period t is denoted by

v̌(t,m,m′ ; r〈t− 1〉, P )≡Pr(Mt =m |Mt−1 =m′ ; r〈t− 1〉, P ).

The serial dependence in the Markov chain reflects the possibility that the consumer’s disposable income in

the current period may depend on what she had in the previous period; the strength of this dependence may

vary over time, which is reflected here by the non-stationarity of transition probabilities.

The transition probabilities may also depend on the history r〈t− 1〉 of the consumer’s recharge decisions

until time t− 1 because every recharge is funded out of disposable income, and hence the subsequent prob-

abilities of transition are affected by that recharge. We assume that the Markov chain renews after every

recharge; this simplifies the relationship between r〈t− 1〉 and v̌(t, ) as shown below:

v̌(t,m,m′ ; r〈t− 1〉, P ) = v̌(t,m,m′ ; lt, P )≡ v(t− lt,m,m′ ; P ), (2)

where lt is defined as the latest time period before t in which the lamp was recharged. Under the renewals

assumption, lt is the only piece of information from r〈t−1〉 that affects the transition probabilities. Moreover,

the transition probabilities at any time t depend only on the relative time period τt = t− lt, which is period

t relative to the last recharge period. In (2), the transition probability function v̌ is defined on the absolute

time period t, whereas the transition probability function v is defined on the relative time period τ .

The renewals assumption can be interpreted as the setting where the consumer spends all her disposable

income when the recharge is done. We believe that this assumption is not unrealistic because the consumer

lives in poverty, and so her disposable income for the lamp recharge would never significantly exceed the

recharge price. Such renewals in disposable income are also consistent with the mental accounting model

(Thaler 1985, 1999) of managing income, as discussed in Uppari et al. (2019). Accordingly, we assume that

the Markov process starts from M0 = 0 at the outset and after every recharge.

Finally, with a slight abuse of notation, we denote by vq the probability that the consumer has suffi-

cient money for a recharge q periods after the recent lamp recharge, for q ∈ {1,2, . . .}. From the renewals

assumption, it follows that

vq(P ) = Pr(Mq = 1 |M0 = 0 ; P ).

The expression for vq can be computed from the transition probabilities of Mt.

Model of Dt. We model Dt also as a Markov process. In period t, Dt = 0 indicates that the lamp is not yet

discharged, whereas Dt = 1 indicates that it is discharged. Given the recharge history r〈t−1〉, the probability

of a jump from d
′ ∈ {0,1} in period t− 1 to d ∈ {0,1} in period t is denoted by ǔ(t,d,d′ ; r〈t− 1〉,Q). As

earlier, the serial dependence in the Markov chain and the non-stationarity of transition probabilities reflect

the possibility that the lamp’s discharge status in period t may depend on the status in period t− 1.

Because the charge in the lamp is reset to Q hours after every recharge, the Markov chain of Dt renews

after every recharge. Consequently, the Markov process starts from D0 = 0 at the outset and after every

recharge. Moreover,

ǔ(t,d,d′ ; r〈t− 1〉,Q)≡Pr(Dt =d |Dt−1 =d′ ; r〈t− 1〉,Q) = ǔ(t,d,d′ ; lt,Q)≡ u(t− lt,d,d′ ; Q).
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Once the lamp is discharged, it remains in that state until it is recharged again. Therefore, we have

u(τ,1,1 ; Q) = 1 for any given relative time period τ .

Let Q be the set containing the possible number of periods the lamp could last. Then, for q ∈ Q, the

probability that the lamp lasts exactly q periods after the recent lamp recharge (denoted as uq) is given by

uq(Q) = Pr(D1 = 0, . . . ,Dq−1 = 0,Dq = 1 |D0 = 0 ; Q) =

q−1∏
τ=1

u(τ,0,0 ; Q)×u(q,1,0 ; Q).

Model of St. The consumer makes her recharge decisions by dynamically trading off her cost associated

with recharging the lamp against the cost of not recharging it. On one hand, if the consumer chooses to

recharge in period t, then she has the lamp’s light available for the next few periods but she incurs an incon-

venience cost of recharging the lamp in period t. We denote this cost by αI, where I is the distance between

the consumer’s household and the recharge center and the coefficient α encapsulates both the physical and

psychological costs associated with traveling to the recharge center (α converts distance into RWF).

On the other hand, if the consumer chooses not to recharge her lamp in period t, then she incurs a blackout

cost in that period. The blackout cost arises either from having no light at all or from switching to (inferior)

alternative sources such as candles, flashlights or firewood. It is possible that this cost could fluctuate across

periods because of any inherent variation in consumer’s preferences and availability of alternative lighting

sources. Therefore, we model the blackout cost in period t as a random variable β̃t (in RWF) and assume

that β̃t is independently and identically distributed (i.i.d.) over time, with a finite mean β and a cumulative

distribution function (CDF) F that is continuous and differentiable.9

We assume that the consumer minimizes her total cost from period 1 to T . The state space for the

consumer’s DP constitutes (i) the current time period t, (ii) the blackout cost β̃t = b realized in period t,

(iii) the indicator Mt = m indicating whether or not the consumer has sufficient money for the recharge

in period t, and (iv) the last period l in which the lamp was recharged. The Bellman equation for cost

C(t, b,m, l) when m= 1 is as follows:

C(t, b,1, l) = min
{ inconvenience cost︷︸︸︷

αI +
∑
q∈Q

uq
[ enough money after q periods︷ ︸︸ ︷

vqC̄(t+ q,1, t) +

not enough money after q periods︷ ︸︸ ︷
(1− vq)C̄(t+ q,0, t)

]
,

b︸︷︷︸
blackout cost

+ v(t− l+ 1,1,1)C̄(t+ 1,1, l)︸ ︷︷ ︸
enough money in the next period

+ v(t− l+ 1,0,1)C̄(t+ 1,0, l)︸ ︷︷ ︸
not enough money in the next period

}
, (3)

where C̄(t,m, l) = EC(t, β̃,m, l). The expectation is taken with respect to the distribution of β̃t. (Here we

suppressed the argument P in v and vq and argument Q in uq.)

The first term in the braces in (3) corresponds to the decision rt = 1, whereas the second one to rt = 0.

If the consumer chooses to recharge, then she incurs the inconvenience cost αI and jumps (say) q periods

ahead without experiencing any cost in those periods. The lamp is again discharged after those q periods,

9 Similarly to blackout cost, consumer’s inconvenience cost may also vary over time; call it ι̃t. It will be evident from
the analysis that follows that the decision about whether to recharge or not is a function of ι̃t − β̃t, not ι̃t and β̃t
separately. If we assume that ι̃t = αI + ξ̃

(1)
t and β̃t = β + ξ̃

(2)
t , where ξ̃

(1)
t and ξ̃

(2)
t are zero-mean random variables,

then ι̃t − β̃t = αI − β − (ξ̃
(2)
t − ξ̃

(1)
t ). Therefore, using the data on recharge decisions, we cannot separately identify

ξ̃
(1)
t and ξ̃

(2)
t , and so we attribute time-varying nature of the inconvenience–blackout trade-off only to blackout cost.
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and the consumer additionally experiences the expected cost of either C̄(t+ q,1, t) (with probability vq) or

C̄(t+ q,0, t) (with probability 1−vq). The last recharge period is set to t if the lamp is recharged. The exact

number of periods that the lamp lasts (q) is uncertain at the point of recharge, so the consumer takes an

expectation over its possible realizations (the realization q happens with probability uq).

Instead, as shown by the second term in braces in (3), the consumer may opt not to recharge her lamp

in period t and thereby incurs the blackout cost b and an additional expected cost of either C̄(t+ 1,1, l) or

C̄(t+ 1,0, l). The former expected cost is incurred if the income process remains in state 1 in period t+ 1,

which happens with probability v̌(t+1,1,1 ; l) = v(t− l+1,1,1), whereas the latter expected cost is incurred

if the income process jumps to state 0 in period t+ 1. The variable St in Figure 1 simply indicates whether

the cost of recharging is lower than the cost of not recharging:

St = 1
{
αI +

∑
q∈Q

uq
[
vqC̄(t+ q,1, t) + (1− vq)C̄(t+ q,0, t)

]
− b−

∑
m∈{0,1}

v(t− l+ 1,m,1) C̄(t+ 1,m, l)< 0
}
. (4)

In the case when the consumer does not have sufficient money for the recharge (i.e., when m = 0), the

Bellman equation is given by

C(t, b,0, l) = b+ v(t− l+ 1,1,0)C̄(t+ 1,1, l) + v(t− l+ 1,0,0)C̄(t+ 1,0, l). (5)

Here, the consumer experiences blackout cost b and the expected cost of C̄(t+ 1,m, l) depending on the

realization of m in period t+1. Finally, we assume that the cost incurred after the terminal period T is zero,

i.e., C(T +n, b,m, l) = 0 for all n≥ 1 and all feasible (b,m, l).

Remark 2. Consistently with the structural assumptions A1–A3 discussed in Section 2.3, (i) of Q, P , and

I, u is a function of only Q, and v is a function of only P ; and (ii) I appears only in the expression for St and

does not affect either u or v. Although it may seem that Q and P affect St in (4), they do so only through

u and v respectively, and hence they do not directly influence St.

Remark 3. One may question at this point why we do not incorporate the money-in-hand (call it mt)

directly into the decision model (i.e., use mt, instead of Mt, as a state variable in our DP). As we mentioned

in Remark 1, it is difficult to observe the consumer’s disposable income for the lamp’s light at any point in

time. Therefore, mt will be an unobserved and serially correlated state variable in the DP. While estimating

the model using recharge data, we need to account for all the possible paths the money process could have

followed. Under a continuous state income process such as mt, the estimation would involve T integrals

per consumer, thereby imposing a huge computational burden (see Stinebrickner (2000) for the econometric

issues associated with unobserved serially correlated state variables in dynamic programs).

However, if we discretize the income model, then it replaces the integrals with the summations over discrete

states, which lowers the computational burden. Under a setting where no explicit information on disposable

income is available, only the recharge timestamps are informative about the income process: the consumer

has sufficient money (i.e., Mt = 1) at the time of recharge. Therefore, if we discretize the process all the

way down to a binary random variable (Mt), we do not lose any information, but at the same time we also

significantly reduce the computation time. For similar reasons, we do not model the charge remaining in the

lamp; instead, we model only the corresponding indicator variable Dt.
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4.2. Structural Results

When the consumer’s lamp is discharged and she has sufficient money for a recharge, she recharges her lamp

if and only if St = 1. It follows from (4) that this condition can be rewritten as β̃t > kt for some threshold

kt. The following result shows how these blackout-cost thresholds can be computed. (All the proofs are in

Appendix G.)

Proposition 1. In a period t ∈ {1, . . . , T} and for a last recharge period l ∈ {0, . . . , t− 1}, the blackout-cost

threshold k(t, l) is found recursively as follows:

k(t, l) = αI −κ(t+ 1, l,1)

+1{t+ q≤ T}
∑
q∈Q

uq
[
vq
(
Emin{k(t+ q, t), β̃}+κ(t+ q+ 1, t,1)

)
+ (1− vq)

(
β+κ(t+ q+ 1, t,0)

)]
,

where, for feasible (l,m), the function κ is given by κ(t, l,m) = 0 for t≥ T + 1, and for 1≤ t≤ T it is

κ(t, l,m) = v(t− l,1,m)
[
Emin{k(t, l), β̃}+κ(t+ 1, l,1)

]
+ v(t− l,0,m)

[
β+κ(t+ 1, l,0)

]
.

In period t, since the consumer compares β̃t with k(t, l) and recharges if the former is greater than the

latter, we can interpret k as the effective cost (or a shadow cost) of recharging in period t, whereas β̃t is the

cost of not recharging in that period. A lamp recharge in period t involves not only incurring an inconvenience

cost of αI in that period, but also jumping few periods ahead without experiencing any cost in the interim

periods; therefore, the effective cost k also accounts for the potential cost savings in those interim periods.

Using the threshold structure characterized in Propostion 1, we next write the probability of observing a

recharge sequence under the decision model from the previous subsection. As in Section 2.1, we denote the

recharge sequence that is a random variable as r̃ and the recharge sequence that is an instance of that random

variable as r. Furthermore, we denote by (i) Θ = {α,u, v,F} the set of all model parameters consisting

of the inconvenience-sensitivity parameter and (with a slight abuse of notation) the probability functions’

parameters; (ii) Γ = (I,P,Q) the treatment condition of the consumer comprised of her inconvenience,

recharge price, and lamp capacity; (iii) l = (l1, . . . , lT ) the sequence of observed last-recharge points, which

can be computed using the recursion lt = (1− rt−1)lt−1 + rt−1(t− 1) for t > 1 and l1 = 0; and (iv) F̄ = 1−F .

The following result forms the basis for writing the likelihood function for the recharge sequences observed

in the data.

Proposition 2. The probability of observing the recharge sequence r is given by

Pr(r̃= r ; Θ,Γ, l) =
∑

d∈{0,1}

∑
m∈{0,1}

Ω(T,d,m).

The function Ω(t,d,m), wherein t∈ {1, . . . , T}, d∈ {0,1} and m∈ {0,1}, can be computed recursively as

Ω(t,d,m) = Pr(r̃〈t〉= r〈t〉,Dt =d,Mt =m ; Θ,Γ, l)

=
∑

d′∈{0,1}

∑
m′∈{0,1}

Ω(t− 1,d′,m′)×u(t− lt,d,d′)× v(t− lt,m,m′)

×
[
dmF̄ (k(t, lt))

]rt[
1−dmF̄ (k(t, lt))

]1−rt
for 2≤ t≤ T, and

Ω(1,d,m) = u(1,d,0)× v(1,m,0)×
[
dmF̄ (k(1,0))

]r1[1−dmF̄ (k(1,0))
]1−r1 .
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It is noteworthy that both the thresholds in Proposition 1 and the probability of recharge in Proposition 2

can be expressed as recursive functions. This property is important in our estimation exercise because

recursivity allows efficient computation in polynomial time using the memoization technique.10

To provide some empirical validity for our model, we examine the relationships, as predicted by our model,

between the expected number of recharges and inconvenience, recharge price, and lamp capacity. For the

sake of brevity, the details of that exercise are presented in Appendix B; here, we present only our main

findings. Using a simpler version of the model that is amenable to formal analysis, we arrive at the following

theoretical predictions:

(Π1) The expected number of recharges decreases in inconvenience.

(Π2) The expected number of recharges decreases in recharge price.

(Π3) The expected number of recharges decreases in lamp capacity for relatively smaller values of incon-

venience, and it is unimodal for relatively larger values of inconvenience.

Of the above, perhaps Π3 is most surprising because one may intuit that as Q decreases, the expected number

of recharges should increase because consumers get less light per recharge, and hence the time between

successive recharges will decrease. However, the model predicts that this will be the case only for relatively

smaller values of I. When the consumer’s inconvenience of recharging is relatively high, a decrease in capacity

results in a larger number of highly inconvenient trips to the recharge center, which in turn negatively affects

the overall number of recharges, as stated in Π3. (Indeed, this is the effect that we observe on average in the

data as evident in Figure 3(d).) Through regression analysis in Appendix B, we find that the recharge data

from the field supports Π1–Π3.

4.3. Empirical Models and Parameter Identification

For the purpose of both simulating and estimating the decision model, we use the empirical models described

in this section. Without these models, we need to resort to nonparametric methods to estimate the probability

functions v(τ,m,m′ ; P ), u(τ,d,d′ ; Q), and F (·). That would result in too many parameters to be estimated

and require too much variation in IATs (we would need to observe every possible value of IAT a significant

number of times in each condition of (I,P,Q)). The absence of such massive variation in the IATs in our

sample necessitates a parametric approach to modeling the aforementioned probability functions. This, of

course, raises the issue of whether such restrictions are valid for the particular application at hand. We take

a formal approach to validating our empirical models using out-of-sample testing in Section 4.4.

Empirical model of v. We impose a structure on the transition probabilities in (2) by explicitly modeling

the underlying disposable income. We assume that the log of disposable income, denoted as mt, follows an

AR(1) process, i.e., mt = ρmt−1 + εt; here, ρ∈ [0,1) represents the strength of serial correlation in the AR(1)

process, and the innovation εt ∼N(µ,σ2) is an i.i.d. normal random variable.

