Education: The Supply Side

Esther Duflo
BREAD Development Economics Course
The COVID-19 pandemic is a tsunami on the education system in developing countries

- Over 300 Million children have been affected by school closure
- In many countries schools took over a year to re-open, and in some instances closed again immediately after they opened
- Catastrophic impact on learning levels
Catrastrophic impacts on learning level.

Karnataka, India, Comparing 2018 and 2021 (18k kids)

<table>
<thead>
<tr>
<th>Table 7: % Children by grade and arithmetic level</th>
<th>Table 8: % Children by grade and arithmetic level</th>
</tr>
</thead>
<tbody>
<tr>
<td>All schools 2018</td>
<td>All schools 2021</td>
</tr>
<tr>
<td>Std</td>
<td>Not even 1-9</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>I</td>
<td>29.7</td>
</tr>
<tr>
<td>II</td>
<td>10.9</td>
</tr>
<tr>
<td>III</td>
<td>4.9</td>
</tr>
<tr>
<td>IV</td>
<td>2.9</td>
</tr>
<tr>
<td>V</td>
<td>2.3</td>
</tr>
<tr>
<td>VI</td>
<td>2.4</td>
</tr>
<tr>
<td>VII</td>
<td>1.1</td>
</tr>
<tr>
<td>VIII</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Std</th>
<th>Not even 1-9</th>
<th>Recognize numbers 1-9</th>
<th>Recognize numbers 10-99</th>
<th>Subtract</th>
<th>Divide</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>42.6</td>
<td>36.1</td>
<td>19.5</td>
<td>1.4</td>
<td>0.4</td>
<td>100</td>
</tr>
<tr>
<td>II</td>
<td>22.5</td>
<td>35.0</td>
<td>36.7</td>
<td>5.0</td>
<td>0.8</td>
<td>100</td>
</tr>
<tr>
<td>III</td>
<td>10.7</td>
<td>24.7</td>
<td>47.3</td>
<td>15.7</td>
<td>1.6</td>
<td>100</td>
</tr>
<tr>
<td>IV</td>
<td>7.1</td>
<td>15.0</td>
<td>49.6</td>
<td>24.8</td>
<td>3.6</td>
<td>100</td>
</tr>
<tr>
<td>V</td>
<td>4.6</td>
<td>10.3</td>
<td>41.0</td>
<td>32.1</td>
<td>12.1</td>
<td>100</td>
</tr>
<tr>
<td>VI</td>
<td>2.6</td>
<td>5.6</td>
<td>32.0</td>
<td>35.3</td>
<td>24.5</td>
<td>100</td>
</tr>
<tr>
<td>VII</td>
<td>1.7</td>
<td>4.4</td>
<td>26.9</td>
<td>36.8</td>
<td>30.2</td>
<td>100</td>
</tr>
<tr>
<td>VIII</td>
<td>1.1</td>
<td>4.0</td>
<td>24.5</td>
<td>31.8</td>
<td>38.7</td>
<td>100</td>
</tr>
</tbody>
</table>
Catrastrophic impacts on learning level, continued.

Table 3: % Children by grade and reading level
All schools 2018

<table>
<thead>
<tr>
<th>Std</th>
<th>Not even letter</th>
<th>Letter</th>
<th>Word</th>
<th>Std I level text</th>
<th>Std II level text</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>40.3</td>
<td>39.9</td>
<td>15.4</td>
<td>2.5</td>
<td>1.9</td>
<td>100</td>
</tr>
<tr>
<td>II</td>
<td>17.2</td>
<td>31.7</td>
<td>30.6</td>
<td>13.0</td>
<td>7.6</td>
<td>100</td>
</tr>
<tr>
<td>III</td>
<td>9.2</td>
<td>19.8</td>
<td>30.3</td>
<td>21.5</td>
<td>19.2</td>
<td>100</td>
</tr>
<tr>
<td>IV</td>
<td>5.1</td>
<td>13.5</td>
<td>23.4</td>
<td>24.8</td>
<td>33.2</td>
<td>100</td>
</tr>
<tr>
<td>V</td>
<td>4.5</td>
<td>8.7</td>
<td>16.9</td>
<td>23.8</td>
<td>46.0</td>
<td>100</td>
</tr>
<tr>
<td>VI</td>
<td>4.2</td>
<td>6.7</td>
<td>12.8</td>
<td>20.5</td>
<td>55.8</td>
<td>100</td>
</tr>
<tr>
<td>VII</td>
<td>2.5</td>
<td>6.3</td>
<td>12.2</td>
<td>18.0</td>
<td>61.2</td>
<td>100</td>
</tr>
<tr>
<td>VIII</td>
<td>2.0</td>
<td>4.9</td>
<td>6.9</td>
<td>15.9</td>
<td>70.3</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4: % Children by grade and reading level
All schools 2021