10 Memoization is a computational technique wherein computer programs are sped up by storing the results of
expensive function calls and returning the cached results when the same inputs occur again. Without recursivity and
memoization, computing the probability of a recharge sequence would require accounting for all the possible paths of
(serially dependent) Dt and Mt. Such path enumeration will result in an exponential time complexity.
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Because the consumer starts to consider recharging the lamp only after she is given the lamp, we assume

that this process starts afresh with initial state m0 = 0. To reflect renewals, we assume that mt is reset to

zero after every recharge. Then, we have the following result, wherein Φ is the CDF of standard normal

distribution and Φ̄ = 1−Φ.

Lemma 1. Let Gz represent the CDF of normal distribution N
(
µ(1−ρz)

1−ρ , σ
2(1−ρ2z)

1−ρ2

)
and Ḡz = 1−Gz. Under

the above model of disposable income for the lamp’s light, the following statements hold:

(i) v(1,1, · ; P ) = Ḡ1(logP ; µ,σ, ρ). For relative time period τ > 1,

v(τ,1,0 ; P ) =
1

Gτ−1(logP ; µ,σ, ρ)

∫ logP

−∞
Φ̄

(
logP − ρx−µ

σ

)
dGτ−1(x ; µ,σ, ρ), (6)

v(τ,1,1 ; P ) =
1

Ḡτ−1(logP ; µ,σ, ρ)

∫ ∞
logP

Φ̄

(
logP − ρx−µ

σ

)
dGτ−1(x ; µ,σ, ρ). (7)

(ii) vq(P ) = Ḡq(logP ; µ,σ, ρ).

Empirical model of u. We build the model by imposing a structure on the number of periods Ñ that the

lamp lasts after a recharge. We assume that Ñ − 1 is distributed as Poisson(Qλ), such that Ñ ≥ 1 always.

λ is the fraction of a period that is served, on average, by one hour of the lamp’s light (or alternatively,

assuming a sufficiently small λ, Qλ is the probability that the lamp lasts longer than a period). As expected,

the lamp lasts longer with higher Q and higher λ. Moreover, since u(τ,1,0 ; Q) is the probability that the

lamp discharges in the τ th period, given that it has not discharged in the (τ − 1)th period, it is simply the

hazard rate of the random variable Ñ . The following lemma formalizes these statements.

Lemma 2. Let H represent the probability mass function of Poisson(Qλ). Under the above model of con-

sumption of the lamp’s light, the following statements hold:

(i) uq(Q) =H(q− 1 ; Qλ).

(ii) u(1,1, · ; Q) =H(0 ; Qλ). For relative time period τ > 1,

u(τ,1,0 ; Q) =
H(τ − 1 ; Qλ)

1−
∑τ−1

n=1H(s− 1 ; Qλ)
and u(τ,1,1 ; Q) = 1.

Empirical model of F . In our setting, β̃t is the disutility that the consumer experiences when she does

not have lamp’s light. In other words, it captures the valuation that the consumer places on the lamp’s

light relative to the valuation of her alternative options such as relying on kerosene and candles or simply

not using light at all (and thereby experiencing a blackout). Because we do not model the consumption of

and preferences for alternative lighting solutions, we model β̃t over the real line such that it can take both

positive values (e.g., when the consumer strongly values the lamp’s light) and negative values (e.g., when

the consumer has a stock of alternative sources). We assume that β̃t = β+ ξ̃t where ξ̃t ∼N(0, σ2
ξ ) and that F

is the CDF of β̃t.
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Identification of parameters. With the empirical models just discussed, (α,β,σξ) are the parameters of

St, (µ,σ, ρ) are the parameters of Mt, and λ is the parameter of Dt. The set of all the parameters, which we

denoted as Θ in Section 4.2, reduces to Θ = {α,β,σξ, µ,σ, ρ,λ}. We now write the likelihood function, which

we later maximize to estimate Θ. We use the index set V for villages and the index set function J(v) for

the consumers in village v ∈V. For a consumer j ∈ J(v) in village v ∈V, we denote by (i) rjv the sequence

of observed recharge decisions, (ii) Γjv the treatment condition, and (iii) ljv the sequence of observed last

recharge points. The collections of (i)–(iii) for the entire consumer pool are written simply as {rjv}, {Γjv},

and {ljv} respectively. The likelihood function for the consumer pool in village v is then given by

L(Θ ; v,J(v),{rjv},{Γjv},{ljv}) =
∏

j∈J(v)

Pr
(
r̃ = rjv ; Θ,Γjv, ljv

)
for v ∈V, (8)

where Pr(r̃) is given by Proposition 2. The complex nature of the likelihood function in (8) makes intractable

the mathematical analysis of the identifiability of model parameters (e.g., showing that L is unimodal in Θ).

Therefore, we resort to intuitive arguments on the identification of parameters, which parallel the arguments

made in Section 2.3. A detailed discussion of which sources of variation in the data identify which parameters

is in Appendix C; here, we present a summary of that discussion.

Broadly, the variation in IATs due to variation in I (resp., P and Q) helps identify St (resp., Mt and Dt).

If we assume that λ is known, then we can control for consumption time, and the residual variation in IATs

is due to the variation in blackout times. For consumers facing the zero-price condition, the BTs consist of

only the strategic component. The variation in IATs across those consumers (with varying inconvenience

levels) identifies α, whereas the variation in IATs within consumers identifies β. As is common in the discrete

choice literature, we cannot identify the variance of the error term, and so we normalize σξ to one. With

these parameters identified, we can control for the strategic component of BT. The residual variation in

IATs across individuals with varying price levels can be attributed to the liquidity component of BT, and

that variation identifies µ and σ. We cannot identify ρ because of the assumed renewal structure for the

disposable-income process. We treat ρ as a hyperparameter, i.e., we set it exogenously and then examine

the sensitivity of other parameter estimates by varying ρ. All the aforesaid parameters are identified as a

function of λ, and they control for blackout times. The remaining variation in IATs across individuals with

varying capacity levels is attributed to the variation in CTs, which thereby identifies λ.

4.4. Model Estimation and Predictive Ability

We now estimate the empirical models described in the previous subsection using our data. We also estimate

some alternative specifications that extend those models and choose the specification that best fits the data.

First, we discuss our model estimation procedure and goodness-of-fit criteria and then give the details of the

candidate specifications.

All the model specifications that we investigate are estimated at the village level, thereby incorporat-

ing heterogeneity across villages. For each village v ∈V, we split J(v) (exclusively and exhaustively) into

three sets: (i) training set Jtr(v), which constitutes the data from the experimental conditions (P,Q) ∈

{{0,50,60,70,80,120}×{18}}∪{{80,100}×{14}}; (ii) cross-validation set Jcv(v), consisting of the data from
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consumers facing (P,Q) = (100,18), which is the current business model; and (iii) test set Jts(v), consisting

of the data from our experimental condition wherein every fourth recharge was offered free.

Our parameter estimation procedure is as follows. Because ρ is a hyperparameter, we fix it exogenously

and estimate the remaining parameters (denoted by set ϑ) using training set: ϑ̂(ρ, v) = arg maxϑL(ϑ ∪

{ρ} ; v,Jtr(v), ·). We vary ρ from 0 to 0.9 in steps of 0.1 and select the value of ρ that maximizes the likelihood

on cross-validation set: ρ̂(v) = arg maxρL(ϑ̂(ρ, v)∪{ρ} ; v,Jcv(v), ·). Overall, Θ̂(v) = ϑ̂(ρ̂(v), v)∪{ρ̂(v)}.

As we are interested in the models’ ability to predict counterfactual policies, we use the test set as the

experimental condition wherein the consumer’s decision process is structurally different from the decision

process in the experimental conditions of training and cross-validation sets. While the decision process in the

latter case is the same as in Figure 1, in the former case, the price faced by the consumer dynamically varies

depending on her recharge decisions, and she needs to keep track of an additional state variable, which is the

number of recharges done so far after the previous free recharge was availed. (The corresponding decision

process and the Bellman equations are given in Appendix F). Accordingly, we use as our goodness-of-fit

criterion the mean absolute percentage error (MAPE) of the predicted number of recharges with respect to

the actual number of recharges on the test set.

We resort to simulations to obtain the predicted number of recharges. In village v, we generate the

recharge sequence r̂jv,n for consumer j in simulation round n using (i) the decision process in Figure 1 for

j ∈ Jtr(v)∪Jcv(v) and the decision process in Figure 11(a) for j ∈ Jts(v); (ii) the treatment condition of that

consumer Γjv; and (iii) the probability models of Dt, Mt, and St along with their estimated parameters from

Θ̂(v). The sum of the recharge decisions in r̂jv,n is denoted by R̂jv,n. Furthermore, the sums of recharges

aggregated at the village level and the entire-sample level are, respectively, given by R̂s
v,n =

∑
j∈Js(v) R̂

s
jv,n

and R̂s
n =

∑
v∈V R̂

s
v,n for s ∈ {tr, cv, ts}. Similarly, the actual sums of recharges observed in the sample are

represented by Rjv, R
s
v, and Rs. We define our MAPE measure at the village level as follows:

MAPEs
n =

1

|V|
∑
v∈V

∣∣∣∣∣Rs
v − R̂s

v,n

Rs
v

∣∣∣∣∣ for s∈ {tr, cv, ts}.

Table 2 reports the averages of MAPEs
n and R̂s

n across Ns simulation rounds for all the model specifications

that we estimate. We use Ns = 100 in all the simulations in our paper.

In Table 2, specification S1 is exactly the one described in Sections 4.1–4.3. S1 fits the data in the training

and cross-validation sets reasonably well. The out-of-sample MAPE on the test set is (on average) 10.8%.

S1, however, assumes that the consumers are forward-looking with a discount factor of δ = 1, which may be

unreasonable. To understand the relevance of this assumption, we next investigate the performance under

a specification that lies on the other extreme. S2 assumes that the consumers are myopic with δ = 0. The

fit of S2 to training and cross-validation datasets is almost indistinguishable from that of S1. However, the

limitation of assuming myopia is evident from the poor performance of S2 on the test set. Because every

fourth recharge is free in the test set, the current recharge decision of consumers has an impact on their

future recharge price, and hence in reality, consumers plausibly account for the future costs while making the

recharge decisions in such setting. Since S2 rules out forward-looking behavior, it poorly predicts recharge

decisions in the test set.
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Training set Cross-validation set Test set

Actual = 4640 Actual = 429 Actual = 560
Pred. MAPE Pred. MAPE Pred. MAPE

Structural

S1 4627.66 0.9% 452.54 5.2% 500.02 10.8%
(50.58) (0.7%) (22.31) (3.1%) (21.38) (3.8%)

S2 4556.92 1.8% 452.89 6.0% 472.03 15.7%
(54.21) (1.1%) (19.65) (4.0%) (21.27) (3.8%)

S3 4619.21 0.9% 444.99 4.1% 511.35 8.8%
(48.72) (0.7%) (11.01) (1.9%) (15.59) (2.1%)

S4 4669.92 0.7% 446.82 4.1% 515.73 7.5%
(25.21) (0.4%) (7.55) (1.8%) (7.94) (1.4%)

A1 4600.58 1.2% 423.89 3.5% 451.29 19.4%

Atheoretical
(59.12) (0.9%) (18.84) (2.8%) (22.91) (4.1%)

A2 4601.32 1.2% 428.58 3.4% 459.41 18.0%
(55.03) (0.8%) (18.42) (2.6%) (23.37) (4.2%)

Table 2 Goodness of fit of various model specifications.

It is possible that the consumers are neither completely forward looking (as in S1) nor completely myopic

(as in S2); their discount factor δ could be between 0 and 1. Specification S3 incorporates discounting in the

Bellman equations of our DP model in Section 4.1. We cannot estimate δ using the variations in our data

(this is a common problem in several DP-based structural models; see e.g., Rust 1994), and so we take δ as

a hyperparameter and estimate it along with ρ using cross validation. The predictive ability of S3 is better

than that of both S1 and S2, thereby suggesting that our consumers are partially forward looking.

In addition to village-level heterogeneity, there could be heterogeneity within a village across consumers.

We incorporate this by assuming that the blackout cost is heterogenous (and model it as a random variable

– i.e., a random effect); we call the corresponding specification S4. Instead of estimating parameter β, we

assume that β for a consumer is drawn from the distribution Normal(µβ, σ
2
β), and we estimate the parameters

µβ and σβ. S4 improves further upon S3 and has an out-of-sample MAPE of 7.5%. We estimate a few other

specifications with heterogeneity incorporated in income and consumption processes as well; however, they

do not improve upon the performance displayed by S4 and are also computationally intensive (because of

more random effect terms), and hence we do not consider them further.

All the above specifications are different versions of a basic theoretical structure that we impose on the

data. We now compare the performance of our structural approach with some atheoretical approaches to

see if there are any benefits to assuming the decision-making structure. (The terminology of structural vs.

atheoretical is borrowed from Keane 2010.) Model A1 is a Poisson regression model, similar to the one that

we use in our reduced-form analysis in Appendix B, except that we estimate it at the village level (instead

of using village-level fixed effects). This model assumes that the recharges observed in the experimental

duration are the realizations of a Poisson process, in contrast to being the realizations of the controlled

decision processes in Figure 1 or Figure 11(a). The arrival rate of the Poisson process is estimated as a

function of I, P , and Q using the training data. This model fits the training data well, and its performance

on the cross-validation set is slightly better than that of our structural models.

However, atheoretical models such as A1 are usually limited in terms of generating counterfactual settings.

For example, it is not trivial to compute the performance of A1 on the test set where every fourth recharge
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is free. One plausible way to model this counterfactual is by assuming that the recharges observed in the

test set are the realizations of a non-homogenous Poisson process whose instantaneous arrival rate depends

on the number of recharges done so far after the previous free recharge. As we see in Table 2, this model

performs much worse on the test set than our structural models.11

Yet another atheoretical approach is to assume that consumers behave in a completely random manner

(and make decisions in each period perhaps by simply tossing a coin). This model is called A2. We determine

the probability of recharge in a period as a function of I, P , and Q using the logistic regression on the

training data. Similar to A1, this model also fits the training and cross-validation sets well but performs

badly on the test set. We believe that this is because the atheoretical approaches completely ignore the

decision-making process of the consumers and merely model it as a stochastic process, which thereby limits

their performance in counterfactual settings wherein the decision-making aspects play an important role.

To summarize, in Table 2, the model with the best predictive ability is the one which (i) is estimated

at the village-level, (ii) incorporates discounting, and (iii) accounts for blackout cost heterogeneity. This

model has an out-of-sample MAPE of 7.5%, indicating good predictive ability. It also performs better than

the atheoretical approaches, thereby suggesting that the assumed structure is both useful and powerful.

In the interest of brevity, we present the parameter estimates Θ̂(v) along with their interpretation under

specification S4 in Appendix D and the elasticity of the expected number of recharges with respect to variables

I, P , and Q in Appendix E.

5. Counterfactual Analysis

We broadly classify the counterfactual policies that we study here based on the factor(s) that they address:

(i) inconvenience-based, (ii) liquidity-based, and (iii) price-and-capacity-based. We distinguish between

liquidity-based policies and price-based policies based on whether they affect the recharge price: the latter

directly modify the distribution of Mt by varying the price, whereas the former do not vary the price but

create an option to recharge even when Mt = 0.

For any given counterfactual policy P, we are interested in the expected sum of recharges across all vil-

lages R(P) =
∑

v∈V

∑
j∈J(v) ER̃jv(P) resulting under that policy and in the corresponding expected revenue

V (P) = P × R(P). As in Section 4.4, we approximate the expectations with sample averages of recharge

decisions in the simulations: ER̃jv ≈ R̂jv,n/Ns. We generate R̂jv,n using (i) the decision process corresponding

to the counterfactual policy P, (ii) the condition (I,P,Q)jv as determined by the policy P, and (iii) the

probability models under specification S4 with the estimated parameters Θ̂(v).