<table>
<thead>
<tr>
<th>Std</th>
<th>Not even letter</th>
<th>Letter</th>
<th>Word</th>
<th>Std I level text</th>
<th>Std II level text</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>56.8</td>
<td>29.4</td>
<td>10.5</td>
<td>1.6</td>
<td>1.7</td>
<td>100</td>
</tr>
<tr>
<td>II</td>
<td>31.8</td>
<td>37.3</td>
<td>21.5</td>
<td>6.2</td>
<td>3.3</td>
<td>100</td>
</tr>
<tr>
<td>III</td>
<td>16.5</td>
<td>29.5</td>
<td>30.5</td>
<td>13.7</td>
<td>9.8</td>
<td>100</td>
</tr>
<tr>
<td>IV</td>
<td>12.0</td>
<td>19.2</td>
<td>30.5</td>
<td>20.0</td>
<td>18.3</td>
<td>100</td>
</tr>
<tr>
<td>V</td>
<td>6.5</td>
<td>12.5</td>
<td>23.6</td>
<td>23.9</td>
<td>33.6</td>
<td>100</td>
</tr>
<tr>
<td>VI</td>
<td>3.9</td>
<td>7.9</td>
<td>14.6</td>
<td>23.8</td>
<td>49.8</td>
<td>100</td>
</tr>
<tr>
<td>VII</td>
<td>3.3</td>
<td>6.3</td>
<td>12.8</td>
<td>21.2</td>
<td>56.5</td>
<td>100</td>
</tr>
<tr>
<td>VIII</td>
<td>2.4</td>
<td>5.8</td>
<td>8.2</td>
<td>17.5</td>
<td>66.2</td>
<td>100</td>
</tr>
</tbody>
</table>

The reading tool is a progressive tool. Each row shows the variation in children’s reading levels within a given grade. For example, in Table 3, among children in Std III, 9.2% cannot yet read letters, 19.8% can read letters but not words or higher, 30.3% can read words but not Std I level text or higher, 21.5% can read Std I level text but not Std II level text, and 19.2% can read Std II level text. For each grade, the total of these exclusive categories is 100%.
The problem is, by now, well known. This exacerbates existing trends:

- High enrollment rates
- ...but low attendance
- And low learning levels
Most children are going to school in India although they are absent a lot.

Enrollment in school

96.7% of children (in the age group 6-14 years) are enrolled in school in rural India.

2014 was the 6th year in a row that enrollment rates have been 96% or above.

Attendance in school

Visit to a government school on any random day in September, October or November shows about 71% of enrolled children are attending school on that day.

However there is a lot of variation in daily attendance across states.
And around the world too

The share of children in primary school age who are in school, 2010

Net attendance rate of primary school, 2015
Total number of students in the theoretical age group for primary education attending that level, expressed as a percentage of the total population in that age group.

Source: UNESCO Institute for Statistics
OurWorldInData.org/primary-and-secondary-education • CC BY
Source: Lee and Lee (2016)
OurWorldInData.org/global-rise-of-education • CC BY
Note: The ratio between primary school students and the number of children in the primary school age group. The enrollment ratios account for the repetition of grades and are taking differences in school ages between countries into account.
School have been built, and when school is closer, people go