Throughout this section, we assume that the current business model – the decision process in Figure 1 and

(I,P,Q)jv = (Ijv,100 RWF,18 hours) – is the base case to which the performance of other counterfactuals is

11 Under model A1, the Poisson regression estimates the aggregate arrival rate of recharges Λ(I,P,Q) over a duration
of T periods as a function of I, P , and Q using the data from the training set. The per-period arrival rate, or
approximately the probability of recharge in a period, is given by Λ/T . To simulate recharges for a consumer j in
test set, we model the probability of recharge as Λ(Ijv, Pjv,Qjv)/T in the periods where the upcoming recharge is
not free and as Λ(Ijv,0,Qjv)/T in the periods where the upcoming recharge is free. In contrast, model A2 directly
estimates the probability of recharge as a function of I, P , and Q using logistic regression on the period-level data
from the training set. The logic for simulating test-set recharges is same as that of A1.
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compared. It should be noted that this base case is also a counterfactual policy because not every consumer

in our sample was subjected to the aforementioned price-and-capacity condition. We find that the expected

number of recharges in this base case is 4540 (32). (This number is unsurprisingly lower than the actual

number of recharges (5577) observed in the sample because our experiments included many consumers who

faced price values lower than 100 RWF and therefore recharged more often.) Hereafter, we measure the

impact of alternative policies in terms of the resultant (i) percentage increase in the number of recharges

and (ii) percentage increase in the firm’s revenue, when compared to the base case; both (i) and (ii) are

equivalent if the recharge price remains unchanged.

5.1. Inconvenience-based Counterfactual Policies

Start more recharge centers. Figure 4 plots the impact of reducing inconvenience in various counter-

factual settings. As a benchmark, we first examine the case wherein we set I = 0 for all the consumers. We

see in Figure 4 that the expected number of recharges increases by 60% under this benchmark case over the

base case. This reaffirms our observation from previous sections that recharge inconvenience is a significant

contributor to the inefficiency in this business model, leading to low recharge rates.

7%

Set � = �

Base case

20%

26%

29%

60%

Figure 4 Impact of increasing the number of recharge centers on total expected number of recharges.

One way to reduce consumer inconvenience is by opening more recharge centers per village. Figure 4

shows the expected number of recharges under settings with different number of (optimally-located) recharge

centers. (In simulations, we cluster the households in a village through a k-means clustering algorithm and

then measure the impact of locating the recharge centers at the centroids of those clusters). We find that

moving the recharge center to a more central location in respective villages improves the expected recharges

by 7%. Moreover, by establishing 1–3 more (optimally-located) recharge centers, the firm can improve the

number of recharges by 20–29%. Although there are gains to be made beyond adding three additional recharge

centers, the marginal value that they bring decreases.12

12 The standard errors around the estimated mean number of recharges under all the counterfactual policies discussed
in this and subsequent sections are between 25 and 40 recharges. Therefore, the reported improvements in recharges
are highly statistically significant.
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There are two main practical insights from this analysis: First, there are significant gains to be made by

moving the recharge center to an inconvenience-minimizing location. In reality, this location may or may not

be the center of the village. It could also be a school or a retail store or any other place that is frequented by

consumers. Because we do not have information on visit patterns to different locations in villages, we cannot

measure the potential impact of moving the recharge center to one of those alternative locations. However,

one would choose to move to these locations instead of the village center if they are more inconvenience-

minimizing than the latter; hence, the above estimate can be thought of as a lower bound on the resulting

improvement in recharges.

Second, it may be trivial that adding more recharge centers reduces consumer inconvenience and increases

the number of recharges, but it is often not clear how many additional recharge centers are required to bring

a significant improvement in recharges. The above analysis shows that just two or three additional recharge

centers are sufficient to capture half the benefits of reducing inconvenience to zero. It is possible that as we

increase the number of recharge centers, VLEs at those centers may be less incentivized (or may even drop

out) because of their reduced market share. Then, instead of adding the recharge centers, the firm could add

some “drop-off points” in a village, where consumers could safely drop their lamps and collect them later

after they are recharged.

Make periodic visits to consumers. An alternative way of reducing consumer inconvenience is by

delivering a door-to-door recharge service: instead of the consumer traveling to the recharge center, the

VLE or a representative of the firm can travel to the consumer. This service can also be implemented in

collaboration with firms that employ agents who visit consumers frequently. For example, the agents hired

by Living Goods go door-to-door to sell health products, the agents of Vision Spring conduct regular eye

tests and sell eyeglasses, and Shakti agents sell fast-moving consumer goods (FMCG) products by Unilever.

Such firms sometimes tend to act as distribution platforms in the BoP markets, and their services can be

leveraged if feasible.

Here, we consider a simpler version wherein the firm’s VLE visits the households in her village once every

n periods. If n= 1, then the VLE visits every period, whereas if n= 2 (resp., n= 5), then the VLE visits

(approximately) once a week (resp., once every two weeks). On the days of the VLE’s visit, consumers

experience zero inconvenience as they can hand over the lamp to the VLE for the recharge. On such days, since

the consumer must decide whether or not to give the (plausibly not-yet-discharged) lamp to the VLE, the

consumer’s decision process under this business model will be different from the one in Figure 1. Figure 5(a)

shows the consumer’s decision process under the periodic-visit model just described.

The indicator variable Vt in Figure 5(a) is equal to one in period t if the VLE visits the consumer in that

period. Vt evolves deterministically: it is equal to one once every n periods, and it is zero in the remaining

periods. As expected, the decision process coincides with that shown in Figure 1 when Vt is zero. When Vt is

one, the decision process branches at Dt. Even when the lamp is not completely discharged (i.e., Dt = 0), the

consumer may decide to recharge the lamp because she can give the lamp to the VLE and thereby experience

zero inconvenience. Otherwise, the consumer herself needs to visit the recharge center in a later period after

the lamp discharges. In Figure 5(a), r
(v)
t indicates the recharges where the lamps were handed over to VLE.
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Figure 5 Periodic-visit model: (a) decision process, and (b) performance as a function of the periodicity of

VLE’s visits when the visits are door-to-door, or to 1, 5, and 10 locations per village.

Since the trade-offs and the future costs (and hence the Bellman equations) differ across the alternative

branches of the decision process, we represent St separately for each branch. For brevity, we present the

Bellman equations for this decision process in Appendix F.

Using the decision process in Figure 5(a) as the data-generating process, we simulate the recharge deci-

sions for visit frequencies n ∈ {1, . . . ,5}. The corresponding expected numbers of recharges are plotted in

Figure 5(b). It is noteworthy that for n= 1, wherein the consumer experiences zero inconvenience in all peri-

ods, we observe a 79% increase in recharges, which is higher than the improvement achieved by setting I = 0

in Figure 4. This is because the consumer decision process differs across these two cases: under the latter

case, only the discharged lamps arrive for recharge, whereas under the periodic-visit model, some partially-

discharged lamps are recharged too, thereby resulting in a higher number of recharges. As n increases, the

improvements in recharges decline steeply. If the VLE visits once per week, the recharges increase by 37%,

whereas if she visits once every two weeks, we observe a 14% increase in recharges.

The periodic-visit model considered so far is a door-to-door service requiring the VLE to visit each house-

hold in the village. Such door-to-door visits may be costly for a VLE, and hence in practice, she may choose

to periodically visit only some select locations in the village (at some pre-decided and publicly known time),

and the consumers must visit those locations to hand over the lamps to VLE and then to collect them back

later. Figure 5(b) also shows the improvement in recharges when the VLE visits one, five, and ten (optimal)

locations in the village with varying frequencies. We do not see much improvement when the visits are to

only one location, and the benefits marginally decrease as the number of visit locations increases, as there

is little difference between visiting five versus ten locations. However, it is remarkable that just by visiting

five locations per village, half the benefits from visiting door-to-door are captured (for all n) even though

the latter option requires visiting ∼90 households per village.

5.2. Liquidity-based Counterfactual Policies

The current business model imposes two constraints that critically interact with consumers’ liquidity con-

straints. First, the consumer is required to always fully recharge her lamp and accordingly pay full-recharge

price. Sometimes, the consumer may have a strong need for light but may not have sufficient money to fully
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recharge the lamp. She could use her money to partially recharge the lamp and use that light to satisfy her

need; instead, she is compelled to experience a blackout in the current business model. Therefore, providing

the option to partially recharge the lamp may bring benefits to both the firm and the consumer. Second,

payments are coupled with recharges in the exisiting model: payment for a recharge happens at the same

time as the recharge. Because of the stochastic nature of the consumer’s needs and disposable income, even

if a consumer has sufficient money for the recharge today, she may not have it later when she desires to

recharge the lamp. Hence, it may be beneficial to offer some flexibility in payments by decoupling payments

from recharges, e.g., by providing the option to prepay for the upcoming recharge or to recharge on credit.

Before we discuss the efficacy of the aforementioned policies, we consider a benchmark decision process

shown in Figure 6(a). Here, the money process Mt does not act as a constraint in the consumer’s decision

process: in a period, if the lamp is discharged and if it is convenient to recharge, then the consumer simply

proceeds with the recharge. It is assumed under this benchmark case that the consumer always has sufficient

money for the recharge and pays when she recharges the lamp – thus, this case removes liquidity constraints

from the model. Figure 6(g) presents the performance of all the liquidity-based counterfactual policies dis-

cussed in this section. We see that under this benchmark model, the recharges increase by 123% over the

base case. Such a high increase may not be that surprising, given that our context is poverty, whose defining

feature is a liquidity constraint, and expectedly that constraint is a major contributor to the inefficiency

in the business model. We also now know that the best that any policy addressing consumers’ liquidity

constraints can achieve is a 123% increase in recharges.

Allow partial recharges. Uppari et al. (2019) theoretically show that the firm can benefit by allowing

partial recharges. We now quantify those benefits using our experimental data. We consider only two options:

half recharge (denoted as r
(0.5)
t ) and full recharge (denoted as r

(1)
t ). Although our model can be extended

to an arbitrary number of options, we note that offering a variety of partial recharge levels could negatively

impact the lamp’s battery life while also requiring recharge centers to upgrade their technology to track the

charge level in the lamp. Therefore, the assumed setup offers both analytical and practical simplicity.

Figure 6(b) shows how the provision of partial recharges changes the consumer decision process. (The

Bellman equations for all decision processes in this section are given in Appendix F.) The variable M(0.5)
t

(resp., M(1)
t ) indicates whether or not there is enough money for a half (resp., full) recharge. When the

lamp is discharged, if the consumer does not have money for a full recharge but has money for a half

recharge, then she considers a half recharge. By comparing Figure 1 with Figure 6(b), we see that in the

former case, the consumer could proceed only when Mt = 1, whereas in the latter case, she can proceed even

when there is no money for a full recharge. Thus, the decision process branches at the Mt node, thereby

alleviating the liquidity constraint to some extent. We simulate the recharge decisions with Figure 6(b) as

the data-generating process. Since the consumer only pays P/2 for a half recharge, to retain the equivalence

between the increase in recharges and the increase in revenue, we count a half recharge as r = 0.5 in our

simulations. Figure 6(g) shows that providing the partial recharging option increases the number of recharges

(and revenue) by 19% over the base case.
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A = Base case

B = No liquidity constraints

C = Partial recharges

D = Prepayment

E = Prepayment after discharge

F = One recharge on credit

G = Two recharges on credit

Figure 6 Liquidity-based counterfactuals. Decision processes for (a) no liquidity constraints benchmark, (b)

option to partially recharge, (c) option to prepay, and (f) one recharge on credit. (d) and (e) show the evolution

of Pt for the case of prepayment and prepayment after discharge, respectively. (g) The performance of the

liquidity-based counterfactuals.

Decouple payments from recharges. We now turn our attention to decoupling payments from recharges

and note two important points. First, when payments and recharges can occur at separate points in time,

there must be a mechanism in place for the consumer to make the payment without traveling to the recharge

center; otherwise, decoupling may not bring any benefits to the consumer. The flexible payment schemes

can be implemented in practice by a mobile payment mechanism, wherein the consumer transfers money

through her mobile phone without any need to travel. Such mobile transfers have become fairly prominent

in sub-Saharan Africa and in developing Asia with the increased market penetration of mobile technology in

those regions (GSMA 2015). Second, as we mentioned earlier, we analyze decoupling using two mechanisms:

the option to prepay and the option to recharge on credit. One might ask, given that the consumers are

cash constrained, whether they will be inclined to prepay for the recharges. Using the payment data for

solar lamps in sub-Saharan Africa, Guajardo (2019) demonstrates that consumers sometimes bundle their

payments instead of paying a fixed amount weekly – such bundles constitute both the payments that were

skipped in the past weeks as well as the advance payments for the upcoming weeks. We infer from this finding

that, because of stochastic income and liquidity constraints, there is a demand for both prepayments and
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on-credit recharges on the consumer side. Morever, evidence in the microfinance literature demonstrates that

introducing such flexibility in payment schemes reduces financial stress and enables consumers to manage

their income better (Laureti and Hamp 2011, Field et al. 2012, Barboni 2017).

Figure 6(c) shows the decision process when the consumer is provided the option to prepay for the recharge.

We replace the variable Mt with the variable Pt in the decision process. Mt indicates whether or not there

is enough money in hand to pay for the recharge, whereas Pt indicates whether or not the payment for the

upcoming recharge is already done. Pt, naturally, is a function of Mt, and Figures 6(d)–(e) show two plausible

evolutions of Pt. Figure 6(d) shows the setting where as soon as the consumer has enough money for the

recharge, she pays for it through mobile money – she neither waits for the lamp to discharge nor does she

consider inconvenience–blackout trade-offs. Thus, when Mt = 1, Pt immediately transits from zero to one.

Assuming that the consumer pays at the first instance when she has money may be optimistic, and so we

consider an alternative case in Figure 6(e). In this case, the consumer pays at the first instance when she

has enough money after the lamp is discharged (i.e., to transit to Pt = 1, we need both Mt = 1 and Dt = 1).

It is straightforward to show that Pt in Figures 6(d)–(e) stochastically dominates Mt; therefore, the liquidity

constraints are milder under the prepayment option. The two prepayment models result, respectively, in 33%

and 43% increases in recharges over the base case.

The decision process when the firm allows only one recharge on credit is shown in Figure 6(f). The

consumer can recharge her lamp once without paying, and then she must pay off that debt before the next

recharge. The variable Ct in Figure 6(f) indicates whether the consumer previously recharged on credit. Ct
evolves together with the recharge decisions of the consumer. When Ct is zero, the consumer can choose to

recharge even when the payment for that recharge is not done yet (i.e., the decision process branches at Pt).

If the recharge is done without payment (denoted by r
(c)
t = 1), then Ct+1 is set to one, indicating for future

reference that the consumer has recharged earlier on credit. When Ct is one, the consumer has no choice

other than paying for the previous recharge. The variable P̆t indicates whether the payment for the previous

recharge is done. If P̆t = 1, then Ct+1 is reset to zero, indicating that the consumer is no longer in debt.

Otherwise, Ct+1 remains to be one. We can similarly look into the case when the firm allows two recharges on

credit. The corresponding decision process is shown in Figure 11(b) in Appendix F. The simulation results

show a 68% increase in recharges when the firm allows one recharge on credit and a 76% increase with the

option of two recharges on credit.

To summarize, because the consumers are poor and have erratic cash flows, there are significant gains to

be made by providing flexibility in payments. The maximum benefit is seen when the firm offers the option

to recharge on credit, which is followed by the option to prepay and the option to partially recharge the

lamp. It is worth noting that just by providing 1–2 on-credit recharges, the firm can attain more than half

the benefit arising from eliminating liquidity constraints altogether.

5.3. Price/Capacity-based Counterfactual Policies

In all the counterfactuals that we discussed thus far, the recharge price P was fixed at 100 RWF and the

lamp capacity Q at 18 hours. We now consider the counterfactual settings wherein the firm changes P and

Q. These changes are assumed to be in the status quo business model, and so the decision process in these
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price/capacity-based counterfactuals is the same as in Figure 1. We rewrite expected recharges R(P) and

expected revenue V (P), respectively, as R(P,Q) and V (P,Q) to make it explicit that we now view them as

functions of price and capacity.

(a) (b)

Figure 7 At Q= 18 hours, (a) expected number of recharges and (b) expected revenue at different price levels.