- Duflo (2001) INPRES school construction experiment in Indonesia

Table 3—Means of Education and Log(Wage) by Cohort and Level of Program Cells

<table>
<thead>
<tr>
<th>Years of education</th>
<th>Level of program in region of birth</th>
<th>Log(wages)</th>
<th>Level of program in region of birth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High (1)</td>
<td>Low (2)</td>
<td>Difference (3)</td>
</tr>
<tr>
<td>Panel A: Experiment of Interest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aged 2 to 6 in 1974</td>
<td>8.49</td>
<td>9.76</td>
<td>-1.27</td>
</tr>
<tr>
<td>(0.043)</td>
<td>(0.037)</td>
<td>(0.027)</td>
<td>(0.0078)</td>
</tr>
<tr>
<td>Aged 12 to 17 in 1974</td>
<td>8.02</td>
<td>9.40</td>
<td>-1.39</td>
</tr>
<tr>
<td>(0.053)</td>
<td>(0.042)</td>
<td>(0.067)</td>
<td>(0.0085)</td>
</tr>
<tr>
<td>Difference</td>
<td>0.47</td>
<td>0.36</td>
<td>0.12</td>
</tr>
<tr>
<td>(0.0790)</td>
<td>(0.0036)</td>
<td>(0.0099)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Panel B: Control Experiment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aged 12 to 17 in 1974</td>
<td>8.02</td>
<td>9.40</td>
<td>-1.39</td>
</tr>
<tr>
<td>(0.053)</td>
<td>(0.042)</td>
<td>(0.067)</td>
<td>(0.0085)</td>
</tr>
<tr>
<td>Aged 18 to 24 in 1974</td>
<td>7.70</td>
<td>9.12</td>
<td>-1.42</td>
</tr>
<tr>
<td>(0.059)</td>
<td>(0.044)</td>
<td>(0.072)</td>
<td>(0.0097)</td>
</tr>
<tr>
<td>Difference</td>
<td>0.32</td>
<td>0.28</td>
<td>0.034</td>
</tr>
<tr>
<td>(0.080)</td>
<td>(0.061)</td>
<td>(0.098)</td>
<td>(0.013)</td>
</tr>
</tbody>
</table>

Notes: The sample is made of the individuals who earn a wage. Standard errors are in parentheses.

Similar impact of school construction in Afghanistan (!) (Linden), large impact of cycle provision (Bihar) (Muralidharan and Prakash, 2017)
But they are not learning much.

% Children in Std V who can at least read at Std II level
All India (rural) – All children
ASER 2011 to 2016
<table>
<thead>
<tr>
<th>Grade</th>
<th>ASER 2014</th>
<th>% Children who can do subtraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std III</td>
<td>25.3</td>
<td></td>
</tr>
<tr>
<td>Std IV</td>
<td>40.2</td>
<td></td>
</tr>
<tr>
<td>Std V</td>
<td>50.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grade</th>
<th>ASER 2014</th>
<th>% Children who can do division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std V</td>
<td>26.1</td>
<td></td>
</tr>
<tr>
<td>Std VI</td>
<td>32.2</td>
<td></td>
</tr>
<tr>
<td>Std VIII</td>
<td>44.1</td>
<td></td>
</tr>
</tbody>
</table>
And in the world (harmonized learning data from WB)

Average learning outcomes vs GDP per capita, 2015

The vertical axis shows average scores across standardized, psychometrically-robust international and regional student achievement tests. To maximize coverage by country, tests have been harmonized and pooled across subjects (math, reading, science) and levels (primary and secondary education). The horizontal axis shows GDP per capita after adjusting for price differences between countries and across time.

Source: Altinok, Angrist, and Patrinos (2018), Maddison Project Database 2020 (Bolt and van Zanden (2020))
Going deeper: what schools miss

- Improvements in intuitive mathematics in pre-school does not lead to improvements in math in early grades
- Children who can do complicated mental arithmetics cannot do school arithmetic and vice versa.
An experiment with 1,539 4-5 year old children in 214 Pratham-run preschool classes in Delhi

Classes randomized to 3 conditions:
- Math games
- Social games (active control)
- Normal curriculum (no-treatment control)

12+ months study:
- Month 1: Pretest assessments
- Months 2-5: Games
- Month 6: First post-test assessments (~94% of sample)
- EL2, EL3 after kids have joined school
Numerical Comparison

Sorting a deck of cards: More red dots or blue dots?
Visual Form Analysis

Which card doesn’t belong with the rest?
Social games training sensitivity to emotion and gaze
First finding

Even though the children had never played any games like these before, they learned to play as quickly and effectively as the children in the US, and they played as enthusiastically. Poor Indian children have an intuitive grasp of, and interest in, number and geometry.