Set price optimally. We first fix the lamp capacity at Q = 18 hours and examine the impact of price

changes. Unlike the strategies in Sections 5.1 and 5.2, which increase both R and V simultaneously, varying

price has different impacts on R and V . Figure 7(a) shows the total number of recharges expected at different

price levels, and Figure 7(b) shows the total revenue expected at those price levels. The number of recharges

decreases steeply as we increase the price. The revenue increases in price because of the relatively inelastic

nature of recharges with respect to price.13 (See Appendix E for a discussion on the price elasticity of the

expected number of recharges.) Consequently, if the firm focuses solely on maximizing revenue, then the

optimal price (i.e., arg maxP V (P,Q)) will not be an interior solution. By increasing price, the firm gains

revenue, but it also loses the market penetration of its product.

However, several firms operating in the BoP markets are social enterprises with a dual objective that

values both the usage of their products by poor consumers and revenue for the firms’ sustenance, even when

improving the former may hurt the latter. Assuming that the firm has a Cobb-Douglas-type preference for

improvements in usage and revenue relative to the status quo, we model this dual objective as

W (P,Q ; γ) =

[
R(P,Q)

R(P0,Q0)

]γ [
V (P,Q)

V (P0,Q0)

]1−γ

,

where (P0,Q0) = (100 RWF,18 hours) is the status quo, and γ ∈ [0,1] is the weight given to usage relative

to revenue. Depending on the financial status of the firm and the usage requirements imposed either by the

investors or the regulators, the firm may place different weights on usage at different points in time. Here,

we exogenously vary the values of γ and examine the sensitivity of optimal gains in revenue and usage.

13 At a given Q, the derivative of V (P,Q) with respect to P is R(P,Q)(1 + e(P ; Q)), which is positive if the price
elasticity e(P ; Q)>−1 (the condition for relative inelasticity). Although in Figure 7 we show revenue only for prices
between 0 RWF and 120 RWF (which was our experimental range), we numerically verified that for prices up to 200
RWF and for capacity levels between 6 hours and 30 hours, the revenue continues to increase in price.
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Figure 8 Optimal price P ∗(Q ; γ) along with percentage improvements in usage and revenue for Q= 18 hours

(status quo capacity) and Q= 10 hours (optimal capacity) at different values of γ.

The optimal price P *(Q ; γ) = arg maxP W (P,Q ; γ) balances the two conflicting objectives of increasing

both R and V at a given value of Q. Figure 8 presents P *(18 ; γ) in red for different values of γ, along with

the corresponding percentage improvements in usage and revenue. (For these values of γ, we see numerically

that W (P,Q ; γ) is unimodal in price; thus, P *(Q ; γ) exists and is unique.) When the firm places an equal

weight on both usage- and revenue-improvements (i.e., γ = 0.5), it is optimal to reduce the price to 70 RWF.

This leads to an increase in recharges of 22% and a drop in revenue of 15%. As we move leftward (resp.,

rightward) from γ = 0.5, then the firm becomes more revenue focused (resp., usage focused); therefore, it is

optimal to increase (resp., decrease) the price. In fact, the status quo price and capacity are optimal if the

firm places a 38% weight on usage.

Set both price and capacity optimally. It is clear from both Figure 7 and the red line in Fig-

ure 8 that any movement from the status quo either decreases usage or revenue: the higher the increase

in usage, the higher the corresponding drop in revenue, and vice versa. However, Pareto improvements

along both the dimensions are plausible if firm also varies capacity along with price. We define Q*(γ) =

arg maxQW (P *(Q ; γ),Q ; γ). As we discussed under Π3 in Section 4.2, as Q decreases, the number of

recharges increase but only for relatively large values of capacity. Reducing Q to relatively smaller values

results in too many trips and too much inconvenience for consumers, which in turn negatively affects usage.

The optimal value Q*(γ) balances this trade-off. We find that Q*(γ) = 10 hours for all γ ∈ [0.3,0.7].

Figure 8 shows P *(10 ; γ) in green. As expected, the optimal price values are lower when capacity is

reduced. We see in general that setting both price and capacity optimally leads to an increase in recharges

that is higher than, and a drop in revenue that is lower than, the case wherein the firm sets only price

optimally. Pareto improvements are indeed possible when the firm’s γ is between 0.3 and 0.4. For the status

quo weight on usage (i.e., γ = 0.38), we find that the optimal price is 80 RWF, and the resultant improvements

in usage and revenue are 15% and 3% respectively. Overall, the firm benefits by reducing both price and

capacity. We next note two points regarding this finding.
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First, Prahalad and Hart (2002) exemplify FMCG companies for having adapted some of their products

(e.g., shampoo, tea, and cold medicines) for the BoP market by repackaging goods in smaller volumes to

make them more affordable. Delivering light through a rechargeable lamp is equivalent to selling light in a

small package. Our analysis suggests that – given consumer behavior in the market – it is better for the firm

to sell light in a package of even smaller size by reducing price and capacity. Prahalad and Hart (2002) also

argue that the consumers at the top of the pyramid (ToP) have enough disposable income, buy in bulk, and

shop less frequently, i.e., they use their spending money to “inventory convenience,” whereas the consumers

at the BoP have limited cash, shop every day, and look for smaller packages. Although this may seem true

on the surface, our analysis conclusively shows that (in)convenience is an important factor not only for the

ToP consumers, but also for the BoP consumers, and that it must be considered while deciding package size

in BoP markets.

Second, the ratio of capacity and price at the status quo is 18/100 = 0.18 hours/RWF, whereas it is

10/80 = 0.125 hours/RWF at the optimum at γ = 0.38 – the bang for the buck is lower at the reduced price

and capacity levels. Because of the consumer’s cash constraints, lowering the price increases her ability to pay

for the recharges; but to generate enough revenue at the lowered price, the firm must also then substantially

reduce capacity to induce a higher recharge frequency. In other words, the consumer pays a poverty premium

when the light is provided in a smaller, more affordable package. Mendoza (2011) calls this the size effect –

the penalty that the poor pay for being served in portions of smaller size. For a comprehensive discussion

on poverty premia in other contexts, we refer the reader to Mendoza (2011) and Davies et al. (2016).

5.4. Discussion

Sections 5.1–5.3 evaluated the efficacy of several counterfactual policies that target inconvenience, liquidity

constraints, recharge price, and lamp capacity; our analysis is summarized in Table 3. From now on, we

refer to the inconvenience- and liquidity-based strategies together as operations-based strategies because

they improve performance, not by varying the economic variables (namely, price and lamp capacity – the

amount paid and the amount obtained in return) but by addressing the sources of inefficiencies (namely,

inconvenience and liquidity constraints) in the current business model and by changing the (recharge and

payment) processes within the firm.

We discuss three important implications of our analysis and findings. First, we see from Table 3 that

simple strategies can achieve good performance. For example, just by allowing the consumers to recharge

on credit 1–2 times or by starting 2–3 more recharge centers/dropoff points per village, the firm can reap

half the benefits from completely removing inconvenience and liquidity constraints from the business model.

It is important to recognize that while evaluating a counterfactual strategy, we have incorporated only

those structural changes in the model that are required by that strategy. That way, we isolate the impact

of implementing a particular strategy. Therefore, when combined together, the strategies in Table 3 may

result in an even stronger impact on lamp usage and the firm’s revenue. Analyzing the performance of any

combinatorial strategy is a straightforward extension of the analysis conducted in our paper.

Moreover, Banerjee et al. (2017) note that in “all external decision making problems, inference is unavoid-

ably subjective. In structural modeling, the source of subjectivity is the model itself.” Admittedly, the
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Counterfactual policy
Usage- Revenue-

improvement improvement

Price/Capacity-based

Set P optimally, γ : 0.3→ 0.7 −11%→ 40% 7%→−30%
Set both P and Q optimally, γ : 0.3→ 0.7 0%→ 70% 10%→−32%
Set both P and Q optimally, γ = 0.38 15% 3%

Inconvenience-based
Benchmark: {set I = 0, visit door-to-door every period} 60%, 79%
Start 2–3 more recharge centers 26%–29%
Visit door-to-door once in {1 week, 2 weeks} 14%, 37%
Visit 5 locations once in {every period, 1 week, 2 weeks} 39%, 20%, 8%

Liquidity-based

Benchmark: no liquidity constraints 123%
Allow partial (half) recharges 19%
Allow prepayments 33%–43%
Allow 1–2 recharges on credit 68%–76%

Table 3 Summary of the performance of counterfactual policies.

decision models in counterfactual settings need not coincide with the ones that we assumed in our paper.

Nevertheless, because our process of external extrapolation is transparent, one can further enrich the analysis

by introducing additional, plausibly subjective, components to those decision models. For example, in the

periodic-visit model, the consumer may not always be at home when the VLE visits to collect her lamp, which

may in turn affect the performance of that strategy; one can augment the decision process in Figure 5(a) with

a probabilistic node representing the presence of consumer at home; the corresponding probability cannot

be estimated from the data that we have, and hence it must be introduced either through subjective beliefs

or through market research. Such extensions are also straightforward.

Second, operations-based strategies tend to perform better than price/capacity-based strategies. To increase

the penetration of its product, a firm operating in the BoP market may have a natural tendency to reduce

the price because (economic) poverty, by definition, relates to lack of money, and hence the inability to pay

a higher price. Furthermore, several blog posts by entrepreneurs, technical reports by policy organizatons

(e.g., Bates et al. 2012, Girardeau and Pattanayak 2018), and much of the development economics literature

cited in Section 1 place emphasis on pricing strategies, thereby making them more salient. Of course, price is

an important lever in determining product adoptions under poverty, but as we saw in Section 5.3, reducing

price in our context simply decreases revenue. Therefore, operating at a lower price without the support from

either donors or investors to fulfill any financial deficit (due to subsidies) may not be a sustainable strategy in

the long run. Changing capacity along with price improves matters; however, the resultant smaller packaging

makes consumers pay a poverty premium, and as seen in Table 3, the improvements are also quite limited

in magnitude.

In contrast, operations-based strategies increase usage and revenue simultaneously without consumers pay-

ing any poverty premium. This observation underscores the importance of removing, to the extent possible,

the inefficiencies embedded in the business model by design – e.g., constraints such as making the consumer

travel to a single village-level recharge center and allowing her to pay only when she recharges her lamp – that

critically interact with the consumer behavior and limit the product adoption. We acknowledge that the firm
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may need to incur some costs to implement the operations-based strategies, yet we do not closely examine

them in our paper. The costs of counterfactuals – such as the cost of starting a new recharge center in a

particular village, the cost of sending the VLE regularly to the households in a village, and the cost of setting

up a mobile payment scheme – do not arise from a generalized framework like the revenues arise from the

framework of our structural model. Assessing implementation costs is a context-specific exercise, which must

be carried out by the firm before it implements a strategy. Besides, given the significant benefits arising from

even simple operations-based strategies, it may be worthwhile for the firm to incur those costs. Moreover,

the funds that the BoP firms receive initially may be allocated to cover the costs involved in implementing

an appropriate operational model and then scale up efficiently with that model, as opposed to increasing

the outreach inefficiently by giving subsidies using those funds.

Third, our research template can facilitate better experimentation with strategies. Several firms operating

in the BoP markets are budding startups. Although there is some emphasis on setting up the right busi-

ness model to deliver life-improving goods/services to BoP consumers (e.g., IFC 2012), there is no formal

method developed to arrive at one. The lean startup philosophy (Ries 2011) advocates constant experimen-

tation for rapid improvements in the business model. However, as Felin et al. (2019) put it, “the favored

hypothesis-generating tool of lean startup—the business model canvas—lacks specificity in helping startups

craft unique, firm-specific hypotheses and critical experiments for testing theories.” The practitioners can

adopt the methodology in this paper for the purpose of hypothesis generation. After a firm has (i) a minimum

viable product (MVP), (ii) a plausible theory on consumer behavior arising under MVP, and (iii) a model

that formalizes that behavior, it can conduct experiments – with the MVP – consisting of the minimal set

of treatment conditions that are required to estimate the model. Unlike the ToP markets, there is a dearth

of reliable datasets in the BoP markets; therefore, the data arising from such experiments can be used for a

variety of analyses, including structural estimation. The estimated model can then guide the firm on what

to do next and what is expected in return, thereby resulting in hypotheses that are grounded in both theory

and data, which can later be tested by further experimentation.

6. Concluding Remarks

In this paper, we rigorously analyzed consumer behavior and the operational inefficiencies that result under

the rechargeable lamp-based off-grid lighting model. Our work has implications for firms, policymakers,

academics, and consumers. We build a model of consumer recharge behavior and estimate it using field data

from Rwanda. The model’s requirements for estimation are minimal: the recharge timestamps, the lamps’

price and capacity, and a proxy for the inconvenience of the consumers. We validate the predictive ability

of the estimated model and use it to evaluate the efficacy of several inconvenience-based, liquidity-based,

and price/capacity-based strategies. The estimated model can serve as a decision support system to assess

the potential revenue opportunities of any alternative strategies ex-ante. Such analysis can also guide the

treatment conditions for future field experiments. Firms operating rechargeable lamp businesses in other

countries can also collect data and fit it to our model and thereafter use it for their decision making.

Although we do not analyze all off-grid solutions currently in the market, we delve deep in terms of ana-

lyzing the rechargeable lamp model. Such analysis helps policymakers in Rwanda and other similar countries
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that want to scale up their off-grid connectivity to weigh rechargeable lamp technologies against the benefits

and limitations of other technologies. For instance, although solar home systems remove inconvenience to a

great extent (which is a main source of inefficiency in rechargeable lamp technologies), they are unaffordable

to poor consumers and hence need to be heavily subsidized either by the government or donor organizations.

In contrast, it is much cheaper to get rechargeable lamps into the hands of consumers, but their usage is

limited by recharge inconvenience. The current study estimates consumer usage under the latter model. By

similarly estimating usage under the solar home systems model, and by accounting for the corresponding

costs, policymakers can assess which model works better at offering light to consumers.

In terms of academic relevance, we contribute to the nascent literature in OM that studies operational

issues in poor countries. Our dynamic model of off-grid light consumption incorporates consumer inconve-

nience, income and consumption uncertainties, and liquidity constraints. We characterize the optimal solution

of consumer’s dynamic program, and examine some properties of our model. The theoretical analysis in the

paper is used only to the extent of generating predictions that can be tested using the field data. Future

research can further explore our base model and its counterfactual versions; e.g., one could investigate the

theoretically optimal way of providing off-grid light to consumers and what payment plans offer the optimal

amount of flexibility to alleviate liquidity constraints. One could also conduct experiments with more sophis-

ticated treatment conditions, collect more detailed data, and employ a more elaborate model to estimate the

additional effects – such as the impacts of consuming alternative lighting sources and consumers’ behavioral

biases on recharge behavior – that we could not because of our budgetary limitations and the difficulties in

collecting data from our remotely located villages.

Finally, better business models and energy policies that account for consumer inconvenience, liquidity

constraints, and actual usage data should result in higher usage of cleaner and cheaper lighting sources,

which in turn contributes to increasing consumers’ productivity, improving their health, alleviating poverty,

and promoting economic growth.
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Appendix A: A Note on Variation in Inconvenience

Because no strategic choices were made either by the firm or by the VLEs while placing a recharge center in

our experimental villages, we hypothesize that the inconvenience faced by a consumer may not be system-

atically related to any relevant observable characteristics of that consumer. To test this claim, we collected

data on households from twelve villages with IDs 3,4,5,6,10,12,13,14,20,24,26, and 27. This set of villages

were randomly selected from the set of all sampled villages.