Dillon, Kannan, Dean, Spelke & Duflo, Science 2017
First finding
Immediate effects on the non-symbolic math tests

p<.01, *p<.001

Children given math games were more sensitive to number/geometry than those given social or no games (opposite effects on social games).

NB: Black stars show significant treatment effects relative to no-treatment control. Red stars show relative treatment effects of math and social games. **p<.01, ***p<.001
Even though children lost all access to the games a year earlier, the specific impact of the math games was as big at EL3 as at EL1.

NB: Treatment effects in percentage points, relative to no-treatment control. Black stars show significant treatment effects relative to no-treatment control. Red stars show relative treatment effects of math and social games. **p<.01, ***p<.001.
Third finding
A weak but significant effect on symbolic math at EL1....

Children in the math games condition showed better mastery of Arabic numbers and of number words and shape names (as they do for US children).
Although the math games enhanced the math language and symbols used in preschool, they did not enhance children’s learning of symbolic math in primary school.

...but this disappeared at later endlines
Conclusion from the first study

Playing non-symbolic math games, in a good nursery school, is not sufficient for enhancing children’s readiness for learning school mathematics.

Schools are not able to leverage increased mathematical ability
The Market Math studies (Banerjee et al, 2022)

- **Kolkata** (201 children in 92 markets)
- **Delhi** (400 children in 39 markets)
 - 3 pair of “mystery shoppers” bought goods from children
 - Then children were invited to participate in the study:
 - **Written assessment** of school arithmetic (ASER study)
 - **Oral assessment** of school arithmetic
 - Simple problems
 - “Anchored” problems
 - Increasingly unfamiliar hypothetical transactions
 - Different price
 - Different unit (i.e., kilo or unit)
 - Different price and unit
 - School children in Delhi invited to do simulated market transaction
School children were asked the same math questions and asked to do simulated market transactions.
Working children use arithmetic effectively on their jobs.

Figure 1. Proportion of working and school children, by city, who calculated the total amount due in transactions involving two goods sold by the child in unusual quantities. Correct performance requires the child to perform two correct multiplications or divisions followed by a correct subtraction. Error bars indicate 95% CIs around the mean of both variables combined (correct and correct after mistakes).

Calculation approaches Performance of children by schooling Performance of working children and adults
The arithmetic skills of working children are flexible, within the realm of market transactions.

Figure 2. Proportion of working children who calculated the total amount due in hypothetical transactions correctly. In Kolkata, a subset of 117 children were presented with the same two problems. The first two panels display the proportion of working children in Kolkata who answered these two hypothetical transactions correctly, depending on whether they sold goods by unit or kilogram/liters. In Delhi, each child was presented with a different set of five problems, depending on whether they sold goods by unit or kilogram/liters. The third panel displays the proportion of working children in Delhi who answered these hypothetical transactions correctly, grouping children who sold goods by unit and kilogram/liters. Error bars indicate 95% CIs around the mean of both variables combined (correct and correct after mistakes).
Despite their success in markets, working children struggle with school mathematics.

Figure 3. Proportion of working children at each level of a written assessment of number recognition and arithmetic by city. Error bars indicate 95% CIs around the mean. Only 2% of children in Kolkata and 1% of children in Delhi failed to recognize one-digit numbers.

Performance by type of goods sold Performance on oral assessment
Market children fail at school mathematics primarily because of their abstract presentation.

Figure 4. Proportion of working children, by city, who solved a single oral subtraction or division problem correctly, depending on whether it was framed in the abstract form or in terms linked to goods and money. Error bars indicate 95% CIs around the mean of both variables combined (correct and correct after mistakes). In Kolkata, these questions were only administered to 117 of the 201 children in the study.

Calculation approaches in market transactions Calculation approaches in written assessment
And yet, market children are able to fall back on efficient strategies even for abstract problems if they can be rounded.

Figure 5. Proportion of working children in Delhi who solved a single subtraction problem correctly, depending on whether it was framed in the abstract form or in terms linked to goods and money, and whether it was roundable or not (only for the subset of children who completed both sets of exercises). Error bars indicate 95% CIs around the mean of both variables combined (correct and correct after mistakes).

Performance of working and school children
And yet, market children are able to fall back on efficient strategies even for abstract problems if they can be rounded.

Figure 6. Number of times that working and school children wrote numbers and operations in the paper given to them for the non-oral exercises.

Pictures of calculations by school children Written calculations of working and school children
Sample student calculation work (school children, simulated market problems)
So the problem is deeper than schools not teaching much

- They don’t recognize or leverage existing knowledge (abstract or concrete)
- What little they teach is useless for life
What the problem is (mainly) not

- Children are undernourished, parents are not helping, etc: children cannot learn.
- Teacher salary & other resources
- Incentives to do the job (as teachers understand it).
Children in India have the same fundamental learning processes as children in the US

- Among pre-school mathematicians, we find the same non-symbolic abilities in India as is typically found in US studies.
- Moreover, we find the same correlations between current and subsequent symbolic skills and the non-symbolic skills as in the US.
Teacher salary and other resources

- Teachers are highly paid.
- Teachers salary are much higher in public than in (cheap) private schools that village children attend, yet performance in private school is at least as good (more evidence on that below)
- Non-permanent teachers who are paid a fraction of a regular teacher’s salary are more effective.
- Large scale experiment in Indonesia to test the impact of doubling teacher pay led to NO increase in performance (De Rhee et al. 2018)
- Evidence also suggest no impact of cutting class size with no other changes in pedagogy in India, Kenya, etc.
Teacher incentives

• Directing incentive to specific things does help:
 – In Udaipur (Rajasthan), Duflo, Hanna, Ryan (2012) found that when teachers were given an incentives to attend, they attended more and children scored better at an endline test.
 – In Andhra Pradesh, Muralidharan and Sundararaman (2011) find that giving teachers incentives based on their children test scores led to increase in test scores

• However, private schools have the strongest incentives of all, since they survive based on parents’ satisfaction.
 – The ASER test consistently find that children going to private schools do better than children who go to government schools
 – But this is entirely due to selection of children
 – In large RCT, Private schools tend to teach math and Telugu less well, thought they teach hindi and English (Muralidharan and Sundararaman, 2015)
Little impact on test scores
Except Hindi and English which are not taught in public schools but are taught in private school

<table>
<thead>
<tr>
<th></th>
<th>Year 2 assessments</th>
<th></th>
<th>Year 4 assessments</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Telugu score</td>
<td>Math score</td>
<td>English score</td>
<td>Combined across tests</td>
<td>Telugu score</td>
<td>Math score</td>
<td>English score</td>
<td>EVS score</td>
<td>Combined across tests (excluding Hindi)</td>
<td>Hindi score</td>
</tr>
<tr>
<td>Offered voucher</td>
<td>-0.079</td>
<td>-0.053</td>
<td>0.185**</td>
<td>0.016</td>
<td>-0.017</td>
<td>-0.031</td>
<td>0.116*</td>
<td>0.083</td>
<td>0.036</td>
<td>0.545***</td>
</tr>
<tr>
<td></td>
<td>(0.055)</td>
<td>(0.065)</td>
<td>(0.079)</td>
<td>(0.061)</td>
<td>(0.051)</td>
<td>(0.052)</td>
<td>(0.070)</td>
<td>(0.060)</td>
<td>(0.048)</td>
<td>(0.068)</td>
</tr>
<tr>
<td>Total observations</td>
<td>4,620</td>
<td>4,620</td>
<td>4,525</td>
<td>13,765</td>
<td>4,385</td>
<td>4,385</td>
<td>4,217</td>
<td>4,243</td>
<td>17,230</td>
<td>1,696</td>
</tr>
<tr>
<td>Treatment observations</td>
<td>1,778</td>
<td>1,778</td>
<td>1,738</td>
<td>5,294</td>
<td>1,674</td>
<td>1,675</td>
<td>1,697</td>
<td>1,628</td>
<td>6,584</td>
<td>867</td>
</tr>
<tr>
<td>Control observations</td>
<td>2,842</td>
<td>2,842</td>
<td>2,787</td>
<td>8,471</td>
<td>2,711</td>
<td>2,710</td>
<td>2,610</td>
<td>2,615</td>
<td>10,646</td>
<td>829</td>
</tr>
</tbody>
</table>