Variable Coefficient
Standard

Error
p-value

Household (HH) composition

Number of members in the HH −1.284 10.304 0.901
Number of females in the HH 5.524 12.630 0.662
Number of children in the HH 21.539 37.549 0.566
Age of the HH head −0.318 0.796 0.689
Maximum education level of members in the HH −8.667 14.096 0.539

Features of the dwelling

1{Dwelling has roof with guttering} −22.185 64.117 0.729
1{Dwelling has wooden walls} −15.461 71.070 0.828
1{Dwelling has brick walls without cement covering} 22.157 25.229 0.380
1{HH owns livestock} 30.914 24.401 0.205
Number of rooms in the dwelling −6.337 7.536 0.401
Number of mobile phones owned by the HH −15.289 14.472 0.291

Economic activities
1{A HH member owns a small business} −64.749 41.016 0.115
1{A HH member is a farmer} 56.527 39.638 0.154
1{A HH member has a regularly-paid job} 73.874 55.812 0.186
1{A HH member engages in part-time jobs} 43.118 27.464 0.117
1{A HH member is retired and gets pension regularly} 260.895 172.103 0.130
Total income of HH per day −0.009 0.017 0.597
Amount in hand on day of survey 0.051 0.031 0.104

Alternative lighting sources

1{HH uses kerosene} 41.658 71.014 0.558
1{HH uses candles} 2.715 48.734 0.956
1{HH uses flashlight} 34.364 27.373 0.210
1{HH uses a solar lantern} −7.586 39.603 0.848
1{HH uses some other lighting sources} 27.243 62.117 0.661
Expenditure on alternative sources in the last month 0.001 0.006 0.803

Table 4 Regression of distance on consumer covariates.
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Our dependent variable is the distance (measured in meters) between the GPS coordinates (recorded in

three dimensions) of a household in a village and the recharge center in that village. We regress this variable

against several consumer characteristics (listed in Table 4) and village-level fixed effects (thereby accounting

for the time-invariant unobservables at the village level). The results of our regression analysis are presented

in Table 4. All p-values are greater than 0.05, and thus we find no significant relationship between the

dependent and independent variables.14

A few things are to be noted with regard to the regressors in Table 4: (i) the base category for the

dummy indicating a roof with guttering is a roof without guttering; (ii) the base category for the wall-related

dummies is a dwelling with brick walls and cement covering; (iii) the base category for the economic activity

dummies is one that captures all the “other” types of occupations; (iv) consumers use multiple lighting

sources, and so there is no collinearity problem when we use a dummy for “other” lighting sources (e.g.,

fire-sticks, biogas, second-hand automobile batteries); (v) all money-related variables are measured in RWF;

and (vi) the education level is coded as 0 if the consumer has no schooling, 1 if she is educated up to some

primary level, 2 if she is educated up to some secondary level, 3 if she completed secondary education, and

4 if the consumer received some vocational training.

Appendix B: Testable Predictions and Reduced-Form Analysis

B.1. A Simpler Model and Testable Predictions

We are interested in understanding how inconvenience, recharge price and lamp capacity affect the expected

number of recharges ER̃ (defined in (1)) under our model to test the validity of those relationships vis-á-vis

data. Although using Proposition 2, we can obtain the expression for ER̃, analytically characterizing it is diffi-

cult because there are 2T possible combinations of recharge sequences, and the time-varying thresholds along

with the uncertainties in liquidity and consumption make analysis of recharge probabilities cumbersome.

Instead, we analyze a version of the model that incorporates all factors of interest, but in the simplest

possible manner, and is amenable to formal analysis. To build this model, we assume that (i) the consumption

time is deterministic, and upon recharge, the lamp lasts for exactly q (≥ 1) periods; and (ii) the disposable

income process is stochastic but i.i.d. over time periods, and the probability that the consumer has sufficient

money for recharge in a period is given by v⊥(P ). With these assumptions, the blackout-cost threshold given

in Proposition 1 (now denoted simply as kt) simplifies to

kt = αI −
q̌−1∑
i=1

[
v⊥Emin{kt+i, β̃}+ (1− v⊥)β

]
, (9)

where q̌ = min{q,T − t+ 1}. To understand the threshold structure, recall that kt is the effective cost of

recharging in period t, whereas β̃t is the cost of not recharging in that period. As we discussed in Section 4.2,

the effective cost of recharging in a period must account for both the inconvenience cost and the potential

cost savings from jumping q periods ahead. The cost that the consumer would have incurred in period

t+ i (for 1≤ i≤ q− 1, assuming no end of horizon) if she does not recharge in period t is equal to (i) the

14 We note that by the virtue of random assignment to the experimental conditions, the variables P and Q are neither
(significantly) correlated with the variable I, nor with the covariates in Table 4.



44 Uppari et al.: Off-Grid Lighting Business Models to Serve the Poor

(expected) minimum of kt+i and β̃t+i if she has sufficient money for recharge in period t+ i (and has the

option to recharge); and (ii) Eβ̃ = β if she does not have enough money in that period (and has no option to

recharge). Since the probability of the former event is v⊥ and of the latter is 1−v⊥, the expected cost saving

in an interim period is v⊥Emin{kt+i, β̃}+ (1− v⊥)β. These expected cost terms for the interim periods are

deducted from αI in the expression for kt in (9).

We simplify the model further by assuming that the thresholds are stationary (which is equivalent to

having an infinite horizon) to obtain a simple expression for interarrival times. We denote the time-invariant

threshold by k∗, which is the (unique) solution to the following equation:

k= αI − (q− 1)
{
v⊥Emin{k, β̃}+ (1− v⊥)β

}
. (10)

To see why, we compare (10) with (9). The former is obtained by using the time-invariance property of the

thresholds on the latter. We formalize the above arguments in the following result:

Lemma 3. The sequence {kT , kT−1, . . .} is convergent. The limit of this sequence is k∗.

Now we characterize the expected IAT under this model. After q−1 periods of consumption, the consumer

waits until she has sufficient money for recharge and her blackout cost is above the threshold. The probability

of this event in any period is v⊥F̄ (k∗), and the wait time is geometrically distributed. Hence, the expected

blackout time is the mean of this geometric distribution, and the expected interarrival time Ψ is given by

Ψ︸︷︷︸
IAT

= q− 1︸ ︷︷ ︸
CT

+ 1/v⊥︸ ︷︷ ︸
BTL

×1/F̄ (k∗)︸ ︷︷ ︸
BTS︸ ︷︷ ︸

BT

. (11)

The above expression for IAT parallels the structural pattern presented in Figure 2. The time between

successive recharges (IAT) is the sum of consumption time and blackout time. The blackout time has two

components: one because of liquidity constraints (BTL) and the other because of strategic behavior (BTS).

As evident from Figure 2, BT ends when both constraints Mt = 1 and St = 1 are satisfied together (i.e.,

Mt = 1∧ St = 1), and parallely, BT is given by BTL×BTS.

Because the recharges follow a renewal process in the above formulation with mean inter-renewal interval

Ψ, by the elementary renewal theorem, the expected number of recharges R in a duration T that is large

enough is given by R≈ T/Ψ. The following result establishes the relationship between R and the variables

I, P , and Q (which is proxied here by q). Although q is a discrete variable, in the result below, we treat it

as a continuous variable (satisfying q≥ 1) to simpify the analysis.

Proposition 3. If we assume that v⊥(P ) is monotonically decreasing in P and that F has increasing hazard

rate, then the following statements hold:

(i) R is decreasing in I.

(ii) R is decreasing in P .

(iii) There exists a threshold Î ≥ 0 such that R is unimodal in q for I ≥ Î, and it is decreasing in q for I < Î.

The three subparts of Proposition 3 parallel the three predictions stated in Section 4.2. As we have only

two lamp capacity conditions in our experiments, we restate Π3 as follows:

(Π3) The difference between the number of recharges at Q= 18 hours and at Q= 14 hours is (a) negative

for low values of inconvenience and (b) positive for high values of inconvenience.
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B.2. Testing the Model’s Predictions

To test Π1–Π3, we use the data from nine experimental conditions (i.e., (P,Q)∈ {{0,50,60,70,80,100,120}×

{18}}∪ {{80,100}×{14}}) and run the following Poisson regression:

R̃jv ∼Pois(λjv), where logλjv = a0 + a1Ijv + a2Pjv + a3(Ijv)Qjv + ev. (12)

Here, subscript j corresponds to an individual consumer and subscript v to a village. R̃jv is the total number

of recharges of consumer j in village v in the three months of the experimental duration, Pjv is the recharge

price (in RWF) assigned to this consumer, Ijv is her inconvenience (in kilometers), Qjv is a dummy variable

indicating whether or not the consumer’s lamp capacity is 18 hours (as opposed to 14 hours), and ev indicates

a village-level fixed effect. As per Π1 and Π2, we expect a1 and a2 to be negative. Because the impact of

capacity on recharges depends on consumer inconvenience, the coefficient of Qjv in (12) is a function of Ijv.

According to Π3, a3(I) should be negative for smaller values of I and positive for larger values of I.

The results of our regression analysis are presented in Table 5, wherein we analyze three specifications

of (12). In specification I, function a3 is assumed to be constant. The resultant regression model presents the

average effects of variables I, P , and Q in the sample. The coefficients of I and P in specification I are negative

and statistically significant. The coefficient of Q is positive yet lacks significance, perhaps because the capacity

conditions used in the experiments were 14 hours and 18 hours, which are not far apart from each other. The

economic interpretation of these coefficients is as follows: a 10 RWF increase in recharge price, all else equal,

decreases the expected number of recharges by 9% (= exp(−0.0097× 10)− 1). An equivalent decrease in

recharges is obtained by increasing inconvenience by 165 meters (i.e., −0.5866×0.165 =−0.0097×10). This

9% decrease in expected number of recharges can be compensated exactly by increasing the lamp capacity

by 11.5 hours (because exp(0.0308× 11.5/4)− 1 = 9%).

Variable (I) (II) (III)

I −0.5866*** −0.6159*** −0.8374***

(0.0484) (0.1019) (0.0848)
P −0.0097*** −0.0097*** −0.0097***

(0.0004) (0.0004) (0.0004)
Q 0.0308 0.0133 −0.0482

(0.0393) (0.0661) (0.0444)
Q× I 0.0366

(0.1117)
Q× I2 0.2507***

(0.0679)

N 1709 1709 1709
Pseudo-R2 0.2596 0.2597 0.2622

Table 5 Impact of inconvenience, recharge price, and lamp capacity. Superscript ‘***’ is used when p≤ 0.001

and no superscript is used when p> 0.1.

In specification II, we set a3(I) = a30 + a31I. However, this specification is not informative to either

support or reject the hypothesized structure of a3(I) as both the coefficients related to Q lack significance.

This may be because of some nonlinearity in a3(I); therefore, we consider specification III, wherein we set
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a3(I) = a30 + a31I
2. Here, the coefficients of I and P have the same signs as in specification I. The sign of

the coefficient of Q flips (but the coefficient lacks significance), and the interaction term is positive (and

significant). We see that, under specification III, a 4-hour increase in lamp capacity results in a 5% drop in

the expected number of recharges for consumers living close to the recharge center, whereas it results in a 1%

and 22% rise for consumers living, respectively, 500 meters and a kilometer away from the recharge center.

Together, these findings provide support for Π1, Π2, and Π3b. To comment on Π3a with some confidence, we

resort to a subsample analysis, wherein we run the Poisson regression with logλjv = a0 +a1Ijv+a2Pjv+a3Qjv

over a subsample with I < I, where I ∈ {10,20,30,50,100} meters. We find that the coefficient of Q is

negative for all values of I and that it is statistically significant for smaller values of I (thereby providing

support for Π3a) and loses significance as I increases.15 Our findings remain unaffected under negative

binomial and zero-inflated Poisson regression specifications. (The details are available upon request.) We

conclude that recharge data from the field supports Π1–Π3.

Appendix C: Identifiability of Model Parameters

In this section, we present some intuitive arguments on the identification of parameters. We discuss which

sources of variation in the data and which theoretical assumptions in the model drive the quantitative

values of the parameter estimates. We first examine identification in simpler models wherein only a subset

of parameters appear. If a parameter cannot be identified in such simpler models, then it cannot also be

identified in more general models. Thereafter, we move to the general versions and examine whether the

parameters identifiable in simpler models continue to be identifiable in the general ones.

Identifiability of (α,β,σξ). The simplest model to understand the identifiability of these parameters

is the one that assumes away consumption uncertainty and liquidity constraints: the consumer always has

sufficient money for the recharge and the lamp lasts for exactly q (≥ 1) periods upon recharge. Using the

normal distribution assumption of ξ̃t, we can rewrite (3) as

C(t, z̃t) = min
{
αI + C̄(t+ q), β+σξz̃t + C̄(t+ 1)

}
, (13)

where C̄(t) =
∫∞
−∞C(t, z)dΦ(z). We cannot identify σξ because equation (13) is only identified up to scale;

multiplying both sides by a positive constant does not change the recharge decision. This continues to be the

case in more complex models too. Therefore, we follow a common standard in the discrete choice literature

and normalize the variance of the error term to one.

The recharge decision does not change in (13) also when we increase αI and β by the same amount. Thus,

at the individual level, we cannot identify α and β separately; we can only identify the difference αI − β.

Nevertheless, because we have recharge data for multiple consumers and the value of inconvenience I varies

across them, we can estimate α using the variation in inconvenience across individuals. Now assuming that

the value of α is given, we investigate whether or not we can identify β at the individual level.

We assumed under this model that we know consumption time perfectly and that it is equal to q periods.

To be consistent with this assumption, we also assume that all interarrival times of the focal consumer are

15 The coefficients of Q, along with the p-values in parentheses, for the aforementioned values of I are as follows:
−0.669(0.020),−0.702(0.014),−0.375(0.081),−0.177(0.328),−0.166(0.189).
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greater than or equal to q periods; otherwise, this model assigns zero likelihood. Then, the BT is given by

the difference between IAT and q. Because there are no liquidity constraints under this model, BT here is

purely due to the strategic behavior of the consumer. Specifically, the blackout time here corresponds to the

hitting time of the blackout cost, i.e., the time it takes (after the lamp’s light is consumed) for the realized

blackout cost to go beyond the (time-varying) threshold. Since these times are purely a function of β, the

variation in these blackout times can identify β.

To summarize, we cannot identify σξ, and so we normalize it to one. Hence, α and β become unitless

quantities. At the individual level, we cannot identify α and β separately. Using the variation in inconve-

niences across individuals, we can estimate α. Given a value of α, using the variation in blackout times of an

individual, we can estimate β at the individual level. Therefore, β is overidentified when we jointly estimate

α and β using the recharge data of multiple individuals. This means that we can actually identify more

parameters that represent heterogeneity in β (e.g., through random effects).

Identifiability of (µ,σ,ρ). The blackout times in the model just discussed were purely due to the strategic

behavior of the consumer. In this section, we discuss identification under a model that is the other extreme.

We assume that after the lamp is discharged, the consumer recharges her lamp whenever she has sufficient

money for a recharge. She is neither sensitive to inconvenience nor to blackouts and hence does not desire to

balance out inconvenience and blackout costs. So in this case, BTs are purely due to liquidity constraints.

We first assume that ρ≥ 0 is given. Recall that the consumer’s disposable income starts growing imme-

diately after a recharge. To keep the discussion simple, we assume that the consumer never has sufficient

money for a recharge in the first period when her lamp is discharged; then, all hitting times are greater than

q. (The arguments can be easily extended to the cases where this assumption is relaxed.) Consequently, BT

is the time that it takes beyond the consumption time for the income process to hit the threshold P . As we

argue next, the variation in these BTs forms the source of identification for µ and σ.

The variation in BTs helps us identify transition probabilities v(t,1,0) (for some t) of the Markov

chain. Moreover, the estimate of v(t,1,0) is equal to the sample hazard rate, i.e., it is the pro-

portion of instances in the sample where the income did not hit the threshold P in t − 1 peri-

ods but hits it at t. We illustrate this point using the following example: assume that q = 1, and

that we observe the following hitting times: {3,2,3,4,2}. Then the corresponding likelihood func-

tion is [v(2,0,0)v(3,1,0)][v(2,1,0)][v(2,0,0)v(3,1,0)][v(2,0,0)v(3,0,0)v(4,1,0)][v(2,1,0)]. If we treat each

v(t,m,m′) as a separate variable, then by noting that v(t,1,0) = 1 − v(t,0,0), we obtain the estimate

v(2,1,0) = 2/5 by maximizing the above likelihood with respect to v(2,1,0). This estimate is exactly equal

to the proportion of instances in which the income did not hit the threshold in one period but hits it in

two. Similarly, v(3,1,0) = 2/3. We cannot identify v(4,1,0) from the above hitting time data. However, since

v(2,1,0) and v(3,1,0) are two distinct functions of µ and σ, we can identify them from the estimates of those

transition probabilities. In a general setting, to identify µ and σ, we should be able to estimate at least two

transition probabilities, and hence we need to observe at least three distinct hitting time values in the data

with two of them occurring more than once.
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The identification of µ and σ is also possible when we use the data from multiple consumers with at least

two distinct price levels. What we need is multiple distinct equations, corresponding to multiple distinct

estimates of transition probabilities, to estimate µ and σ. Because the transition probabilities are functions

of recharge price too, we obtain distinct equations (corresponding to distinct price levels) in this case as well.

This feature is important (i) when the Markov chain is either serially independent or stationary, wherein

v(t,m,m′) becomes independent of t, and (ii) when we estimate parameters in more complex models wherein

BTs may not be purely due to liquidity constraints.

Now we argue that ρ is non-identifiable. ρ represents serial correlation in the income process. Therefore,

its source of identification is the variation in the number of times the process transitions from 0 to 0, 0 to

1, 1 to 0, and 1 to 1 in the successive periods. To be able to estimate three parameters jointly, we need to

observe at least three types of transitions. However, because we assume a renewal structure for the income

process, we never observe the latter two types of transitions. The former two types of transitions are useful

in estimating only µ and σ (for a given ρ).

In summary, for a given ρ, the variation in blackout times – either within an individual or across individuals

facing different price levels – identifies µ and σ. We cannot identify ρ either at the individual level or at the

aggregate level because of the assumed renewal structure; therefore, we treat it as a hyper-parameter.

Joint identifiability of (α,β) and (µ,σ). To understand the joint identifiability of these parameters, we

combine the features of the two simplified models discussed above. Now the consumer is liquidity constrained

and accounts for inconvenience–blackout trade-offs, yet her consumption time is deterministic (and equal to

q periods). In addition, we assume that (i) σξ is normalized to one, (ii) ρ is exogenously specified, and (iii) all

the observed IATs are greater than q such that BTs are interarrival times minus q.

We could earlier identify β and (µ,σ) separately at the individual level by attributing the variation in

BTs purely either to strategic behavior or to liquidity constraints. Now, both the strategic behavior of the

consumer and her liquidity constraints contribute to her blackout times; they cannot be disentangled at the

individual level. The variation in recharge price across individuals plays an important role in disentangling

the two components. We have recharge data of consumers who faced zero recharge price. The liquidity

constraints play no role in the decision-making process of these consumers; their decision model reduces to

the one that we discussed at the beginning of this section. Therefore, using the data of zero-price consumers,

we can estimate α and β. Given these estimates of α and β, we can control for the strategic part of BTs for

the consumers facing nonzero price. The residual variation in BTs (across consumers facing different price

levels) can then be purely attributed to liquidity constraints, which then identifies µ and σ.

The above procedure of estimating parameters sequentially is mentioned only to demonstrate that the

variation in recharge price allows us to identify (α,β,µ,σ). This procedure, however, is inefficient because

it uses only partial data to estimate each set of parameters. We can jointly estimate all four parameters by

maximizing the likelihood for zero-price and nonzero-price consumers together.
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Identifiability of λ along with other parameters. Until now, we have assumed that q is known, which

allowed us to compute blackout times directly from the observed interarrival times. If q is uncertain, but

the capacity Q and the parameter λ are known, then we can still identify all of (α,β,µ,σ) because given a

realization of q, we can disentangle CT from BT, and the variation in BTs identifies the parameters. However,

if λ is also a parameter that needs to be estimated, then there is no source of variation that disentangles

consumption and blackout times.

To identify λ, we need something that affects CT but not BT. The variation in lamp capacity serves this

purpose. If we assume that λ is known, then all the aforesaid parameters are identified as a function of λ,

and they can control for blackout times. The remaining variation in IATs across individuals with varying

capacity levels is attributed to the variation in CTs, which thereby identifies λ.

Appendix D: Parameter Estimates and Interpretation

The parameter vector Θ under specification S4 is given by Θ = (α,µβ, σβ, µ,σ, ρ,λ, δ), where (i) α denotes

the sensitivity to inconvenience, (ii) µβ is the mean of the blackout cost β (when modeled as a random effect)

and σβ is its standard deviation, (iii) µ and σ are the mean and standard deviation of the innovations in the

AR(1) process of disposable income, (iv) ρ is the serial correlation in that AR(1) process, (v) λ is the fraction

of a period served by one hour of lamp’s light, and (vi) δ is the discount factor in the Bellman equations.

The maximum likelihood estimates Θ̂(v) for all villages are presented in Table 6.

Village ID δ̂ ρ̂ α̂ µ̂β σ̂β µ̂ σ̂ λ̂

1 0.3 0.00 1.56 −1.02 0.77 24.67 24.15 0.044
2 0.3 0.05 0.83 0.04 0.95 4.01 1.55 0.052
3 0.4 0.00 2.66 0.87 0.94 4.17 0.95 0.047
4 0.3 0.35 0.10 −0.81 0.49 −25.84 55.03 0.036
5 0.2 0.00 1.30 0.26 0.76 4.54 0.69 0.066
6 0.1 0.00 0.97 −0.49 0.45 3.93 1.29 0.031
7 0.8 0.05 2.94 0.22 0.94 4.10 0.32 0.062
8 0.5 0.00 2.47 −0.21 0.57 2.11 3.94 0.025
9 0.2 0.25 1.22 −0.22 0.79 3.89 6.63 0.043
10 0.8 0.10 1.10 0.36 0.42 3.72 1.16 0.062
11 0.7 0.00 0.23 −1.54 0.20 4.90 0.16 0.001
12 0.1 0.05 1.12 −0.16 0.75 3.79 1.15 0.053
13 0.8 0.25 2.32 0.64 0.66 1.80 3.61 0.045
14 0.1 0.20 0.61 −1.06 0.41 4.13 0.23 0.003
16 0.7 0.25 3.22 0.61 0.74 −0.64 6.09 0.082
20 0.5 0.10 0.03 −0.12 0.78 3.66 1.05 0.059
22 0.1 0.15 0.46 −0.79 0.38 3.82 0.64 0.034
24 0.6 0.00 0.61 −0.08 0.83 3.03 2.51 0.092
25 0.4 0.15 1.11 −0.22 0.48 4.20 1.40 0.056
26 0.7 0.15 1.58 −0.42 0.49 −4.09 122.85 0.025
27 0.1 0.15 0.03 −1.88 0.69 4.13 0.26 0.024
28 0.1 0.00 0.69 −0.85 0.44 3.08 2.52 0.004

Table 6 Maximum likelihood estimates under specification S4 for all villages.

For the sake of brevity, here we interpret in detail the parameter estimates for a single village with ID 5;

the interpretable measures discussed in the remainder of this section are presented for all villages later in
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Table 7. The estimate δ̂ = 0.2 suggests that a representative consumer from village 5 is somewhat myopic

about weighing the future costs and benefits associated with using lamps. Specifically, the consumer places

a weight of less than 1% beyond 3 periods (= 9 days) since δ̂3 ≤ 0.01, or dlog(0.01)/ log(δ̂)e= 3.16

We modeled the number of periods that a lamp lasts as Ñ − 1∼ Poisson(Qλ) in Section 4.3. Using the

estimate λ̂= 0.066 period/hour, Figure 9(a) presents the probability that the lamp is discharged within n

periods for 14-hour and 18-hour lamps and for n∈ {1, . . . ,5}. As expected, an 18-hour lamp lasts longer than

a 14-hour lamp. The charge in an 18-hour (resp., a 14-hour) lamp is totally consumed within one period

with probability 30% (resp., 40%), and within two periods (≈ a week) with probability 67% (resp., 76%).

Both types of lamps are almost certainly discharged within 4 periods.

�� �� �� − �

�� �� �� − � ∣ � ≤ 
� − ���
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(a) (b) (c)

Figure 9 Interpretation of parameters estimated for village 5: (a) probability that the lamp is discharged within

certain number of periods for Q∈ {14,18} hours, (b) average time it takes for the disposable income to hit

different price levels, and (c) probability that the blackout cost exceeds inconvenience cost at different levels of I.

Under the disposable income model discussed in Section 4.3, the estimates µ̂, σ̂, and ρ̂ imply that mt –

the log of the consumer’s disposable income for the lamp’s light in period t – grows as mt = 0×mt−1 +

4.54 + 0.69z̃t, where z̃t is an i.i.d. standard normal random variable. (Here, mt is i.i.d. because ρ̂= 0. In fact,

the average value of ρ across villages is 0.1, suggesting that the disposable income of consumers is almost

independent across periods.) A better way to interpret the income process is in terms of its hitting times.

For recharge price P , if we denote by h̃(P ) the corresponding (first) hitting time, then

Pr
{
h̃(P ) = k

}
= Pr

{
M1 = . . .=Mk−1 = 0,Mk = 1 ; P

}
for k ∈ {1,2, . . .}. (14)

16 The estimates of δ presented in Table 6 are considerably lower than the discount factors that are usually seen in
the behavioral economics literature (see Cohen et al. 2020, for a review of the methods to estimate discount factors;
when considering consumption decisions, δ in the short run is almost close to one). Since the consumer has several
important tasks in her daily life, the extent to which she looks forward at the consequences of those tasks may differ
across tasks; the parameter δ in our context corresponds solely to the extent to which the consumer looks forward
while accounting for the costs associated with using lamps. Moreover, in our paper, δ is not estimated directly using
some variation in the choice data of consumers; it is estimated using the method of cross-validation. The values of
δ̂ in Table 6 suggest that the observed data is best explained if we assume that the consumers are relatively more
myopic than forward looking when it comes to recharging their lamps.
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Using the above probability mass function of h̃(P ), we can compute the mean Eh̃(P ) for any given P . We

plot the average hitting times for different recharge price values in Figure 9(b). We see that Eh̃(P ) is convex

in P , implying that accruing money for a recharge becomes increasingly tougher as price increases. It takes

(i) almost no time to accrue 20 RWF, (ii) on average a day to accrue 60 RWF, and (iii) 5.34 days on average

for the disposable income to hit 120 RWF.

Because σξ is normalized to one, the coefficients α and β (thereby µβ and σβ) become unitless quantities.

Therefore, we interpret the estimates α̂, µ̂β, and σ̂β through their impact on inconvenience and blackout

costs. In any given period, the probability that the blackout cost in that period exceeds inconvenience cost

is given by

Pr
{
αI − β̃t ≤ 0

}
= Pr

{
αI/σξ−β/σξ ≤ z̃t

}
= Φ̄(αI −β), (15)

where z̃t is the unit-normal random variable. The mean, β, of β̃t is a random variable in S4 with distribution

Normal(µβ, σ
2
β). We compute three versions of (15) and plot them as a function of I in Figure 9(c). First, we

compute (15) averaged across all the possible values of β: Eβ[Φ̄(αI−β)]. Recall that β in our model captures

the disutility that the consumer experiences when she does not have the lamp’s light. The aforementioned

measure captures (on average) the fraction of times a representative consumer (or equivalently, the fraction of

consumers in the village) needs the lamp’s light enough that its value exceeds the inconvenience of recharging.

As expected, this measure is decreasing in I, and it is equal to 34% and 15% when I is equal to 0.6 kms

and 1.2 kms, respectively. It must be noted that this measure is not 100%, but 58%, as I → 0. Although

the households that are very close to the recharge center face almost no inconvenience, they may not always

need the lamp’s light (and hence their blackout cost may not exceed inconvenience cost) because some of

those households may not have much activity in the night time (e.g., the ones with older people), or on some

days they may not mind the lack of lamp’s light because they have a stock of alternative lighting sources.

Second, we compute (15) conditional on β being relatively high: Eβ[Φ̄(αI − β) | β ≥ µβ + 2σβ]. This

measures the proportion of instances when the blackout cost exceeds inconvenience cost for consumers who

usually value the lamp’s light highly (e.g., the ones with school-going children at home), or equivalently for

a representative consumer on the days when she is in great need of lamp’s light (e.g., on days when children

have exams or guests visit the home). It is equal to 89% and 67% when I is equal to 0.6 kms and 1.2 kms

respectively, and it is ∼100% as I→ 0. Third, we compute Eβ[Φ̄(αI−β) | β ≤ µβ−2σβ], which measures the

probability that blackout cost is greater than inconvenience cost conditional on β being relatively low (for

the reasons discussed in the previous paragraph). It is equal to 7%, 1%, and ∼0% when I is 0, 0.6, and 1.2

kilometers respectively.

Table 7 restates the estimates from Table 6 in a different and interpretable manner. It presents for each

village (i) the number of weeks beyond which a representative consumer in that village places a weight of

less than 1% on future costs and benefits of using lamps, (ii) the expected number of days an 18-hour lamp

lasts, (iii) the expected number of days it takes for the disposable income process to hit 100 RWF, (iv) the

fraction of instances when the consumer – with I = Īv, which is the average inconvenience in village v –

needs the lamp’s light enough that its value exceeds the inconvenience of recharging, and (v) the recharges
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Village ID
dlog(0.01)/ log(δ̂)e

(weeks)
E[Ñ ; Q= 18]

(days)
Eh̃(100)
(days)

Eβ[Φ̄(αĪv −β)]
Recharges recorded

per household

1 1.71 5.38 0.76 0.07 1.31
27 0.86 4.30 4.01 0.06 1.49
11 5.57 3.05 0.10 0.05 1.67
4 1.71 4.94 11.60 0.21 1.72
8 3.00 4.35 8.40 0.19 1.95
28 0.86 3.22 8.01 0.17 1.96
16 5.57 7.43 14.41 0.15 2.16
6 0.86 4.67 6.99 0.16 2.24
24 4.29 7.97 8.31 0.38 2.78
22 0.86 4.84 7.06 0.18 2.85
25 2.57 6.02 3.47 0.24 2.85
26 5.57 4.35 3.73 0.21 2.97
14 0.86 3.16 3.15 0.11 3.04
12 0.86 5.86 7.94 0.32 3.12
7 9.00 6.35 15.92 0.20 3.33
9 1.29 5.32 3.65 0.22 3.45
10 9.00 6.35 7.29 0.25 3.71
13 9.00 5.43 9.98 0.33 3.79
5 1.29 6.56 3.49 0.33 4.26
3 2.57 5.54 6.28 0.41 4.62
20 3.00 6.19 8.59 0.46 4.67
2 1.71 5.81 5.01 0.41 4.83

Table 7 Interpretation of parameter estimates for all villages.

recorded per household in our experiments (which is equal to fourth column of Table 1 divided by its third

column). The table is sorted such that the values in the last column appear in an acending order.

We see in Table 7 that in almost all villages, the charge in the lamp is consumed within a week. In villages

with relatively low recharge rates, consumers either place a low valuation on lamp’s light (e.g., villages 1, 27,

and 11) or take too long to accrue money for the recharge (e.g., villages 4, 8, 28, and 16). When consumers

look far ahead while accounting for costs, they tend to recharge relatively more often even when it takes

longer for them to accumulate money for the recharge (e.g., villages 16, 7, and 13).17

Appendix E: Elasticity of Expected Number of Recharges

We examine the impact of variables I, P , and Q on the expected number of recharges by computing the

latter’s elasticity with respect to (wrt) those variables. For a representative consumer, we write the expected

number of recharges under the treatment (I,P,Q) as

R(I,P,Q) =
∑
v∈V

ER̃jv(I,P,Q)× |J(v)|/
∑

i∈V |J(i)|,

where the first term of the summand is the expected number of recharges for a representative consumer j in

village v and the second term is the (sample) probability that the consumer is from village v. We approximate

17 The values of µ̂ and σ̂ for villages 1, 4, and 26 in Table 6 may seem to be outliers, yet we note that those estimates
result in reasonable hitting time values (as can be seen in Table 7) and reasonable probability values (e.g., the value
of v(1,1,0 ; P = 100) for villages 1, 4, and 26 are 0.80, 0.29, and 0.47 respectively). A higher σ simply indicates that
there is substantial uncertainty in the consumer’s life with regard to (in other words, there can be huge swings in)
the money that she can spend on lamp recharges. A negative µ indicates that the consumer’s disposable income is
usually low (but not negative, because we modeled the log of the income process).
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expectations with sample averages in our simulations. We generate R̂jv,n in simulation round n using (i) the

decision process in Figure 1, (ii) the treatment condition (I,P,Q), and (iii) the probability models under

specification S4 with the estimated parameters Θ̂(v). Then, ER̃jv ≈ R̂jv,n/Ns.