Panel A: Impact of winning a voucher (intention to treat effects)

Panel B: Average treatment on the treated (ATT) effect of attending a private school (scaling up intention to treat effect by inverse of voucher take-up rate)
The tyranny of the curriculum

• If kids can learn and teachers do teach, could the problem be that teachers are not teaching the right material?
• “Tyranny of the curriculum”: no matter what children can do, you cannot afford not to complete the curriculum.
<table>
<thead>
<tr>
<th>Month</th>
<th>Math-Magic</th>
<th>Topic</th>
<th>Description</th>
<th>Grade</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct.</td>
<td>Math-Magic</td>
<td>Carts and Wheels</td>
<td>Understanding of circle using bangles, ropes etc. Understanding of radius of circle. Understanding of drawing a circle using compass.</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Halves and Quarters</td>
<td>Understanding of half, quarter, three-fourth etc.</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3rd Monthly Assessment in the last week</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table and Shares</td>
<td>Understanding of tables up to 15. Practice questions of division, word problems.</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4th Monthly Assessment in the last week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td>Math-Magic</td>
<td>Fields and Fences</td>
<td>Understanding of perimeter of regular & irregular figures. Understanding of areas of regular & irregular pictures. Ability to solve word problems.</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>
The tyranny of the curriculum

• If kids can learn and teachers do teach, could the problem be that teachers are not teaching the right material?
• “Tyranny of the curriculum”: no matter what children can do, you cannot afford not to complete the curriculum.
• Not only an Indian problem. It is related to how elitist the curriculum is...
 – Same problem in Kenya... and in France!
 – Opposite situation in Finland, which has great test scores
In a TaRL classroom

STEP 1
ASSESSMENT
Test children on the basics using simple tools

STEP 2
GROUPING
Create homogeneous learning level groups

STEP 3
FOUNDATIONAL SKILLS
Focus on basic skills for a period of the day or year

Children are reassessed and moved through the levels as they progress.
For 15+ years of experimentation

2001-2003
“Balsakhi” program; Pratham community volunteer “pull out” remedial program in urban schools

2008
In-school one month gov’t teacher-led summer camp with support by rural village volunteers

2010-2013
Ghana trials of teacher-led vs. tutor-led in school and out of school

2013-2014
“Learning Camps” in gov’t primary schools; led by Pratham teams supported by village volunteers

2005-2006
Village volunteers conducted community classes for rural primary school children

2008-2010
In-school gov’t teacher-led learning improvement program & support by Pratham volunteers (rural)

2012-2013
Teacher-led model; onsite mentoring by gov’t academic officials
Pratham staff/volunteers in-school

Evaluation design:
- T1 (2, 20-day): 120 schools
- T2 (4, 10-day): 120 schools
- Control: 120 schools

Results:
- Huge gains (.7 s.d. in Hindi and math)
- Effect of “pure” TaRL model
- Cost effective (driven by huge gains)
Pratham staff/volunteers in-school

Uttar Pradesh (2013-2014)

Delivery: Pratham staff and volunteers
Location: In-school
Timing: During school hours, 2 hours a day
Duration: 50 days

Special characteristics:
- Intensive camp model
- Dedicated time
- Grouping across Std 3-5
Teaching at the right level today: Scale up to millions in India and Africa under Pratham Leadership
Fixing primary education

• **Give up on schools?**
 – Pratham recent Digital efforts mainly out of school
 – Great potential, Remarkable impacts of some initiatives (Garminian et al, RCT of mindspark, a software programs used during tutoring lessons)
 – Satisfying... but

• Schools continue to have the monopoly to test and legitimate knowledge

• Fundamental problem with this approach is that kids are in school, anything else requires convincing them to show up
 – First Read India program was out of school: very large effect on very few kids
 – Very low willingness to pay for Mindspark (the educational program)
Disrupting education?

• Lottery to give access to tuition with mindspark program, an AI based software to provide drills adapted to level to each child.

• Large impacts

Garminian et al, disrupting education
Impact throughout the distribution...
But no impact on grade level questions in math
And hence moderate to no impact on school exams

- And no parent interest... and program had to stop

Table 7—Treatment Effect on School Exams

<table>
<thead>
<tr>
<th></th>
<th>Hindi (1)</th>
<th>Math (2)</th>
<th>Science (3)</th>
<th>Social sciences (4)</th>
<th>English (5)</th>
<th>Aggregate (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>0.196</td>
<td>0.059</td>
<td>0.077</td>
<td>0.108</td>
<td>0.081</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>(0.088)</td>
<td>(0.076)</td>
<td>(0.092)</td>
<td>(0.110)</td>
<td>(0.105)</td>
<td>(0.080)</td>
</tr>
<tr>
<td>Baseline Hindi score</td>
<td>0.487</td>
<td>0.292</td>
<td>0.414</td>
<td>0.305</td>
<td>0.336</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.092)</td>
<td>(0.064)</td>
<td>(0.096)</td>
<td>(0.067)</td>
<td>(0.058)</td>
<td></td>
</tr>
<tr>
<td>Baseline math score</td>
<td>0.303</td>
<td>0.097</td>
<td>0.262</td>
<td>0.120</td>
<td>0.167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.036)</td>
<td>(0.058)</td>
<td>(0.052)</td>
<td>(0.039)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.006</td>
<td>0.142</td>
<td>0.931</td>
<td>1.062</td>
<td>1.487</td>
<td>0.977</td>
</tr>
<tr>
<td></td>
<td>(1.103)</td>
<td>(0.423)</td>
<td>(0.347)</td>
<td>(0.724)</td>
<td>(0.740)</td>
<td>(0.600)</td>
</tr>
<tr>
<td>Observations</td>
<td>597</td>
<td>596</td>
<td>595</td>
<td>594</td>
<td>597</td>
<td>597</td>
</tr>
<tr>
<td>R^2</td>
<td>0.190</td>
<td>0.073</td>
<td>0.121</td>
<td>0.177</td>
<td>0.144</td>
<td>0.210</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parentheses. This table shows the effect of receiving the Mindspark voucher on the final school exams, held in March 2016 after the completion of the intervention. Treatment is a dummy variable indicating a randomly assigned offer of a Mindspark voucher. Test scores in the school exams are normalized within school x grade to have a mean of zero and a standard deviation of one in the control group. All regressions include grade and school fixed effects.

Despite the large test-score gains we find, parental demand for Mindspark centers was low in the absence of (fee-waiving) vouchers. In fact, all three centers in our study closed down soon after the conclusion of our experiment in the face of low parental willingness to pay (even at the subsidized price that was charged to the students outside our study who attended the Mindspark centers). The donors who subsidized the fees for regular students at Mindspark centers stipulated that they would only continue funding the subsidies if the centers could operate at or above 80 percent capacity (and thereby demonstrate parental willingness to pay at least the subsidized price). In practice, enrollment levels were considerably below this target, and the centers had to shut down because philanthropic funding for the subsidies ended. Thus, models of
Fixing primary education

• **Give up on schools?**
 – Digital efforts mainly out of school
 – Great potential. Remarkable impacts of some initiatives (Garminian et al, RCT of mindspark, a software programs used during tutoring lessons)
 – Satisfying... but

• Fundamental problem with this approach is that kids are in school, anything else requires convincing them to show up
 – First Read India program was out of school: very large effect on very few kids
 – Very low willingness to pay for Mindspark (the educational program)

• Schools continue to have the monopoly to test and legitimate knowledge

• Parents continue to buy into the obsession of elitism: schools is valuable for the possibilities it opens up (see the private school impacts, mainly on English and Hindi)-See Kenya and hope for large returns to secondary school education.
Fixing primary education

Changing the curriculum?

– That remains the holy grail: many of the problems of the system are ultimately anchored in the curriculum

– Tremendous opposition from the education world...