To compute elasticities, we take the values of I, P , and Q, respectively, from the sets I = {0,0.1, . . . ,1.2}

kilometers, P = {0,10, . . . ,120} RWF and Q = {2,4, . . . ,30} hours. We denote the kth element of set I as I(k)

and define for 1≤ k≤ |I| − 1:

eI(I
(k) ; P,Q) =

R(I(k+1), P,Q)−R(I(k), P,Q)

I(k+1)− I(k)
× I(k+1) + I(k)

R(I(k+1), P,Q) +R(I(k), P,Q)
, and (16)

ēI(I
(k)) =

1

|P| × |Q|
∑
P∈P

∑
Q∈Q

eI(I
(k) ; P,Q). (17)

By fixing price and capacity values at P and Q respectively, (16) computes the arc elasticity of recharges

for the pair I(k) and I(k+1). (Although this elasticity is a function of the pair (I(k), I(k+1)), we denote it

as eI(I
(k) ; P,Q) for notational simplicity.) In (17), ēI(I

(k)) is obtained by averaging the elasticities in (16)

across different values of P and Q. In a similar manner, we compute the elasticities ēP wrt P and ēQ wrt Q.

Figure 10 The average elasticities of expected number of recharges with respect to (a) recharge price and

inconvenience, and (b) lamp capacity.

Figure 10(a) displays the values of ēP and ēI . Because recharges decrease in P and I, ēP and ēI are always

negative. Interestingly, in the price range shown, the expected number of recharges is on average relatively

inelastic wrt price, i.e., ēP (P )>−1∀P ∈P. (This is not an artefact of any modeling assumptions. All price

elasticities calculated from the raw data in Figure 3(c) are also greater than −1.) The essential nature of

need for light and the lack of any attractive substitutes for cleaner light may have contributed to the relative

inelasticity of recharges wrt price.

To assess the relative impact of price and inconvenience, we now compare the values of ēP and ēI .

Given that the consumers are cash constrained, we might expect the consumers to react more strongly to

changes in price than to changes in inconvenience. However, we see that the average elasticity wrt inconve-

nience is
∑

I∈I ēI(I)/|I|=−0.57, which is slightly higher (in absolute terms) than the average elasticity wrt
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price
∑

P∈P ēP (P )/|P|=−0.40, thereby reflecting the significant opportunity cost in recharging the lamp.

Although an average measure is sensitive to the range over which the average is taken, the ranges of price

and inconvenience considered here are reasonable as they are in accord with our experimental data.

An alternative way to compare the elasticities is by considering the marginal measures. A consumer living

200 meters away from the recharge center responds to a 1% increase in I by dropping her recharges by 0.2%,

which, as seen in Figure 10(a), is same as the response to a 1% increase in P of a consumer facing a price

of ∼25 RWF. Similarly, −0.4 = ēI(400 meters) = ēP (50 RWF), and −0.6 = ēI(600 meters) = ēP (90 RWF). A

0.8% drop in recharges with a 1% increase in I is seen for a consumer living 750 meters away, but there is

no price in P at which an elasticity of −0.8 is observed. Given such strong response of the (representative)

consumer to changes in I, we infer that inconvenience is a strong lever (and plausibly stronger than price in

some cases) in terms of moving the expected number of recharges.

Figure 10(b) shows the values of ēQ. On average, the elasticity of recharges wrt capacity is negative.

A 1% increase in lamp capacity decreases the number of recharges, on average, by 0.13%. Compared to

the aforementioned average elasticities wrt I and P , this estimate is lower because ēQ need not always be

negative. As we discussed under Π3 in Section 4.2, at higher values of I, reducing capacity decreases recharges

because the lower capacity results in a higher number of overly inconvenient trips. Consequently, as can be

seen in Figure 10(b), the elasticity wrt capacity can be positive for high values of inconvenience.

It is important to note that the values of elasticities shed light on how the expected number of recharges

reacts to changes in I, P , and Q, but they do not give any actionable insights to the firm. Consider the

following consequential questions: (i) We find that recharges react strongly to changes in I; however, unlike

P and Q, I cannot be changed arbitrarily by the firm – it needs to be varied by making changes in the

business model; how can the firm make those changes, and what is their impact on recharges? (ii) We see

that decreasing P increases recharges by alleviating the consumer’s liquidity constraints; however, given the

relative inelasticity of recharges wrt price, dropping the price also plausibly drops revenue; are there ways

to alleviate liquidity constraints without negatively affecting revenue? (iii) We see that the elasticity wrt Q

can be both positive and negative, and hence it must also be equal to zero at some capacity values; given

the distribution of consumer preferences in the market, is there an optimal capacity? Such questions are

answered through an extensive business model analysis in Section 5.

Appendix F: Bellman Equations

Here, we present the Bellman equations for all the counterfactuals discussed in the main text. We write the

equations only for t≤ T , and in all the cases the cost C(T +n; ·) = 0∀n≥ 1. Moreover, we assume that the

discount factor δ = 1 in the equations; they can be easily extended to any arbitrary δ ∈ [0,1). For notational

simplicity, we denote τ = t− l in the equations.

Every fourth recharge free: The decision process when the firm offers every fourth recharge for free is

shown in Figure 11(a). The variable Ft keeps track of the number of recharges done by the consumer after the

previous free recharge was availed. Therefore, Ft ∈ {0,1,2,3}. If Ft < 3, then the decision process coincides

with that in Figure 1. When Ft hits 3, the consumer becomes eligible for a free recharge, and hence her
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Figure 11 Decision process when (a) every fourth recharge is free, and (b) two recharges are allowed on credit.

liquidity constraint disappears (i.e., Mt = 1 until the next recharge). Before the free recharge is availed, Ft
increments by one with every recharge, and Ft resets to zero after the free recharge. The Bellman equations

for this decision process are given below. The state space now includes an extra variable i to keep track of

Ft. Below, i∈ {0,1}.

C(t, b,0, l, i) = b+ v(τ + 1,0,0)C̄(t+ 1,0, l, i) + v(τ + 1,1,0)C̄(t+ 1,1, l, i),

C(t, b,1, l, i) = min
{
αI +

∑
q∈Q

uq

[
vqC̄(t+ q,1, t, i+ 1) + (1− vq)C̄(t+ q,0, t, i+ 1)

]
,

b+ v(τ + 1,0,1)C̄(t+ 1,0, l, i) + v(τ + 1,1,1)C̄(t+ 1,1, l, i)
}
,

C(t, b,0, l,2) = b+ v(τ + 1,0,0)C̄(t+ 1,0, l,2) + v(τ + 1,1,0)C̄(t+ 1,1, l,2),

C(t, b,1, l,2) = min
{
αI +

∑
q∈Q

uq C̄(t+ q,1, t,3),

b+ v(τ + 1,0,1)C̄(t+ 1,0, l,2) + v(τ + 1,1,1)C̄(t+ 1,1, l,2)
}
,

C(t, b,0, l,3) = b+ C̄(t+ 1,1, l,3),

C(t, b,1, l,3) = min
{
αI +

∑
q∈Q

uq

[
vqC̄(t+ q,1, t,0) + (1− vq)C̄(t+ q,0, t,0)

]
, b+ C̄(t+ 1,1, l,3)

}
.

Periodic-visit model: The VLE visits once every n days. Instead of Vt, we keep track of the variable k –

the number of days left to the VLE’s visit – in the state space. The cost function is given by C(t, b,d,m, l, k),

where d∈ {0,1} is the lamp’s discharge status in period t, and the other variables in the state space are as

in the rest of the paper. In the equations below, k ∈ {1, . . . , n− 1}.

C(t, b,0,m, l, k) =
∑

(d′,m′)∈{0,1}2

u(τ + 1,d′,0)v(τ + 1,m′,m)C̄(t+ 1,d′,m′, l, k− 1),

C(t, b,1,0, l, k) = b+
∑

m′∈{0,1}

v(τ + 1,m′,0)C̄(t+ 1,1,m′, l, k− 1),

C(t, b,1,1, l, k) = min
{
αI +

∑
(d′,m′)∈{0,1}2

u(1,d′,0)v(1,m′,0)C̄(t+ 1,d′,m′, t, k− 1),

b+
∑

m′∈{0,1}

v(τ + 1,m′,1)C̄(t+ 1,1,m′, l, k− 1)
}
,

C(t, b,0,0, l,0) =
∑

(d′,m′)∈{0,1}2

u(τ + 1,d′,0)v(τ + 1,m′,0)C̄(t+ 1,d′,m′, l, n− 1),
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C(t, b,1,0, l,0) = b+
∑

m′∈{0,1}

v(τ + 1,m′,0)C̄(t+ 1,1,m′, l, n− 1),

C(t, b,0,1, l,0) = min
{ ∑

(d′,m′)∈{0,1}2

u(1,d′,0)v(1,m′,0)C̄(t+ 1,d′,m′, t, n− 1),

∑
(d′,m′)∈{0,1}2

u(τ + 1,d′,0)v(τ + 1,m′,1)C̄(t+ 1,d′,m′, l, n− 1)
}
,

C(t, b,1,1, l,0) = min
{ ∑

(d′,m′)∈{0,1}2

u(1,d′,0)v(1,m′,0)C̄(t+ 1,d′,m′, t, n− 1),

b+
∑

m′∈{0,1}

v(τ + 1,m′,1)C̄(t+ 1,1,m′, l, n− 1)
}
.

No liquidity constraints benchmark: Because the consumer does not experience any liquidity con-

straints, she need not keep track of her monetary status m and the last recharge point l in the state space.

The Bellman equations simplify to

C(t, b) = min
{
αI +

∑
q∈Q

uq C̄(t+ q), b+ C̄(t+ 1)
}
.

Allowing partial recharges: Instead of Mt, the consumer’s cost function now keeps track of the state

variable (M(0.5)
t ,M(1)

t ), whose possible values are (0,0), (1,0), and (1,1). Analogous to v(τ,m,m′) and vq,

we define w(τ, (m(0.5),m(1)), (m
′(0.5),m

′(1))) and wq(m
(0.5),m(1)) as the probability transition functions for

(M(0.5)
t ,M(1)

t ). The expressions for w and wq can be derived from the empirical model for Mt discussed

in Section 4.3, and are given as follows: wq(0,0) = Gq(logP/2) and wq(1,0) = Gq(logP ) − Gq(logP/2);

w(1, (0,0), ·) =G1(logP/2) and w(1, (1,0), ·) =G1(logP )−G1(logP/2); for relative time period τ > 1,

w(τ, (0,0), (0,0)) =
1

Gτ−1(logP/2)

∫ logP/2

−∞
Φ

(
logP/2− ρx−µ

σ

)
dGτ−1(x),

w(τ, (1,0), (0,0)) =
1

Gτ−1(logP/2)

∫ logP/2

−∞

{
Φ

(
logP − ρx−µ

σ

)
−Φ

(
logP/2− ρx−µ

σ

)}
dGτ−1(x),

w(τ, (0,0), (1,0)) =
1

Gτ−1(logP )−Gτ−1(logP/2)

∫ logP

logP/2

Φ

(
logP/2− ρx−µ

σ

)
dGτ−1(x),

w(τ, (1,0), (1,0)) =
1

Gτ−1(logP )−Gτ−1(logP/2)

∫ logP

logP/2

{
Φ

(
logP − ρx−µ

σ

)
−Φ

(
logP/2− ρx−µ

σ

)}
dGτ−1(x),

w(τ, (0,0), (1,1)) =
1

Ḡτ−1(logP )

∫ ∞
logP

Φ

(
logP/2− ρx−µ

σ

)
dGτ−1(x),

w(τ, (1,0), (1,1)) =
1

Ḡτ−1(logP )

∫ ∞
logP

{
Φ

(
logP − ρx−µ

σ

)
−Φ

(
logP/2− ρx−µ

σ

)}
dGτ−1(x).

In addition, we denote by u(0.5)
q the probability that a half-charged lamp lasts for q periods and u(1)

q = uq as

expressed in Section 4.3. Then, the Bellman equations are given as follows:

C(t, b, (0,0), l) = b+w(τ + 1, (0,0), (0,0))C̄(t+ 1, (0,0), l) +w(τ + 1, (1,0), (0,0))C̄(t+ 1, (1,0), l)

+w(τ + 1, (1,1), (0,0))C̄(t+ 1, (1,1), l),

C(t, b, (1,0), l) = min
{
αI +

∑
q∈Q

u(0.5)
q

[
wq(0,0)C̄(t+ q, (0,0), t) +wq(1,0)C̄(t+ q, (1,0), t)
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+wq(1,1)C̄(t+ q, (1,1), t)
]
,

b+w(τ + 1, (0,0), (1,0))C̄(t+ 1, (0,0), l) +w(τ + 1, (1,0), (1,0))C̄(t+ 1, (1,0), l)

+w(τ + 1, (1,1), (1,0))C̄(t+ 1, (1,1), l)
}
,

C(t, b, (1,1), l) = min
{
αI +

∑
q∈Q

u(1)
q

[
wq(0,0)C̄(t+ q, (0,0), t) +wq(1,0)C̄(t+ q, (1,0), t)

+wq(1,1)C̄(t+ q, (1,1), t)
]
,

αI +
∑
q∈Q

u(0.5)
q

[
wq(0,0)C̄(t+ q, (0,0), t) +wq(1,0)C̄(t+ q, (1,0), t)

+wq(1,1)C̄(t+ q, (1,1), t)
]
,

b+w(τ + 1, (0,0), (1,1))C̄(t+ 1, (0,0), l) +w(τ + 1, (1,0), (1,1))C̄(t+ 1, (1,0), l)

+w(τ + 1, (1,1), (1,1))C̄(t+ 1, (1,1), l)
}
.

Prepayment: The differences between the Bellman equations under Figure 1 and the prepayment model

are: (i) vq is replaced by w̌q, where w̌q = Pr(Pt = 1 | P0 = 0) = Pr(h̃(P ) ≤ q), i.e., the probability that the

hitting time, as defined in (14), is less than or equal to q periods; and (ii) the second term within braces in

the first equation below does not incorporate the possibility of losing the accrued money for the recharge,

because once the income hits the threshold P , the payment is done through mobile money. Correspondingly

the Bellman equations are given by

C(t, b,1, l) = min
{
αI +

∑
q∈Q

uq
[
w̌qC̄(t+ q,1, t) + (1−wq)C̄(t+ q,0, t)

]
, b+ C̄(t+ 1,1, l)

}
,

C(t, b,0, l) = b+ v(t− l+ 1,1,0)C̄(t+ 1,1, l) + v(t− l+ 1,0,0)C̄(t+ 1,0, l).

Prepayment after discharge: Unlike the prepayment model discussed above, the consumer here pays

for the recharge only after the lamp is discharged; therefore, vq is not replaced by w̌q under this model.

Consequently, the cost functions are written as

C(t, b,1, l) = min
{
αI +

∑
q∈Q

uq
[
vqC̄(t+ q,1, t) + (1− vq)C̄(t+ q,0, t)

]
, b+ C̄(t+ 1,1, l)

}
,

C(t, b,0, l) = b+ v(t− l+ 1,1,0)C̄(t+ 1,1, l) + v(t− l+ 1,0,0)C̄(t+ 1,0, l).

One recharge on credit: Here, the cost function is denoted as C(t, b,d, lr, lp, s), wherein lr is the last

recharge point and lp is the last payment point; because the recharges and payments are decoupled under

this model, we need to keep track of lr and lp separately, which earlier coincided with a single variable l in

other settings. The additional state variable s indicates the debt status of the consumer: (i) s= 1 indicates

that there is a debt of one recharge, (ii) s= 0 indicates that there is no debt and the money for the next

recharge is not paid, and (iii) s= 0′ indicates that there is no debt and the money for the next recharge is

paid. The cost functions are given by

C(t, b,1, lr, lp,1) = b+ v(t− lp + 1,0,0)C̄(t+ 1,1, lr, lp,1) + v(t− lp + 1,1,0)C̄(t+ 1,1, lr, t+ 1,0),

C(t, b,0, lr, lp,1) =
∑

d′∈{0,1}

u(t− lr + 1,d′,0)v(t− lp + 1,0,0)C̄(t+ 1,d′, lr, lp,1)
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+
∑

d′∈{0,1}

u(t− lr + 1,d′,0)v(t− lp + 1,1,0)C̄(t+ 1,d′, lr, t+ 1,0),

C(t, b,1, lr, lp,0) = min
{
b+ v(t− lp + 1,0,0)C̄(t+ 1,1, lr, lp,0) + v(t− lp + 1,1,0)C̄(t+ 1,1, lr, t+ 1,0′),

αI +
∑

d′∈{0,1}

u(1,d′,0)v(t− lp + 1,0,0)C̄(t+ 1,d′, t, lp,1)

+
∑

d′∈{0,1}

u(1,d′,0)v(t− lp + 1,1,0)C̄(t+ 1,d′, t, t+ 1,0)
}
,

C(t, b,0, lr, lp,0) =
∑

d′∈{0,1}

u(t− lr + 1,d′,0)v(t− lp + 1,0,0)C̄(t+ 1,d′, lr, lp,0)

+
∑

d′∈{0,1}

u(t− lr + 1,d′,0)v(t− lp + 1,1,0)C̄(t+ 1,d′, lr, t+ 1,0′),

C(t, b,1, lr, lp,0
′) = min

{
αI +

∑
d′∈{0,1}

u(1,d′,0)v(1,0,0)C̄(t+ 1,d′, t, t,0)

+
∑

d′∈{0,1}

u(1,d′,0)v(1,1,0)C̄(t+ 1,d′, t, t+ 1,0′), b+ C̄(t+ 1,1, lr, lp,0
′)
}
,

C(t, b,0, lr, lp,0
′) =

∑
d′∈{0,1}

u(t− lr + 1,d′,0)C̄(t+ 1,d′, lr, lp,0
′).

Two recharges on credit: The decision process when the consumer is allowed to recharge two times on

credit is shown in Figure 11(b). As in the previous model, the cost function is denoted as C(t, b,d, lr, lp, s),

where lr and ls are the last recharge and payment points respectively, and s indicates the debt status of the

consumer: (i) s= 2 indicates that there is a debt of two recharges, (ii) s= 1′ indicates that there is a debt

of two recharges, of which one is paid for, (iii) s= 1 indicates that there is a debt of one recharge, (iv) s= 0

indicates that there is no debt and the money for the next recharge is not paid, and (v) s= 0′ indicates that

there is no debt and the money for the next recharge is paid. The corresponding Bellman equations are:

C(t, b,1, lr, lp,2) = b+ v(t− lp + 1,0,0)C̄(t+ 1,1, lr, lp,2) + v(t− lp + 1,1,0)C̄(t+ 1,1, lr, t+ 1,1′),

C(t, b,0, lr, lp,2) =
∑

d′∈{0,1}

u(t− lr + 1,d′,0)v(t− lp + 1,0,0)C̄(t+ 1,d′, lr, lp,2)

+
∑

d′∈{0,1}

u(t− lr + 1,d′,0)v(t− lp + 1,1,0)C̄(t+ 1,d′, lr, t+ 1,1′),

C(t, b,1, lr, lp,1
′) = b+ v(t− lp + 1,0,0)C̄(t+ 1,1, lr, lp,1

′) + v(t− lp + 1,1,0)C̄(t+ 1,1, lr, t+ 1,0),

C(t, b,0, lr, lp,1
′) =

∑
d′∈{0,1}

u(t− lr + 1,d′,0)v(t− lp + 1,0,0)C̄(t+ 1,d′, lr, lp,1
′)

+
∑

d′∈{0,1}

u(t− lr + 1,d′,0)v(t− lp + 1,1,0)C̄(t+ 1,d′, lr, t+ 1,0),

C(t, b,1, lr, lp,1) = min
{
b+ v(t− lp + 1,0,0)C̄(t+ 1,1, lr, lp,1) + v(t− lp + 1,1,0)C̄(t+ 1,1, lr, t+ 1,0),

αI +
∑

d′∈{0,1}

u(1,d′,0)v(t− lp + 1,0,0)C̄(t+ 1,d′, t, lp,2)

+
∑

d′∈{0,1}

u(1,d′,0)v(t− lp + 1,1,0)C̄(t+ 1,d′, t, t+ 1,1′)
}
,

C(t, b,0, lr, lp,1) =
∑

d′∈{0,1}

u(t− lr + 1,d′,0)v(t− lp + 1,0,0)C̄(t+ 1,d′, lr, lp,1)

+
∑

d′∈{0,1}

u(t− lr + 1,d′,0)v(t− lp + 1,1,0)C̄(t+ 1,d′, lr, t+ 1,0),
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C(t, b,1, lr, lp,0) = min
{
b+ v(t− lp + 1,0,0)C̄(t+ 1,1, lr, lp,0) + v(t− lp + 1,1,0)C̄(t+ 1,1, lr, t+ 1,0′),

αI +
∑

d′∈{0,1}

u(1,d′,0)v(t− lp + 1,0,0)C̄(t+ 1,d′, t, lp,1)

+
∑

d′∈{0,1}

u(1,d′,0)v(t− lp + 1,1,0)C̄(t+ 1,d′, t, t+ 1,0)
}
,

C(t, b,0, lr, lp,0) =
∑

d′∈{0,1}

u(t− lr + 1,d′,0)v(t− lp + 1,0,0)C̄(t+ 1,d′, lr, lp,0)

+
∑

d′∈{0,1}

u(t− lr + 1,d′,0)v(t− lp + 1,1,0)C̄(t+ 1,d′, lr, t+ 1,0′),

C(t, b,1, lr, lp,0
′) = min

{
αI +

∑
d′∈{0,1}

u(1,d′,0)v(1,0,0)C̄(t+ 1,d′, t, t,0)

+
∑

d′∈{0,1}

u(1,d′,0)v(1,1,0)C̄(t+ 1,d′, t, t+ 1,0′), b+ C̄(t+ 1,1, lr, lp,0
′)
}
,

C(t, b,0, lr, lp,0
′) =

∑
d′∈{0,1}

u(t− lr + 1,d′,0)C̄(t+ 1,d′, lr, lp,0
′).

Appendix G: Proofs

Proof of Proposition 1. From (4), we know that the threshold k(t, l) is given by

k(t, l) = αI −
∑

m∈{0,1}

v(t− l+ 1,m,1) C̄(t+ 1,m, l) +
∑
q∈Q

uq
[
vqC̄(t+ q,1, t) + (1− vq)C̄(t+ q,0, t)

]
. (18)

We then obtain the following expected cost functions using (3), (5), and (18):

C̄(t,1, l) = Emin{k(t, l), β̃}+ v(t− l+ 1,1,1)C̄(t+ 1,1, l) + v(t− l+ 1,0,1)C̄(t+ 1,0, l), (19)

C̄(t,0, l) = β+ v(t− l+ 1,1,0)C̄(t+ 1,1, l) + v(t− l+ 1,0,0)C̄(t+ 1,0, l). (20)

If we define κ(t, l,m) = v(t− l,1,m)C̄(t,1, l) + v(t− l,0,0)C̄(t,0, l) and substitute it back in (18), (19), and

(20), then we obtain the expression for the theshold as given in the statement of the proposition. �

Proof of Proposition 2. The following equalities are obtained from the definition of Ω(t,d,m). (We

suppressed the arguments Θ and Γ in the probability expressions.)

Ω(t,d,m) = Pr(r̃〈t〉= r〈t〉,Dt =d,Mt =m ; l)

=
∑

d′∈{0,1}

∑
m′∈{0,1}

Pr(r̃〈t〉= r〈t〉,Dt =d,Mt =m,Dt−1 =d′,Mt−1 =m′ ; l)

=
∑

d′∈{0,1}

∑
m′∈{0,1}

Pr(r̃〈t− 1〉= r〈t− 1〉,Dt−1 =d′,Mt−1 =m′ ; l)

×Pr(r̃t = rt,Dt =d,Mt =m | r̃〈t− 1〉= r〈t− 1〉,Dt−1 =d′,Mt−1 =m′ ; l)

=
∑

d′∈{0,1}

∑
m′∈{0,1}

Ω(t− 1,d′,m′)×Pr(Dt =d |Dt−1 =d′ ; lt)

×Pr(Mt =m |Mt−1 =m′ ; lt)×Pr(r̃t = rt |Dt =d,Mt =m ; lt)

=
∑

d′∈{0,1}

∑
m′∈{0,1}

Ω(t− 1,d′,m′)×u(t− lt,d,d′)

× v(t− lt,m,m′)×
[
dmF̄ (k(t, lt))

]rt[
1−dmF̄ (k(t, lt))

]1−rt
.
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Here, the second equality follows from the law of total probability, the third equality from Bayes’ law, and the

fourth equality from recognizing that – conditional on l, other parameters and the previous period’s states

d
′ and m′ – the evolution of processes Dt and Mt and the decision r̃t are independent of previous recharge

decisions r̃〈t− 1〉. Finally, the realized recharge decision rt is equal to one if and only if d= 1, m= 1, and

the blackout cost is above the threshold k(t, lt); thus, Pr(r̃t = 1 | Dt = d,Mt =m ; lt) = dmF̄ (k(t, lt)). The

expression of Ω for period t= 1 can be obtained in a similar manner. �

Proof of Lemma 1. From the definition of mτ , we obtain mτ = ρmτ−1 +ετ = ετ +ρετ−1 + · · ·+ρτ−1ε1 +m0.

Since εt ∼N(µ,σ2), the CDF of mτ is given by Gτ as defined in the statement of Lemma 1. Then

v(τ,1,0) = Pr(Mτ = 1 |Mτ−1 = 0) = Pr(mτ ≥ logP |mτ−1 < logP )

= Pr(mτ ≥ logP,mτ−1 < logP )/Pr(mτ−1 < logP )

= Pr(ετ ≥ logP − ρmτ−1,mτ−1 < logP )/Pr(mτ−1 < logP )

=
1

Gτ−1(logP )

∫ logP

−∞
Pr(ετ ≥ logP − ρx)dGτ−1(x),

which is same as the expression in (6). The expression in (7) can be derived in a similar manner. Moreover,

vq = Pr(Mq = 1 |M0 = 0) = Pr(mq ≥ logP ) = Ḡq(logP ). �

Proof of Lemma 2. The result trivially follows from the definitions of u and uq, and the assumption

Ñ − 1∼Poisson(Qλ). �

Proof of Lemma 3. We split the sequence {kT , kT−1, . . .} as {kT , . . . , kT−q+1}∪{kT−q, kT−q−1, . . .}. Since

the first subsequence is of finite length, it suffices to show that the latter subsequence is convergent. We do

that by showing that it is a bounded sequence. It then follows from the Bolzano-Weierstrass theorem that

this sequence is convergent.

We first note that when t ≤ T − q, we see from (9) that threshold kt is a function of the next q − 1

thresholds. We denote this function as ζ; hence,

kt = ζ(kt+1, . . . , kt+q−1) = αI −
q−1∑
i=1

{
v⊥Emin{kt+i, β̃}+ (1− v⊥)β

}
= αI − (q− 1)β+ v⊥

q−1∑
i=1

E[β̃− kt+i]+.

Because Emin{kt+i, β̃} ≤ β, kt ≥ αI − (q− 1)β ≡ k, and because E[β̃ − kt+i]+ ≤ E[β̃ − k]+, kt ≤ k+ v⊥(q−

1)E[β̃− k]+ ≡ k. Therefore, the sequence is bounded below by k and above by k.

Given that the sequence is convergent, say its limit is k−∞. Then, because ζ is continuous in all its

arguments, it follows that

k−∞ = lim
n→∞

kT−q−n = lim
n→∞

ζ(kT−q−n+1, . . . , kT−q−n+q−1)

= ζ( lim
n→∞

kT−q−n+1, . . . , lim
n→∞

kT−q−n+q−1) = ζ(k−∞, . . . , k−∞).

The fixed-point equation k−∞ = ζ(k−∞, . . . , k−∞) is same as (10). Therefore, the limit of the sequence k−∞

is same as the k∗ that solves (10). It only remains to show that k∗ exists and is unique. For that purpose,

we define the following function:

K(k, I, v⊥, q) = k−αI + (q− 1)
{
v⊥Emin{k, β̃}+ (1− v⊥)β

}
, (21)
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such that k∗ is the solution to the implicit equation K(k, ·) = 0. The function K is increasing in k because

∂K/∂k= 1 + (q− 1)v⊥F̄ (k)≥ 0. Moreover, K(k, ·) =−v⊥(q− 1)E
[
β̃− k

]+ ≤ 0 and K(k, ·) = v⊥(q− 1)
{
E
[
β̃−

k
]+−E

[
β̃− k

]+}≥ 0. Thus, there exists a unique k∗ that satisfies K(k∗, ·) = 0. �

Proof of Proposition 3. By applying the implicit function theorem to (21), we obtain

∂k∗

∂I
=−∂K/∂I

∂K/∂k
=

α

1 + (q− 1)v⊥F̄ (k∗)
≥ 0, (22)

∂k∗

∂v⊥
=−∂K/∂v⊥

∂K/∂k
=

(q− 1)E[β̃− k∗]+

1 + (q− 1)v⊥F̄ (k∗)
≥ 0, (23)

∂k∗

∂q
=−∂K/∂q

∂K/∂k
=

v⊥E[β̃− k∗]+−β
1 + (q− 1)v⊥F̄ (k∗)

=
k∗−αI

(q− 1)(1 + (q− 1)v⊥F̄ (k∗))
. (24)

We see from (22) that F̄ (k∗) is decreasing in I, and from (11) that Ψ is increasing in I; hence, R is decreasing

in I. Next, using (23), we see that v⊥F̄ (k∗) is increasing in v⊥:

∂(v⊥F̄ (k∗))

∂v⊥
= F̄ (k∗)− f(k∗)v⊥

(q− 1)E[β̃− k∗]+

1 + (q− 1)v⊥F̄ (k∗)
≥ F̄ (k∗)− f(k∗)

E[β̃− k∗]+

F̄ (k∗)

=

∫ ∞
k∗

F̄ (s)

[
f(s)

F̄ (s)
− f(k∗)

F̄ (k∗)

]
ds ≥ 0.

The last inequality is because the function f/F̄ is increasing, wherein f is the density function of β̃. Thus,

from (11), Ψ is decreasing in v⊥. As v⊥ is decreasing in P , R is also decreasing in P . To examine the behavior

of Ψ wrt q, we note that

∂Ψ

∂q
= 1 +

f(k∗)

v⊥F̄ (k∗)2

∂k∗

∂q
(25)

=

{
v⊥F̄ (k∗)2

f(k∗)
(1 + (q− 1)v⊥F̄ (k∗))−β+ v⊥E[β̃− k∗]+

}
× f(k∗)

v⊥F̄ (k∗)2(1 + (q− 1)v⊥F̄ (k∗)2)
. (26)

We see from (24) that whether k∗ is increasing or decreasing in q depends on the sign of k∗−αI. It is easy to

verify from (22) that k∗−αI is decreasing in I and limI→∞ k
∗−αI =−∞. Therefore, there exists a threshold

Î1 ≥ 0 such that for I ≥ Î1, k∗ is decreasing in q and for I < Î1, k∗ is increasing in q. In the latter case, it

follows from (25) that Ψ is increasing in q. Now it remains to examine what happens when k∗ decreases in q.

The term outside the braces in (26) is positive; therefore, the sign of ∂Ψ/∂q depends only on the term

inside the braces, which we denote as b(q). We note that, when I ≥ Î1, b(q) is increasing in q because

(i) F̄ is decreasing, (ii) F̄ /f is decreasing, (iii) E[β̃ − k]+ is decreasing in k, and (iv) k∗ is decreasing in

q. Moreover, limq→∞ b(q) =∞ and limq→1 b(q) = v⊥F̄ (αI)2/f(αI)− β + v⊥E[β̃ −αI]+ ≡ z(I). Furthermore,

z(I) is decreasing in I and limI→∞ z(I) = −β < 0 (because when k∗ is decreasing in q, from (24), β >

v⊥E[β̃− k∗]+ > 0). It follows that there exists a threshold Î2 ≥ 0 such that (a) for I ≥ Î2, z(I) = limq→1 b(q)

is negative, and hence ∂Ψ/∂q single crosses the horizontal axis from below; in other words, Ψ is U-shaped

in q, and R is unimodal in q, and (b) for I < Î2, z(I) = limq→1 b(q) is positive, Ψ is increasing in q and R is

decreasing in q.

Overall, since Î2 ≥ Î1 ≥ 0, we define the threshold Î = Î2, and conclude that R is unimodal in q when I ≥ Î

and R is decreasing in q when I < Î. �
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