– We seem to be going the other way

– Partial efforts are counterproductive: Example of CCE evaluation in Haryana

– Glimmer of hope: Delhi. Massive tracking and decision not to finish curriculum in Delhi led to large gains before the pandemic.
Fixing primary education

Working on the margins: Some parts of the system are more open

- Tutoring
- Completely defunct schools
- Pre-school
- Early Grade where it may be possible to complement the curriculum
- Summers
Preparing the kids better for primary school:
Second experiment with of Duflo-Spelke team.

1896 children in 231 Delhi preschools.

Non-symbolic games

Symbolic games
Second expt.: Effects on the non-symbolic measures

The non-symbolic and mixed games increased children’s sensitivity to number and geometry in dot arrays and forms. Enduring effects, replicating Exp. 1. Symbolic games had no effect on the intuitive tasks, suggesting the symbols were not given numerical meaning.

NB: Preliminary findings. Z-scores from pre-registered measures and analyses. Data labeled in black show significant treatment effects relative to no treatment control. No differences between the 3 treatment conditions are significant. *p<.05, **p<.01, ***p<.001
Second expt.: Effects on the symbolic measures

All 3 conditions enhanced symbolic math abilities at EL1.
The mixed games also enhanced school math learning at the later endlines

NB: Preliminary findings. Z-scores from pre-registered measures and analyses.
Data labeled in black show significant treatment effects relative to no treatment control.
*p<.05, **p<.01, ***p<.001
Experiment 3: Scalable model

Games for kindergarten and Grade 1 children in 141 government schools (randomized to treatment vs. control).

Games are led by regular teachers and played by all children at once, in groups.

Cards emphasize the base-ten structure of the number system and the equivalence of one ten and ten ones.
Number Comparison

| G1: Numbers 1-100, Decks go from being 100% double sided to 0% | KG: Numbers 1-20, Decks go from being 100% double sided to 25% |

Find shape

- Distinguish between dissimilar (3 sided versus 4) and similar shapes (triangles)
- Perpendicular & parallel lines, Acute and Obtuse angles, length of sides, symmetry
Find and Move

Board number range: 1-100 (Grade 1), 1-20 (Kindergarten). Decks use dot arrays and Arabic numbers.

<table>
<thead>
<tr>
<th>Board</th>
<th>Non-symbolic</th>
<th>Symbolic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| KG Properties: Inside, On the side, Near |
| Grade 1 Properties: Inside, On the side, Near, Longest Side, Shortest Side, Largest Angle, Smallest Angle |
Results

- Math games led to strong impact on symbolic math outcomes for both Kindergarten and Grade 1 students.
Fixing primary education

Working on the margins: Some parts of the system are more open

- Tutoring
- Completely defunct schools
- Pre-school
- Early Grade where it may be possible to complement the curriculum
- Summers

The worry is the temptation to close this margin as it expands

- Regulate coaching center
- Set up a curriculum for pre-school
Ready to scale!

- Games were very received by teachers (in contrast to remedial education packages that is hard to get implemented in schools)
- Effects were still larger in classes that played it more.
- Training is easy: one day training + material
- Talking to several State governments with the hope of encouraging scale up
- Hoping to talk to game company to encourage publication of games
Fixing primary education

Patience

- Ultimately there is probably not going to be a silver bullet
- We will need to continue to engage with the school system as it is, however frustrating
- The good thing is that we exactly know what needs to be done
- The challenge is to exploit all existing wedges and pry open new ones at every opportunity.
- There are real gains, and they are multiplied by millions of children.
References

• Abhijit V. Banerjee, Swati Bhattacharjee, Raghabendra Chattopadhyay, Esther Duflo, Alejandro J. Ganimian, Elizabeth S. Spelke “Street smart or school smart? The arithmetic skills of working children in two Indian cities” MIMEO, MIT
• Banerjee, Abhijit, Rukmini Banerji, James Berry, Esther Duflo, Harini Kannan, Shobhini Mukherji, Marc Shotland and Michael Walton “From Proof of Concept to Scalable Policies: Challenges and Solutions, with an Application” Journal of Economic Perspectives, Vol. 31, Number 4, fall 2017